Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/ssl/t1_lib.c
105238 views
1
/*
2
* Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <ctype.h>
13
#include <openssl/objects.h>
14
#include <openssl/evp.h>
15
#include <openssl/hmac.h>
16
#include <openssl/core_names.h>
17
#include <openssl/ocsp.h>
18
#include <openssl/conf.h>
19
#include <openssl/x509v3.h>
20
#include <openssl/dh.h>
21
#include <openssl/bn.h>
22
#include <openssl/provider.h>
23
#include <openssl/param_build.h>
24
#include "internal/nelem.h"
25
#include "internal/sizes.h"
26
#include "internal/tlsgroups.h"
27
#include "internal/ssl_unwrap.h"
28
#include "ssl_local.h"
29
#include "quic/quic_local.h"
30
#include <openssl/ct.h>
31
32
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
33
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
34
35
SSL3_ENC_METHOD const TLSv1_enc_data = {
36
tls1_setup_key_block,
37
tls1_generate_master_secret,
38
tls1_change_cipher_state,
39
tls1_final_finish_mac,
40
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42
tls1_alert_code,
43
tls1_export_keying_material,
44
0,
45
ssl3_set_handshake_header,
46
tls_close_construct_packet,
47
ssl3_handshake_write
48
};
49
50
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51
tls1_setup_key_block,
52
tls1_generate_master_secret,
53
tls1_change_cipher_state,
54
tls1_final_finish_mac,
55
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57
tls1_alert_code,
58
tls1_export_keying_material,
59
0,
60
ssl3_set_handshake_header,
61
tls_close_construct_packet,
62
ssl3_handshake_write
63
};
64
65
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66
tls1_setup_key_block,
67
tls1_generate_master_secret,
68
tls1_change_cipher_state,
69
tls1_final_finish_mac,
70
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
71
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
72
tls1_alert_code,
73
tls1_export_keying_material,
74
SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
75
| SSL_ENC_FLAG_TLS1_2_CIPHERS,
76
ssl3_set_handshake_header,
77
tls_close_construct_packet,
78
ssl3_handshake_write
79
};
80
81
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
82
tls13_setup_key_block,
83
tls13_generate_master_secret,
84
tls13_change_cipher_state,
85
tls13_final_finish_mac,
86
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88
tls13_alert_code,
89
tls13_export_keying_material,
90
SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91
ssl3_set_handshake_header,
92
tls_close_construct_packet,
93
ssl3_handshake_write
94
};
95
96
OSSL_TIME tls1_default_timeout(void)
97
{
98
/*
99
* 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100
* http, the cache would over fill
101
*/
102
return ossl_seconds2time(60 * 60 * 2);
103
}
104
105
int tls1_new(SSL *s)
106
{
107
if (!ssl3_new(s))
108
return 0;
109
if (!s->method->ssl_clear(s))
110
return 0;
111
112
return 1;
113
}
114
115
void tls1_free(SSL *s)
116
{
117
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
118
119
if (sc == NULL)
120
return;
121
122
OPENSSL_free(sc->ext.session_ticket);
123
ssl3_free(s);
124
}
125
126
int tls1_clear(SSL *s)
127
{
128
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
129
130
if (sc == NULL)
131
return 0;
132
133
if (!ssl3_clear(s))
134
return 0;
135
136
if (s->method->version == TLS_ANY_VERSION)
137
sc->version = TLS_MAX_VERSION_INTERNAL;
138
else
139
sc->version = s->method->version;
140
141
return 1;
142
}
143
144
/* Legacy NID to group_id mapping. Only works for groups we know about */
145
static const struct {
146
int nid;
147
uint16_t group_id;
148
} nid_to_group[] = {
149
{ NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1 },
150
{ NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1 },
151
{ NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2 },
152
{ NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1 },
153
{ NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2 },
154
{ NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1 },
155
{ NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1 },
156
{ NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1 },
157
{ NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1 },
158
{ NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1 },
159
{ NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1 },
160
{ NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1 },
161
{ NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1 },
162
{ NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1 },
163
{ NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1 },
164
{ NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1 },
165
{ NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2 },
166
{ NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1 },
167
{ NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1 },
168
{ NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1 },
169
{ NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1 },
170
{ NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1 },
171
{ NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1 },
172
{ NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1 },
173
{ NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1 },
174
{ NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1 },
175
{ NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1 },
176
{ NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1 },
177
{ EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519 },
178
{ EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448 },
179
{ NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13 },
180
{ NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13 },
181
{ NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13 },
182
{ NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A },
183
{ NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B },
184
{ NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C },
185
{ NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D },
186
{ NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A },
187
{ NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B },
188
{ NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C },
189
{ NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048 },
190
{ NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072 },
191
{ NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096 },
192
{ NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144 },
193
{ NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192 }
194
};
195
196
static const unsigned char ecformats_default[] = {
197
TLSEXT_ECPOINTFORMAT_uncompressed,
198
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
199
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
200
};
201
202
/* Group list string of the built-in pseudo group DEFAULT */
203
#define DEFAULT_GROUP_NAME "DEFAULT"
204
#define TLS_DEFAULT_GROUP_LIST \
205
"?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
206
207
static const uint16_t suiteb_curves[] = {
208
OSSL_TLS_GROUP_ID_secp256r1,
209
OSSL_TLS_GROUP_ID_secp384r1,
210
};
211
212
/* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
213
#define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
214
#define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
215
216
struct provider_ctx_data_st {
217
SSL_CTX *ctx;
218
OSSL_PROVIDER *provider;
219
};
220
221
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
222
static OSSL_CALLBACK add_provider_groups;
223
static int add_provider_groups(const OSSL_PARAM params[], void *data)
224
{
225
struct provider_ctx_data_st *pgd = data;
226
SSL_CTX *ctx = pgd->ctx;
227
const OSSL_PARAM *p;
228
TLS_GROUP_INFO *ginf = NULL;
229
EVP_KEYMGMT *keymgmt;
230
unsigned int gid;
231
unsigned int is_kem = 0;
232
int ret = 0;
233
234
if (ctx->group_list_max_len == ctx->group_list_len) {
235
TLS_GROUP_INFO *tmp = NULL;
236
237
if (ctx->group_list_max_len == 0)
238
tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
239
* TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
240
else
241
tmp = OPENSSL_realloc(ctx->group_list,
242
(ctx->group_list_max_len
243
+ TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
244
* sizeof(TLS_GROUP_INFO));
245
if (tmp == NULL)
246
return 0;
247
ctx->group_list = tmp;
248
memset(tmp + ctx->group_list_max_len,
249
0,
250
sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251
ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
252
}
253
254
ginf = &ctx->group_list[ctx->group_list_len];
255
256
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
257
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
258
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
259
goto err;
260
}
261
ginf->tlsname = OPENSSL_strdup(p->data);
262
if (ginf->tlsname == NULL)
263
goto err;
264
265
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
266
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
267
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
268
goto err;
269
}
270
ginf->realname = OPENSSL_strdup(p->data);
271
if (ginf->realname == NULL)
272
goto err;
273
274
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
275
if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
276
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
277
goto err;
278
}
279
ginf->group_id = (uint16_t)gid;
280
281
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
282
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
283
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
284
goto err;
285
}
286
ginf->algorithm = OPENSSL_strdup(p->data);
287
if (ginf->algorithm == NULL)
288
goto err;
289
290
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
291
if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
292
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
293
goto err;
294
}
295
296
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
297
if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
298
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
299
goto err;
300
}
301
ginf->is_kem = 1 & is_kem;
302
303
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
304
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
305
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
306
goto err;
307
}
308
309
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
310
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
311
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
312
goto err;
313
}
314
315
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
316
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
317
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
318
goto err;
319
}
320
321
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
322
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
323
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
324
goto err;
325
}
326
/*
327
* Now check that the algorithm is actually usable for our property query
328
* string. Regardless of the result we still return success because we have
329
* successfully processed this group, even though we may decide not to use
330
* it.
331
*/
332
ret = 1;
333
ERR_set_mark();
334
keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
335
if (keymgmt != NULL) {
336
/* We have successfully fetched the algorithm, we can use the group. */
337
ctx->group_list_len++;
338
ginf = NULL;
339
EVP_KEYMGMT_free(keymgmt);
340
}
341
ERR_pop_to_mark();
342
err:
343
if (ginf != NULL) {
344
OPENSSL_free(ginf->tlsname);
345
OPENSSL_free(ginf->realname);
346
OPENSSL_free(ginf->algorithm);
347
ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
348
}
349
return ret;
350
}
351
352
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
353
{
354
struct provider_ctx_data_st pgd;
355
356
pgd.ctx = vctx;
357
pgd.provider = provider;
358
return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
359
add_provider_groups, &pgd);
360
}
361
362
int ssl_load_groups(SSL_CTX *ctx)
363
{
364
if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
365
return 0;
366
367
return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
368
}
369
370
static const char *inferred_keytype(const TLS_SIGALG_INFO *sinf)
371
{
372
return (sinf->keytype != NULL
373
? sinf->keytype
374
: (sinf->sig_name != NULL
375
? sinf->sig_name
376
: sinf->sigalg_name));
377
}
378
379
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
380
static OSSL_CALLBACK add_provider_sigalgs;
381
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
382
{
383
struct provider_ctx_data_st *pgd = data;
384
SSL_CTX *ctx = pgd->ctx;
385
OSSL_PROVIDER *provider = pgd->provider;
386
const OSSL_PARAM *p;
387
TLS_SIGALG_INFO *sinf = NULL;
388
EVP_KEYMGMT *keymgmt;
389
const char *keytype;
390
unsigned int code_point = 0;
391
int ret = 0;
392
393
if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
394
TLS_SIGALG_INFO *tmp = NULL;
395
396
if (ctx->sigalg_list_max_len == 0)
397
tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
398
* TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
399
else
400
tmp = OPENSSL_realloc(ctx->sigalg_list,
401
(ctx->sigalg_list_max_len
402
+ TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
403
* sizeof(TLS_SIGALG_INFO));
404
if (tmp == NULL)
405
return 0;
406
ctx->sigalg_list = tmp;
407
memset(tmp + ctx->sigalg_list_max_len, 0,
408
sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
409
ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
410
}
411
412
sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
413
414
/* First, mandatory parameters */
415
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
416
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
417
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
418
goto err;
419
}
420
OPENSSL_free(sinf->sigalg_name);
421
sinf->sigalg_name = OPENSSL_strdup(p->data);
422
if (sinf->sigalg_name == NULL)
423
goto err;
424
425
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
426
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
427
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
428
goto err;
429
}
430
OPENSSL_free(sinf->name);
431
sinf->name = OPENSSL_strdup(p->data);
432
if (sinf->name == NULL)
433
goto err;
434
435
p = OSSL_PARAM_locate_const(params,
436
OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
437
if (p == NULL
438
|| !OSSL_PARAM_get_uint(p, &code_point)
439
|| code_point > UINT16_MAX) {
440
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
441
goto err;
442
}
443
sinf->code_point = (uint16_t)code_point;
444
445
p = OSSL_PARAM_locate_const(params,
446
OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
447
if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
448
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
449
goto err;
450
}
451
452
/* Now, optional parameters */
453
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
454
if (p == NULL) {
455
sinf->sigalg_oid = NULL;
456
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
457
goto err;
458
} else {
459
OPENSSL_free(sinf->sigalg_oid);
460
sinf->sigalg_oid = OPENSSL_strdup(p->data);
461
if (sinf->sigalg_oid == NULL)
462
goto err;
463
}
464
465
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
466
if (p == NULL) {
467
sinf->sig_name = NULL;
468
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
469
goto err;
470
} else {
471
OPENSSL_free(sinf->sig_name);
472
sinf->sig_name = OPENSSL_strdup(p->data);
473
if (sinf->sig_name == NULL)
474
goto err;
475
}
476
477
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
478
if (p == NULL) {
479
sinf->sig_oid = NULL;
480
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
481
goto err;
482
} else {
483
OPENSSL_free(sinf->sig_oid);
484
sinf->sig_oid = OPENSSL_strdup(p->data);
485
if (sinf->sig_oid == NULL)
486
goto err;
487
}
488
489
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
490
if (p == NULL) {
491
sinf->hash_name = NULL;
492
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
493
goto err;
494
} else {
495
OPENSSL_free(sinf->hash_name);
496
sinf->hash_name = OPENSSL_strdup(p->data);
497
if (sinf->hash_name == NULL)
498
goto err;
499
}
500
501
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
502
if (p == NULL) {
503
sinf->hash_oid = NULL;
504
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
505
goto err;
506
} else {
507
OPENSSL_free(sinf->hash_oid);
508
sinf->hash_oid = OPENSSL_strdup(p->data);
509
if (sinf->hash_oid == NULL)
510
goto err;
511
}
512
513
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
514
if (p == NULL) {
515
sinf->keytype = NULL;
516
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
517
goto err;
518
} else {
519
OPENSSL_free(sinf->keytype);
520
sinf->keytype = OPENSSL_strdup(p->data);
521
if (sinf->keytype == NULL)
522
goto err;
523
}
524
525
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
526
if (p == NULL) {
527
sinf->keytype_oid = NULL;
528
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
529
goto err;
530
} else {
531
OPENSSL_free(sinf->keytype_oid);
532
sinf->keytype_oid = OPENSSL_strdup(p->data);
533
if (sinf->keytype_oid == NULL)
534
goto err;
535
}
536
537
/* Optional, not documented prior to 3.5 */
538
sinf->mindtls = sinf->maxdtls = -1;
539
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
540
if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
541
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
542
goto err;
543
}
544
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
545
if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
546
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
547
goto err;
548
}
549
/* DTLS version numbers grow downward */
550
if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) && ((sinf->maxdtls > sinf->mindtls))) {
551
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
552
goto err;
553
}
554
/* No provider sigalgs are supported in DTLS, reset after checking. */
555
sinf->mindtls = sinf->maxdtls = -1;
556
557
/* The remaining parameters below are mandatory again */
558
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
559
if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
560
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
561
goto err;
562
}
563
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
564
if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
565
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
566
goto err;
567
}
568
if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && ((sinf->maxtls < sinf->mintls))) {
569
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
570
goto err;
571
}
572
if ((sinf->mintls != 0) && (sinf->mintls != -1) && ((sinf->mintls > TLS1_3_VERSION)))
573
sinf->mintls = sinf->maxtls = -1;
574
if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && ((sinf->maxtls < TLS1_3_VERSION)))
575
sinf->mintls = sinf->maxtls = -1;
576
577
/* Ignore unusable sigalgs */
578
if (sinf->mintls == -1 && sinf->mindtls == -1) {
579
ret = 1;
580
goto err;
581
}
582
583
/*
584
* Now check that the algorithm is actually usable for our property query
585
* string. Regardless of the result we still return success because we have
586
* successfully processed this signature, even though we may decide not to
587
* use it.
588
*/
589
ret = 1;
590
ERR_set_mark();
591
keytype = inferred_keytype(sinf);
592
keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
593
if (keymgmt != NULL) {
594
/*
595
* We have successfully fetched the algorithm - however if the provider
596
* doesn't match this one then we ignore it.
597
*
598
* Note: We're cheating a little here. Technically if the same algorithm
599
* is available from more than one provider then it is undefined which
600
* implementation you will get back. Theoretically this could be
601
* different every time...we assume here that you'll always get the
602
* same one back if you repeat the exact same fetch. Is this a reasonable
603
* assumption to make (in which case perhaps we should document this
604
* behaviour)?
605
*/
606
if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
607
/*
608
* We have a match - so we could use this signature;
609
* Check proper object registration first, though.
610
* Don't care about return value as this may have been
611
* done within providers or previous calls to
612
* add_provider_sigalgs.
613
*/
614
OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
615
/* sanity check: Without successful registration don't use alg */
616
if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) || (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
617
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
618
goto err;
619
}
620
if (sinf->sig_name != NULL)
621
OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
622
if (sinf->keytype != NULL)
623
OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
624
if (sinf->hash_name != NULL)
625
OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
626
OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
627
(sinf->hash_name != NULL
628
? OBJ_txt2nid(sinf->hash_name)
629
: NID_undef),
630
OBJ_txt2nid(keytype));
631
ctx->sigalg_list_len++;
632
sinf = NULL;
633
}
634
EVP_KEYMGMT_free(keymgmt);
635
}
636
ERR_pop_to_mark();
637
err:
638
if (sinf != NULL) {
639
OPENSSL_free(sinf->name);
640
sinf->name = NULL;
641
OPENSSL_free(sinf->sigalg_name);
642
sinf->sigalg_name = NULL;
643
OPENSSL_free(sinf->sigalg_oid);
644
sinf->sigalg_oid = NULL;
645
OPENSSL_free(sinf->sig_name);
646
sinf->sig_name = NULL;
647
OPENSSL_free(sinf->sig_oid);
648
sinf->sig_oid = NULL;
649
OPENSSL_free(sinf->hash_name);
650
sinf->hash_name = NULL;
651
OPENSSL_free(sinf->hash_oid);
652
sinf->hash_oid = NULL;
653
OPENSSL_free(sinf->keytype);
654
sinf->keytype = NULL;
655
OPENSSL_free(sinf->keytype_oid);
656
sinf->keytype_oid = NULL;
657
}
658
return ret;
659
}
660
661
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
662
{
663
struct provider_ctx_data_st pgd;
664
665
pgd.ctx = vctx;
666
pgd.provider = provider;
667
OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
668
add_provider_sigalgs, &pgd);
669
/*
670
* Always OK, even if provider doesn't support the capability:
671
* Reconsider testing retval when legacy sigalgs are also loaded this way.
672
*/
673
return 1;
674
}
675
676
int ssl_load_sigalgs(SSL_CTX *ctx)
677
{
678
size_t i;
679
SSL_CERT_LOOKUP lu;
680
681
if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
682
return 0;
683
684
/* now populate ctx->ssl_cert_info */
685
if (ctx->sigalg_list_len > 0) {
686
OPENSSL_free(ctx->ssl_cert_info);
687
ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
688
if (ctx->ssl_cert_info == NULL)
689
return 0;
690
for (i = 0; i < ctx->sigalg_list_len; i++) {
691
const char *keytype = inferred_keytype(&ctx->sigalg_list[i]);
692
ctx->ssl_cert_info[i].pkey_nid = OBJ_txt2nid(keytype);
693
ctx->ssl_cert_info[i].amask = SSL_aANY;
694
}
695
}
696
697
/*
698
* For now, leave it at this: legacy sigalgs stay in their own
699
* data structures until "legacy cleanup" occurs.
