Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/ssl/t1_lib.c
48150 views
1
/*
2
* Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <ctype.h>
13
#include <openssl/objects.h>
14
#include <openssl/evp.h>
15
#include <openssl/hmac.h>
16
#include <openssl/core_names.h>
17
#include <openssl/ocsp.h>
18
#include <openssl/conf.h>
19
#include <openssl/x509v3.h>
20
#include <openssl/dh.h>
21
#include <openssl/bn.h>
22
#include <openssl/provider.h>
23
#include <openssl/param_build.h>
24
#include "internal/nelem.h"
25
#include "internal/sizes.h"
26
#include "internal/tlsgroups.h"
27
#include "internal/ssl_unwrap.h"
28
#include "ssl_local.h"
29
#include "quic/quic_local.h"
30
#include <openssl/ct.h>
31
32
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
33
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
34
35
SSL3_ENC_METHOD const TLSv1_enc_data = {
36
tls1_setup_key_block,
37
tls1_generate_master_secret,
38
tls1_change_cipher_state,
39
tls1_final_finish_mac,
40
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42
tls1_alert_code,
43
tls1_export_keying_material,
44
0,
45
ssl3_set_handshake_header,
46
tls_close_construct_packet,
47
ssl3_handshake_write
48
};
49
50
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51
tls1_setup_key_block,
52
tls1_generate_master_secret,
53
tls1_change_cipher_state,
54
tls1_final_finish_mac,
55
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57
tls1_alert_code,
58
tls1_export_keying_material,
59
0,
60
ssl3_set_handshake_header,
61
tls_close_construct_packet,
62
ssl3_handshake_write
63
};
64
65
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66
tls1_setup_key_block,
67
tls1_generate_master_secret,
68
tls1_change_cipher_state,
69
tls1_final_finish_mac,
70
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
71
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
72
tls1_alert_code,
73
tls1_export_keying_material,
74
SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
75
| SSL_ENC_FLAG_TLS1_2_CIPHERS,
76
ssl3_set_handshake_header,
77
tls_close_construct_packet,
78
ssl3_handshake_write
79
};
80
81
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
82
tls13_setup_key_block,
83
tls13_generate_master_secret,
84
tls13_change_cipher_state,
85
tls13_final_finish_mac,
86
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88
tls13_alert_code,
89
tls13_export_keying_material,
90
SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91
ssl3_set_handshake_header,
92
tls_close_construct_packet,
93
ssl3_handshake_write
94
};
95
96
OSSL_TIME tls1_default_timeout(void)
97
{
98
/*
99
* 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100
* http, the cache would over fill
101
*/
102
return ossl_seconds2time(60 * 60 * 2);
103
}
104
105
int tls1_new(SSL *s)
106
{
107
if (!ssl3_new(s))
108
return 0;
109
if (!s->method->ssl_clear(s))
110
return 0;
111
112
return 1;
113
}
114
115
void tls1_free(SSL *s)
116
{
117
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
118
119
if (sc == NULL)
120
return;
121
122
OPENSSL_free(sc->ext.session_ticket);
123
ssl3_free(s);
124
}
125
126
int tls1_clear(SSL *s)
127
{
128
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
129
130
if (sc == NULL)
131
return 0;
132
133
if (!ssl3_clear(s))
134
return 0;
135
136
if (s->method->version == TLS_ANY_VERSION)
137
sc->version = TLS_MAX_VERSION_INTERNAL;
138
else
139
sc->version = s->method->version;
140
141
return 1;
142
}
143
144
/* Legacy NID to group_id mapping. Only works for groups we know about */
145
static const struct {
146
int nid;
147
uint16_t group_id;
148
} nid_to_group[] = {
149
{NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
150
{NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
151
{NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
152
{NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
153
{NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
154
{NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
155
{NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
156
{NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
157
{NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
158
{NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
159
{NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
160
{NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
161
{NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
162
{NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
163
{NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
164
{NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
165
{NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
166
{NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
167
{NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
168
{NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
169
{NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
170
{NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
171
{NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
172
{NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
173
{NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
174
{NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
175
{NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
176
{NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
177
{EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
178
{EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
179
{NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
180
{NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
181
{NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
182
{NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
183
{NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
184
{NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
185
{NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
186
{NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
187
{NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
188
{NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
189
{NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
190
{NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
191
{NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
192
{NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
193
{NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
194
};
195
196
static const unsigned char ecformats_default[] = {
197
TLSEXT_ECPOINTFORMAT_uncompressed,
198
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
199
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
200
};
201
202
/* Group list string of the built-in pseudo group DEFAULT */
203
#define DEFAULT_GROUP_NAME "DEFAULT"
204
#define TLS_DEFAULT_GROUP_LIST \
205
"?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
206
207
static const uint16_t suiteb_curves[] = {
208
OSSL_TLS_GROUP_ID_secp256r1,
209
OSSL_TLS_GROUP_ID_secp384r1,
210
};
211
212
/* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
213
#define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
214
#define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
215
216
struct provider_ctx_data_st {
217
SSL_CTX *ctx;
218
OSSL_PROVIDER *provider;
219
};
220
221
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
222
static OSSL_CALLBACK add_provider_groups;
223
static int add_provider_groups(const OSSL_PARAM params[], void *data)
224
{
225
struct provider_ctx_data_st *pgd = data;
226
SSL_CTX *ctx = pgd->ctx;
227
const OSSL_PARAM *p;
228
TLS_GROUP_INFO *ginf = NULL;
229
EVP_KEYMGMT *keymgmt;
230
unsigned int gid;
231
unsigned int is_kem = 0;
232
int ret = 0;
233
234
if (ctx->group_list_max_len == ctx->group_list_len) {
235
TLS_GROUP_INFO *tmp = NULL;
236
237
if (ctx->group_list_max_len == 0)
238
tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
239
* TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
240
else
241
tmp = OPENSSL_realloc(ctx->group_list,
242
(ctx->group_list_max_len
243
+ TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
244
* sizeof(TLS_GROUP_INFO));
245
if (tmp == NULL)
246
return 0;
247
ctx->group_list = tmp;
248
memset(tmp + ctx->group_list_max_len,
249
0,
250
sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251
ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
252
}
253
254
ginf = &ctx->group_list[ctx->group_list_len];
255
256
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
257
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
258
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
259
goto err;
260
}
261
ginf->tlsname = OPENSSL_strdup(p->data);
262
if (ginf->tlsname == NULL)
263
goto err;
264
265
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
266
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
267
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
268
goto err;
269
}
270
ginf->realname = OPENSSL_strdup(p->data);
271
if (ginf->realname == NULL)
272
goto err;
273
274
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
275
if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
276
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
277
goto err;
278
}
279
ginf->group_id = (uint16_t)gid;
280
281
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
282
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
283
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
284
goto err;
285
}
286
ginf->algorithm = OPENSSL_strdup(p->data);
287
if (ginf->algorithm == NULL)
288
goto err;
289
290
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
291
if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
292
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
293
goto err;
294
}
295
296
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
297
if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
298
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
299
goto err;
300
}
301
ginf->is_kem = 1 & is_kem;
302
303
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
304
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
305
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
306
goto err;
307
}
308
309
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
310
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
311
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
312
goto err;
313
}
314
315
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
316
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
317
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
318
goto err;
319
}
320
321
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
322
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
323
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
324
goto err;
325
}
326
/*
327
* Now check that the algorithm is actually usable for our property query
328
* string. Regardless of the result we still return success because we have
329
* successfully processed this group, even though we may decide not to use
330
* it.