700
*/
701
702
return 1;
703
}
704
705
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
706
{
707
size_t i;
708
709
for (i = 0; i < ctx->group_list_len; i++) {
710
if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
711
|| OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
712
return ctx->group_list[i].group_id;
713
}
714
715
return 0;
716
}
717
718
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
719
{
720
size_t i;
721
722
for (i = 0; i < ctx->group_list_len; i++) {
723
if (ctx->group_list[i].group_id == group_id)
724
return &ctx->group_list[i];
725
}
726
727
return NULL;
728
}
729
730
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
731
{
732
const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
733
734
if (tls_group_info == NULL)
735
return NULL;
736
737
return tls_group_info->tlsname;
738
}
739
740
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
741
{
742
size_t i;
743
744
if (group_id == 0)
745
return NID_undef;
746
747
/*
748
* Return well known Group NIDs - for backwards compatibility. This won't
749
* work for groups we don't know about.
750
*/
751
for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
752
if (nid_to_group[i].group_id == group_id)
753
return nid_to_group[i].nid;
754
}
755
if (!include_unknown)
756
return NID_undef;
757
return TLSEXT_nid_unknown | (int)group_id;
758
}
759
760
uint16_t tls1_nid2group_id(int nid)
761
{
762
size_t i;
763
764
/*
765
* Return well known Group ids - for backwards compatibility. This won't
766
* work for groups we don't know about.
767
*/
768
for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
769
if (nid_to_group[i].nid == nid)
770
return nid_to_group[i].group_id;
771
}
772
773
return 0;
774
}
775
776
/*
777
* Set *pgroups to the supported groups list and *pgroupslen to
778
* the number of groups supported.
779
*/
780
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
781
size_t *pgroupslen)
782
{
783
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
784
785
/* For Suite B mode only include P-256, P-384 */
786
switch (tls1_suiteb(s)) {
787
case SSL_CERT_FLAG_SUITEB_128_LOS:
788
*pgroups = suiteb_curves;
789
*pgroupslen = OSSL_NELEM(suiteb_curves);
790
break;
791
792
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
793
*pgroups = suiteb_curves;
794
*pgroupslen = 1;
795
break;
796
797
case SSL_CERT_FLAG_SUITEB_192_LOS:
798
*pgroups = suiteb_curves + 1;
799
*pgroupslen = 1;
800
break;
801
802
default:
803
if (s->ext.supportedgroups == NULL) {
804
*pgroups = sctx->ext.supportedgroups;
805
*pgroupslen = sctx->ext.supportedgroups_len;
806
} else {
807
*pgroups = s->ext.supportedgroups;
808
*pgroupslen = s->ext.supportedgroups_len;
809
}
810
break;
811
}
812
}
813
814
/*
815
* Some comments for the function below:
816
* s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
817
* In this case, we need to send exactly one key share, which MUST be the first (leftmost)
818
* eligible group from the legacy list. Therefore, we provide the entire list of supported
819
* groups in this case.
820
*
821
* A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
822
* but the groupID to 0.
823
* The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
824
* the "list of requested key share groups" is used, or the "list of supported groups" in
825
* combination with setting add_only_one = 1 is applied.
826
*/
827
void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
828
size_t *pgroupslen)
829
{
830
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
831
832
if (s->ext.supportedgroups == NULL) {
833
*pgroups = sctx->ext.supportedgroups;
834
*pgroupslen = sctx->ext.supportedgroups_len;
835
} else {
836
*pgroups = s->ext.keyshares;
837
*pgroupslen = s->ext.keyshares_len;
838
}
839
}
840
841
void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
842
size_t *ptupleslen)
843
{
844
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
845
846
if (s->ext.supportedgroups == NULL) {
847
*ptuples = sctx->ext.tuples;
848
*ptupleslen = sctx->ext.tuples_len;
849
} else {
850
*ptuples = s->ext.tuples;
851
*ptupleslen = s->ext.tuples_len;
852
}
853
}
854
855
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
856
int minversion, int maxversion,
857
int isec, int *okfortls13)
858
{
859
const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
860
group_id);
861
int ret;
862
int group_minversion, group_maxversion;
863
864
if (okfortls13 != NULL)
865
*okfortls13 = 0;
866
867
if (ginfo == NULL)
868
return 0;
869
870
group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
871
group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
872
873
if (group_minversion < 0 || group_maxversion < 0)
874
return 0;
875
if (group_maxversion == 0)
876
ret = 1;
877
else
878
ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
879
if (group_minversion > 0)
880
ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
881
882
if (!SSL_CONNECTION_IS_DTLS(s)) {
883
if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
884
*okfortls13 = (group_maxversion == 0)
885
|| (group_maxversion >= TLS1_3_VERSION);
886
}
887
ret &= !isec
888
|| strcmp(ginfo->algorithm, "EC") == 0
889
|| strcmp(ginfo->algorithm, "X25519") == 0
890
|| strcmp(ginfo->algorithm, "X448") == 0;
891
892
return ret;
893
}
894
895
/* See if group is allowed by security callback */
896
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
897
{
898
const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
899
group);
900
unsigned char gtmp[2];
901
902
if (ginfo == NULL)
903
return 0;
904
905
gtmp[0] = group >> 8;
906
gtmp[1] = group & 0xff;
907
return ssl_security(s, op, ginfo->secbits,
908
tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
909
}
910
911
/* Return 1 if "id" is in "list" */
912
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
913
{
914
size_t i;
915
for (i = 0; i < listlen; i++)
916
if (list[i] == id)
917
return 1;
918
return 0;
919
}
920
921
typedef struct {
922
TLS_GROUP_INFO *grp;
923
size_t ix;
924
} TLS_GROUP_IX;
925
926
DEFINE_STACK_OF(TLS_GROUP_IX)
927
928
static void free_wrapper(TLS_GROUP_IX *a)
929
{
930
OPENSSL_free(a);
931
}
932
933
static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
934
const TLS_GROUP_IX *const *b)
935
{
936
int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
937
int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
938
int ixcmpab = (*a)->ix < (*b)->ix;
939
int ixcmpba = (*b)->ix < (*a)->ix;
940
941
/* Ascending by group id */
942
if (idcmpab != idcmpba)
943
return (idcmpba - idcmpab);
944
/* Ascending by original appearance index */
945
return ixcmpba - ixcmpab;
946
}
947
948
int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
949
TLS_GROUP_INFO *grps, size_t num, long all,
950
STACK_OF(OPENSSL_CSTRING) *out)
951
{
952
STACK_OF(TLS_GROUP_IX) *collect = NULL;
953
TLS_GROUP_IX *gix;
954
uint16_t id = 0;
955
int ret = 0;
956
size_t ix;
957
958
if (grps == NULL || out == NULL)
959
return 0;
960
if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
961
return 0;
962
for (ix = 0; ix < num; ++ix, ++grps) {
963
if (grps->mintls > 0 && max_proto_version > 0
964
&& grps->mintls > max_proto_version)
965
continue;
966
if (grps->maxtls > 0 && min_proto_version > 0
967
&& grps->maxtls < min_proto_version)
968
continue;
969
970
if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
971
goto end;
972
gix->grp = grps;
973
gix->ix = ix;
974
if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
975
OPENSSL_free(gix);
976
goto end;
977
}
978
}
979
980
sk_TLS_GROUP_IX_sort(collect);
981
num = sk_TLS_GROUP_IX_num(collect);
982
for (ix = 0; ix < num; ++ix) {
983
gix = sk_TLS_GROUP_IX_value(collect, ix);
984
if (!all && gix->grp->group_id == id)
985
continue;
986
id = gix->grp->group_id;
987
if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
988
goto end;
989
}
990
ret = 1;
991
992
end:
993
sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
994
return ret;
995
}
996
997
/*-
998
* For nmatch >= 0, return the id of the |nmatch|th shared group or 0
999
* if there is no match.
1000
* For nmatch == -1, return number of matches
1001
* For nmatch == -2, return the id of the group to use for
1002
* a tmp key, or 0 if there is no match.
1003
*/
1004
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
1005
{
1006
const uint16_t *pref, *supp;
1007
size_t num_pref, num_supp, i;
1008
int k;
1009
SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
1010
1011
/* Can't do anything on client side */
1012
if (s->server == 0)
1013
return 0;
1014
if (nmatch == -2) {
1015
if (tls1_suiteb(s)) {
1016
/*
1017
* For Suite B ciphersuite determines curve: we already know
1018
* these are acceptable due to previous checks.
1019
*/
1020
unsigned long cid = s->s3.tmp.new_cipher->id;
1021
1022
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1023
return OSSL_TLS_GROUP_ID_secp256r1;
1024
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1025
return OSSL_TLS_GROUP_ID_secp384r1;
1026
/* Should never happen */
1027
return 0;
1028
}
1029
/* If not Suite B just return first preference shared curve */
1030
nmatch = 0;
1031
}
1032
/*
1033
* If server preference set, our groups are the preference order
1034
* otherwise peer decides.
1035
*/
1036
if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
1037
tls1_get_supported_groups(s, &pref, &num_pref);
1038
tls1_get_peer_groups(s, &supp, &num_supp);
1039
} else {
1040
tls1_get_peer_groups(s, &pref, &num_pref);
1041
tls1_get_supported_groups(s, &supp, &num_supp);
1042
}
1043
1044
for (k = 0, i = 0; i < num_pref; i++) {
1045
uint16_t id = pref[i];
1046
const TLS_GROUP_INFO *inf;
1047
int minversion, maxversion;
1048
1049
if (!tls1_in_list(id, supp, num_supp)
1050
|| !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
1051
continue;
1052
inf = tls1_group_id_lookup(ctx, id);
1053
if (!ossl_assert(inf != NULL))
1054
return 0;
1055
1056
minversion = SSL_CONNECTION_IS_DTLS(s)
1057
? inf->mindtls
1058
: inf->mintls;
1059
maxversion = SSL_CONNECTION_IS_DTLS(s)
1060
? inf->maxdtls
1061
: inf->maxtls;
1062
if (maxversion == -1)
1063
continue;
1064
if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
1065
|| (maxversion != 0
1066
&& ssl_version_cmp(s, s->version, maxversion) > 0))
1067
continue;
1068
1069
if (nmatch == k)
1070
return id;
1071
k++;
1072
}
1073
if (nmatch == -1)
1074
return k;
1075
/* Out of range (nmatch > k). */
1076
return 0;
1077
}
1078
1079
int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
1080
uint16_t **ksext, size_t *ksextlen,
1081
size_t **tplext, size_t *tplextlen,
1082
int *groups, size_t ngroups)
1083
{
1084
uint16_t *glist = NULL, *kslist = NULL;
1085
size_t *tpllist = NULL;
1086
size_t i;
1087
/*
1088
* Bitmap of groups included to detect duplicates: two variables are added
1089
* to detect duplicates as some values are more than 32.
1090
*/
1091
unsigned long *dup_list = NULL;
1092
unsigned long dup_list_egrp = 0;
1093
unsigned long dup_list_dhgrp = 0;
1094
1095
if (ngroups == 0) {
1096
ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1097
return 0;
1098
}
1099
if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1100
goto err;
1101
if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL)
1102
goto err;
1103
if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL)
1104
goto err;
1105
for (i = 0; i < ngroups; i++) {
1106
unsigned long idmask;
1107
uint16_t id;
1108
id = tls1_nid2group_id(groups[i]);
1109
if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1110
goto err;
1111
idmask = 1L << (id & 0x00FF);
1112
dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1113
if (!id || ((*dup_list) & idmask))
1114
goto err;
1115
*dup_list |= idmask;
1116
glist[i] = id;
1117
}
1118
OPENSSL_free(*grpext);
1119
OPENSSL_free(*ksext);
1120
OPENSSL_free(*tplext);
1121
*grpext = glist;
1122
*grpextlen = ngroups;
1123
/*
1124
* No * prefix was used, let tls_construct_ctos_key_share choose a key
1125
* share. This has the advantage that it will filter unsupported groups
1126
* before choosing one, which this function does not do. See also the
1127
* comment for tls1_get_requested_keyshare_groups.
1128
*/
1129
kslist[0] = 0;
1130
*ksext = kslist;
1131
*ksextlen = 1;
1132
tpllist[0] = ngroups;
1133
*tplext = tpllist;
1134
*tplextlen = 1;
1135
return 1;
1136
err:
1137
OPENSSL_free(glist);
1138
OPENSSL_free(kslist);
1139
OPENSSL_free(tpllist);
1140
return 0;
1141
}
1142
1143
/*
1144
* Definition of DEFAULT[_XYZ] pseudo group names.
1145
* A pseudo group name is actually a full list of groups, including prefixes
1146
* and or tuple delimiters. It can be hierarchically defined (for potential future use).
1147
* IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
1148
* groups not backed by a provider will always silently be ignored, even without '?' prefix
1149
*/
1150
typedef struct {
1151
const char *list_name; /* The name of this pseudo group */
1152
const char *group_string; /* The group string of this pseudo group */
1153
} default_group_string_st; /* (can include '?', '*'. '-', '/' as needed) */
1154
1155
/* Built-in pseudo group-names must start with a (D or d) */
1156
static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
1157
1158
/* The list of all built-in pseudo-group-name structures */
1159
static const default_group_string_st default_group_strings[] = {
1160
{ DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST },
1161
{ SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST }
1162
};
1163
1164
/*
1165
* Some GOST names are not resolved by tls1_group_name2id,
1166
* hence we'll check for those manually
1167
*/
1168
typedef struct {
1169
const char *group_name;
1170
uint16_t groupID;
1171
} name2id_st;
1172
static const name2id_st name2id_arr[] = {
1173
{ "GC256A", OSSL_TLS_GROUP_ID_gc256A },
1174
{ "GC256B", OSSL_TLS_GROUP_ID_gc256B },
1175
{ "GC256C", OSSL_TLS_GROUP_ID_gc256C },
1176
{ "GC256D", OSSL_TLS_GROUP_ID_gc256D },
1177
{ "GC512A", OSSL_TLS_GROUP_ID_gc512A },
1178
{ "GC512B", OSSL_TLS_GROUP_ID_gc512B },
1179
{ "GC512C", OSSL_TLS_GROUP_ID_gc512C },
1180
};
1181
1182
/*
1183
* Group list management:
1184
* We establish three lists along with their related size counters:
1185
* 1) List of (unique) groups
1186
* 2) List of number of groups per group-priority-tuple
1187
* 3) List of (unique) key share groups
1188
*/
1189
#define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
1190
#define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
1191
1192
/*
1193
* Preparation of the prefix used to indicate the desire to send a key share,
1194
* the characters used as separators between groups or tuples of groups, the
1195
* character to indicate that an unknown group should be ignored, and the
1196
* character to indicate that a group should be deleted from a list
1197
*/
1198
#ifndef TUPLE_DELIMITER_CHARACTER
1199
/* The prefix characters to indicate group tuple boundaries */
1200
#define TUPLE_DELIMITER_CHARACTER '/'
1201
#endif
1202
#ifndef GROUP_DELIMITER_CHARACTER
1203
/* The prefix characters to indicate group tuple boundaries */
1204
#define GROUP_DELIMITER_CHARACTER ':'
1205
#endif
1206
#ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
1207
/* The prefix character to ignore unknown groups */
1208
#define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
1209
#endif
1210
#ifndef KEY_SHARE_INDICATOR_CHARACTER
1211
/* The prefix character to trigger a key share addition */
1212
#define KEY_SHARE_INDICATOR_CHARACTER '*'
1213
#endif
1214
#ifndef REMOVE_GROUP_INDICATOR_CHARACTER
1215
/* The prefix character to trigger a key share removal */
1216
#define REMOVE_GROUP_INDICATOR_CHARACTER '-'
1217
#endif
1218
static const char prefixes[] = { TUPLE_DELIMITER_CHARACTER,
1219
GROUP_DELIMITER_CHARACTER,
1220
IGNORE_UNKNOWN_GROUP_CHARACTER,
1221
KEY_SHARE_INDICATOR_CHARACTER,
1222
REMOVE_GROUP_INDICATOR_CHARACTER,
1223
'\0' };
1224
1225
/*
1226
* High-level description of how group strings are analyzed:
1227
* A first call back function (tuple_cb) is used to process group tuples, and a
1228
* second callback function (gid_cb) is used to process the groups inside a tuple.
1229
* Those callback functions are (indirectly) called by CONF_parse_list with
1230
* different separators (nominally ':' or '/'), a variable based on gid_cb_st
1231
* is used to keep track of the parsing results between the various calls
1232
*/
1233
1234
typedef struct {
1235
SSL_CTX *ctx;
1236
/* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
1237
size_t gidmax; /* The memory allocation chunk size for the group IDs */
1238
size_t gidcnt; /* Number of groups */
1239
uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
1240
size_t tplmax; /* The memory allocation chunk size for the tuple counters */
1241
size_t tplcnt; /* Number of tuples */
1242
size_t *tuplcnt_arr; /* The number of groups inside a tuple */
1243
size_t ksidmax; /* The memory allocation chunk size */
1244
size_t ksidcnt; /* Number of key shares */
1245
uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
1246
/* Variable to keep state between execution of callback or helper functions */
1247
size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
1248
int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
1249
} gid_cb_st;
1250
1251
/* Forward declaration of tuple callback function */
1252
static int tuple_cb(const char *tuple, int len, void *arg);
1253
1254
/*
1255
* Extract and process the individual groups (and their prefixes if present)
1256
* present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
1257
* and must be appended by a \0 if used as \0-terminated string
1258
*/
1259
static int gid_cb(const char *elem, int len, void *arg)
1260
{
1261
gid_cb_st *garg = arg;
1262
size_t i, j, k;
1263
uint16_t gid = 0;
1264
int found_group = 0;
1265
char etmp[GROUP_NAME_BUFFER_LENGTH];
1266
int retval = 1; /* We assume success */
1267
char *current_prefix;
1268
int ignore_unknown = 0;
1269
int add_keyshare = 0;
1270
int remove_group = 0;
1271
size_t restored_prefix_index = 0;
1272
char *restored_default_group_string;
1273
int continue_while_loop = 1;
1274
1275
/* Sanity checks */
1276
if (garg == NULL || elem == NULL || len <= 0) {
1277
ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1278
return 0;
1279
}
1280
1281
/* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
1282
while (continue_while_loop && len > 0
1283
&& ((current_prefix = strchr(prefixes, elem[0])) != NULL
1284
|| OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
1285
1286
switch (*current_prefix) {
1287
case TUPLE_DELIMITER_CHARACTER:
1288
/* tuple delimiter not allowed here -> syntax error */
1289
return -1;
1290
break;
1291
case GROUP_DELIMITER_CHARACTER:
1292
return -1; /* Not a valid prefix for a single group name-> syntax error */
1293
break;
1294
case KEY_SHARE_INDICATOR_CHARACTER:
1295
if (add_keyshare)
1296
return -1; /* Only single key share prefix allowed -> syntax error */
1297
add_keyshare = 1;
1298
++elem;
1299
--len;
1300
break;
1301
case REMOVE_GROUP_INDICATOR_CHARACTER:
1302
if (remove_group)
1303
return -1; /* Only single remove group prefix allowed -> syntax error */
1304
remove_group = 1;
1305
++elem;
1306
--len;
1307
break;
1308
case IGNORE_UNKNOWN_GROUP_CHARACTER:
1309
if (ignore_unknown)
1310
return -1; /* Only single ? allowed -> syntax error */
1311
ignore_unknown = 1;
1312
++elem;
1313
--len;
1314
break;
1315
default:
1316
/*
1317
* Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
1318
* list of groups) should be added
1319
*/
1320
for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
1321
if ((size_t)len == (strlen(default_group_strings[i].list_name))
1322
&& OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
1323
/*
1324
* We're asked to insert an entire list of groups from a
1325
* DEFAULT[_XYZ] 'pseudo group' which we do by
1326
* recursively calling this function (indirectly via
1327
* CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
1328
* group string like a tuple which is appended to the current tuple
1329
* rather then starting a new tuple. Variable tuple_mode is the flag which
1330
* controls append tuple vs start new tuple.