331
*/
332
ret = 1;
333
ERR_set_mark();
334
keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
335
if (keymgmt != NULL) {
336
/* We have successfully fetched the algorithm, we can use the group. */
337
ctx->group_list_len++;
338
ginf = NULL;
339
EVP_KEYMGMT_free(keymgmt);
340
}
341
ERR_pop_to_mark();
342
err:
343
if (ginf != NULL) {
344
OPENSSL_free(ginf->tlsname);
345
OPENSSL_free(ginf->realname);
346
OPENSSL_free(ginf->algorithm);
347
ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
348
}
349
return ret;
350
}
351
352
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
353
{
354
struct provider_ctx_data_st pgd;
355
356
pgd.ctx = vctx;
357
pgd.provider = provider;
358
return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
359
add_provider_groups, &pgd);
360
}
361
362
int ssl_load_groups(SSL_CTX *ctx)
363
{
364
if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
365
return 0;
366
367
return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
368
}
369
370
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
371
static OSSL_CALLBACK add_provider_sigalgs;
372
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
373
{
374
struct provider_ctx_data_st *pgd = data;
375
SSL_CTX *ctx = pgd->ctx;
376
OSSL_PROVIDER *provider = pgd->provider;
377
const OSSL_PARAM *p;
378
TLS_SIGALG_INFO *sinf = NULL;
379
EVP_KEYMGMT *keymgmt;
380
const char *keytype;
381
unsigned int code_point = 0;
382
int ret = 0;
383
384
if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
385
TLS_SIGALG_INFO *tmp = NULL;
386
387
if (ctx->sigalg_list_max_len == 0)
388
tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
389
* TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
390
else
391
tmp = OPENSSL_realloc(ctx->sigalg_list,
392
(ctx->sigalg_list_max_len
393
+ TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
394
* sizeof(TLS_SIGALG_INFO));
395
if (tmp == NULL)
396
return 0;
397
ctx->sigalg_list = tmp;
398
memset(tmp + ctx->sigalg_list_max_len, 0,
399
sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
400
ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
401
}
402
403
sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
404
405
/* First, mandatory parameters */
406
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
407
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
408
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
409
goto err;
410
}
411
OPENSSL_free(sinf->sigalg_name);
412
sinf->sigalg_name = OPENSSL_strdup(p->data);
413
if (sinf->sigalg_name == NULL)
414
goto err;
415
416
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
417
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
418
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
419
goto err;
420
}
421
OPENSSL_free(sinf->name);
422
sinf->name = OPENSSL_strdup(p->data);
423
if (sinf->name == NULL)
424
goto err;
425
426
p = OSSL_PARAM_locate_const(params,
427
OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
428
if (p == NULL
429
|| !OSSL_PARAM_get_uint(p, &code_point)
430
|| code_point > UINT16_MAX) {
431
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
432
goto err;
433
}
434
sinf->code_point = (uint16_t)code_point;
435
436
p = OSSL_PARAM_locate_const(params,
437
OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
438
if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
439
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
440
goto err;
441
}
442
443
/* Now, optional parameters */
444
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
445
if (p == NULL) {
446
sinf->sigalg_oid = NULL;
447
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
448
goto err;
449
} else {
450
OPENSSL_free(sinf->sigalg_oid);
451
sinf->sigalg_oid = OPENSSL_strdup(p->data);
452
if (sinf->sigalg_oid == NULL)
453
goto err;
454
}
455
456
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
457
if (p == NULL) {
458
sinf->sig_name = NULL;
459
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
460
goto err;
461
} else {
462
OPENSSL_free(sinf->sig_name);
463
sinf->sig_name = OPENSSL_strdup(p->data);
464
if (sinf->sig_name == NULL)
465
goto err;
466
}
467
468
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
469
if (p == NULL) {
470
sinf->sig_oid = NULL;
471
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
472
goto err;
473
} else {
474
OPENSSL_free(sinf->sig_oid);
475
sinf->sig_oid = OPENSSL_strdup(p->data);
476
if (sinf->sig_oid == NULL)
477
goto err;
478
}
479
480
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
481
if (p == NULL) {
482
sinf->hash_name = NULL;
483
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
484
goto err;
485
} else {
486
OPENSSL_free(sinf->hash_name);
487
sinf->hash_name = OPENSSL_strdup(p->data);
488
if (sinf->hash_name == NULL)
489
goto err;
490
}
491
492
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
493
if (p == NULL) {
494
sinf->hash_oid = NULL;
495
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
496
goto err;
497
} else {
498
OPENSSL_free(sinf->hash_oid);
499
sinf->hash_oid = OPENSSL_strdup(p->data);
500
if (sinf->hash_oid == NULL)
501
goto err;
502
}
503
504
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
505
if (p == NULL) {
506
sinf->keytype = NULL;
507
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
508
goto err;
509
} else {
510
OPENSSL_free(sinf->keytype);
511
sinf->keytype = OPENSSL_strdup(p->data);
512
if (sinf->keytype == NULL)
513
goto err;
514
}
515
516
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
517
if (p == NULL) {
518
sinf->keytype_oid = NULL;
519
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
520
goto err;
521
} else {
522
OPENSSL_free(sinf->keytype_oid);
523
sinf->keytype_oid = OPENSSL_strdup(p->data);
524
if (sinf->keytype_oid == NULL)
525
goto err;
526
}
527
528
/* Optional, not documented prior to 3.5 */
529
sinf->mindtls = sinf->maxdtls = -1;
530
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
531
if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
532
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
533
goto err;
534
}
535
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
536
if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
537
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
538
goto err;
539
}
540
/* DTLS version numbers grow downward */
541
if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) &&
542
((sinf->maxdtls > sinf->mindtls))) {
543
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
544
goto err;
545
}
546
/* No provider sigalgs are supported in DTLS, reset after checking. */
547
sinf->mindtls = sinf->maxdtls = -1;
548
549
/* The remaining parameters below are mandatory again */
550
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
551
if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
552
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
553
goto err;
554
}
555
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
556
if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
557
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
558
goto err;
559
}
560
if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
561
((sinf->maxtls < sinf->mintls))) {
562
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
563
goto err;
564
}
565
if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
566
((sinf->mintls > TLS1_3_VERSION)))
567
sinf->mintls = sinf->maxtls = -1;
568
if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
569
((sinf->maxtls < TLS1_3_VERSION)))
570
sinf->mintls = sinf->maxtls = -1;
571
572
/* Ignore unusable sigalgs */
573
if (sinf->mintls == -1 && sinf->mindtls == -1) {
574
ret = 1;
575
goto err;
576
}
577
578
/*
579
* Now check that the algorithm is actually usable for our property query
580
* string. Regardless of the result we still return success because we have
581
* successfully processed this signature, even though we may decide not to
582
* use it.
583
*/
584
ret = 1;
585
ERR_set_mark();
586
keytype = (sinf->keytype != NULL
587
? sinf->keytype
588
: (sinf->sig_name != NULL
589
? sinf->sig_name
590
: sinf->sigalg_name));
591
keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
592
if (keymgmt != NULL) {
593
/*
594
* We have successfully fetched the algorithm - however if the provider
595
* doesn't match this one then we ignore it.
596
*
597
* Note: We're cheating a little here. Technically if the same algorithm
598
* is available from more than one provider then it is undefined which
599
* implementation you will get back. Theoretically this could be
600
* different every time...we assume here that you'll always get the
601
* same one back if you repeat the exact same fetch. Is this a reasonable
602
* assumption to make (in which case perhaps we should document this
603
* behaviour)?
604
*/
605
if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
606
/*
607
* We have a match - so we could use this signature;
608
* Check proper object registration first, though.
609
* Don't care about return value as this may have been
610
* done within providers or previous calls to
611
* add_provider_sigalgs.
612
*/
613
OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
614
/* sanity check: Without successful registration don't use alg */
615
if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
616
(OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
617
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
618
goto err;
619
}
620
if (sinf->sig_name != NULL)
621
OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
622
if (sinf->keytype != NULL)
623
OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
624
if (sinf->hash_name != NULL)
625
OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
626
OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
627
(sinf->hash_name != NULL
628
? OBJ_txt2nid(sinf->hash_name)
629
: NID_undef),
630
OBJ_txt2nid(keytype));
631
ctx->sigalg_list_len++;
632
sinf = NULL;
633
}
634
EVP_KEYMGMT_free(keymgmt);
635
}
636
ERR_pop_to_mark();
637
err:
638
if (sinf != NULL) {
639
OPENSSL_free(sinf->name);
640
sinf->name = NULL;
641
OPENSSL_free(sinf->sigalg_name);
642
sinf->sigalg_name = NULL;
643
OPENSSL_free(sinf->sigalg_oid);
644
sinf->sigalg_oid = NULL;
645
OPENSSL_free(sinf->sig_name);
646
sinf->sig_name = NULL;
647
OPENSSL_free(sinf->sig_oid);
648
sinf->sig_oid = NULL;
649
OPENSSL_free(sinf->hash_name);
650
sinf->hash_name = NULL;
651
OPENSSL_free(sinf->hash_oid);
652
sinf->hash_oid = NULL;
653
OPENSSL_free(sinf->keytype);
654
sinf->keytype = NULL;
655
OPENSSL_free(sinf->keytype_oid);
656
sinf->keytype_oid = NULL;
657
}
658
return ret;
659
}
660
661
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
662
{
663
struct provider_ctx_data_st pgd;
664
665
pgd.ctx = vctx;
666
pgd.provider = provider;
667
OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
668
add_provider_sigalgs, &pgd);
669
/*
670
* Always OK, even if provider doesn't support the capability:
671
* Reconsider testing retval when legacy sigalgs are also loaded this way.
672
*/
673
return 1;
674
}
675
676
int ssl_load_sigalgs(SSL_CTX *ctx)
677
{
678
size_t i;
679
SSL_CERT_LOOKUP lu;
680
681
if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
682
return 0;
683
684
/* now populate ctx->ssl_cert_info */
685
if (ctx->sigalg_list_len > 0) {
686
OPENSSL_free(ctx->ssl_cert_info);
687
ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
688
if (ctx->ssl_cert_info == NULL)
689
return 0;
690
for(i = 0; i < ctx->sigalg_list_len; i++) {
691
ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
692
ctx->ssl_cert_info[i].amask = SSL_aANY;
693
}
694
}
695
696
/*
697
* For now, leave it at this: legacy sigalgs stay in their own
698
* data structures until "legacy cleanup" occurs.
699
*/
700
701
return 1;
702
}
703
704
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
705
{
706
size_t i;
707
708
for (i = 0; i < ctx->group_list_len; i++) {
709
if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
710
|| OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
711
return ctx->group_list[i].group_id;
712
}
713
714
return 0;
715
}
716
717
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
718
{
719
size_t i;
720
721
for (i = 0; i < ctx->group_list_len; i++) {
722
if (ctx->group_list[i].group_id == group_id)
723
return &ctx->group_list[i];
724
}
725
726
return NULL;
727
}
728
729
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
730
{
731
const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
732
733
if (tls_group_info == NULL)
734
return NULL;
735
736
return tls_group_info->tlsname;
737
}
738
739
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
740
{
741
size_t i;
742
743
if (group_id == 0)
744
return NID_undef;
745
746
/*
747
* Return well known Group NIDs - for backwards compatibility. This won't
748
* work for groups we don't know about.