1331
*/
1332
1333
if (ignore_unknown || remove_group)
1334
return -1; /* removal or ignore not allowed here -> syntax error */
1335
1336
/*
1337
* First, we restore any keyshare prefix in a new zero-terminated string
1338
* (if not already present)
1339
*/
1340
restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ + strlen(default_group_strings[i].group_string) + 1 /* \0 */) * sizeof(char));
1341
if (restored_default_group_string == NULL)
1342
return 0;
1343
if (add_keyshare
1344
/* Remark: we tolerate a duplicated keyshare indicator here */
1345
&& default_group_strings[i].group_string[0]
1346
!= KEY_SHARE_INDICATOR_CHARACTER)
1347
restored_default_group_string[restored_prefix_index++] = KEY_SHARE_INDICATOR_CHARACTER;
1348
1349
memcpy(restored_default_group_string + restored_prefix_index,
1350
default_group_strings[i].group_string,
1351
strlen(default_group_strings[i].group_string));
1352
restored_default_group_string[strlen(default_group_strings[i].group_string) + restored_prefix_index] = '\0';
1353
/* We execute the recursive call */
1354
garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
1355
/* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
1356
garg->tuple_mode = 0;
1357
/* We use the tuple_cb callback to process the pseudo group tuple */
1358
retval = CONF_parse_list(restored_default_group_string,
1359
TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
1360
garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
1361
garg->ignore_unknown_default = 0; /* reset to original value */
1362
/* We don't need the \0-terminated string anymore */
1363
OPENSSL_free(restored_default_group_string);
1364
1365
return retval;
1366
}
1367
}
1368
/*
1369
* If we reached this point, a group name started with a 'd' or 'D', but no request
1370
* for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
1371
* name can continue as usual (= the while loop checking prefixes can end)
1372
*/
1373
continue_while_loop = 0;
1374
break;
1375
}
1376
}
1377
1378
if (len == 0)
1379
return -1; /* Seems we have prefxes without a group name -> syntax error */
1380
1381
if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
1382
ignore_unknown = 1;
1383
1384
/* Memory management in case more groups are present compared to initial allocation */
1385
if (garg->gidcnt == garg->gidmax) {
1386
uint16_t *tmp = OPENSSL_realloc(garg->gid_arr,
1387
(garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1388
1389
if (tmp == NULL)
1390
return 0;
1391
1392
garg->gidmax += GROUPLIST_INCREMENT;
1393
garg->gid_arr = tmp;
1394
}
1395
/* Memory management for key share groups */
1396
if (garg->ksidcnt == garg->ksidmax) {
1397
uint16_t *tmp = OPENSSL_realloc(garg->ksid_arr,
1398
(garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr));
1399
1400
if (tmp == NULL)
1401
return 0;
1402
garg->ksidmax += GROUPLIST_INCREMENT;
1403
garg->ksid_arr = tmp;
1404
}
1405
1406
if (len > (int)(sizeof(etmp) - 1))
1407
return -1; /* group name to long -> syntax error */
1408
1409
/*
1410
* Prepare addition or removal of a single group by converting
1411
* a group name into its groupID equivalent
1412
*/
1413
1414
/* Create a \0-terminated string and get the gid for this group if possible */
1415
memcpy(etmp, elem, len);
1416
etmp[len] = 0;
1417
1418
/* Get the groupID */
1419
gid = tls1_group_name2id(garg->ctx, etmp);
1420
/*
1421
* Handle the case where no valid groupID was returned
1422
* e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
1423
*/
1424
if (gid == 0) {
1425
/* Is it one of the GOST groups ? */
1426
for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
1427
if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
1428
gid = name2id_arr[i].groupID;
1429
break;
1430
}
1431
}
1432
if (gid == 0) { /* still not found */
1433
/* Unknown group - ignore if ignore_unknown; trigger error otherwise */
1434
retval = ignore_unknown;
1435
goto done;
1436
}
1437
}
1438
1439
/* Make sure that at least one provider is supporting this groupID */
1440
found_group = 0;
1441
for (j = 0; j < garg->ctx->group_list_len; j++)
1442
if (garg->ctx->group_list[j].group_id == gid) {
1443
found_group = 1;
1444
break;
1445
}
1446
1447
/*
1448
* No provider supports this group - ignore if
1449
* ignore_unknown; trigger error otherwise
1450
*/
1451
if (found_group == 0) {
1452
retval = ignore_unknown;
1453
goto done;
1454
}
1455
/* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
1456
if (remove_group) {
1457
/* Is the current group specified anywhere in the entire list so far? */
1458
found_group = 0;
1459
for (i = 0; i < garg->gidcnt; i++)
1460
if (garg->gid_arr[i] == gid) {
1461
found_group = 1;
1462
break;
1463
}
1464
/* The group to remove is at position i in the list of (zero indexed) groups */
1465
if (found_group) {
1466
/* We remove that group from its position (which is at i)... */
1467
for (j = i; j < (garg->gidcnt - 1); j++)
1468
garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
1469
garg->gidcnt--; /* ..and update the book keeping for the number of groups */
1470
1471
/*
1472
* We also must update the number of groups either in a previous tuple (which we
1473
* must identify and check whether it becomes empty due to the deletion) or in
1474
* the current tuple, pending where the deleted group resides
1475
*/
1476
k = 0;
1477
for (j = 0; j < garg->tplcnt; j++) {
1478
k += garg->tuplcnt_arr[j];
1479
/* Remark: i is zero-indexed, k is one-indexed */
1480
if (k > i) { /* remove from one of the previous tuples */
1481
garg->tuplcnt_arr[j]--;
1482
break; /* We took care not to have group duplicates, hence we can stop here */
1483
}
1484
}
1485
if (k <= i) /* remove from current tuple */
1486
garg->tuplcnt_arr[j]--;
1487
1488
/* We also remove the group from the list of keyshares (if present) */
1489
found_group = 0;
1490
for (i = 0; i < garg->ksidcnt; i++)
1491
if (garg->ksid_arr[i] == gid) {
1492
found_group = 1;
1493
break;
1494
}
1495
if (found_group) {
1496
/* Found, hence we remove that keyshare from its position (which is at i)... */
1497
for (j = i; j < (garg->ksidcnt - 1); j++)
1498
garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
1499
/* ... and update the book keeping */
1500
garg->ksidcnt--;
1501
}
1502
}
1503
} else { /* Processing addition of a single new group */
1504
1505
/* Check for duplicates */
1506
for (i = 0; i < garg->gidcnt; i++)
1507
if (garg->gid_arr[i] == gid) {
1508
/* Duplicate group anywhere in the list of groups - ignore */
1509
goto done;
1510
}
1511
1512
/* Add the current group to the 'flat' list of groups */
1513
garg->gid_arr[garg->gidcnt++] = gid;
1514
/* and update the book keeping for the number of groups in current tuple */
1515
garg->tuplcnt_arr[garg->tplcnt]++;
1516
1517
/* We memorize if needed that we want to add a key share for the current group */
1518
if (add_keyshare)
1519
garg->ksid_arr[garg->ksidcnt++] = gid;
1520
}
1521
1522
done:
1523
return retval;
1524
}
1525
1526
/* Extract and process a tuple of groups */
1527
static int tuple_cb(const char *tuple, int len, void *arg)
1528
{
1529
gid_cb_st *garg = arg;
1530
int retval = 1; /* We assume success */
1531
char *restored_tuple_string;
1532
1533
/* Sanity checks */
1534
if (garg == NULL || tuple == NULL || len <= 0) {
1535
ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1536
return 0;
1537
}
1538
1539
/* Memory management for tuples */
1540
if (garg->tplcnt == garg->tplmax) {
1541
size_t *tmp = OPENSSL_realloc(garg->tuplcnt_arr,
1542
(garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr));
1543
1544
if (tmp == NULL)
1545
return 0;
1546
garg->tplmax += GROUPLIST_INCREMENT;
1547
garg->tuplcnt_arr = tmp;
1548
}
1549
1550
/* Convert to \0-terminated string */
1551
restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char));
1552
if (restored_tuple_string == NULL)
1553
return 0;
1554
memcpy(restored_tuple_string, tuple, len);
1555
restored_tuple_string[len] = '\0';
1556
1557
/* Analyze group list of this tuple */
1558
retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
1559
1560
/* We don't need the \o-terminated string anymore */
1561
OPENSSL_free(restored_tuple_string);
1562
1563
if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
1564
if (garg->tuple_mode) {
1565
/* We 'close' the tuple */
1566
garg->tplcnt++;
1567
garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
1568
garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
1569
}
1570
}
1571
1572
return retval;
1573
}
1574
1575
/*
1576
* Set groups and prepare generation of keyshares based on a string of groupnames,
1577
* names separated by the group or the tuple delimiter, with per-group prefixes to
1578
* (1) add a key share for this group, (2) ignore the group if unknown to the current
1579
* context, (3) delete a previous occurrence of the group in the current tuple.
1580
*
1581
* The list parsing is done in two hierarchical steps: The top-level step extracts the
1582
* string of a tuple using tuple_cb, while the next lower step uses gid_cb to
1583
* parse and process the groups inside a tuple
1584
*/
1585
int tls1_set_groups_list(SSL_CTX *ctx,
1586
uint16_t **grpext, size_t *grpextlen,
1587
uint16_t **ksext, size_t *ksextlen,
1588
size_t **tplext, size_t *tplextlen,
1589
const char *str)
1590
{
1591
size_t i = 0, j;
1592
int ret = 0, parse_ret = 0;
1593
gid_cb_st gcb;
1594
1595
/* Sanity check */
1596
if (ctx == NULL) {
1597
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1598
return 0;
1599
}
1600
1601
memset(&gcb, 0, sizeof(gcb));
1602
gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
1603
gcb.ignore_unknown_default = 0;
1604
gcb.gidmax = GROUPLIST_INCREMENT;
1605
gcb.tplmax = GROUPLIST_INCREMENT;
1606
gcb.ksidmax = GROUPLIST_INCREMENT;
1607
gcb.ctx = ctx;
1608
1609
/* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
1610
gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1611
if (gcb.gid_arr == NULL)
1612
goto end;
1613
gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr));
1614
if (gcb.tuplcnt_arr == NULL)
1615
goto end;
1616
gcb.tuplcnt_arr[0] = 0;
1617
gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr));
1618
if (gcb.ksid_arr == NULL)
1619
goto end;
1620
1621
while (str[0] != '\0' && isspace((unsigned char)*str))
1622
str++;
1623
if (str[0] == '\0')
1624
goto empty_list;
1625
1626
/*
1627
* Start the (potentially recursive) tuple processing by calling CONF_parse_list
1628
* with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
1629
*/
1630
parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
1631
1632
if (parse_ret == 0)
1633
goto end;
1634
if (parse_ret == -1) {
1635
ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1636
"Syntax error in '%s'", str);
1637
goto end;
1638
}
1639
1640
/*
1641
* We check whether a tuple was completely emptied by using "-" prefix
1642
* excessively, in which case we remove the tuple
1643
*/
1644
for (i = j = 0; j < gcb.tplcnt; j++) {
1645
if (gcb.tuplcnt_arr[j] == 0)
1646
continue;
1647
/* If there's a gap, move to first unfilled slot */
1648
if (j == i)
1649
++i;
1650
else
1651
gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
1652
}
1653
gcb.tplcnt = i;
1654
1655
if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
1656
ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1657
"To many keyshares requested in '%s' (max = %d)",
1658
str, OPENSSL_CLIENT_MAX_KEY_SHARES);
1659
goto end;
1660
}
1661
1662
/*
1663
* For backward compatibility we let the rest of the code know that a key share
1664
* for the first valid group should be added if no "*" prefix was used anywhere
1665
*/
1666
if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
1667
/*
1668
* No key share group prefix character was used, hence we indicate that a single
1669
* key share should be sent and flag that it should come from the supported_groups list
1670
*/
1671
gcb.ksidcnt = 1;
1672
gcb.ksid_arr[0] = 0;
1673
}
1674
1675
empty_list:
1676
/*
1677
* A call to tls1_set_groups_list with any of the args (other than ctx) set
1678
* to NULL only does a syntax check, hence we're done here and report success
1679
*/
1680
if (grpext == NULL || ksext == NULL || tplext == NULL || grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
1681
ret = 1;
1682
goto end;
1683
}
1684
1685
/*
1686
* tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
1687
* can just go ahead and set the results (after disposing the existing)
1688
*/
1689
OPENSSL_free(*grpext);
1690
*grpext = gcb.gid_arr;
1691
*grpextlen = gcb.gidcnt;
1692
OPENSSL_free(*ksext);
1693
*ksext = gcb.ksid_arr;
1694
*ksextlen = gcb.ksidcnt;
1695
OPENSSL_free(*tplext);
1696
*tplext = gcb.tuplcnt_arr;
1697
*tplextlen = gcb.tplcnt;
1698
1699
return 1;
1700
1701
end:
1702
OPENSSL_free(gcb.gid_arr);
1703
OPENSSL_free(gcb.tuplcnt_arr);
1704
OPENSSL_free(gcb.ksid_arr);
1705
return ret;
1706
}
1707
1708
/* Check a group id matches preferences */
1709
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1710
int check_own_groups)
1711
{
1712
const uint16_t *groups;
1713
size_t groups_len;
1714
1715
if (group_id == 0)
1716
return 0;
1717
1718
/* Check for Suite B compliance */
1719
if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1720
unsigned long cid = s->s3.tmp.new_cipher->id;
1721
1722
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1723
if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1724
return 0;
1725
} else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1726
if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1727
return 0;
1728
} else {
1729
/* Should never happen */
1730
return 0;
1731
}
1732
}
1733
1734
if (check_own_groups) {
1735
/* Check group is one of our preferences */
1736
tls1_get_supported_groups(s, &groups, &groups_len);
1737
if (!tls1_in_list(group_id, groups, groups_len))
1738
return 0;
1739
}
1740
1741
if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1742
return 0;
1743
1744
/* For clients, nothing more to check */
1745
if (!s->server)
1746
return 1;
1747
1748
/* Check group is one of peers preferences */
1749
tls1_get_peer_groups(s, &groups, &groups_len);
1750
1751
/*
1752
* RFC 4492 does not require the supported elliptic curves extension
1753
* so if it is not sent we can just choose any curve.
1754
* It is invalid to send an empty list in the supported groups
1755
* extension, so groups_len == 0 always means no extension.
1756
*/
1757
if (groups_len == 0)
1758
return 1;
1759
return tls1_in_list(group_id, groups, groups_len);
1760
}
1761
1762
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1763
size_t *num_formats)
1764
{
1765
/*
1766
* If we have a custom point format list use it otherwise use default
1767
*/
1768
if (s->ext.ecpointformats) {
1769
*pformats = s->ext.ecpointformats;
1770
*num_formats = s->ext.ecpointformats_len;
1771
} else {
1772
*pformats = ecformats_default;
1773
/* For Suite B we don't support char2 fields */
1774
if (tls1_suiteb(s))
1775
*num_formats = sizeof(ecformats_default) - 1;
1776
else
1777
*num_formats = sizeof(ecformats_default);
1778
}
1779
}
1780
1781
/* Check a key is compatible with compression extension */
1782
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1783
{
1784
unsigned char comp_id;
1785
size_t i;
1786
int point_conv;
1787
1788
/* If not an EC key nothing to check */
1789
if (!EVP_PKEY_is_a(pkey, "EC"))
1790
return 1;
1791
1792
/* Get required compression id */
1793
point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1794
if (point_conv == 0)
1795
return 0;
1796
if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1797
comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1798
} else if (SSL_CONNECTION_IS_TLS13(s)) {
1799
/*
1800
* ec_point_formats extension is not used in TLSv1.3 so we ignore
1801
* this check.
1802
*/
1803
return 1;
1804
} else {
1805
int field_type = EVP_PKEY_get_field_type(pkey);
1806
1807
if (field_type == NID_X9_62_prime_field)
1808
comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1809
else if (field_type == NID_X9_62_characteristic_two_field)
1810
comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1811
else
1812
return 0;
1813
}
1814
/*
1815
* If point formats extension present check it, otherwise everything is
1816
* supported (see RFC4492).
1817
*/
1818
if (s->ext.peer_ecpointformats == NULL)
1819
return 1;
1820
1821
for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1822
if (s->ext.peer_ecpointformats[i] == comp_id)
1823
return 1;
1824
}
1825
return 0;
1826
}
1827
1828
/* Return group id of a key */
1829
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1830
{
1831
int curve_nid = ssl_get_EC_curve_nid(pkey);
1832
1833
if (curve_nid == NID_undef)
1834
return 0;
1835
return tls1_nid2group_id(curve_nid);
1836
}
1837
1838
/*
1839
* Check cert parameters compatible with extensions: currently just checks EC
1840
* certificates have compatible curves and compression.
1841
*/
1842
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1843
{
1844
uint16_t group_id;
1845
EVP_PKEY *pkey;
1846
pkey = X509_get0_pubkey(x);
1847
if (pkey == NULL)
1848
return 0;
1849
/* If not EC nothing to do */
1850
if (!EVP_PKEY_is_a(pkey, "EC"))
1851
return 1;
1852
/* Check compression */
1853
if (!tls1_check_pkey_comp(s, pkey))
1854
return 0;
1855
group_id = tls1_get_group_id(pkey);
1856
/*
1857
* For a server we allow the certificate to not be in our list of supported
1858
* groups.
1859
*/
1860
if (!tls1_check_group_id(s, group_id, !s->server))
1861
return 0;
1862
/*
1863
* Special case for suite B. We *MUST* sign using SHA256+P-256 or
1864
* SHA384+P-384.
1865
*/
1866
if (check_ee_md && tls1_suiteb(s)) {
1867
int check_md;
1868
size_t i;
1869
1870
/* Check to see we have necessary signing algorithm */
1871
if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1872
check_md = NID_ecdsa_with_SHA256;
1873
else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1874
check_md = NID_ecdsa_with_SHA384;
1875
else
1876
return 0; /* Should never happen */
1877
for (i = 0; i < s->shared_sigalgslen; i++) {
1878
if (check_md == s->shared_sigalgs[i]->sigandhash)
1879
return 1;
1880
}
1881
return 0;
1882
}
1883
return 1;
1884
}
1885
1886
/*
1887
* tls1_check_ec_tmp_key - Check EC temporary key compatibility
1888
* @s: SSL connection
1889
* @cid: Cipher ID we're considering using
1890
*
1891
* Checks that the kECDHE cipher suite we're considering using
1892
* is compatible with the client extensions.