749
*/
750
for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
751
{
752
if (nid_to_group[i].group_id == group_id)
753
return nid_to_group[i].nid;
754
}
755
if (!include_unknown)
756
return NID_undef;
757
return TLSEXT_nid_unknown | (int)group_id;
758
}
759
760
uint16_t tls1_nid2group_id(int nid)
761
{
762
size_t i;
763
764
/*
765
* Return well known Group ids - for backwards compatibility. This won't
766
* work for groups we don't know about.
767
*/
768
for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
769
{
770
if (nid_to_group[i].nid == nid)
771
return nid_to_group[i].group_id;
772
}
773
774
return 0;
775
}
776
777
/*
778
* Set *pgroups to the supported groups list and *pgroupslen to
779
* the number of groups supported.
780
*/
781
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
782
size_t *pgroupslen)
783
{
784
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
785
786
/* For Suite B mode only include P-256, P-384 */
787
switch (tls1_suiteb(s)) {
788
case SSL_CERT_FLAG_SUITEB_128_LOS:
789
*pgroups = suiteb_curves;
790
*pgroupslen = OSSL_NELEM(suiteb_curves);
791
break;
792
793
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
794
*pgroups = suiteb_curves;
795
*pgroupslen = 1;
796
break;
797
798
case SSL_CERT_FLAG_SUITEB_192_LOS:
799
*pgroups = suiteb_curves + 1;
800
*pgroupslen = 1;
801
break;
802
803
default:
804
if (s->ext.supportedgroups == NULL) {
805
*pgroups = sctx->ext.supportedgroups;
806
*pgroupslen = sctx->ext.supportedgroups_len;
807
} else {
808
*pgroups = s->ext.supportedgroups;
809
*pgroupslen = s->ext.supportedgroups_len;
810
}
811
break;
812
}
813
}
814
815
/*
816
* Some comments for the function below:
817
* s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
818
* In this case, we need to send exactly one key share, which MUST be the first (leftmost)
819
* eligible group from the legacy list. Therefore, we provide the entire list of supported
820
* groups in this case.
821
*
822
* A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
823
* but the groupID to 0.
824
* The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
825
* the "list of requested key share groups" is used, or the "list of supported groups" in
826
* combination with setting add_only_one = 1 is applied.
827
*/
828
void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
829
size_t *pgroupslen)
830
{
831
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
832
833
if (s->ext.supportedgroups == NULL) {
834
*pgroups = sctx->ext.supportedgroups;
835
*pgroupslen = sctx->ext.supportedgroups_len;
836
} else {
837
*pgroups = s->ext.keyshares;
838
*pgroupslen = s->ext.keyshares_len;
839
}
840
}
841
842
void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
843
size_t *ptupleslen)
844
{
845
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
846
847
if (s->ext.supportedgroups == NULL) {
848
*ptuples = sctx->ext.tuples;
849
*ptupleslen = sctx->ext.tuples_len;
850
} else {
851
*ptuples = s->ext.tuples;
852
*ptupleslen = s->ext.tuples_len;
853
}
854
}
855
856
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
857
int minversion, int maxversion,
858
int isec, int *okfortls13)
859
{
860
const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
861
group_id);
862
int ret;
863
int group_minversion, group_maxversion;
864
865
if (okfortls13 != NULL)
866
*okfortls13 = 0;
867
868
if (ginfo == NULL)
869
return 0;
870
871
group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
872
group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
873
874
if (group_minversion < 0 || group_maxversion < 0)
875
return 0;
876
if (group_maxversion == 0)
877
ret = 1;
878
else
879
ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
880
if (group_minversion > 0)
881
ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
882
883
if (!SSL_CONNECTION_IS_DTLS(s)) {
884
if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
885
*okfortls13 = (group_maxversion == 0)
886
|| (group_maxversion >= TLS1_3_VERSION);
887
}
888
ret &= !isec
889
|| strcmp(ginfo->algorithm, "EC") == 0
890
|| strcmp(ginfo->algorithm, "X25519") == 0
891
|| strcmp(ginfo->algorithm, "X448") == 0;
892
893
return ret;
894
}
895
896
/* See if group is allowed by security callback */
897
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
898
{
899
const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
900
group);
901
unsigned char gtmp[2];
902
903
if (ginfo == NULL)
904
return 0;
905
906
gtmp[0] = group >> 8;
907
gtmp[1] = group & 0xff;
908
return ssl_security(s, op, ginfo->secbits,
909
tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
910
}
911
912
/* Return 1 if "id" is in "list" */
913
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
914
{
915
size_t i;
916
for (i = 0; i < listlen; i++)
917
if (list[i] == id)
918
return 1;
919
return 0;
920
}
921
922
typedef struct {
923
TLS_GROUP_INFO *grp;
924
size_t ix;
925
} TLS_GROUP_IX;
926
927
DEFINE_STACK_OF(TLS_GROUP_IX)
928
929
static void free_wrapper(TLS_GROUP_IX *a)
930
{
931
OPENSSL_free(a);
932
}
933
934
static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
935
const TLS_GROUP_IX *const *b)
936
{
937
int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
938
int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
939
int ixcmpab = (*a)->ix < (*b)->ix;
940
int ixcmpba = (*b)->ix < (*a)->ix;
941
942
/* Ascending by group id */
943
if (idcmpab != idcmpba)
944
return (idcmpba - idcmpab);
945
/* Ascending by original appearance index */
946
return ixcmpba - ixcmpab;
947
}
948
949
int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
950
TLS_GROUP_INFO *grps, size_t num, long all,
951
STACK_OF(OPENSSL_CSTRING) *out)
952
{
953
STACK_OF(TLS_GROUP_IX) *collect = NULL;
954
TLS_GROUP_IX *gix;
955
uint16_t id = 0;
956
int ret = 0;
957
size_t ix;
958
959
if (grps == NULL || out == NULL)
960
return 0;
961
if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
962
return 0;
963
for (ix = 0; ix < num; ++ix, ++grps) {
964
if (grps->mintls > 0 && max_proto_version > 0
965
&& grps->mintls > max_proto_version)
966
continue;
967
if (grps->maxtls > 0 && min_proto_version > 0
968
&& grps->maxtls < min_proto_version)
969
continue;
970
971
if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
972
goto end;
973
gix->grp = grps;
974
gix->ix = ix;
975
if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
976
OPENSSL_free(gix);
977
goto end;
978
}
979
}
980
981
sk_TLS_GROUP_IX_sort(collect);
982
num = sk_TLS_GROUP_IX_num(collect);
983
for (ix = 0; ix < num; ++ix) {
984
gix = sk_TLS_GROUP_IX_value(collect, ix);
985
if (!all && gix->grp->group_id == id)
986
continue;
987
id = gix->grp->group_id;
988
if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
989
goto end;
990
}
991
ret = 1;
992
993
end:
994
sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
995
return ret;
996
}
997
998
/*-
999
* For nmatch >= 0, return the id of the |nmatch|th shared group or 0
1000
* if there is no match.
1001
* For nmatch == -1, return number of matches
1002
* For nmatch == -2, return the id of the group to use for
1003
* a tmp key, or 0 if there is no match.
1004
*/
1005
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
1006
{
1007
const uint16_t *pref, *supp;
1008
size_t num_pref, num_supp, i;
1009
int k;
1010
SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
1011
1012
/* Can't do anything on client side */
1013
if (s->server == 0)
1014
return 0;
1015
if (nmatch == -2) {
1016
if (tls1_suiteb(s)) {
1017
/*
1018
* For Suite B ciphersuite determines curve: we already know
1019
* these are acceptable due to previous checks.
1020
*/
1021
unsigned long cid = s->s3.tmp.new_cipher->id;
1022
1023
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1024
return OSSL_TLS_GROUP_ID_secp256r1;
1025
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1026
return OSSL_TLS_GROUP_ID_secp384r1;
1027
/* Should never happen */
1028
return 0;
1029
}
1030
/* If not Suite B just return first preference shared curve */
1031
nmatch = 0;
1032
}
1033
/*
1034
* If server preference set, our groups are the preference order
1035
* otherwise peer decides.
1036
*/
1037
if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
1038
tls1_get_supported_groups(s, &pref, &num_pref);
1039
tls1_get_peer_groups(s, &supp, &num_supp);
1040
} else {
1041
tls1_get_peer_groups(s, &pref, &num_pref);
1042
tls1_get_supported_groups(s, &supp, &num_supp);
1043
}
1044
1045
for (k = 0, i = 0; i < num_pref; i++) {
1046
uint16_t id = pref[i];
1047
const TLS_GROUP_INFO *inf;
1048
int minversion, maxversion;
1049
1050
if (!tls1_in_list(id, supp, num_supp)
1051
|| !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
1052
continue;
1053
inf = tls1_group_id_lookup(ctx, id);
1054
if (!ossl_assert(inf != NULL))
1055
return 0;
1056
1057
minversion = SSL_CONNECTION_IS_DTLS(s)
1058
? inf->mindtls : inf->mintls;
1059
maxversion = SSL_CONNECTION_IS_DTLS(s)
1060
? inf->maxdtls : inf->maxtls;
1061
if (maxversion == -1)
1062
continue;
1063
if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
1064
|| (maxversion != 0
1065
&& ssl_version_cmp(s, s->version, maxversion) > 0))
1066
continue;
1067
1068
if (nmatch == k)
1069
return id;
1070
k++;
1071
}
1072
if (nmatch == -1)
1073
return k;
1074
/* Out of range (nmatch > k). */
1075
return 0;
1076
}
1077
1078
int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
1079
uint16_t **ksext, size_t *ksextlen,
1080
size_t **tplext, size_t *tplextlen,
1081
int *groups, size_t ngroups)
1082
{
1083
uint16_t *glist = NULL, *kslist = NULL;
1084
size_t *tpllist = NULL;
1085
size_t i;
1086
/*
1087
* Bitmap of groups included to detect duplicates: two variables are added
1088
* to detect duplicates as some values are more than 32.
1089
*/
1090
unsigned long *dup_list = NULL;
1091
unsigned long dup_list_egrp = 0;
1092
unsigned long dup_list_dhgrp = 0;
1093
1094
if (ngroups == 0) {
1095
ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1096
return 0;
1097
}
1098
if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1099
goto err;
1100
if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL)
1101
goto err;
1102
if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL)
1103
goto err;
1104
for (i = 0; i < ngroups; i++) {
1105
unsigned long idmask;
1106
uint16_t id;
1107
id = tls1_nid2group_id(groups[i]);
1108
if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1109
goto err;
1110
idmask = 1L << (id & 0x00FF);
1111
dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1112
if (!id || ((*dup_list) & idmask))
1113
goto err;
1114
*dup_list |= idmask;
1115
glist[i] = id;
1116
}
1117
OPENSSL_free(*grpext);
1118
OPENSSL_free(*ksext);
1119
OPENSSL_free(*tplext);
1120
*grpext = glist;
1121
*grpextlen = ngroups;
1122
kslist[0] = glist[0];
1123
*ksext = kslist;
1124
*ksextlen = 1;
1125
tpllist[0] = ngroups;
1126
*tplext = tpllist;
1127
*tplextlen = 1;
1128
return 1;
1129
err:
1130
OPENSSL_free(glist);
1131
OPENSSL_free(kslist);
1132
OPENSSL_free(tpllist);
1133
return 0;
1134
}
1135
1136
/*
1137
* Definition of DEFAULT[_XYZ] pseudo group names.
1138
* A pseudo group name is actually a full list of groups, including prefixes
1139
* and or tuple delimiters. It can be hierarchically defined (for potential future use).
1140
* IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
1141
* groups not backed by a provider will always silently be ignored, even without '?' prefix
1142
*/
1143
typedef struct {
1144
const char *list_name; /* The name of this pseudo group */
1145
const char *group_string; /* The group string of this pseudo group */
1146
} default_group_string_st; /* (can include '?', '*'. '-', '/' as needed) */
1147
1148
/* Built-in pseudo group-names must start with a (D or d) */
1149
static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
1150
1151
/* The list of all built-in pseudo-group-name structures */
1152
static const default_group_string_st default_group_strings[] = {
1153
{DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST},
1154
{SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST}
1155
};
1156
1157
/*
1158
* Some GOST names are not resolved by tls1_group_name2id,
1159
* hence we'll check for those manually
1160
*/
1161
typedef struct {
1162
const char *group_name;
1163
uint16_t groupID;
1164
} name2id_st;
1165
static const name2id_st name2id_arr[] = {
1166
{"GC256A", OSSL_TLS_GROUP_ID_gc256A },
1167
{"GC256B", OSSL_TLS_GROUP_ID_gc256B },
1168
{"GC256C", OSSL_TLS_GROUP_ID_gc256C },
1169
{"GC256D", OSSL_TLS_GROUP_ID_gc256D },
1170
{"GC512A", OSSL_TLS_GROUP_ID_gc512A },
1171
{"GC512B", OSSL_TLS_GROUP_ID_gc512B },
1172
{"GC512C", OSSL_TLS_GROUP_ID_gc512C },
1173
};
1174
1175
/*
1176
* Group list management:
1177
* We establish three lists along with their related size counters:
1178
* 1) List of (unique) groups
1179
* 2) List of number of groups per group-priority-tuple
1180
* 3) List of (unique) key share groups
1181
*/
1182
#define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
1183
#define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
1184
1185
/*
1186
* Preparation of the prefix used to indicate the desire to send a key share,
1187
* the characters used as separators between groups or tuples of groups, the
1188
* character to indicate that an unknown group should be ignored, and the
1189
* character to indicate that a group should be deleted from a list
1190
*/
1191
#ifndef TUPLE_DELIMITER_CHARACTER
1192
/* The prefix characters to indicate group tuple boundaries */
1193
# define TUPLE_DELIMITER_CHARACTER '/'
1194
#endif
1195
#ifndef GROUP_DELIMITER_CHARACTER
1196
/* The prefix characters to indicate group tuple boundaries */
1197
# define GROUP_DELIMITER_CHARACTER ':'
1198
#endif
1199
#ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
1200
/* The prefix character to ignore unknown groups */
1201
# define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
1202
#endif
1203
#ifndef KEY_SHARE_INDICATOR_CHARACTER
1204
/* The prefix character to trigger a key share addition */
1205
# define KEY_SHARE_INDICATOR_CHARACTER '*'
1206
#endif
1207
#ifndef REMOVE_GROUP_INDICATOR_CHARACTER
1208
/* The prefix character to trigger a key share removal */
1209
# define REMOVE_GROUP_INDICATOR_CHARACTER '-'
1210
#endif
1211
static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER,
1212
GROUP_DELIMITER_CHARACTER,
1213
IGNORE_UNKNOWN_GROUP_CHARACTER,
1214
KEY_SHARE_INDICATOR_CHARACTER,
1215
REMOVE_GROUP_INDICATOR_CHARACTER,
1216
'\0'};
1217
1218
/*
1219
* High-level description of how group strings are analyzed:
1220
* A first call back function (tuple_cb) is used to process group tuples, and a
1221
* second callback function (gid_cb) is used to process the groups inside a tuple.
1222
* Those callback functions are (indirectly) called by CONF_parse_list with
1223
* different separators (nominally ':' or '/'), a variable based on gid_cb_st
1224
* is used to keep track of the parsing results between the various calls
1225
*/
1226
1227
typedef struct {
1228
SSL_CTX *ctx;
1229
/* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
1230
size_t gidmax; /* The memory allocation chunk size for the group IDs */
1231
size_t gidcnt; /* Number of groups */
1232
uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
1233
size_t tplmax; /* The memory allocation chunk size for the tuple counters */
1234
size_t tplcnt; /* Number of tuples */
1235
size_t *tuplcnt_arr; /* The number of groups inside a tuple */
1236
size_t ksidmax; /* The memory allocation chunk size */
1237
size_t ksidcnt; /* Number of key shares */
1238
uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
1239
/* Variable to keep state between execution of callback or helper functions */
1240
size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
1241
int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
1242
} gid_cb_st;
1243
1244
/* Forward declaration of tuple callback function */
1245
static int tuple_cb(const char *tuple, int len, void *arg);
1246
1247
/*
1248
* Extract and process the individual groups (and their prefixes if present)
1249
* present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
1250
* and must be appended by a \0 if used as \0-terminated string
1251
*/
1252
static int gid_cb(const char *elem, int len, void *arg)
1253
{
1254
gid_cb_st *garg = arg;
1255
size_t i, j, k;
1256
uint16_t gid = 0;
1257
int found_group = 0;
1258
char etmp[GROUP_NAME_BUFFER_LENGTH];
1259
int retval = 1; /* We assume success */
1260
char *current_prefix;
1261
int ignore_unknown = 0;
1262
int add_keyshare = 0;
1263
int remove_group = 0;
1264
size_t restored_prefix_index = 0;
1265
char *restored_default_group_string;
1266
int continue_while_loop = 1;
1267
1268
/* Sanity checks */
1269
if (garg == NULL || elem == NULL || len <= 0) {
1270
ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1271
return 0;
1272
}
1273
1274
/* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
1275
while (continue_while_loop && len > 0
1276
&& ((current_prefix = strchr(prefixes, elem[0])) != NULL
1277
|| OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
1278
1279
switch (*current_prefix) {
1280
case TUPLE_DELIMITER_CHARACTER:
1281
/* tuple delimiter not allowed here -> syntax error */
1282
return -1;
1283
break;
1284
case GROUP_DELIMITER_CHARACTER:
1285
return -1; /* Not a valid prefix for a single group name-> syntax error */
1286
break;
1287
case KEY_SHARE_INDICATOR_CHARACTER:
1288
if (add_keyshare)
1289
return -1; /* Only single key share prefix allowed -> syntax error */
1290
add_keyshare = 1;
1291
++elem;
1292
--len;
1293
break;
1294
case REMOVE_GROUP_INDICATOR_CHARACTER:
1295
if (remove_group)
1296
return -1; /* Only single remove group prefix allowed -> syntax error */
1297
remove_group = 1;
1298
++elem;
1299
--len;
1300
break;
1301
case IGNORE_UNKNOWN_GROUP_CHARACTER:
1302
if (ignore_unknown)
1303
return -1; /* Only single ? allowed -> syntax error */
1304
ignore_unknown = 1;
1305
++elem;
1306
--len;
1307
break;
1308
default:
1309
/*
1310
* Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
1311
* list of groups) should be added
1312
*/
1313
for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
1314
if ((size_t)len == (strlen(default_group_strings[i].list_name))
1315
&& OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
1316
/*
1317
* We're asked to insert an entire list of groups from a
1318
* DEFAULT[_XYZ] 'pseudo group' which we do by
1319
* recursively calling this function (indirectly via
1320
* CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
1321
* group string like a tuple which is appended to the current tuple
1322
* rather then starting a new tuple. Variable tuple_mode is the flag which
1323
* controls append tuple vs start new tuple.