1893
*
1894
* Returns 0 when the cipher can't be used or 1 when it can.
1895
*/
1896
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1897
{
1898
/* If not Suite B just need a shared group */
1899
if (!tls1_suiteb(s))
1900
return tls1_shared_group(s, 0) != 0;
1901
/*
1902
* If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1903
* curves permitted.
1904
*/
1905
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1906
return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1907
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1908
return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1909
1910
return 0;
1911
}
1912
1913
/* Default sigalg schemes */
1914
static const uint16_t tls12_sigalgs[] = {
1915
TLSEXT_SIGALG_mldsa65,
1916
TLSEXT_SIGALG_mldsa87,
1917
TLSEXT_SIGALG_mldsa44,
1918
TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1919
TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1920
TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1921
TLSEXT_SIGALG_ed25519,
1922
TLSEXT_SIGALG_ed448,
1923
TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1924
TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1925
TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1926
1927
TLSEXT_SIGALG_rsa_pss_pss_sha256,
1928
TLSEXT_SIGALG_rsa_pss_pss_sha384,
1929
TLSEXT_SIGALG_rsa_pss_pss_sha512,
1930
TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1931
TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1932
TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1933
1934
TLSEXT_SIGALG_rsa_pkcs1_sha256,
1935
TLSEXT_SIGALG_rsa_pkcs1_sha384,
1936
TLSEXT_SIGALG_rsa_pkcs1_sha512,
1937
1938
TLSEXT_SIGALG_ecdsa_sha224,
1939
TLSEXT_SIGALG_ecdsa_sha1,
1940
1941
TLSEXT_SIGALG_rsa_pkcs1_sha224,
1942
TLSEXT_SIGALG_rsa_pkcs1_sha1,
1943
1944
TLSEXT_SIGALG_dsa_sha224,
1945
TLSEXT_SIGALG_dsa_sha1,
1946
1947
TLSEXT_SIGALG_dsa_sha256,
1948
TLSEXT_SIGALG_dsa_sha384,
1949
TLSEXT_SIGALG_dsa_sha512,
1950
1951
#ifndef OPENSSL_NO_GOST
1952
TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1953
TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1954
TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1955
TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1956
TLSEXT_SIGALG_gostr34102001_gostr3411,
1957
#endif
1958
};
1959
1960
static const uint16_t suiteb_sigalgs[] = {
1961
TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1962
TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1963
};
1964
1965
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1966
{ TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
1967
"ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1968
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1969
NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
1970
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1971
{ TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
1972
"ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1973
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1974
NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
1975
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1976
{ TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
1977
"ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1978
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1979
NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
1980
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1981
1982
{ TLSEXT_SIGALG_ed25519_name,
1983
NULL, TLSEXT_SIGALG_ed25519,
1984
NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1985
NID_undef, NID_undef, 1, 0,
1986
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1987
{ TLSEXT_SIGALG_ed448_name,
1988
NULL, TLSEXT_SIGALG_ed448,
1989
NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1990
NID_undef, NID_undef, 1, 0,
1991
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1992
1993
{ TLSEXT_SIGALG_ecdsa_sha224_name,
1994
"ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
1995
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1996
NID_ecdsa_with_SHA224, NID_undef, 1, 0,
1997
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
1998
{ TLSEXT_SIGALG_ecdsa_sha1_name,
1999
"ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
2000
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2001
NID_ecdsa_with_SHA1, NID_undef, 1, 0,
2002
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2003
2004
{ TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
2005
TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
2006
TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
2007
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2008
NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
2009
TLS1_3_VERSION, 0, -1, -1 },
2010
{ TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
2011
TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
2012
TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
2013
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2014
NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
2015
TLS1_3_VERSION, 0, -1, -1 },
2016
{ TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
2017
TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
2018
TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
2019
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2020
NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
2021
TLS1_3_VERSION, 0, -1, -1 },
2022
2023
{ TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
2024
"PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
2025
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2026
NID_undef, NID_undef, 1, 0,
2027
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2028
{ TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
2029
"PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
2030
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2031
NID_undef, NID_undef, 1, 0,
2032
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2033
{ TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
2034
"PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
2035
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2036
NID_undef, NID_undef, 1, 0,
2037
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2038
2039
{ TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
2040
NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
2041
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2042
NID_undef, NID_undef, 1, 0,
2043
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2044
{ TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
2045
NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
2046
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2047
NID_undef, NID_undef, 1, 0,
2048
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2049
{ TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
2050
NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
2051
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2052
NID_undef, NID_undef, 1, 0,
2053
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2054
2055
{ TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
2056
"RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
2057
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2058
NID_sha256WithRSAEncryption, NID_undef, 1, 0,
2059
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2060
{ TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
2061
"RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
2062
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2063
NID_sha384WithRSAEncryption, NID_undef, 1, 0,
2064
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2065
{ TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
2066
"RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
2067
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2068
NID_sha512WithRSAEncryption, NID_undef, 1, 0,
2069
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2070
2071
{ TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
2072
"RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
2073
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2074
NID_sha224WithRSAEncryption, NID_undef, 1, 0,
2075
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2076
{ TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
2077
"RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
2078
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2079
NID_sha1WithRSAEncryption, NID_undef, 1, 0,
2080
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2081
2082
{ TLSEXT_SIGALG_dsa_sha256_name,
2083
"DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
2084
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2085
NID_dsa_with_SHA256, NID_undef, 1, 0,
2086
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2087
{ TLSEXT_SIGALG_dsa_sha384_name,
2088
"DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
2089
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2090
NID_undef, NID_undef, 1, 0,
2091
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2092
{ TLSEXT_SIGALG_dsa_sha512_name,
2093
"DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
2094
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2095
NID_undef, NID_undef, 1, 0,
2096
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2097
{ TLSEXT_SIGALG_dsa_sha224_name,
2098
"DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
2099
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2100
NID_undef, NID_undef, 1, 0,
2101
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2102
{ TLSEXT_SIGALG_dsa_sha1_name,
2103
"DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
2104
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2105
NID_dsaWithSHA1, NID_undef, 1, 0,
2106
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2107
2108
#ifndef OPENSSL_NO_GOST
2109
{ TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2110
TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2111
TLSEXT_SIGALG_gostr34102012_256_intrinsic,
2112
NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2113
NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2114
NID_undef, NID_undef, 1, 0,
2115
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2116
{ TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2117
TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2118
TLSEXT_SIGALG_gostr34102012_512_intrinsic,
2119
NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2120
NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2121
NID_undef, NID_undef, 1, 0,
2122
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2123
2124
{ TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
2125
NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
2126
NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2127
NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2128
NID_undef, NID_undef, 1, 0,
2129
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2130
{ TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
2131
NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
2132
NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2133
NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2134
NID_undef, NID_undef, 1, 0,
2135
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2136
{ TLSEXT_SIGALG_gostr34102001_gostr3411_name,
2137
NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
2138
NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
2139
NID_id_GostR3410_2001, SSL_PKEY_GOST01,
2140
NID_undef, NID_undef, 1, 0,
2141
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2142
#endif
2143
};
2144
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
2145
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
2146
"rsa_pkcs1_md5_sha1", NULL, 0,
2147
NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
2148
EVP_PKEY_RSA, SSL_PKEY_RSA,
2149
NID_undef, NID_undef, 1, 0,
2150
TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
2151
};
2152
2153
/*
2154
* Default signature algorithm values used if signature algorithms not present.
2155
* From RFC5246. Note: order must match certificate index order.
2156
*/
2157
static const uint16_t tls_default_sigalg[] = {
2158
TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
2159
0, /* SSL_PKEY_RSA_PSS_SIGN */
2160
TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
2161
TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
2162
TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
2163
TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
2164
TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
2165
0, /* SSL_PKEY_ED25519 */
2166
0, /* SSL_PKEY_ED448 */
2167
};
2168
2169
int ssl_setup_sigalgs(SSL_CTX *ctx)
2170
{
2171
size_t i, cache_idx, sigalgs_len, enabled;
2172
const SIGALG_LOOKUP *lu;
2173
SIGALG_LOOKUP *cache = NULL;
2174
uint16_t *tls12_sigalgs_list = NULL;
2175
EVP_PKEY *tmpkey = EVP_PKEY_new();
2176
int istls;
2177
int ret = 0;
2178
2179
if (ctx == NULL)
2180
goto err;
2181
2182
istls = !SSL_CTX_IS_DTLS(ctx);
2183
2184
sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
2185
2186
cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
2187
if (cache == NULL || tmpkey == NULL)
2188
goto err;
2189
2190
tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len);
2191
if (tls12_sigalgs_list == NULL)
2192
goto err;
2193
2194
ERR_set_mark();
2195
/* First fill cache and tls12_sigalgs list from legacy algorithm list */
2196
for (i = 0, lu = sigalg_lookup_tbl;
2197
i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2198
EVP_PKEY_CTX *pctx;
2199
2200
cache[i] = *lu;
2201
2202
/*
2203
* Check hash is available.
2204
* This test is not perfect. A provider could have support
2205
* for a signature scheme, but not a particular hash. However the hash
2206
* could be available from some other loaded provider. In that case it
2207
* could be that the signature is available, and the hash is available
2208
* independently - but not as a combination. We ignore this for now.
2209
*/
2210
if (lu->hash != NID_undef
2211
&& ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
2212
cache[i].available = 0;
2213
continue;
2214
}
2215
2216
if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2217
cache[i].available = 0;
2218
continue;
2219
}
2220
pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
2221
/* If unable to create pctx we assume the sig algorithm is unavailable */
2222
if (pctx == NULL)
2223
cache[i].available = 0;
2224
EVP_PKEY_CTX_free(pctx);
2225
}
2226
2227
/* Now complete cache and tls12_sigalgs list with provider sig information */
2228
cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
2229
for (i = 0; i < ctx->sigalg_list_len; i++) {
2230
TLS_SIGALG_INFO si = ctx->sigalg_list[i];
2231
cache[cache_idx].name = si.name;
2232
cache[cache_idx].name12 = si.sigalg_name;
2233
cache[cache_idx].sigalg = si.code_point;
2234
tls12_sigalgs_list[cache_idx] = si.code_point;
2235
cache[cache_idx].hash = si.hash_name ? OBJ_txt2nid(si.hash_name) : NID_undef;
2236
cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
2237
cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
2238
cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
2239
cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
2240
cache[cache_idx].curve = NID_undef;
2241
cache[cache_idx].mintls = TLS1_3_VERSION;
2242
cache[cache_idx].maxtls = TLS1_3_VERSION;
2243
cache[cache_idx].mindtls = -1;
2244
cache[cache_idx].maxdtls = -1;
2245
/* Compatibility with TLS 1.3 is checked on load */
2246
cache[cache_idx].available = istls;
2247
cache[cache_idx].advertise = 0;
2248
cache_idx++;
2249
}
2250
ERR_pop_to_mark();
2251
2252
enabled = 0;
2253
for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
2254
SIGALG_LOOKUP *ent = cache;
2255
size_t j;
2256
2257
for (j = 0; j < sigalgs_len; ent++, j++) {
2258
if (ent->sigalg != tls12_sigalgs[i])
2259
continue;
2260
/* Dedup by marking cache entry as default enabled. */
2261
if (ent->available && !ent->advertise) {
2262
ent->advertise = 1;
2263
tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
2264
}
2265
break;
2266
}
2267
}
2268
2269
/* Append any provider sigalgs not yet handled */
2270
for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
2271
SIGALG_LOOKUP *ent = &cache[i];
2272
2273
if (ent->available && !ent->advertise)
2274
tls12_sigalgs_list[enabled++] = ent->sigalg;
2275
}
2276
2277
ctx->sigalg_lookup_cache = cache;
2278
ctx->sigalg_lookup_cache_len = sigalgs_len;
2279
ctx->tls12_sigalgs = tls12_sigalgs_list;
2280
ctx->tls12_sigalgs_len = enabled;
2281
cache = NULL;
2282
tls12_sigalgs_list = NULL;
2283
2284
ret = 1;
2285
err:
2286
OPENSSL_free(cache);
2287
OPENSSL_free(tls12_sigalgs_list);
2288
EVP_PKEY_free(tmpkey);
2289
return ret;
2290
}
2291
2292
#define SIGLEN_BUF_INCREMENT 100
2293
2294
char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
2295
{
2296
size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
2297
const SIGALG_LOOKUP *lu;
2298
EVP_PKEY *tmpkey = EVP_PKEY_new();
2299
char *retval = OPENSSL_malloc(maxretlen);
2300
2301
if (retval == NULL)
2302
return NULL;
2303
2304
/* ensure retval string is NUL terminated */
2305
retval[0] = (char)0;
2306
2307
for (i = 0, lu = sigalg_lookup_tbl;
2308
i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2309
EVP_PKEY_CTX *pctx;
2310
int enabled = 1;
2311
2312
ERR_set_mark();
2313
/* Check hash is available in some provider. */
2314
if (lu->hash != NID_undef) {
2315
EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
2316
2317
/* If unable to create we assume the hash algorithm is unavailable */
2318
if (hash == NULL) {
2319
enabled = 0;
2320
ERR_pop_to_mark();
2321
continue;
2322
}
2323
EVP_MD_free(hash);
2324
}
2325
2326
if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2327
enabled = 0;
2328
ERR_pop_to_mark();
2329
continue;
2330
}
2331
pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
2332
/* If unable to create pctx we assume the sig algorithm is unavailable */
2333
if (pctx == NULL)
2334
enabled = 0;
2335
ERR_pop_to_mark();
2336
EVP_PKEY_CTX_free(pctx);
2337
2338
if (enabled) {
2339
const char *sa = lu->name;
2340
2341
if (sa != NULL) {
2342
if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
2343
char *tmp;
2344
2345
maxretlen += SIGLEN_BUF_INCREMENT;
2346
tmp = OPENSSL_realloc(retval, maxretlen);
2347
if (tmp == NULL) {
2348
OPENSSL_free(retval);
2349
return NULL;
2350
}
2351
retval = tmp;
2352
}
2353
if (strlen(retval) > 0)
2354
OPENSSL_strlcat(retval, ":", maxretlen);
2355
OPENSSL_strlcat(retval, sa, maxretlen);
2356
} else {
2357
/* lu->name must not be NULL */
2358
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
2359
}
2360
}
2361
}
2362
2363
EVP_PKEY_free(tmpkey);
2364
return retval;
2365
}
2366
2367
/* Lookup TLS signature algorithm */
2368
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
2369
uint16_t sigalg)
2370
{
2371
size_t i;
2372
const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
2373
2374
for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
2375
if (lu->sigalg == sigalg) {
2376
if (!lu->available)
2377
return NULL;
2378
return lu;
2379
}
2380
}
2381
return NULL;
2382
}
2383
2384
/* Lookup hash: return 0 if invalid or not enabled */
2385
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
2386
{
2387
const EVP_MD *md;
2388
2389
if (lu == NULL)
2390
return 0;
2391
/* lu->hash == NID_undef means no associated digest */
2392
if (lu->hash == NID_undef) {
2393
md = NULL;
2394
} else {
2395
md = ssl_md(ctx, lu->hash_idx);
2396
if (md == NULL)
2397
return 0;
2398
}
2399
if (pmd)
2400
*pmd = md;
2401
return 1;
2402
}
2403
2404
/*
2405
* Check if key is large enough to generate RSA-PSS signature.
2406
*
2407
* The key must greater than or equal to 2 * hash length + 2.
2408
* SHA512 has a hash length of 64 bytes, which is incompatible
2409
* with a 128 byte (1024 bit) key.
2410
*/
2411
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
2412
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
2413
const SIGALG_LOOKUP *lu)
2414
{
2415
const EVP_MD *md;
2416
2417
if (pkey == NULL)
2418
return 0;
2419
if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
2420
return 0;
2421
if (EVP_MD_get_size(md) <= 0)
2422
return 0;
2423
if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
2424
return 0;
2425
return 1;
2426
}
2427
2428
/*
2429
* Returns a signature algorithm when the peer did not send a list of supported
2430
* signature algorithms. The signature algorithm is fixed for the certificate
2431
* type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
2432
* certificate type from |s| will be used.
2433
* Returns the signature algorithm to use, or NULL on error.
2434
*/
2435
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
2436
int idx)
2437
{
2438
if (idx == -1) {
2439
if (s->server) {
2440
size_t i;
2441
2442
/* Work out index corresponding to ciphersuite */
2443
for (i = 0; i < s->ssl_pkey_num; i++) {
2444
const SSL_CERT_LOOKUP *clu
2445
= ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
2446
2447
if (clu == NULL)
2448
continue;
2449
if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
2450
idx = i;
2451
break;
2452
}
2453
}
2454
2455
/*
2456
* Some GOST ciphersuites allow more than one signature algorithms
2457
* */
2458
if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
2459
int real_idx;
2460
2461
for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
2462
real_idx--) {
2463
if (s->cert->pkeys[real_idx].privatekey != NULL) {
2464
idx = real_idx;
2465
break;
2466
}
2467
}
2468
}
2469
/*
2470
* As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
2471
* with new (aGOST12-only) ciphersuites, we should find out which one is available really.
2472
*/
2473
else if (idx == SSL_PKEY_GOST12_256) {
2474
int real_idx;
2475
2476
for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
2477
real_idx--) {
2478
if (s->cert->pkeys[real_idx].privatekey != NULL) {
2479
idx = real_idx;
2480
break;
2481
}
2482
}
2483
}
2484
} else {
2485
idx = s->cert->key - s->cert->pkeys;
2486
}
2487
}
2488
if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
2489
return NULL;
2490
2491
if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
2492
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
2493
tls_default_sigalg[idx]);
2494
2495
if (lu == NULL)
2496
return NULL;
2497
if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
2498
return NULL;
2499
if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2500
return NULL;
2501
return lu;
2502
}
2503
if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
2504
return NULL;
2505
return &legacy_rsa_sigalg;
2506
}
2507
/* Set peer sigalg based key type */
2508
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
2509
{
2510
size_t idx;
2511
const SIGALG_LOOKUP *lu;
2512
2513
if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
2514
return 0;
2515
lu = tls1_get_legacy_sigalg(s, idx);
2516
if (lu == NULL)
2517
return 0;
2518
s->s3.tmp.peer_sigalg = lu;
2519
return 1;
2520
}
2521
2522
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
2523
{
2524
/*
2525
* If Suite B mode use Suite B sigalgs only, ignore any other
2526
* preferences.
2527
*/
2528
switch (tls1_suiteb(s)) {
2529
case SSL_CERT_FLAG_SUITEB_128_LOS:
2530
*psigs = suiteb_sigalgs;
2531
return OSSL_NELEM(suiteb_sigalgs);
2532
2533
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
2534
*psigs = suiteb_sigalgs;
2535
return 1;
2536
2537
case SSL_CERT_FLAG_SUITEB_192_LOS:
2538
*psigs = suiteb_sigalgs + 1;
2539
return 1;
2540
}
2541
/*
2542
* We use client_sigalgs (if not NULL) if we're a server
2543
* and sending a certificate request or if we're a client and
2544
* determining which shared algorithm to use.
2545
*/
2546
if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
2547
*psigs = s->cert->client_sigalgs;
2548
return s->cert->client_sigalgslen;
2549
} else if (s->cert->conf_sigalgs) {
2550
*psigs = s->cert->conf_sigalgs;
2551
return s->cert->conf_sigalgslen;
2552
} else {
2553
*psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2554
return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2555
}
2556
}
2557
2558
/*
2559
* Called by servers only. Checks that we have a sig alg that supports the
2560
* specified EC curve.
2561
*/
2562
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
2563
{
2564
const uint16_t *sigs;
2565
size_t siglen, i;
2566
2567
if (s->cert->conf_sigalgs) {
2568
sigs = s->cert->conf_sigalgs;
2569
siglen = s->cert->conf_sigalgslen;
2570
} else {
2571
sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2572
siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2573
}
2574
2575
for (i = 0; i < siglen; i++) {
2576
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
2577
2578
if (lu == NULL)
2579
continue;
2580
if (lu->sig == EVP_PKEY_EC
2581
&& lu->curve != NID_undef
2582
&& curve == lu->curve)
2583
return 1;
2584
}
2585
2586
return 0;
2587
}
2588
2589
/*
2590
* Return the number of security bits for the signature algorithm, or 0 on
2591
* error.
2592
*/
2593
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
2594
{
2595
const EVP_MD *md = NULL;
2596
int secbits = 0;
2597
2598
if (!tls1_lookup_md(ctx, lu, &md))
2599
return 0;
2600
if (md != NULL) {
2601
int md_type = EVP_MD_get_type(md);
2602
2603
/* Security bits: half digest bits */
2604
secbits = EVP_MD_get_size(md) * 4;
2605
if (secbits <= 0)
2606
return 0;
2607
/*
2608
* SHA1 and MD5 are known to be broken. Reduce security bits so that
2609
* they're no longer accepted at security level 1. The real values don't
2610
* really matter as long as they're lower than 80, which is our
2611
* security level 1.
2612
* https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
2613
* SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
2614
* https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
2615
* puts a chosen-prefix attack for MD5 at 2^39.
2616
*/
2617
if (md_type == NID_sha1)
2618
secbits = 64;
2619
else if (md_type == NID_md5_sha1)
2620
secbits = 67;
2621
else if (md_type == NID_md5)
2622
secbits = 39;
2623
} else {
2624
/* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
2625
if (lu->sigalg == TLSEXT_SIGALG_ed25519)
2626
secbits = 128;
2627
else if (lu->sigalg == TLSEXT_SIGALG_ed448)
2628
secbits = 224;
2629
}
2630
/*
2631
* For provider-based sigalgs we have secbits information available
2632
* in the (provider-loaded) sigalg_list structure
2633
*/
2634
if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2635
&& ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2636
secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2637
}
2638
return secbits;
2639
}
2640
2641
static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
2642
{
2643
int minversion, maxversion;
2644
int minproto, maxproto;
2645
2646
if (!lu->available)
2647
return 0;
2648
2649
if (SSL_CONNECTION_IS_DTLS(sc)) {
2650
if (sc->ssl.method->version == DTLS_ANY_VERSION) {
2651
minproto = sc->min_proto_version;
2652
maxproto = sc->max_proto_version;
2653
} else {
2654
maxproto = minproto = sc->version;
2655
}
2656
minversion = lu->mindtls;
2657
maxversion = lu->maxdtls;
2658
} else {
2659
if (sc->ssl.method->version == TLS_ANY_VERSION) {
2660
minproto = sc->min_proto_version;
2661
maxproto = sc->max_proto_version;
2662
} else {
2663
maxproto = minproto = sc->version;
2664
}
2665
minversion = lu->mintls;
2666
maxversion = lu->maxtls;
2667
}
2668
if (minversion == -1 || maxversion == -1
2669
|| (minversion != 0 && maxproto != 0
2670
&& ssl_version_cmp(sc, minversion, maxproto) > 0)
2671
|| (maxversion != 0 && minproto != 0
2672
&& ssl_version_cmp(sc, maxversion, minproto) < 0)
2673
|| !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
2674
return 0;
2675
return 1;
2676
}
2677
2678
/*
2679
* Check signature algorithm is consistent with sent supported signature
2680
* algorithms and if so set relevant digest and signature scheme in
2681
* s.
2682
*/
2683
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2684
{
2685
const uint16_t *sent_sigs;
2686
const EVP_MD *md = NULL;
2687
char sigalgstr[2];
2688
size_t sent_sigslen, i, cidx;
2689
int pkeyid = -1;
2690
const SIGALG_LOOKUP *lu;
2691
int secbits = 0;
2692
2693
pkeyid = EVP_PKEY_get_id(pkey);
2694
2695
if (SSL_CONNECTION_IS_TLS13(s)) {
2696
/* Disallow DSA for TLS 1.3 */
2697
if (pkeyid == EVP_PKEY_DSA) {
2698
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2699
return 0;
2700
}
2701
/* Only allow PSS for TLS 1.3 */
2702
if (pkeyid == EVP_PKEY_RSA)
2703
pkeyid = EVP_PKEY_RSA_PSS;
2704
}
2705
2706
/* Is this code point available and compatible with the protocol */
2707
lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
2708
if (lu == NULL || !tls_sigalg_compat(s, lu)) {
2709
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2710
return 0;
2711
}
2712
2713
/* If we don't know the pkey nid yet go and find it */
2714
if (pkeyid == EVP_PKEY_KEYMGMT) {
2715
const SSL_CERT_LOOKUP *scl = ssl_cert_lookup_by_pkey(pkey, NULL, SSL_CONNECTION_GET_CTX(s));
2716
2717
if (scl == NULL) {
2718
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2719
return 0;
2720
}
2721
pkeyid = scl->pkey_nid;
2722
}
2723
2724
/* Should never happen */
2725
if (pkeyid == -1) {
2726
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2727
return -1;
2728
}
2729
2730
/*
2731
* Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2732
* is consistent with signature: RSA keys can be used for RSA-PSS
2733
*/
2734
if ((SSL_CONNECTION_IS_TLS13(s)
2735
&& (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2736
|| (pkeyid != lu->sig
2737
&& (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2738
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2739
return 0;
2740
}
2741
/* Check the sigalg is consistent with the key OID */
2742
if (!ssl_cert_lookup_by_nid(
2743
(pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2744
&cidx, SSL_CONNECTION_GET_CTX(s))
2745
|| lu->sig_idx != (int)cidx) {
2746
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2747
return 0;
2748
}
2749
2750
if (pkeyid == EVP_PKEY_EC) {
2751
2752
/* Check point compression is permitted */
2753
if (!tls1_check_pkey_comp(s, pkey)) {
2754
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2755
SSL_R_ILLEGAL_POINT_COMPRESSION);
2756
return 0;
2757
}
2758
2759
/* For TLS 1.3 or Suite B check curve matches signature algorithm */
2760
if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2761
int curve = ssl_get_EC_curve_nid(pkey);
2762
2763
if (lu->curve != NID_undef && curve != lu->curve) {
2764
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2765
return 0;
2766
}
2767
}
2768
if (!SSL_CONNECTION_IS_TLS13(s)) {
2769
/* Check curve matches extensions */
2770
if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2771
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2772
return 0;
2773
}
2774
if (tls1_suiteb(s)) {
2775
/* Check sigalg matches a permissible Suite B value */
2776
if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2777
&& sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2778
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2779
SSL_R_WRONG_SIGNATURE_TYPE);
2780
return 0;
2781
}
2782
}
2783
}
2784
} else if (tls1_suiteb(s)) {
2785
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2786
return 0;
2787
}
2788
2789
/* Check signature matches a type we sent */
2790
sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2791
for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2792
if (sig == *sent_sigs)
2793
break;
2794
}
2795
/* Allow fallback to SHA1 if not strict mode */
2796
if (i == sent_sigslen && (lu->hash != NID_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2797
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2798
return 0;
2799
}
2800
if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2801
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2802
return 0;
2803
}
2804
/*
2805
* Make sure security callback allows algorithm. For historical
2806
* reasons we have to pass the sigalg as a two byte char array.
2807
*/
2808
sigalgstr[0] = (sig >> 8) & 0xff;
2809
sigalgstr[1] = sig & 0xff;
2810
secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2811
if (secbits == 0 || !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, md != NULL ? EVP_MD_get_type(md) : NID_undef, (void *)sigalgstr)) {
2812
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2813
return 0;
2814
}
2815
/* Store the sigalg the peer uses */
2816
s->s3.tmp.peer_sigalg = lu;
2817
return 1;
2818
}
2819
2820
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2821
{
2822
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2823
2824
if (sc == NULL)
2825
return 0;
2826
2827
if (sc->s3.tmp.peer_sigalg == NULL)
2828
return 0;
2829
*pnid = sc->s3.tmp.peer_sigalg->sig;
2830
return 1;
2831
}
2832
2833
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2834
{
2835
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2836
2837
if (sc == NULL)
2838
return 0;
2839
2840
if (sc->s3.tmp.sigalg == NULL)
2841
return 0;
2842
*pnid = sc->s3.tmp.sigalg->sig;
2843
return 1;
2844
}
2845
2846
/*
2847
* Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2848
* supported, doesn't appear in supported signature algorithms, isn't supported
2849
* by the enabled protocol versions or by the security level.
2850
*
2851
* This function should only be used for checking which ciphers are supported
2852
* by the client.
2853
*
2854
* Call ssl_cipher_disabled() to check that it's enabled or not.
2855
*/
2856
int ssl_set_client_disabled(SSL_CONNECTION *s)
2857
{
2858
s->s3.tmp.mask_a = 0;
2859
s->s3.tmp.mask_k = 0;
2860
ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2861
if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2862
&s->s3.tmp.max_ver, NULL)
2863
!= 0)
2864
return 0;
2865
#ifndef OPENSSL_NO_PSK
2866
/* with PSK there must be client callback set */
2867
if (!s->psk_client_callback) {
2868
s->s3.tmp.mask_a |= SSL_aPSK;
2869
s->s3.tmp.mask_k |= SSL_PSK;
2870
}
2871
#endif /* OPENSSL_NO_PSK */
2872
#ifndef OPENSSL_NO_SRP
2873
if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2874
s->s3.tmp.mask_a |= SSL_aSRP;
2875
s->s3.tmp.mask_k |= SSL_kSRP;
2876
}
2877
#endif
2878
return 1;
2879
}
2880
2881
/*
2882
* ssl_cipher_disabled - check that a cipher is disabled or not
2883
* @s: SSL connection that you want to use the cipher on
2884
* @c: cipher to check
2885
* @op: Security check that you want to do
2886
* @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2887
*
2888
* Returns 1 when it's disabled, 0 when enabled.
2889
*/
2890
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2891
int op, int ecdhe)
2892
{
2893
int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2894
int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2895
2896
if (c->algorithm_mkey & s->s3.tmp.mask_k
2897
|| c->algorithm_auth & s->s3.tmp.mask_a)
2898
return 1;
2899
if (s->s3.tmp.max_ver == 0)
2900
return 1;
2901
2902
if (SSL_IS_QUIC_INT_HANDSHAKE(s))
2903
/* For QUIC, only allow these ciphersuites. */
2904
switch (SSL_CIPHER_get_id(c)) {
2905
case TLS1_3_CK_AES_128_GCM_SHA256:
2906
case TLS1_3_CK_AES_256_GCM_SHA384:
2907
case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2908
break;
2909
default:
2910
return 1;
2911
}
2912
2913
/*
2914
* For historical reasons we will allow ECHDE to be selected by a server
2915
* in SSLv3 if we are a client
2916
*/
2917
if (minversion == TLS1_VERSION
2918
&& ecdhe
2919
&& (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2920
minversion = SSL3_VERSION;
2921
2922
if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2923
|| ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2924
return 1;
2925
2926
return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2927
}
2928
2929
int tls_use_ticket(SSL_CONNECTION *s)
2930
{
2931
if ((s->options & SSL_OP_NO_TICKET))
2932
return 0;
2933
return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2934
}
2935
2936
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2937
{
2938
size_t i;
2939
2940
/* Clear any shared signature algorithms */
2941
OPENSSL_free(s->shared_sigalgs);
2942
s->shared_sigalgs = NULL;
2943
s->shared_sigalgslen = 0;
2944
2945
/* Clear certificate validity flags */
2946
if (s->s3.tmp.valid_flags)
2947
memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2948
else
2949
s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2950
if (s->s3.tmp.valid_flags == NULL)
2951
return 0;
2952
/*
2953
* If peer sent no signature algorithms check to see if we support
2954
* the default algorithm for each certificate type
2955
*/
2956
if (s->s3.tmp.peer_cert_sigalgs == NULL
2957
&& s->s3.tmp.peer_sigalgs == NULL) {
2958
const uint16_t *sent_sigs;
2959
size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2960
2961
for (i = 0; i < s->ssl_pkey_num; i++) {
2962
const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2963
size_t j;
2964
2965
if (lu == NULL)
2966
continue;
2967
/* Check default matches a type we sent */
2968
for (j = 0; j < sent_sigslen; j++) {
2969
if (lu->sigalg == sent_sigs[j]) {
2970
s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2971
break;
2972
}
2973
}
2974
}
2975
return 1;
2976
}
2977
2978
if (!tls1_process_sigalgs(s)) {
2979
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2980
return 0;
2981
}
2982
if (s->shared_sigalgs != NULL)
2983
return 1;
2984
2985
/* Fatal error if no shared signature algorithms */
2986
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2987
SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2988
return 0;
2989
}
2990
2991
/*-
2992
* Gets the ticket information supplied by the client if any.
2993
*
2994
* hello: The parsed ClientHello data
2995
* ret: (output) on return, if a ticket was decrypted, then this is set to
2996
* point to the resulting session.
2997
*/
2998
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2999
CLIENTHELLO_MSG *hello,
3000
SSL_SESSION **ret)
3001
{
3002
size_t size;
3003
RAW_EXTENSION *ticketext;
3004
3005
*ret = NULL;
3006
s->ext.ticket_expected = 0;
3007
3008
/*
3009
* If tickets disabled or not supported by the protocol version
3010
* (e.g. TLSv1.3) behave as if no ticket present to permit stateful
3011
* resumption.
3012
*/
3013
if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
3014
return SSL_TICKET_NONE;
3015
3016
ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
3017
if (!ticketext->present)
3018
return SSL_TICKET_NONE;
3019
3020
size = PACKET_remaining(&ticketext->data);
3021
3022
return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
3023
hello->session_id, hello->session_id_len, ret);
3024
}
3025
3026
/*-
3027
* tls_decrypt_ticket attempts to decrypt a session ticket.
3028
*
3029
* If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
3030
* expecting a pre-shared key ciphersuite, in which case we have no use for
3031
* session tickets and one will never be decrypted, nor will
3032
* s->ext.ticket_expected be set to 1.
3033
*
3034
* Side effects:
3035
* Sets s->ext.ticket_expected to 1 if the server will have to issue
3036
* a new session ticket to the client because the client indicated support
3037
* (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3038
* a session ticket or we couldn't use the one it gave us, or if
3039
* s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
3040
* Otherwise, s->ext.ticket_expected is set to 0.
3041
*
3042
* etick: points to the body of the session ticket extension.
3043
* eticklen: the length of the session tickets extension.
3044
* sess_id: points at the session ID.
3045
* sesslen: the length of the session ID.
3046
* psess: (output) on return, if a ticket was decrypted, then this is set to
3047
* point to the resulting session.
3048
*/
3049
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
3050
const unsigned char *etick,
3051
size_t eticklen,
3052
const unsigned char *sess_id,
3053
size_t sesslen, SSL_SESSION **psess)
3054
{
3055
SSL_SESSION *sess = NULL;
3056
unsigned char *sdec;
3057
const unsigned char *p;
3058
int slen, ivlen, renew_ticket = 0, declen;
3059
SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
3060
size_t mlen;
3061
unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3062
SSL_HMAC *hctx = NULL;
3063
EVP_CIPHER_CTX *ctx = NULL;
3064
SSL_CTX *tctx = s->session_ctx;
3065
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3066
3067
if (eticklen == 0) {
3068
/*
3069
* The client will accept a ticket but doesn't currently have
3070
* one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
3071
*/
3072
ret = SSL_TICKET_EMPTY;
3073
goto end;
3074
}
3075
if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
3076
/*
3077
* Indicate that the ticket couldn't be decrypted rather than
3078
* generating the session from ticket now, trigger
3079
* abbreviated handshake based on external mechanism to
3080
* calculate the master secret later.
3081
*/
3082
ret = SSL_TICKET_NO_DECRYPT;
3083
goto end;
3084
}
3085
3086
/* Need at least keyname + iv */
3087
if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
3088
ret = SSL_TICKET_NO_DECRYPT;
3089
goto end;
3090
}
3091
3092
/* Initialize session ticket encryption and HMAC contexts */
3093
hctx = ssl_hmac_new(tctx);
3094
if (hctx == NULL) {
3095
ret = SSL_TICKET_FATAL_ERR_MALLOC;
3096
goto end;
3097
}
3098
ctx = EVP_CIPHER_CTX_new();
3099
if (ctx == NULL) {
3100
ret = SSL_TICKET_FATAL_ERR_MALLOC;
3101
goto end;
3102
}
3103
#ifndef OPENSSL_NO_DEPRECATED_3_0
3104
if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
3105
#else
3106
if (tctx->ext.ticket_key_evp_cb != NULL)
3107
#endif
3108
{
3109
unsigned char *nctick = (unsigned char *)etick;
3110
int rv = 0;
3111
3112
if (tctx->ext.ticket_key_evp_cb != NULL)
3113
rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
3114
nctick,
3115
nctick + TLSEXT_KEYNAME_LENGTH,
3116
ctx,
3117
ssl_hmac_get0_EVP_MAC_CTX(hctx),
3118
0);
3119
#ifndef OPENSSL_NO_DEPRECATED_3_0
3120
else if (tctx->ext.ticket_key_cb != NULL)
3121
/* if 0 is returned, write an empty ticket */
3122
rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
3123
nctick + TLSEXT_KEYNAME_LENGTH,
3124
ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
3125
#endif
3126
if (rv < 0) {
3127
ret = SSL_TICKET_FATAL_ERR_OTHER;
3128
goto end;
3129
}
3130
if (rv == 0) {
3131
ret = SSL_TICKET_NO_DECRYPT;
3132
goto end;
3133
}
3134
if (rv == 2)
3135
renew_ticket = 1;
3136
} else {
3137
EVP_CIPHER *aes256cbc = NULL;
3138
3139
/* Check key name matches */
3140
if (memcmp(etick, tctx->ext.tick_key_name,
3141
TLSEXT_KEYNAME_LENGTH)
3142
!= 0) {
3143
ret = SSL_TICKET_NO_DECRYPT;
3144
goto end;
3145
}
3146
3147
aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
3148
sctx->propq);
3149
if (aes256cbc == NULL
3150
|| ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
3151
sizeof(tctx->ext.secure->tick_hmac_key),
3152
"SHA256")
3153
<= 0
3154
|| EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
3155
tctx->ext.secure->tick_aes_key,
3156
etick + TLSEXT_KEYNAME_LENGTH)
3157
<= 0) {
3158
EVP_CIPHER_free(aes256cbc);
3159
ret = SSL_TICKET_FATAL_ERR_OTHER;
3160
goto end;
3161
}
3162
EVP_CIPHER_free(aes256cbc);
3163
if (SSL_CONNECTION_IS_TLS13(s))
3164
renew_ticket = 1;
3165
}
3166
/*
3167
* Attempt to process session ticket, first conduct sanity and integrity
3168
* checks on ticket.