1324
*/
1325
1326
if (ignore_unknown || remove_group)
1327
return -1; /* removal or ignore not allowed here -> syntax error */
1328
1329
/*
1330
* First, we restore any keyshare prefix in a new zero-terminated string
1331
* (if not already present)
1332
*/
1333
restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ +
1334
strlen(default_group_strings[i].group_string) +
1335
1 /* \0 */) * sizeof(char));
1336
if (restored_default_group_string == NULL)
1337
return 0;
1338
if (add_keyshare
1339
/* Remark: we tolerate a duplicated keyshare indicator here */
1340
&& default_group_strings[i].group_string[0]
1341
!= KEY_SHARE_INDICATOR_CHARACTER)
1342
restored_default_group_string[restored_prefix_index++] =
1343
KEY_SHARE_INDICATOR_CHARACTER;
1344
1345
memcpy(restored_default_group_string + restored_prefix_index,
1346
default_group_strings[i].group_string,
1347
strlen(default_group_strings[i].group_string));
1348
restored_default_group_string[strlen(default_group_strings[i].group_string) +
1349
restored_prefix_index] = '\0';
1350
/* We execute the recursive call */
1351
garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
1352
/* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
1353
garg->tuple_mode = 0;
1354
/* We use the tuple_cb callback to process the pseudo group tuple */
1355
retval = CONF_parse_list(restored_default_group_string,
1356
TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
1357
garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
1358
garg->ignore_unknown_default = 0; /* reset to original value */
1359
/* We don't need the \0-terminated string anymore */
1360
OPENSSL_free(restored_default_group_string);
1361
1362
return retval;
1363
}
1364
}
1365
/*
1366
* If we reached this point, a group name started with a 'd' or 'D', but no request
1367
* for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
1368
* name can continue as usual (= the while loop checking prefixes can end)
1369
*/
1370
continue_while_loop = 0;
1371
break;
1372
}
1373
}
1374
1375
if (len == 0)
1376
return -1; /* Seems we have prefxes without a group name -> syntax error */
1377
1378
if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
1379
ignore_unknown = 1;
1380
1381
/* Memory management in case more groups are present compared to initial allocation */
1382
if (garg->gidcnt == garg->gidmax) {
1383
uint16_t *tmp =
1384
OPENSSL_realloc(garg->gid_arr,
1385
(garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1386
1387
if (tmp == NULL)
1388
return 0;
1389
1390
garg->gidmax += GROUPLIST_INCREMENT;
1391
garg->gid_arr = tmp;
1392
}
1393
/* Memory management for key share groups */
1394
if (garg->ksidcnt == garg->ksidmax) {
1395
uint16_t *tmp =
1396
OPENSSL_realloc(garg->ksid_arr,
1397
(garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr));
1398
1399
if (tmp == NULL)
1400
return 0;
1401
garg->ksidmax += GROUPLIST_INCREMENT;
1402
garg->ksid_arr = tmp;
1403
}
1404
1405
if (len > (int)(sizeof(etmp) - 1))
1406
return -1; /* group name to long -> syntax error */
1407
1408
/*
1409
* Prepare addition or removal of a single group by converting
1410
* a group name into its groupID equivalent
1411
*/
1412
1413
/* Create a \0-terminated string and get the gid for this group if possible */
1414
memcpy(etmp, elem, len);
1415
etmp[len] = 0;
1416
1417
/* Get the groupID */
1418
gid = tls1_group_name2id(garg->ctx, etmp);
1419
/*
1420
* Handle the case where no valid groupID was returned
1421
* e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
1422
*/
1423
if (gid == 0) {
1424
/* Is it one of the GOST groups ? */
1425
for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
1426
if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
1427
gid = name2id_arr[i].groupID;
1428
break;
1429
}
1430
}
1431
if (gid == 0) { /* still not found */
1432
/* Unknown group - ignore if ignore_unknown; trigger error otherwise */
1433
retval = ignore_unknown;
1434
goto done;
1435
}
1436
}
1437
1438
/* Make sure that at least one provider is supporting this groupID */
1439
found_group = 0;
1440
for (j = 0; j < garg->ctx->group_list_len; j++)
1441
if (garg->ctx->group_list[j].group_id == gid) {
1442
found_group = 1;
1443
break;
1444
}
1445
1446
/*
1447
* No provider supports this group - ignore if
1448
* ignore_unknown; trigger error otherwise
1449
*/
1450
if (found_group == 0) {
1451
retval = ignore_unknown;
1452
goto done;
1453
}
1454
/* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
1455
if (remove_group) {
1456
/* Is the current group specified anywhere in the entire list so far? */
1457
found_group = 0;
1458
for (i = 0; i < garg->gidcnt; i++)
1459
if (garg->gid_arr[i] == gid) {
1460
found_group = 1;
1461
break;
1462
}
1463
/* The group to remove is at position i in the list of (zero indexed) groups */
1464
if (found_group) {
1465
/* We remove that group from its position (which is at i)... */
1466
for (j = i; j < (garg->gidcnt - 1); j++)
1467
garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
1468
garg->gidcnt--; /* ..and update the book keeping for the number of groups */
1469
1470
/*
1471
* We also must update the number of groups either in a previous tuple (which we
1472
* must identify and check whether it becomes empty due to the deletion) or in
1473
* the current tuple, pending where the deleted group resides
1474
*/
1475
k = 0;
1476
for (j = 0; j < garg->tplcnt; j++) {
1477
k += garg->tuplcnt_arr[j];
1478
/* Remark: i is zero-indexed, k is one-indexed */
1479
if (k > i) { /* remove from one of the previous tuples */
1480
garg->tuplcnt_arr[j]--;
1481
break; /* We took care not to have group duplicates, hence we can stop here */
1482
}
1483
}
1484
if (k <= i) /* remove from current tuple */
1485
garg->tuplcnt_arr[j]--;
1486
1487
/* We also remove the group from the list of keyshares (if present) */
1488
found_group = 0;
1489
for (i = 0; i < garg->ksidcnt; i++)
1490
if (garg->ksid_arr[i] == gid) {
1491
found_group = 1;
1492
break;
1493
}
1494
if (found_group) {
1495
/* Found, hence we remove that keyshare from its position (which is at i)... */
1496
for (j = i; j < (garg->ksidcnt - 1); j++)
1497
garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
1498
/* ... and update the book keeping */
1499
garg->ksidcnt--;
1500
}
1501
}
1502
} else { /* Processing addition of a single new group */
1503
1504
/* Check for duplicates */
1505
for (i = 0; i < garg->gidcnt; i++)
1506
if (garg->gid_arr[i] == gid) {
1507
/* Duplicate group anywhere in the list of groups - ignore */
1508
goto done;
1509
}
1510
1511
/* Add the current group to the 'flat' list of groups */
1512
garg->gid_arr[garg->gidcnt++] = gid;
1513
/* and update the book keeping for the number of groups in current tuple */
1514
garg->tuplcnt_arr[garg->tplcnt]++;
1515
1516
/* We memorize if needed that we want to add a key share for the current group */
1517
if (add_keyshare)
1518
garg->ksid_arr[garg->ksidcnt++] = gid;
1519
}
1520
1521
done:
1522
return retval;
1523
}
1524
1525
/* Extract and process a tuple of groups */
1526
static int tuple_cb(const char *tuple, int len, void *arg)
1527
{
1528
gid_cb_st *garg = arg;
1529
int retval = 1; /* We assume success */
1530
char *restored_tuple_string;
1531
1532
/* Sanity checks */
1533
if (garg == NULL || tuple == NULL || len <= 0) {
1534
ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1535
return 0;
1536
}
1537
1538
/* Memory management for tuples */
1539
if (garg->tplcnt == garg->tplmax) {
1540
size_t *tmp =
1541
OPENSSL_realloc(garg->tuplcnt_arr,
1542
(garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr));
1543
1544
if (tmp == NULL)
1545
return 0;
1546
garg->tplmax += GROUPLIST_INCREMENT;
1547
garg->tuplcnt_arr = tmp;
1548
}
1549
1550
/* Convert to \0-terminated string */
1551
restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char));
1552
if (restored_tuple_string == NULL)
1553
return 0;
1554
memcpy(restored_tuple_string, tuple, len);
1555
restored_tuple_string[len] = '\0';
1556
1557
/* Analyze group list of this tuple */
1558
retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
1559
1560
/* We don't need the \o-terminated string anymore */
1561
OPENSSL_free(restored_tuple_string);
1562
1563
if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
1564
if (garg->tuple_mode) {
1565
/* We 'close' the tuple */
1566
garg->tplcnt++;
1567
garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
1568
garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
1569
}
1570
}
1571
1572
return retval;
1573
}
1574
1575
/*
1576
* Set groups and prepare generation of keyshares based on a string of groupnames,
1577
* names separated by the group or the tuple delimiter, with per-group prefixes to
1578
* (1) add a key share for this group, (2) ignore the group if unkown to the current
1579
* context, (3) delete a previous occurrence of the group in the current tuple.
1580
*
1581
* The list parsing is done in two hierachical steps: The top-level step extracts the
1582
* string of a tuple using tuple_cb, while the next lower step uses gid_cb to
1583
* parse and process the groups inside a tuple
1584
*/
1585
int tls1_set_groups_list(SSL_CTX *ctx,
1586
uint16_t **grpext, size_t *grpextlen,
1587
uint16_t **ksext, size_t *ksextlen,
1588
size_t **tplext, size_t *tplextlen,
1589
const char *str)
1590
{
1591
size_t i = 0, j;
1592
int ret = 0, parse_ret = 0;
1593
gid_cb_st gcb;
1594
1595
/* Sanity check */
1596
if (ctx == NULL) {
1597
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1598
return 0;
1599
}
1600
1601
memset(&gcb, 0, sizeof(gcb));
1602
gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
1603
gcb.ignore_unknown_default = 0;
1604
gcb.gidmax = GROUPLIST_INCREMENT;
1605
gcb.tplmax = GROUPLIST_INCREMENT;
1606
gcb.ksidmax = GROUPLIST_INCREMENT;
1607
gcb.ctx = ctx;
1608
1609
/* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
1610
gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1611
if (gcb.gid_arr == NULL)
1612
goto end;
1613
gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr));
1614
if (gcb.tuplcnt_arr == NULL)
1615
goto end;
1616
gcb.tuplcnt_arr[0] = 0;
1617
gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr));
1618
if (gcb.ksid_arr == NULL)
1619
goto end;
1620
1621
while (str[0] != '\0' && isspace((unsigned char)*str))
1622
str++;
1623
if (str[0] == '\0')
1624
goto empty_list;
1625
1626
/*
1627
* Start the (potentially recursive) tuple processing by calling CONF_parse_list
1628
* with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
1629
*/
1630
parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
1631
1632
if (parse_ret == 0)
1633
goto end;
1634
if (parse_ret == -1) {
1635
ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1636
"Syntax error in '%s'", str);
1637
goto end;
1638
}
1639
1640
/*
1641
* We check whether a tuple was completly emptied by using "-" prefix
1642
* excessively, in which case we remove the tuple
1643
*/
1644
for (i = j = 0; j < gcb.tplcnt; j++) {
1645
if (gcb.tuplcnt_arr[j] == 0)
1646
continue;
1647
/* If there's a gap, move to first unfilled slot */
1648
if (j == i)
1649
++i;
1650
else
1651
gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
1652
}
1653
gcb.tplcnt = i;
1654
1655
if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
1656
ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1657
"To many keyshares requested in '%s' (max = %d)",
1658
str, OPENSSL_CLIENT_MAX_KEY_SHARES);
1659
goto end;
1660
}
1661
1662
/*
1663
* For backward compatibility we let the rest of the code know that a key share
1664
* for the first valid group should be added if no "*" prefix was used anywhere
1665
*/
1666
if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
1667
/*
1668
* No key share group prefix character was used, hence we indicate that a single
1669
* key share should be sent and flag that it should come from the supported_groups list
1670
*/
1671
gcb.ksidcnt = 1;
1672
gcb.ksid_arr[0] = 0;
1673
}
1674
1675
empty_list:
1676
/*
1677
* A call to tls1_set_groups_list with any of the args (other than ctx) set
1678
* to NULL only does a syntax check, hence we're done here and report success
1679
*/
1680
if (grpext == NULL || ksext == NULL || tplext == NULL ||
1681
grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
1682
ret = 1;
1683
goto end;
1684
}
1685
1686
/*
1687
* tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
1688
* can just go ahead and set the results (after diposing the existing)
1689
*/
1690
OPENSSL_free(*grpext);
1691
*grpext = gcb.gid_arr;
1692
*grpextlen = gcb.gidcnt;
1693
OPENSSL_free(*ksext);
1694
*ksext = gcb.ksid_arr;
1695
*ksextlen = gcb.ksidcnt;
1696
OPENSSL_free(*tplext);
1697
*tplext = gcb.tuplcnt_arr;
1698
*tplextlen = gcb.tplcnt;
1699
1700
return 1;
1701
1702
end:
1703
OPENSSL_free(gcb.gid_arr);
1704
OPENSSL_free(gcb.tuplcnt_arr);
1705
OPENSSL_free(gcb.ksid_arr);
1706
return ret;
1707
}
1708
1709
/* Check a group id matches preferences */
1710
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1711
int check_own_groups)
1712
{
1713
const uint16_t *groups;
1714
size_t groups_len;
1715
1716
if (group_id == 0)
1717
return 0;
1718
1719
/* Check for Suite B compliance */
1720
if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1721
unsigned long cid = s->s3.tmp.new_cipher->id;
1722
1723
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1724
if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1725
return 0;
1726
} else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1727
if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1728
return 0;
1729
} else {
1730
/* Should never happen */
1731
return 0;
1732
}
1733
}
1734
1735
if (check_own_groups) {
1736
/* Check group is one of our preferences */
1737
tls1_get_supported_groups(s, &groups, &groups_len);
1738
if (!tls1_in_list(group_id, groups, groups_len))
1739
return 0;
1740
}
1741
1742
if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1743
return 0;
1744
1745
/* For clients, nothing more to check */
1746
if (!s->server)
1747
return 1;
1748
1749
/* Check group is one of peers preferences */
1750
tls1_get_peer_groups(s, &groups, &groups_len);
1751
1752
/*
1753
* RFC 4492 does not require the supported elliptic curves extension
1754
* so if it is not sent we can just choose any curve.
1755
* It is invalid to send an empty list in the supported groups
1756
* extension, so groups_len == 0 always means no extension.
1757
*/
1758
if (groups_len == 0)
1759
return 1;
1760
return tls1_in_list(group_id, groups, groups_len);
1761
}
1762
1763
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1764
size_t *num_formats)
1765
{
1766
/*
1767
* If we have a custom point format list use it otherwise use default
1768
*/
1769
if (s->ext.ecpointformats) {
1770
*pformats = s->ext.ecpointformats;
1771
*num_formats = s->ext.ecpointformats_len;
1772
} else {
1773
*pformats = ecformats_default;
1774
/* For Suite B we don't support char2 fields */
1775
if (tls1_suiteb(s))
1776
*num_formats = sizeof(ecformats_default) - 1;
1777
else
1778
*num_formats = sizeof(ecformats_default);
1779
}
1780
}
1781
1782
/* Check a key is compatible with compression extension */
1783
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1784
{
1785
unsigned char comp_id;
1786
size_t i;
1787
int point_conv;
1788
1789
/* If not an EC key nothing to check */
1790
if (!EVP_PKEY_is_a(pkey, "EC"))
1791
return 1;
1792
1793
1794
/* Get required compression id */
1795
point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1796
if (point_conv == 0)
1797
return 0;
1798
if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1799
comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1800
} else if (SSL_CONNECTION_IS_TLS13(s)) {
1801
/*
1802
* ec_point_formats extension is not used in TLSv1.3 so we ignore
1803
* this check.
1804
*/
1805
return 1;
1806
} else {
1807
int field_type = EVP_PKEY_get_field_type(pkey);
1808
1809
if (field_type == NID_X9_62_prime_field)
1810
comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1811
else if (field_type == NID_X9_62_characteristic_two_field)
1812
comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1813
else
1814
return 0;
1815
}
1816
/*
1817
* If point formats extension present check it, otherwise everything is
1818
* supported (see RFC4492).
1819
*/
1820
if (s->ext.peer_ecpointformats == NULL)
1821
return 1;
1822
1823
for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1824
if (s->ext.peer_ecpointformats[i] == comp_id)
1825
return 1;
1826
}
1827
return 0;
1828
}
1829
1830
/* Return group id of a key */
1831
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1832
{
1833
int curve_nid = ssl_get_EC_curve_nid(pkey);
1834
1835
if (curve_nid == NID_undef)
1836
return 0;
1837
return tls1_nid2group_id(curve_nid);
1838
}
1839
1840
/*
1841
* Check cert parameters compatible with extensions: currently just checks EC
1842
* certificates have compatible curves and compression.
1843
*/
1844
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1845
{
1846
uint16_t group_id;
1847
EVP_PKEY *pkey;
1848
pkey = X509_get0_pubkey(x);
1849
if (pkey == NULL)
1850
return 0;
1851
/* If not EC nothing to do */
1852
if (!EVP_PKEY_is_a(pkey, "EC"))
1853
return 1;
1854
/* Check compression */
1855
if (!tls1_check_pkey_comp(s, pkey))
1856
return 0;
1857
group_id = tls1_get_group_id(pkey);
1858
/*
1859
* For a server we allow the certificate to not be in our list of supported
1860
* groups.
1861
*/
1862
if (!tls1_check_group_id(s, group_id, !s->server))
1863
return 0;
1864
/*
1865
* Special case for suite B. We *MUST* sign using SHA256+P-256 or
1866
* SHA384+P-384.
1867
*/
1868
if (check_ee_md && tls1_suiteb(s)) {
1869
int check_md;
1870
size_t i;
1871
1872
/* Check to see we have necessary signing algorithm */
1873
if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1874
check_md = NID_ecdsa_with_SHA256;
1875
else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1876
check_md = NID_ecdsa_with_SHA384;
1877
else
1878
return 0; /* Should never happen */
1879
for (i = 0; i < s->shared_sigalgslen; i++) {
1880
if (check_md == s->shared_sigalgs[i]->sigandhash)
1881
return 1;
1882
}
1883
return 0;
1884
}
1885
return 1;
1886
}
1887
1888
/*
1889
* tls1_check_ec_tmp_key - Check EC temporary key compatibility
1890
* @s: SSL connection
1891
* @cid: Cipher ID we're considering using
1892
*
1893
* Checks that the kECDHE cipher suite we're considering using
1894
* is compatible with the client extensions.