3169
*/
3170
mlen = ssl_hmac_size(hctx);
3171
if (mlen == 0) {
3172
ret = SSL_TICKET_FATAL_ERR_OTHER;
3173
goto end;
3174
}
3175
3176
ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
3177
if (ivlen < 0) {
3178
ret = SSL_TICKET_FATAL_ERR_OTHER;
3179
goto end;
3180
}
3181
3182
/* Sanity check ticket length: must exceed keyname + IV + HMAC */
3183
if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
3184
ret = SSL_TICKET_NO_DECRYPT;
3185
goto end;
3186
}
3187
eticklen -= mlen;
3188
/* Check HMAC of encrypted ticket */
3189
if (ssl_hmac_update(hctx, etick, eticklen) <= 0
3190
|| ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
3191
ret = SSL_TICKET_FATAL_ERR_OTHER;
3192
goto end;
3193
}
3194
3195
if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3196
ret = SSL_TICKET_NO_DECRYPT;
3197
goto end;
3198
}
3199
/* Attempt to decrypt session data */
3200
/* Move p after IV to start of encrypted ticket, update length */
3201
p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
3202
eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
3203
sdec = OPENSSL_malloc(eticklen);
3204
if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, (int)eticklen) <= 0) {
3205
OPENSSL_free(sdec);
3206
ret = SSL_TICKET_FATAL_ERR_OTHER;
3207
goto end;
3208
}
3209
if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
3210
OPENSSL_free(sdec);
3211
ret = SSL_TICKET_NO_DECRYPT;
3212
goto end;
3213
}
3214
slen += declen;
3215
p = sdec;
3216
3217
sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
3218
slen -= p - sdec;
3219
OPENSSL_free(sdec);
3220
if (sess) {
3221
/* Some additional consistency checks */
3222
if (slen != 0) {
3223
SSL_SESSION_free(sess);
3224
sess = NULL;
3225
ret = SSL_TICKET_NO_DECRYPT;
3226
goto end;
3227
}
3228
/*
3229
* The session ID, if non-empty, is used by some clients to detect
3230
* that the ticket has been accepted. So we copy it to the session
3231
* structure. If it is empty set length to zero as required by
3232
* standard.
3233
*/
3234
if (sesslen) {
3235
memcpy(sess->session_id, sess_id, sesslen);
3236
sess->session_id_length = sesslen;
3237
}
3238
if (renew_ticket)
3239
ret = SSL_TICKET_SUCCESS_RENEW;
3240
else
3241
ret = SSL_TICKET_SUCCESS;
3242
goto end;
3243
}
3244
ERR_clear_error();
3245
/*
3246
* For session parse failure, indicate that we need to send a new ticket.
3247
*/
3248
ret = SSL_TICKET_NO_DECRYPT;
3249
3250
end:
3251
EVP_CIPHER_CTX_free(ctx);
3252
ssl_hmac_free(hctx);
3253
3254
/*
3255
* If set, the decrypt_ticket_cb() is called unless a fatal error was
3256
* detected above. The callback is responsible for checking |ret| before it
3257
* performs any action
3258
*/
3259
if (s->session_ctx->decrypt_ticket_cb != NULL
3260
&& (ret == SSL_TICKET_EMPTY
3261
|| ret == SSL_TICKET_NO_DECRYPT
3262
|| ret == SSL_TICKET_SUCCESS
3263
|| ret == SSL_TICKET_SUCCESS_RENEW)) {
3264
size_t keyname_len = eticklen;
3265
int retcb;
3266
3267
if (keyname_len > TLSEXT_KEYNAME_LENGTH)
3268
keyname_len = TLSEXT_KEYNAME_LENGTH;
3269
retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
3270
sess, etick, keyname_len,
3271
ret,
3272
s->session_ctx->ticket_cb_data);
3273
switch (retcb) {
3274
case SSL_TICKET_RETURN_ABORT:
3275
ret = SSL_TICKET_FATAL_ERR_OTHER;
3276
break;
3277
3278
case SSL_TICKET_RETURN_IGNORE:
3279
ret = SSL_TICKET_NONE;
3280
SSL_SESSION_free(sess);
3281
sess = NULL;
3282
break;
3283
3284
case SSL_TICKET_RETURN_IGNORE_RENEW:
3285
if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
3286
ret = SSL_TICKET_NO_DECRYPT;
3287
/* else the value of |ret| will already do the right thing */
3288
SSL_SESSION_free(sess);
3289
sess = NULL;
3290
break;
3291
3292
case SSL_TICKET_RETURN_USE:
3293
case SSL_TICKET_RETURN_USE_RENEW:
3294
if (ret != SSL_TICKET_SUCCESS
3295
&& ret != SSL_TICKET_SUCCESS_RENEW)
3296
ret = SSL_TICKET_FATAL_ERR_OTHER;
3297
else if (retcb == SSL_TICKET_RETURN_USE)
3298
ret = SSL_TICKET_SUCCESS;
3299
else
3300
ret = SSL_TICKET_SUCCESS_RENEW;
3301
break;
3302
3303
default:
3304
ret = SSL_TICKET_FATAL_ERR_OTHER;
3305
}
3306
}
3307
3308
if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
3309
switch (ret) {
3310
case SSL_TICKET_NO_DECRYPT:
3311
case SSL_TICKET_SUCCESS_RENEW:
3312
case SSL_TICKET_EMPTY:
3313
s->ext.ticket_expected = 1;
3314
}
3315
}
3316
3317
*psess = sess;
3318
3319
return ret;
3320
}
3321
3322
/* Check to see if a signature algorithm is allowed */
3323
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
3324
const SIGALG_LOOKUP *lu)
3325
{
3326
unsigned char sigalgstr[2];
3327
int secbits;
3328
3329
if (lu == NULL || !lu->available)
3330
return 0;
3331
/* DSA is not allowed in TLS 1.3 */
3332
if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
3333
return 0;
3334
/*
3335
* At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
3336
* spec
3337
*/
3338
if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
3339
&& s->s3.tmp.min_ver >= TLS1_3_VERSION
3340
&& (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
3341
|| lu->hash_idx == SSL_MD_MD5_IDX
3342
|| lu->hash_idx == SSL_MD_SHA224_IDX))
3343
return 0;
3344
3345
/* See if public key algorithm allowed */
3346
if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
3347
return 0;
3348
3349
if (lu->sig == NID_id_GostR3410_2012_256
3350
|| lu->sig == NID_id_GostR3410_2012_512
3351
|| lu->sig == NID_id_GostR3410_2001) {
3352
/* We never allow GOST sig algs on the server with TLSv1.3 */
3353
if (s->server && SSL_CONNECTION_IS_TLS13(s))
3354
return 0;
3355
if (!s->server
3356
&& SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
3357
&& s->s3.tmp.max_ver >= TLS1_3_VERSION) {
3358
int i, num;
3359
STACK_OF(SSL_CIPHER) *sk;
3360
3361
/*
3362
* We're a client that could negotiate TLSv1.3. We only allow GOST
3363
* sig algs if we could negotiate TLSv1.2 or below and we have GOST
3364
* ciphersuites enabled.
3365
*/
3366
3367
if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
3368
return 0;
3369
3370
sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
3371
num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
3372
for (i = 0; i < num; i++) {
3373
const SSL_CIPHER *c;
3374
3375
c = sk_SSL_CIPHER_value(sk, i);
3376
/* Skip disabled ciphers */
3377
if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
3378
continue;
3379
3380
if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
3381
break;
3382
}
3383
if (i == num)
3384
return 0;
3385
}
3386
}
3387
3388
/* Finally see if security callback allows it */
3389
secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
3390
sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
3391
sigalgstr[1] = lu->sigalg & 0xff;
3392
return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
3393
}
3394
3395
/*
3396
* Get a mask of disabled public key algorithms based on supported signature
3397
* algorithms. For example if no signature algorithm supports RSA then RSA is
3398
* disabled.
3399
*/
3400
3401
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
3402
{
3403
const uint16_t *sigalgs;
3404
size_t i, sigalgslen;
3405
uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
3406
/*
3407
* Go through all signature algorithms seeing if we support any
3408
* in disabled_mask.
3409
*/
3410
sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
3411
for (i = 0; i < sigalgslen; i++, sigalgs++) {
3412
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
3413
const SSL_CERT_LOOKUP *clu;
3414
3415
if (lu == NULL)
3416
continue;
3417
3418
clu = ssl_cert_lookup_by_idx(lu->sig_idx,
3419
SSL_CONNECTION_GET_CTX(s));
3420
if (clu == NULL)
3421
continue;
3422
3423
/* If algorithm is disabled see if we can enable it */
3424
if ((clu->amask & disabled_mask) != 0
3425
&& tls12_sigalg_allowed(s, op, lu))
3426
disabled_mask &= ~clu->amask;
3427
}
3428
*pmask_a |= disabled_mask;
3429
}
3430
3431
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
3432
const uint16_t *psig, size_t psiglen)
3433
{
3434
size_t i;
3435
int rv = 0;
3436
3437
for (i = 0; i < psiglen; i++, psig++) {
3438
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
3439
3440
if (lu == NULL || !tls_sigalg_compat(s, lu))
3441
continue;
3442
if (!WPACKET_put_bytes_u16(pkt, *psig))
3443
return 0;
3444
/*
3445
* If TLS 1.3 must have at least one valid TLS 1.3 message
3446
* signing algorithm: i.e. neither RSA nor SHA1/SHA224
3447
*/
3448
if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s) || (lu->sig != EVP_PKEY_RSA && lu->hash != NID_sha1 && lu->hash != NID_sha224)))
3449
rv = 1;
3450
}
3451
if (rv == 0)
3452
ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3453
return rv;
3454
}
3455
3456
/* Given preference and allowed sigalgs set shared sigalgs */
3457
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
3458
const SIGALG_LOOKUP **shsig,
3459
const uint16_t *pref, size_t preflen,
3460
const uint16_t *allow, size_t allowlen)
3461
{
3462
const uint16_t *ptmp, *atmp;
3463
size_t i, j, nmatch = 0;
3464
for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
3465
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
3466
3467
/* Skip disabled hashes or signature algorithms */
3468
if (lu == NULL
3469
|| !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
3470
continue;
3471
for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
3472
if (*ptmp == *atmp) {
3473
nmatch++;
3474
if (shsig)
3475
*shsig++ = lu;
3476
break;
3477
}
3478
}
3479
}
3480
return nmatch;
3481
}
3482
3483
/* Set shared signature algorithms for SSL structures */
3484
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
3485
{
3486
const uint16_t *pref, *allow, *conf;
3487
size_t preflen, allowlen, conflen;
3488
size_t nmatch;
3489
const SIGALG_LOOKUP **salgs = NULL;
3490
CERT *c = s->cert;
3491
unsigned int is_suiteb = tls1_suiteb(s);
3492
3493
OPENSSL_free(s->shared_sigalgs);
3494
s->shared_sigalgs = NULL;
3495
s->shared_sigalgslen = 0;
3496
/* If client use client signature algorithms if not NULL */
3497
if (!s->server && c->client_sigalgs && !is_suiteb) {
3498
conf = c->client_sigalgs;
3499
conflen = c->client_sigalgslen;
3500
} else if (c->conf_sigalgs && !is_suiteb) {
3501
conf = c->conf_sigalgs;
3502
conflen = c->conf_sigalgslen;
3503
} else
3504
conflen = tls12_get_psigalgs(s, 0, &conf);
3505
if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
3506
pref = conf;
3507
preflen = conflen;
3508
allow = s->s3.tmp.peer_sigalgs;
3509
allowlen = s->s3.tmp.peer_sigalgslen;
3510
} else {
3511
allow = conf;
3512
allowlen = conflen;
3513
pref = s->s3.tmp.peer_sigalgs;
3514
preflen = s->s3.tmp.peer_sigalgslen;
3515
}
3516
nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3517
if (nmatch) {
3518
if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
3519
return 0;
3520
nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3521
} else {
3522
salgs = NULL;
3523
}
3524
s->shared_sigalgs = salgs;
3525
s->shared_sigalgslen = nmatch;
3526
return 1;
3527
}
3528
3529
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
3530
{
3531
unsigned int stmp;
3532
size_t size, i;
3533
uint16_t *buf;
3534
3535
size = PACKET_remaining(pkt);
3536
3537
/* Invalid data length */
3538
if (size == 0 || (size & 1) != 0)
3539
return 0;
3540
3541
size >>= 1;
3542
3543
if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
3544
return 0;
3545
for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
3546
buf[i] = stmp;
3547
3548
if (i != size) {
3549
OPENSSL_free(buf);
3550
return 0;
3551
}
3552
3553
OPENSSL_free(*pdest);
3554
*pdest = buf;
3555
*pdestlen = size;
3556
3557
return 1;
3558
}
3559
3560
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
3561
{
3562
/* Extension ignored for inappropriate versions */
3563
if (!SSL_USE_SIGALGS(s))
3564
return 1;
3565
/* Should never happen */
3566
if (s->cert == NULL)
3567
return 0;
3568
3569
if (cert)
3570
return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
3571
&s->s3.tmp.peer_cert_sigalgslen);
3572
else
3573
return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
3574
&s->s3.tmp.peer_sigalgslen);
3575
}
3576
3577
/* Set preferred digest for each key type */
3578
3579
int tls1_process_sigalgs(SSL_CONNECTION *s)
3580
{
3581
size_t i;
3582
uint32_t *pvalid = s->s3.tmp.valid_flags;
3583
3584
if (!tls1_set_shared_sigalgs(s))
3585
return 0;
3586
3587
for (i = 0; i < s->ssl_pkey_num; i++)
3588
pvalid[i] = 0;
3589
3590
for (i = 0; i < s->shared_sigalgslen; i++) {
3591
const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
3592
int idx = sigptr->sig_idx;
3593
3594
/* Ignore PKCS1 based sig algs in TLSv1.3 */
3595
if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
3596
continue;
3597
/* If not disabled indicate we can explicitly sign */
3598
if (pvalid[idx] == 0
3599
&& !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
3600
pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3601
}
3602
return 1;
3603
}
3604
3605
int SSL_get_sigalgs(SSL *s, int idx,
3606
int *psign, int *phash, int *psignhash,
3607
unsigned char *rsig, unsigned char *rhash)
3608
{
3609
uint16_t *psig;
3610
size_t numsigalgs;
3611
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3612
3613
if (sc == NULL)
3614
return 0;
3615
3616
psig = sc->s3.tmp.peer_sigalgs;
3617
numsigalgs = sc->s3.tmp.peer_sigalgslen;
3618
3619
if (psig == NULL || numsigalgs > INT_MAX)
3620
return 0;
3621
if (idx >= 0) {
3622
const SIGALG_LOOKUP *lu;
3623
3624
if (idx >= (int)numsigalgs)
3625
return 0;
3626
psig += idx;
3627
if (rhash != NULL)
3628
*rhash = (unsigned char)((*psig >> 8) & 0xff);
3629
if (rsig != NULL)
3630
*rsig = (unsigned char)(*psig & 0xff);
3631
lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
3632
if (psign != NULL)
3633
*psign = lu != NULL ? lu->sig : NID_undef;
3634
if (phash != NULL)
3635
*phash = lu != NULL ? lu->hash : NID_undef;
3636
if (psignhash != NULL)
3637
*psignhash = lu != NULL ? lu->sigandhash : NID_undef;
3638
}
3639
return (int)numsigalgs;
3640
}
3641
3642
int SSL_get_shared_sigalgs(SSL *s, int idx,
3643
int *psign, int *phash, int *psignhash,
3644
unsigned char *rsig, unsigned char *rhash)
3645
{
3646
const SIGALG_LOOKUP *shsigalgs;
3647
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3648
3649
if (sc == NULL)
3650
return 0;
3651
3652
if (sc->shared_sigalgs == NULL
3653
|| idx < 0
3654
|| idx >= (int)sc->shared_sigalgslen
3655
|| sc->shared_sigalgslen > INT_MAX)
3656
return 0;
3657
shsigalgs = sc->shared_sigalgs[idx];
3658
if (phash != NULL)
3659
*phash = shsigalgs->hash;
3660
if (psign != NULL)
3661
*psign = shsigalgs->sig;
3662
if (psignhash != NULL)
3663
*psignhash = shsigalgs->sigandhash;
3664
if (rsig != NULL)
3665
*rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
3666
if (rhash != NULL)
3667
*rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
3668
return (int)sc->shared_sigalgslen;
3669
}
3670
3671
/* Maximum possible number of unique entries in sigalgs array */
3672
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
3673
3674
typedef struct {
3675
size_t sigalgcnt;
3676
/* TLSEXT_SIGALG_XXX values */
3677
uint16_t sigalgs[TLS_MAX_SIGALGCNT];
3678
SSL_CTX *ctx;
3679
} sig_cb_st;
3680
3681
static void get_sigorhash(int *psig, int *phash, const char *str)
3682
{
3683
if (OPENSSL_strcasecmp(str, "RSA") == 0) {
3684
*psig = EVP_PKEY_RSA;
3685
} else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
3686
|| OPENSSL_strcasecmp(str, "PSS") == 0) {
3687
*psig = EVP_PKEY_RSA_PSS;
3688
} else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
3689
*psig = EVP_PKEY_DSA;
3690
} else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
3691
*psig = EVP_PKEY_EC;
3692
} else {
3693
*phash = OBJ_sn2nid(str);
3694
if (*phash == NID_undef)
3695
*phash = OBJ_ln2nid(str);
3696
}
3697
}
3698
/* Maximum length of a signature algorithm string component */
3699
#define TLS_MAX_SIGSTRING_LEN 40
3700
3701
static int sig_cb(const char *elem, int len, void *arg)
3702
{
3703
sig_cb_st *sarg = arg;
3704
size_t i = 0;
3705
const SIGALG_LOOKUP *s;
3706
char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3707
const char *iana, *alias;
3708
int sig_alg = NID_undef, hash_alg = NID_undef;
3709
int ignore_unknown = 0;
3710
3711
if (elem == NULL)
3712
return 0;
3713
if (elem[0] == '?') {
3714
ignore_unknown = 1;
3715
++elem;
3716
--len;
3717
}
3718
if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3719
return 0;
3720
if (len > (int)(sizeof(etmp) - 1))
3721
return 0;
3722
memcpy(etmp, elem, len);
3723
etmp[len] = 0;
3724
p = strchr(etmp, '+');
3725
/*
3726
* We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3727
* if there's no '+' in the provided name, look for the new-style combined
3728
* name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3729
* Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3730
* rsa_pss_rsae_* that differ only by public key OID; in such cases
3731
* we will pick the _rsae_ variant, by virtue of them appearing earlier
3732
* in the table.