1895
*
1896
* Returns 0 when the cipher can't be used or 1 when it can.
1897
*/
1898
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1899
{
1900
/* If not Suite B just need a shared group */
1901
if (!tls1_suiteb(s))
1902
return tls1_shared_group(s, 0) != 0;
1903
/*
1904
* If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1905
* curves permitted.
1906
*/
1907
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1908
return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1909
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1910
return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1911
1912
return 0;
1913
}
1914
1915
/* Default sigalg schemes */
1916
static const uint16_t tls12_sigalgs[] = {
1917
TLSEXT_SIGALG_mldsa65,
1918
TLSEXT_SIGALG_mldsa87,
1919
TLSEXT_SIGALG_mldsa44,
1920
TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1921
TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1922
TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1923
TLSEXT_SIGALG_ed25519,
1924
TLSEXT_SIGALG_ed448,
1925
TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1926
TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1927
TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1928
1929
TLSEXT_SIGALG_rsa_pss_pss_sha256,
1930
TLSEXT_SIGALG_rsa_pss_pss_sha384,
1931
TLSEXT_SIGALG_rsa_pss_pss_sha512,
1932
TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1933
TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1934
TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1935
1936
TLSEXT_SIGALG_rsa_pkcs1_sha256,
1937
TLSEXT_SIGALG_rsa_pkcs1_sha384,
1938
TLSEXT_SIGALG_rsa_pkcs1_sha512,
1939
1940
TLSEXT_SIGALG_ecdsa_sha224,
1941
TLSEXT_SIGALG_ecdsa_sha1,
1942
1943
TLSEXT_SIGALG_rsa_pkcs1_sha224,
1944
TLSEXT_SIGALG_rsa_pkcs1_sha1,
1945
1946
TLSEXT_SIGALG_dsa_sha224,
1947
TLSEXT_SIGALG_dsa_sha1,
1948
1949
TLSEXT_SIGALG_dsa_sha256,
1950
TLSEXT_SIGALG_dsa_sha384,
1951
TLSEXT_SIGALG_dsa_sha512,
1952
1953
#ifndef OPENSSL_NO_GOST
1954
TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1955
TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1956
TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1957
TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1958
TLSEXT_SIGALG_gostr34102001_gostr3411,
1959
#endif
1960
};
1961
1962
1963
static const uint16_t suiteb_sigalgs[] = {
1964
TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1965
TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1966
};
1967
1968
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1969
{TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
1970
"ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1971
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1972
NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
1973
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1974
{TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
1975
"ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1976
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1977
NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
1978
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1979
{TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
1980
"ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1981
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1982
NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
1983
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1984
1985
{TLSEXT_SIGALG_ed25519_name,
1986
NULL, TLSEXT_SIGALG_ed25519,
1987
NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1988
NID_undef, NID_undef, 1, 0,
1989
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1990
{TLSEXT_SIGALG_ed448_name,
1991
NULL, TLSEXT_SIGALG_ed448,
1992
NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1993
NID_undef, NID_undef, 1, 0,
1994
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1995
1996
{TLSEXT_SIGALG_ecdsa_sha224_name,
1997
"ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
1998
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1999
NID_ecdsa_with_SHA224, NID_undef, 1, 0,
2000
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2001
{TLSEXT_SIGALG_ecdsa_sha1_name,
2002
"ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
2003
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2004
NID_ecdsa_with_SHA1, NID_undef, 1, 0,
2005
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2006
2007
{TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
2008
TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
2009
TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
2010
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2011
NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
2012
TLS1_3_VERSION, 0, -1, -1},
2013
{TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
2014
TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
2015
TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
2016
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2017
NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
2018
TLS1_3_VERSION, 0, -1, -1},
2019
{TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
2020
TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
2021
TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
2022
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2023
NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
2024
TLS1_3_VERSION, 0, -1, -1},
2025
2026
{TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
2027
"PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
2028
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2029
NID_undef, NID_undef, 1, 0,
2030
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2031
{TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
2032
"PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
2033
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2034
NID_undef, NID_undef, 1, 0,
2035
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2036
{TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
2037
"PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
2038
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2039
NID_undef, NID_undef, 1, 0,
2040
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2041
2042
{TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
2043
NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
2044
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2045
NID_undef, NID_undef, 1, 0,
2046
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2047
{TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
2048
NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
2049
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2050
NID_undef, NID_undef, 1, 0,
2051
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2052
{TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
2053
NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
2054
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2055
NID_undef, NID_undef, 1, 0,
2056
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2057
2058
{TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
2059
"RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
2060
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2061
NID_sha256WithRSAEncryption, NID_undef, 1, 0,
2062
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2063
{TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
2064
"RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
2065
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2066
NID_sha384WithRSAEncryption, NID_undef, 1, 0,
2067
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2068
{TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
2069
"RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
2070
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2071
NID_sha512WithRSAEncryption, NID_undef, 1, 0,
2072
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2073
2074
{TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
2075
"RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
2076
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2077
NID_sha224WithRSAEncryption, NID_undef, 1, 0,
2078
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2079
{TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
2080
"RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
2081
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2082
NID_sha1WithRSAEncryption, NID_undef, 1, 0,
2083
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2084
2085
{TLSEXT_SIGALG_dsa_sha256_name,
2086
"DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
2087
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2088
NID_dsa_with_SHA256, NID_undef, 1, 0,
2089
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2090
{TLSEXT_SIGALG_dsa_sha384_name,
2091
"DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
2092
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2093
NID_undef, NID_undef, 1, 0,
2094
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2095
{TLSEXT_SIGALG_dsa_sha512_name,
2096
"DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
2097
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2098
NID_undef, NID_undef, 1, 0,
2099
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2100
{TLSEXT_SIGALG_dsa_sha224_name,
2101
"DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
2102
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2103
NID_undef, NID_undef, 1, 0,
2104
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2105
{TLSEXT_SIGALG_dsa_sha1_name,
2106
"DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
2107
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2108
NID_dsaWithSHA1, NID_undef, 1, 0,
2109
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2110
2111
#ifndef OPENSSL_NO_GOST
2112
{TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2113
TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2114
TLSEXT_SIGALG_gostr34102012_256_intrinsic,
2115
NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2116
NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2117
NID_undef, NID_undef, 1, 0,
2118
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2119
{TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2120
TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2121
TLSEXT_SIGALG_gostr34102012_512_intrinsic,
2122
NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2123
NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2124
NID_undef, NID_undef, 1, 0,
2125
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2126
2127
{TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
2128
NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
2129
NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2130
NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2131
NID_undef, NID_undef, 1, 0,
2132
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2133
{TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
2134
NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
2135
NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2136
NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2137
NID_undef, NID_undef, 1, 0,
2138
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2139
{TLSEXT_SIGALG_gostr34102001_gostr3411_name,
2140
NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
2141
NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
2142
NID_id_GostR3410_2001, SSL_PKEY_GOST01,
2143
NID_undef, NID_undef, 1, 0,
2144
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2145
#endif
2146
};
2147
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
2148
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
2149
"rsa_pkcs1_md5_sha1", NULL, 0,
2150
NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
2151
EVP_PKEY_RSA, SSL_PKEY_RSA,
2152
NID_undef, NID_undef, 1, 0,
2153
TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
2154
};
2155
2156
/*
2157
* Default signature algorithm values used if signature algorithms not present.
2158
* From RFC5246. Note: order must match certificate index order.
2159
*/
2160
static const uint16_t tls_default_sigalg[] = {
2161
TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
2162
0, /* SSL_PKEY_RSA_PSS_SIGN */
2163
TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
2164
TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
2165
TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
2166
TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
2167
TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
2168
0, /* SSL_PKEY_ED25519 */
2169
0, /* SSL_PKEY_ED448 */
2170
};
2171
2172
int ssl_setup_sigalgs(SSL_CTX *ctx)
2173
{
2174
size_t i, cache_idx, sigalgs_len, enabled;
2175
const SIGALG_LOOKUP *lu;
2176
SIGALG_LOOKUP *cache = NULL;
2177
uint16_t *tls12_sigalgs_list = NULL;
2178
EVP_PKEY *tmpkey = EVP_PKEY_new();
2179
int istls;
2180
int ret = 0;
2181
2182
if (ctx == NULL)
2183
goto err;
2184
2185
istls = !SSL_CTX_IS_DTLS(ctx);
2186
2187
sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
2188
2189
cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
2190
if (cache == NULL || tmpkey == NULL)
2191
goto err;
2192
2193
tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len);
2194
if (tls12_sigalgs_list == NULL)
2195
goto err;
2196
2197
ERR_set_mark();
2198
/* First fill cache and tls12_sigalgs list from legacy algorithm list */
2199
for (i = 0, lu = sigalg_lookup_tbl;
2200
i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2201
EVP_PKEY_CTX *pctx;
2202
2203
cache[i] = *lu;
2204
2205
/*
2206
* Check hash is available.
2207
* This test is not perfect. A provider could have support
2208
* for a signature scheme, but not a particular hash. However the hash
2209
* could be available from some other loaded provider. In that case it
2210
* could be that the signature is available, and the hash is available
2211
* independently - but not as a combination. We ignore this for now.