3733
*/
3734
if (p == NULL) {
3735
if (sarg->ctx != NULL) {
3736
for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3737
iana = sarg->ctx->sigalg_lookup_cache[i].name;
3738
alias = sarg->ctx->sigalg_lookup_cache[i].name12;
3739
if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3740
|| OPENSSL_strcasecmp(etmp, iana) == 0) {
3741
/* Ignore known, but unavailable sigalgs. */
3742
if (!sarg->ctx->sigalg_lookup_cache[i].available)
3743
return 1;
3744
sarg->sigalgs[sarg->sigalgcnt++] = sarg->ctx->sigalg_lookup_cache[i].sigalg;
3745
goto found;
3746
}
3747
}
3748
} else {
3749
/* Syntax checks use the built-in sigalgs */
3750
for (i = 0, s = sigalg_lookup_tbl;
3751
i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3752
iana = s->name;
3753
alias = s->name12;
3754
if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3755
|| OPENSSL_strcasecmp(etmp, iana) == 0) {
3756
sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3757
goto found;
3758
}
3759
}
3760
}
3761
} else {
3762
*p = 0;
3763
p++;
3764
if (*p == 0)
3765
return 0;
3766
get_sigorhash(&sig_alg, &hash_alg, etmp);
3767
get_sigorhash(&sig_alg, &hash_alg, p);
3768
if (sig_alg != NID_undef && hash_alg != NID_undef) {
3769
if (sarg->ctx != NULL) {
3770
for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3771
s = &sarg->ctx->sigalg_lookup_cache[i];
3772
if (s->hash == hash_alg && s->sig == sig_alg) {
3773
/* Ignore known, but unavailable sigalgs. */
3774
if (!sarg->ctx->sigalg_lookup_cache[i].available)
3775
return 1;
3776
sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3777
goto found;
3778
}
3779
}
3780
} else {
3781
for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
3782
s = &sigalg_lookup_tbl[i];
3783
if (s->hash == hash_alg && s->sig == sig_alg) {
3784
sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3785
goto found;
3786
}
3787
}
3788
}
3789
}
3790
}
3791
/* Ignore unknown algorithms if ignore_unknown */
3792
return ignore_unknown;
3793
3794
found:
3795
/* Ignore duplicates */
3796
for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3797
if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3798
sarg->sigalgcnt--;
3799
return 1;
3800
}
3801
}
3802
return 1;
3803
}
3804
3805
/*
3806
* Set supported signature algorithms based on a colon separated list of the
3807
* form sig+hash e.g. RSA+SHA512:DSA+SHA512
3808
*/
3809
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3810
{
3811
sig_cb_st sig;
3812
sig.sigalgcnt = 0;
3813
3814
if (ctx != NULL)
3815
sig.ctx = ctx;
3816
if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3817
return 0;
3818
if (sig.sigalgcnt == 0) {
3819
ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3820
"No valid signature algorithms in '%s'", str);
3821
return 0;
3822
}
3823
if (c == NULL)
3824
return 1;
3825
return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3826
}
3827
3828
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3829
int client)
3830
{
3831
uint16_t *sigalgs;
3832
3833
if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3834
return 0;
3835
memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3836
3837
if (client) {
3838
OPENSSL_free(c->client_sigalgs);
3839
c->client_sigalgs = sigalgs;
3840
c->client_sigalgslen = salglen;
3841
} else {
3842
OPENSSL_free(c->conf_sigalgs);
3843
c->conf_sigalgs = sigalgs;
3844
c->conf_sigalgslen = salglen;
3845
}
3846
3847
return 1;
3848
}
3849
3850
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3851
{
3852
uint16_t *sigalgs, *sptr;
3853
size_t i;
3854
3855
if (salglen & 1)
3856
return 0;
3857
if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3858
return 0;
3859
for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3860
size_t j;
3861
const SIGALG_LOOKUP *curr;
3862
int md_id = *psig_nids++;
3863
int sig_id = *psig_nids++;
3864
3865
for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3866
j++, curr++) {
3867
if (curr->hash == md_id && curr->sig == sig_id) {
3868
*sptr++ = curr->sigalg;
3869
break;
3870
}
3871
}
3872
3873
if (j == OSSL_NELEM(sigalg_lookup_tbl))
3874
goto err;
3875
}
3876
3877
if (client) {
3878
OPENSSL_free(c->client_sigalgs);
3879
c->client_sigalgs = sigalgs;
3880
c->client_sigalgslen = salglen / 2;
3881
} else {
3882
OPENSSL_free(c->conf_sigalgs);
3883
c->conf_sigalgs = sigalgs;
3884
c->conf_sigalgslen = salglen / 2;
3885
}
3886
3887
return 1;
3888
3889
err:
3890
OPENSSL_free(sigalgs);
3891
return 0;
3892
}
3893
3894
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3895
{
3896
int sig_nid, use_pc_sigalgs = 0;
3897
size_t i;
3898
const SIGALG_LOOKUP *sigalg;
3899
size_t sigalgslen;
3900
3901
/*-
3902
* RFC 8446, section 4.2.3:
3903
*
3904
* The signatures on certificates that are self-signed or certificates
3905
* that are trust anchors are not validated, since they begin a
3906
* certification path (see [RFC5280], Section 3.2). A certificate that
3907
* begins a certification path MAY use a signature algorithm that is not
3908
* advertised as being supported in the "signature_algorithms"
3909
* extension.
3910
*/
3911
if (default_nid == -1 || X509_self_signed(x, 0))
3912
return 1;
3913
sig_nid = X509_get_signature_nid(x);
3914
if (default_nid)
3915
return sig_nid == default_nid ? 1 : 0;
3916
3917
if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3918
/*
3919
* If we're in TLSv1.3 then we only get here if we're checking the
3920
* chain. If the peer has specified peer_cert_sigalgs then we use them
3921
* otherwise we default to normal sigalgs.
3922
*/
3923
sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3924
use_pc_sigalgs = 1;
3925
} else {
3926
sigalgslen = s->shared_sigalgslen;
3927
}
3928
for (i = 0; i < sigalgslen; i++) {
3929
int mdnid, pknid;
3930
3931
sigalg = use_pc_sigalgs
3932
? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
3933
s->s3.tmp.peer_cert_sigalgs[i])
3934
: s->shared_sigalgs[i];
3935
if (sigalg == NULL)
3936
continue;
3937
if (sig_nid == sigalg->sigandhash)
3938
return 1;
3939
if (sigalg->sig != EVP_PKEY_RSA_PSS)
3940
continue;
3941
/*
3942
* Accept RSA PKCS#1 signatures in certificates when the signature
3943
* algorithms include RSA-PSS with a matching digest algorithm.
3944
*
3945
* When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
3946
* points, and we're doing strict checking of the certificate chain (in
3947
* a cert_cb via SSL_check_chain()) we may then reject RSA signed
3948
* certificates in the chain, but the TLS requirement on PSS should not
3949
* extend to certificates. Though the peer can in fact list the legacy
3950
* sigalgs for just this purpose, it is not likely that a better chain
3951
* signed with RSA-PSS is available.
3952
*/
3953
if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
3954
continue;
3955
if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
3956
return 1;
3957
}
3958
return 0;
3959
}
3960
3961
/* Check to see if a certificate issuer name matches list of CA names */
3962
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3963
{
3964
const X509_NAME *nm;
3965
int i;
3966
nm = X509_get_issuer_name(x);
3967
for (i = 0; i < sk_X509_NAME_num(names); i++) {
3968
if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3969
return 1;
3970
}
3971
return 0;
3972
}
3973
3974
/*
3975
* Check certificate chain is consistent with TLS extensions and is usable by
3976
* server. This servers two purposes: it allows users to check chains before
3977
* passing them to the server and it allows the server to check chains before
3978
* attempting to use them.
3979
*/
3980
3981
/* Flags which need to be set for a certificate when strict mode not set */
3982
3983
#define CERT_PKEY_VALID_FLAGS \
3984
(CERT_PKEY_EE_SIGNATURE | CERT_PKEY_EE_PARAM)
3985
/* Strict mode flags */
3986
#define CERT_PKEY_STRICT_FLAGS \
3987
(CERT_PKEY_VALID_FLAGS | CERT_PKEY_CA_SIGNATURE | CERT_PKEY_CA_PARAM \
3988
| CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE)
3989
3990
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3991
STACK_OF(X509) *chain, int idx)
3992
{
3993
int i;
3994
int rv = 0;
3995
int check_flags = 0, strict_mode;
3996
CERT_PKEY *cpk = NULL;
3997
CERT *c = s->cert;
3998
uint32_t *pvalid;
3999
unsigned int suiteb_flags = tls1_suiteb(s);
4000
4001
/*
4002
* Meaning of idx:
4003
* idx == -1 means SSL_check_chain() invocation
4004
* idx == -2 means checking client certificate chains
4005
* idx >= 0 means checking SSL_PKEY index
4006
*
4007
* For RPK, where there may be no cert, we ignore -1
4008
*/
4009
if (idx != -1) {
4010
if (idx == -2) {
4011
cpk = c->key;
4012
idx = (int)(cpk - c->pkeys);
4013
} else
4014
cpk = c->pkeys + idx;
4015
pvalid = s->s3.tmp.valid_flags + idx;
4016
x = cpk->x509;
4017
pk = cpk->privatekey;
4018
chain = cpk->chain;
4019
strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4020
if (tls12_rpk_and_privkey(s, idx)) {
4021
if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
4022
return 0;
4023
*pvalid = rv = CERT_PKEY_RPK;
4024
return rv;
4025
}
4026
/* If no cert or key, forget it */
4027
if (x == NULL || pk == NULL)
4028
goto end;
4029
} else {
4030
size_t certidx;
4031
4032
if (x == NULL || pk == NULL)
4033
return 0;
4034
4035
if (ssl_cert_lookup_by_pkey(pk, &certidx,
4036
SSL_CONNECTION_GET_CTX(s))
4037
== NULL)
4038
return 0;
4039
idx = certidx;
4040
pvalid = s->s3.tmp.valid_flags + idx;
4041
4042
if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4043
check_flags = CERT_PKEY_STRICT_FLAGS;
4044
else
4045
check_flags = CERT_PKEY_VALID_FLAGS;
4046
strict_mode = 1;
4047
}
4048
4049
if (suiteb_flags) {
4050
int ok;
4051
if (check_flags)
4052
check_flags |= CERT_PKEY_SUITEB;
4053
ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4054
if (ok == X509_V_OK)
4055
rv |= CERT_PKEY_SUITEB;
4056
else if (!check_flags)
4057
goto end;
4058
}
4059
4060
/*
4061
* Check all signature algorithms are consistent with signature
4062
* algorithms extension if TLS 1.2 or later and strict mode.
4063
*/
4064
if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
4065
&& strict_mode) {
4066
int default_nid;
4067
int rsign = 0;
4068
4069
if (s->s3.tmp.peer_cert_sigalgs != NULL
4070
|| s->s3.tmp.peer_sigalgs != NULL) {
4071
default_nid = 0;
4072
/* If no sigalgs extension use defaults from RFC5246 */
4073
} else {
4074
switch (idx) {
4075
case SSL_PKEY_RSA:
4076
rsign = EVP_PKEY_RSA;
4077
default_nid = NID_sha1WithRSAEncryption;
4078
break;
4079
4080
case SSL_PKEY_DSA_SIGN:
4081
rsign = EVP_PKEY_DSA;
4082
default_nid = NID_dsaWithSHA1;
4083
break;
4084
4085
case SSL_PKEY_ECC:
4086
rsign = EVP_PKEY_EC;
4087
default_nid = NID_ecdsa_with_SHA1;
4088
break;
4089
4090
case SSL_PKEY_GOST01:
4091
rsign = NID_id_GostR3410_2001;
4092
default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
4093
break;
4094
4095
case SSL_PKEY_GOST12_256:
4096
rsign = NID_id_GostR3410_2012_256;
4097
default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
4098
break;
4099
4100
case SSL_PKEY_GOST12_512:
4101
rsign = NID_id_GostR3410_2012_512;
4102
default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
4103
break;
4104
4105
default:
4106
default_nid = -1;
4107
break;
4108
}
4109
}
4110
/*
4111
* If peer sent no signature algorithms extension and we have set
4112
* preferred signature algorithms check we support sha1.
4113
*/
4114
if (default_nid > 0 && c->conf_sigalgs) {
4115
size_t j;
4116
const uint16_t *p = c->conf_sigalgs;
4117
for (j = 0; j < c->conf_sigalgslen; j++, p++) {
4118
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
4119
4120
if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
4121
break;
4122
}
4123
if (j == c->conf_sigalgslen) {
4124
if (check_flags)
4125
goto skip_sigs;
4126
else
4127
goto end;
4128
}
4129
}
4130
/* Check signature algorithm of each cert in chain */
4131
if (SSL_CONNECTION_IS_TLS13(s)) {
4132
/*
4133
* We only get here if the application has called SSL_check_chain(),
4134
* so check_flags is always set.
4135
*/
4136
if (find_sig_alg(s, x, pk) != NULL)
4137
rv |= CERT_PKEY_EE_SIGNATURE;
4138
} else if (!tls1_check_sig_alg(s, x, default_nid)) {
4139
if (!check_flags)
4140
goto end;
4141
} else
4142
rv |= CERT_PKEY_EE_SIGNATURE;
4143
rv |= CERT_PKEY_CA_SIGNATURE;
4144
for (i = 0; i < sk_X509_num(chain); i++) {
4145
if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
4146
if (check_flags) {
4147
rv &= ~CERT_PKEY_CA_SIGNATURE;
4148
break;
4149
} else
4150
goto end;
4151
}
4152
}
4153
}
4154
/* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4155
else if (check_flags)
4156
rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4157
skip_sigs:
4158
/* Check cert parameters are consistent */
4159
if (tls1_check_cert_param(s, x, 1))
4160
rv |= CERT_PKEY_EE_PARAM;
4161
else if (!check_flags)
4162
goto end;
4163
if (!s->server)
4164
rv |= CERT_PKEY_CA_PARAM;
4165
/* In strict mode check rest of chain too */
4166
else if (strict_mode) {
4167
rv |= CERT_PKEY_CA_PARAM;
4168
for (i = 0; i < sk_X509_num(chain); i++) {
4169
X509 *ca = sk_X509_value(chain, i);
4170
if (!tls1_check_cert_param(s, ca, 0)) {
4171
if (check_flags) {
4172
rv &= ~CERT_PKEY_CA_PARAM;
4173
break;
4174
} else
4175
goto end;
4176
}
4177
}
4178
}
4179
if (!s->server && strict_mode) {
4180
STACK_OF(X509_NAME) *ca_dn;
4181
int check_type = 0;
4182
4183
if (EVP_PKEY_is_a(pk, "RSA"))
4184
check_type = TLS_CT_RSA_SIGN;
4185
else if (EVP_PKEY_is_a(pk, "DSA"))
4186
check_type = TLS_CT_DSS_SIGN;
4187
else if (EVP_PKEY_is_a(pk, "EC"))
4188
check_type = TLS_CT_ECDSA_SIGN;
4189
4190
if (check_type) {
4191
const uint8_t *ctypes = s->s3.tmp.ctype;
4192
size_t j;
4193
4194
for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
4195
if (*ctypes == check_type) {
4196
rv |= CERT_PKEY_CERT_TYPE;
4197
break;
4198
}
4199
}
4200
if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4201
goto end;
4202
} else {
4203
rv |= CERT_PKEY_CERT_TYPE;
4204
}
4205
4206
ca_dn = s->s3.tmp.peer_ca_names;
4207
4208
if (ca_dn == NULL
4209
|| sk_X509_NAME_num(ca_dn) == 0
4210
|| ssl_check_ca_name(ca_dn, x))
4211
rv |= CERT_PKEY_ISSUER_NAME;
4212
else
4213
for (i = 0; i < sk_X509_num(chain); i++) {
4214
X509 *xtmp = sk_X509_value(chain, i);
4215
4216
if (ssl_check_ca_name(ca_dn, xtmp)) {
4217
rv |= CERT_PKEY_ISSUER_NAME;
4218
break;
4219
}
4220
}
4221
4222
if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4223
goto end;
4224
} else
4225
rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4226
4227
if (!check_flags || (rv & check_flags) == check_flags)
4228
rv |= CERT_PKEY_VALID;
4229
4230
end:
4231
4232
if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
4233
rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
4234
else
4235
rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4236
4237
/*
4238
* When checking a CERT_PKEY structure all flags are irrelevant if the
4239
* chain is invalid.
4240
*/
4241
if (!check_flags) {
4242
if (rv & CERT_PKEY_VALID) {
4243
*pvalid = rv;
4244
} else {
4245
/* Preserve sign and explicit sign flag, clear rest */
4246
*pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4247
return 0;
4248
}
4249
}
4250
return rv;
4251
}
4252
4253
/* Set validity of certificates in an SSL structure */
4254
void tls1_set_cert_validity(SSL_CONNECTION *s)
4255
{
4256
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
4257
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
4258
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4259
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4260
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
4261
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
4262
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
4263
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
4264
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
4265
}
4266
4267
/* User level utility function to check a chain is suitable */
4268
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4269
{
4270
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
4271
4272
if (sc == NULL)
4273
return 0;
4274
4275
return tls1_check_chain(sc, x, pk, chain, -1);
4276
}
4277
4278
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
4279
{
4280
EVP_PKEY *dhp = NULL;
4281
BIGNUM *p;
4282
int dh_secbits = 80, sec_level_bits;
4283
EVP_PKEY_CTX *pctx = NULL;
4284
OSSL_PARAM_BLD *tmpl = NULL;
4285
OSSL_PARAM *params = NULL;
4286
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4287
4288
if (s->cert->dh_tmp_auto != 2) {
4289
if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
4290
if (s->s3.tmp.new_cipher->strength_bits == 256)
4291
dh_secbits = 128;
4292
else
4293
dh_secbits = 80;
4294
} else {
4295
if (s->s3.tmp.cert == NULL)
4296
return NULL;
4297
dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
4298
}
4299
}
4300
4301
/* Do not pick a prime that is too weak for the current security level */
4302
sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
4303
NULL, NULL);
4304
if (dh_secbits < sec_level_bits)
4305
dh_secbits = sec_level_bits;
4306
4307
if (dh_secbits >= 192)
4308
p = BN_get_rfc3526_prime_8192(NULL);
4309
else if (dh_secbits >= 152)
4310
p = BN_get_rfc3526_prime_4096(NULL);
4311
else if (dh_secbits >= 128)
4312
p = BN_get_rfc3526_prime_3072(NULL);
4313
else if (dh_secbits >= 112)
4314
p = BN_get_rfc3526_prime_2048(NULL);
4315
else
4316
p = BN_get_rfc2409_prime_1024(NULL);
4317
if (p == NULL)
4318
goto err;
4319
4320
pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
4321
if (pctx == NULL
4322
|| EVP_PKEY_fromdata_init(pctx) != 1)
4323
goto err;
4324
4325
tmpl = OSSL_PARAM_BLD_new();
4326
if (tmpl == NULL
4327
|| !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
4328
|| !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
4329
goto err;
4330
4331
params = OSSL_PARAM_BLD_to_param(tmpl);
4332
if (params == NULL
4333
|| EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
4334
goto err;
4335
4336
err:
4337
OSSL_PARAM_free(params);
4338
OSSL_PARAM_BLD_free(tmpl);
4339
EVP_PKEY_CTX_free(pctx);
4340
BN_free(p);
4341
return dhp;
4342
}
4343
4344
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4345
int op)
4346
{
4347
int secbits = -1;
4348
EVP_PKEY *pkey = X509_get0_pubkey(x);
4349
4350
if (pkey) {
4351
/*
4352
* If no parameters this will return -1 and fail using the default
4353
* security callback for any non-zero security level. This will
4354
* reject keys which omit parameters but this only affects DSA and
4355
* omission of parameters is never (?) done in practice.
4356
*/
4357
secbits = EVP_PKEY_get_security_bits(pkey);
4358
}
4359
if (s != NULL)
4360
return ssl_security(s, op, secbits, 0, x);
4361
else
4362
return ssl_ctx_security(ctx, op, secbits, 0, x);
4363
}
4364
4365
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4366
int op)
4367
{
4368
/* Lookup signature algorithm digest */
4369
int secbits, nid, pknid;
4370
4371
/* Don't check signature if self signed */
4372
if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
4373
return 1;
4374
if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
4375
secbits = -1;
4376
/* If digest NID not defined use signature NID */
4377
if (nid == NID_undef)
4378
nid = pknid;
4379
if (s != NULL)
4380
return ssl_security(s, op, secbits, nid, x);
4381
else
4382
return ssl_ctx_security(ctx, op, secbits, nid, x);
4383
}
4384
4385
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
4386
int is_ee)
4387
{
4388
if (vfy)
4389
vfy = SSL_SECOP_PEER;
4390
if (is_ee) {
4391
if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4392
return SSL_R_EE_KEY_TOO_SMALL;
4393
} else {
4394
if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4395
return SSL_R_CA_KEY_TOO_SMALL;
4396
}
4397
if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4398
return SSL_R_CA_MD_TOO_WEAK;
4399
return 1;
4400
}
4401
4402
/*
4403
* Check security of a chain, if |sk| includes the end entity certificate then
4404
* |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
4405
* one to the peer. Return values: 1 if ok otherwise error code to use
4406
*/
4407
4408
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
4409
X509 *x, int vfy)
4410
{
4411
int rv, start_idx, i;
4412
4413
if (x == NULL) {
4414
x = sk_X509_value(sk, 0);
4415
if (x == NULL)
4416
return ERR_R_INTERNAL_ERROR;
4417
start_idx = 1;
4418
} else
4419
start_idx = 0;
4420
4421
rv = ssl_security_cert(s, NULL, x, vfy, 1);
4422
if (rv != 1)
4423
return rv;
4424
4425
for (i = start_idx; i < sk_X509_num(sk); i++) {
4426
x = sk_X509_value(sk, i);
4427
rv = ssl_security_cert(s, NULL, x, vfy, 0);
4428
if (rv != 1)
4429
return rv;
4430
}
4431
return 1;
4432
}
4433
4434
/*
4435
* For TLS 1.2 servers check if we have a certificate which can be used
4436
* with the signature algorithm "lu" and return index of certificate.
4437
*/
4438
4439
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
4440
const SIGALG_LOOKUP *lu)
4441
{
4442
int sig_idx = lu->sig_idx;
4443
const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
4444
SSL_CONNECTION_GET_CTX(s));
4445
4446
/* If not recognised or not supported by cipher mask it is not suitable */
4447
if (clu == NULL
4448
|| (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
4449
|| (clu->pkey_nid == EVP_PKEY_RSA_PSS
4450
&& (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
4451
return -1;
4452
4453
/* If doing RPK, the CERT_PKEY won't be "valid" */
4454
if (tls12_rpk_and_privkey(s, sig_idx))
4455
return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
4456
4457
return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
4458
}
4459
4460
/*
4461
* Checks the given cert against signature_algorithm_cert restrictions sent by
4462
* the peer (if any) as well as whether the hash from the sigalg is usable with
4463
* the key.
4464
* Returns true if the cert is usable and false otherwise.
4465
*/
4466
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
4467
X509 *x, EVP_PKEY *pkey)
4468
{
4469
const SIGALG_LOOKUP *lu;
4470
int mdnid, pknid, supported;
4471
size_t i;
4472
const char *mdname = NULL;
4473
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4474
4475
/*
4476
* If the given EVP_PKEY cannot support signing with this digest,
4477
* the answer is simply 'no'.
4478
*/
4479
if (sig->hash != NID_undef)
4480
mdname = OBJ_nid2sn(sig->hash);
4481
supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
4482
mdname,
4483
sctx->propq);
4484
if (supported <= 0)
4485
return 0;
4486
4487
/*
4488
* The TLS 1.3 signature_algorithms_cert extension places restrictions
4489
* on the sigalg with which the certificate was signed (by its issuer).
4490
*/
4491
if (s->s3.tmp.peer_cert_sigalgs != NULL) {
4492
if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
4493
return 0;
4494
for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
4495
lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
4496
s->s3.tmp.peer_cert_sigalgs[i]);
4497
if (lu == NULL)
4498
continue;
4499
4500
/*
4501
* This does not differentiate between the
4502
* rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
4503
* have a chain here that lets us look at the key OID in the
4504
* signing certificate.
4505
*/
4506
if (mdnid == lu->hash && pknid == lu->sig)
4507
return 1;
4508
}
4509
return 0;
4510
}
4511
4512
/*
4513
* Without signat_algorithms_cert, any certificate for which we have
4514
* a viable public key is permitted.
4515
*/
4516
return 1;
4517
}
4518
4519
/*
4520
* Returns true if |s| has a usable certificate configured for use
4521
* with signature scheme |sig|.
4522
* "Usable" includes a check for presence as well as applying
4523
* the signature_algorithm_cert restrictions sent by the peer (if any).
4524
* Returns false if no usable certificate is found.
4525
*/
4526
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
4527
{
4528
/* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
4529
if (idx == -1)
4530
idx = sig->sig_idx;
4531
if (!ssl_has_cert(s, idx))
4532
return 0;
4533
4534
return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
4535
s->cert->pkeys[idx].privatekey);
4536
}
4537
4538
/*
4539
* Returns true if the supplied cert |x| and key |pkey| is usable with the
4540
* specified signature scheme |sig|, or false otherwise.
4541
*/
4542
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
4543
EVP_PKEY *pkey)
4544
{
4545
size_t idx;
4546
4547
if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
4548
return 0;
4549
4550
/* Check the key is consistent with the sig alg */
4551
if ((int)idx != sig->sig_idx)
4552
return 0;
4553
4554
return check_cert_usable(s, sig, x, pkey);
4555
}
4556
4557
/*
4558
* Find a signature scheme that works with the supplied certificate |x| and key
4559
* |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
4560
* available certs/keys to find one that works.
4561
*/
4562
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
4563
EVP_PKEY *pkey)
4564
{
4565
const SIGALG_LOOKUP *lu = NULL;
4566
size_t i;
4567
int curve = -1;
4568
EVP_PKEY *tmppkey;
4569
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4570
4571
/* Look for a shared sigalgs matching possible certificates */
4572
for (i = 0; i < s->shared_sigalgslen; i++) {
4573
/* Skip SHA1, SHA224, DSA and RSA if not PSS */
4574
lu = s->shared_sigalgs[i];
4575
if (lu->hash == NID_sha1
4576
|| lu->hash == NID_sha224
4577
|| lu->sig == EVP_PKEY_DSA
4578
|| lu->sig == EVP_PKEY_RSA
4579
|| !tls_sigalg_compat(s, lu))
4580
continue;
4581
4582
/* Check that we have a cert, and signature_algorithms_cert */
4583
if (!tls1_lookup_md(sctx, lu, NULL))
4584
continue;
4585
if ((pkey == NULL && !has_usable_cert(s, lu, -1))
4586
|| (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
4587
continue;
4588
4589
tmppkey = (pkey != NULL) ? pkey
4590
: s->cert->pkeys[lu->sig_idx].privatekey;
4591
4592
if (lu->sig == EVP_PKEY_EC) {
4593
if (curve == -1)
4594
curve = ssl_get_EC_curve_nid(tmppkey);
4595
if (lu->curve != NID_undef && curve != lu->curve)
4596
continue;
4597
} else if (lu->sig == EVP_PKEY_RSA_PSS) {
4598
/* validate that key is large enough for the signature algorithm */
4599
if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
4600
continue;
4601
}
4602
break;
4603
}
4604
4605
if (i == s->shared_sigalgslen)
4606
return NULL;
4607
4608
return lu;
4609
}
4610
4611
/*
4612
* Choose an appropriate signature algorithm based on available certificates
4613
* Sets chosen certificate and signature algorithm.
4614
*
4615
* For servers if we fail to find a required certificate it is a fatal error,
4616
* an appropriate error code is set and a TLS alert is sent.
4617
*
4618
* For clients fatalerrs is set to 0. If a certificate is not suitable it is not
4619
* a fatal error: we will either try another certificate or not present one
4620
* to the server. In this case no error is set.
4621
*/
4622
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
4623
{
4624
const SIGALG_LOOKUP *lu = NULL;
4625
int sig_idx = -1;
4626
4627
s->s3.tmp.cert = NULL;
4628
s->s3.tmp.sigalg = NULL;
4629
4630
if (SSL_CONNECTION_IS_TLS13(s)) {
4631
lu = find_sig_alg(s, NULL, NULL);
4632
if (lu == NULL) {
4633
if (!fatalerrs)
4634
return 1;
4635
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4636
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4637
return 0;
4638
}
4639
} else {
4640
/* If ciphersuite doesn't require a cert nothing to do */
4641
if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
4642
return 1;
4643
if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
4644
return 1;
4645
4646
if (SSL_USE_SIGALGS(s)) {
4647
size_t i;
4648
if (s->s3.tmp.peer_sigalgs != NULL) {
4649
int curve = -1;
4650
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4651
4652
/* For Suite B need to match signature algorithm to curve */
4653
if (tls1_suiteb(s))
4654
curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
4655
.privatekey);
4656
4657
/*
4658
* Find highest preference signature algorithm matching
4659
* cert type
4660
*/
4661
for (i = 0; i < s->shared_sigalgslen; i++) {
4662
/* Check the sigalg version bounds */
4663
lu = s->shared_sigalgs[i];
4664
if (!tls_sigalg_compat(s, lu))
4665
continue;
4666
if (s->server) {
4667
if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
4668
continue;
4669
} else {
4670
int cc_idx = s->cert->key - s->cert->pkeys;
4671
4672
sig_idx = lu->sig_idx;
4673
if (cc_idx != sig_idx)
4674
continue;
4675
}
4676
/* Check that we have a cert, and sig_algs_cert */
4677
if (!has_usable_cert(s, lu, sig_idx))
4678
continue;
4679
if (lu->sig == EVP_PKEY_RSA_PSS) {
4680
/* validate that key is large enough for the signature algorithm */
4681
EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
4682
4683
if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
4684
continue;
4685
}
4686
if (curve == -1 || lu->curve == curve)
4687
break;
4688
}
4689
#ifndef OPENSSL_NO_GOST
4690
/*
4691
* Some Windows-based implementations do not send GOST algorithms indication
4692
* in supported_algorithms extension, so when we have GOST-based ciphersuite,
4693
* we have to assume GOST support.
4694
*/
4695
if (i == s->shared_sigalgslen
4696
&& (s->s3.tmp.new_cipher->algorithm_auth
4697
& (SSL_aGOST01 | SSL_aGOST12))
4698
!= 0) {
4699
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4700
if (!fatalerrs)
4701
return 1;
4702
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4703
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4704
return 0;
4705
} else {
4706
i = 0;
4707
sig_idx = lu->sig_idx;
4708
}
4709
}
4710
#endif
4711
if (i == s->shared_sigalgslen) {
4712
if (!fatalerrs)
4713
return 1;
4714
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4715
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4716
return 0;
4717
}
4718
} else {
4719
/*
4720
* If we have no sigalg use defaults
4721
*/
4722
const uint16_t *sent_sigs;
4723
size_t sent_sigslen;
4724
4725
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4726
if (!fatalerrs)
4727
return 1;
4728
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4729
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4730
return 0;
4731
}
4732
4733
/* Check signature matches a type we sent */
4734
sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4735
for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4736
if (lu->sigalg == *sent_sigs
4737
&& has_usable_cert(s, lu, lu->sig_idx))
4738
break;
4739
}
4740
if (i == sent_sigslen) {
4741
if (!fatalerrs)
4742
return 1;
4743
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4744
SSL_R_WRONG_SIGNATURE_TYPE);
4745
return 0;
4746
}
4747
}
4748
} else {
4749
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4750
if (!fatalerrs)
4751
return 1;
4752
SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4753
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4754
return 0;
4755
}
4756
}
4757
}
4758
if (sig_idx == -1)
4759
sig_idx = lu->sig_idx;
4760
s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4761
s->cert->key = s->s3.tmp.cert;
4762
s->s3.tmp.sigalg = lu;
4763
return 1;
4764
}
4765
4766
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4767
{
4768
if (mode != TLSEXT_max_fragment_length_DISABLED
4769
&& !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4770
ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4771
return 0;
4772
}
4773
4774
ctx->ext.max_fragment_len_mode = mode;
4775
return 1;
4776
}
4777
4778
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4779
{
4780
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4781
4782
if (sc == NULL
4783
|| (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4784
return 0;
4785
4786
if (mode != TLSEXT_max_fragment_length_DISABLED
4787
&& !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4788
ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4789
return 0;
4790
}
4791
4792
sc->ext.max_fragment_len_mode = mode;
4793
return 1;
4794
}
4795
4796
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4797
{
4798
if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4799
return TLSEXT_max_fragment_length_DISABLED;
4800
return session->ext.max_fragment_len_mode;
4801
}
4802
4803
/*
4804
* Helper functions for HMAC access with legacy support included.
4805
*/
4806
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4807
{
4808
SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4809
EVP_MAC *mac = NULL;
4810
4811
if (ret == NULL)
4812
return NULL;
4813
#ifndef OPENSSL_NO_DEPRECATED_3_0
4814
if (ctx->ext.ticket_key_evp_cb == NULL
4815
&& ctx->ext.ticket_key_cb != NULL) {
4816
if (!ssl_hmac_old_new(ret))
4817
goto err;
4818
return ret;
4819
}
4820
#endif
4821
mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4822
if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4823
goto err;
4824
EVP_MAC_free(mac);
4825
return ret;
4826
err:
4827
EVP_MAC_CTX_free(ret->ctx);
4828
EVP_MAC_free(mac);
4829
OPENSSL_free(ret);
4830
return NULL;
4831
}
4832
4833
void ssl_hmac_free(SSL_HMAC *ctx)
4834
{
4835
if (ctx != NULL) {
4836
EVP_MAC_CTX_free(ctx->ctx);
4837
#ifndef OPENSSL_NO_DEPRECATED_3_0
4838
ssl_hmac_old_free(ctx);
4839
#endif
4840
OPENSSL_free(ctx);
4841
}
4842
}
4843
4844
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4845
{
4846
return ctx->ctx;
4847
}
4848
4849
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4850
{
4851
OSSL_PARAM params[2], *p = params;
4852
4853
if (ctx->ctx != NULL) {
4854
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4855
*p = OSSL_PARAM_construct_end();
4856
if (EVP_MAC_init(ctx->ctx, key, len, params))
4857
return 1;
4858
}
4859
#ifndef OPENSSL_NO_DEPRECATED_3_0
4860
if (ctx->old_ctx != NULL)
4861
return ssl_hmac_old_init(ctx, key, len, md);
4862
#endif
4863
return 0;
4864
}
4865
4866
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4867
{
4868
if (ctx->ctx != NULL)
4869
return EVP_MAC_update(ctx->ctx, data, len);
4870
#ifndef OPENSSL_NO_DEPRECATED_3_0
4871
if (ctx->old_ctx != NULL)
4872
return ssl_hmac_old_update(ctx, data, len);
4873
#endif
4874
return 0;
4875
}
4876
4877
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4878
size_t max_size)
4879
{
4880
if (ctx->ctx != NULL)
4881
return EVP_MAC_final(ctx->ctx, md, len, max_size);
4882
#ifndef OPENSSL_NO_DEPRECATED_3_0
4883
if (ctx->old_ctx != NULL)
4884
return ssl_hmac_old_final(ctx, md, len);
4885
#endif
4886
return 0;
4887
}
4888
4889
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4890
{
4891
if (ctx->ctx != NULL)
4892
return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4893
#ifndef OPENSSL_NO_DEPRECATED_3_0
4894
if (ctx->old_ctx != NULL)
4895
return ssl_hmac_old_size(ctx);
4896
#endif
4897
return 0;
4898
}
4899
4900
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4901
{
4902
char gname[OSSL_MAX_NAME_SIZE];
4903
4904
if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4905
return OBJ_txt2nid(gname);
4906
4907
return NID_undef;
4908
}
4909
4910
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4911
const unsigned char *enckey,
4912
size_t enckeylen)
4913
{
4914
if (EVP_PKEY_is_a(pkey, "DH")) {
4915
int bits = EVP_PKEY_get_bits(pkey);
4916
4917
if (bits <= 0 || enckeylen != (size_t)bits / 8)
4918
/* the encoded key must be padded to the length of the p */
4919
return 0;
4920
} else if (EVP_PKEY_is_a(pkey, "EC")) {
4921
if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4922
|| enckey[0] != 0x04)
4923
return 0;
4924
}
4925
4926
return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4927
}
4928
4929