2212
*/
2213
if (lu->hash != NID_undef
2214
&& ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
2215
cache[i].available = 0;
2216
continue;
2217
}
2218
2219
if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2220
cache[i].available = 0;
2221
continue;
2222
}
2223
pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
2224
/* If unable to create pctx we assume the sig algorithm is unavailable */
2225
if (pctx == NULL)
2226
cache[i].available = 0;
2227
EVP_PKEY_CTX_free(pctx);
2228
}
2229
2230
/* Now complete cache and tls12_sigalgs list with provider sig information */
2231
cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
2232
for (i = 0; i < ctx->sigalg_list_len; i++) {
2233
TLS_SIGALG_INFO si = ctx->sigalg_list[i];
2234
cache[cache_idx].name = si.name;
2235
cache[cache_idx].name12 = si.sigalg_name;
2236
cache[cache_idx].sigalg = si.code_point;
2237
tls12_sigalgs_list[cache_idx] = si.code_point;
2238
cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
2239
cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
2240
cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
2241
cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
2242
cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
2243
cache[cache_idx].curve = NID_undef;
2244
cache[cache_idx].mintls = TLS1_3_VERSION;
2245
cache[cache_idx].maxtls = TLS1_3_VERSION;
2246
cache[cache_idx].mindtls = -1;
2247
cache[cache_idx].maxdtls = -1;
2248
/* Compatibility with TLS 1.3 is checked on load */
2249
cache[cache_idx].available = istls;
2250
cache[cache_idx].advertise = 0;
2251
cache_idx++;
2252
}
2253
ERR_pop_to_mark();
2254
2255
enabled = 0;
2256
for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
2257
SIGALG_LOOKUP *ent = cache;
2258
size_t j;
2259
2260
for (j = 0; j < sigalgs_len; ent++, j++) {
2261
if (ent->sigalg != tls12_sigalgs[i])
2262
continue;
2263
/* Dedup by marking cache entry as default enabled. */
2264
if (ent->available && !ent->advertise) {
2265
ent->advertise = 1;
2266
tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
2267
}
2268
break;
2269
}
2270
}
2271
2272
/* Append any provider sigalgs not yet handled */
2273
for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
2274
SIGALG_LOOKUP *ent = &cache[i];
2275
2276
if (ent->available && !ent->advertise)
2277
tls12_sigalgs_list[enabled++] = ent->sigalg;
2278
}
2279
2280
ctx->sigalg_lookup_cache = cache;
2281
ctx->sigalg_lookup_cache_len = sigalgs_len;
2282
ctx->tls12_sigalgs = tls12_sigalgs_list;
2283
ctx->tls12_sigalgs_len = enabled;
2284
cache = NULL;
2285
tls12_sigalgs_list = NULL;
2286
2287
ret = 1;
2288
err:
2289
OPENSSL_free(cache);
2290
OPENSSL_free(tls12_sigalgs_list);
2291
EVP_PKEY_free(tmpkey);
2292
return ret;
2293
}
2294
2295
#define SIGLEN_BUF_INCREMENT 100
2296
2297
char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
2298
{
2299
size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
2300
const SIGALG_LOOKUP *lu;
2301
EVP_PKEY *tmpkey = EVP_PKEY_new();
2302
char *retval = OPENSSL_malloc(maxretlen);
2303
2304
if (retval == NULL)
2305
return NULL;
2306
2307
/* ensure retval string is NUL terminated */
2308
retval[0] = (char)0;
2309
2310
for (i = 0, lu = sigalg_lookup_tbl;
2311
i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2312
EVP_PKEY_CTX *pctx;
2313
int enabled = 1;
2314
2315
ERR_set_mark();
2316
/* Check hash is available in some provider. */
2317
if (lu->hash != NID_undef) {
2318
EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
2319
2320
/* If unable to create we assume the hash algorithm is unavailable */
2321
if (hash == NULL) {
2322
enabled = 0;
2323
ERR_pop_to_mark();
2324
continue;
2325
}
2326
EVP_MD_free(hash);
2327
}
2328
2329
if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2330
enabled = 0;
2331
ERR_pop_to_mark();
2332
continue;
2333
}
2334
pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
2335
/* If unable to create pctx we assume the sig algorithm is unavailable */
2336
if (pctx == NULL)
2337
enabled = 0;
2338
ERR_pop_to_mark();
2339
EVP_PKEY_CTX_free(pctx);
2340
2341
if (enabled) {
2342
const char *sa = lu->name;
2343
2344
if (sa != NULL) {
2345
if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
2346
char *tmp;
2347
2348
maxretlen += SIGLEN_BUF_INCREMENT;
2349
tmp = OPENSSL_realloc(retval, maxretlen);
2350
if (tmp == NULL) {
2351
OPENSSL_free(retval);
2352
return NULL;
2353
}
2354
retval = tmp;
2355
}
2356
if (strlen(retval) > 0)
2357
OPENSSL_strlcat(retval, ":", maxretlen);
2358
OPENSSL_strlcat(retval, sa, maxretlen);
2359
} else {
2360
/* lu->name must not be NULL */
2361
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
2362
}
2363
}
2364
}
2365
2366
EVP_PKEY_free(tmpkey);
2367
return retval;
2368
}
2369
2370
/* Lookup TLS signature algorithm */
2371
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
2372
uint16_t sigalg)
2373
{
2374
size_t i;
2375
const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
2376
2377
for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
2378
if (lu->sigalg == sigalg) {
2379
if (!lu->available)
2380
return NULL;
2381
return lu;
2382
}
2383
}
2384
return NULL;
2385
}
2386
2387
/* Lookup hash: return 0 if invalid or not enabled */
2388
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
2389
{
2390
const EVP_MD *md;
2391
2392
if (lu == NULL)
2393
return 0;
2394
/* lu->hash == NID_undef means no associated digest */
2395
if (lu->hash == NID_undef) {
2396
md = NULL;
2397
} else {
2398
md = ssl_md(ctx, lu->hash_idx);
2399
if (md == NULL)
2400
return 0;
2401
}
2402
if (pmd)
2403
*pmd = md;
2404
return 1;
2405
}
2406
2407
/*
2408
* Check if key is large enough to generate RSA-PSS signature.
2409
*
2410
* The key must greater than or equal to 2 * hash length + 2.
2411
* SHA512 has a hash length of 64 bytes, which is incompatible
2412
* with a 128 byte (1024 bit) key.
2413
*/
2414
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
2415
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
2416
const SIGALG_LOOKUP *lu)
2417
{
2418
const EVP_MD *md;
2419
2420
if (pkey == NULL)
2421
return 0;
2422
if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
2423
return 0;
2424
if (EVP_MD_get_size(md) <= 0)
2425
return 0;
2426
if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
2427
return 0;
2428
return 1;
2429
}
2430
2431
/*
2432
* Returns a signature algorithm when the peer did not send a list of supported
2433
* signature algorithms. The signature algorithm is fixed for the certificate
2434
* type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
2435
* certificate type from |s| will be used.
2436
* Returns the signature algorithm to use, or NULL on error.
2437
*/
2438
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
2439
int idx)
2440
{
2441
if (idx == -1) {
2442
if (s->server) {
2443
size_t i;
2444
2445
/* Work out index corresponding to ciphersuite */
2446
for (i = 0; i < s->ssl_pkey_num; i++) {
2447
const SSL_CERT_LOOKUP *clu
2448
= ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
2449
2450
if (clu == NULL)
2451
continue;
2452
if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
2453
idx = i;
2454
break;
2455
}
2456
}
2457
2458
/*
2459
* Some GOST ciphersuites allow more than one signature algorithms
2460
* */
2461
if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
2462
int real_idx;
2463
2464
for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
2465
real_idx--) {
2466
if (s->cert->pkeys[real_idx].privatekey != NULL) {
2467
idx = real_idx;
2468
break;
2469
}
2470
}
2471
}
2472
/*
2473
* As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
2474
* with new (aGOST12-only) ciphersuites, we should find out which one is available really.
2475
*/
2476
else if (idx == SSL_PKEY_GOST12_256) {
2477
int real_idx;
2478
2479
for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
2480
real_idx--) {
2481
if (s->cert->pkeys[real_idx].privatekey != NULL) {
2482
idx = real_idx;
2483
break;
2484
}
2485
}
2486
}
2487
} else {
2488
idx = s->cert->key - s->cert->pkeys;
2489
}
2490
}
2491
if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
2492
return NULL;
2493
2494
if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
2495
const SIGALG_LOOKUP *lu =
2496
tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
2497
tls_default_sigalg[idx]);
2498
2499
if (lu == NULL)
2500
return NULL;
2501
if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
2502
return NULL;
2503
if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2504
return NULL;
2505
return lu;
2506
}
2507
if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
2508
return NULL;
2509
return &legacy_rsa_sigalg;
2510
}
2511
/* Set peer sigalg based key type */
2512
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
2513
{
2514
size_t idx;
2515
const SIGALG_LOOKUP *lu;
2516
2517
if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
2518
return 0;
2519
lu = tls1_get_legacy_sigalg(s, idx);
2520
if (lu == NULL)
2521
return 0;
2522
s->s3.tmp.peer_sigalg = lu;
2523
return 1;
2524
}
2525
2526
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
2527
{
2528
/*
2529
* If Suite B mode use Suite B sigalgs only, ignore any other
2530
* preferences.
2531
*/
2532
switch (tls1_suiteb(s)) {
2533
case SSL_CERT_FLAG_SUITEB_128_LOS:
2534
*psigs = suiteb_sigalgs;
2535
return OSSL_NELEM(suiteb_sigalgs);
2536
2537
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
2538
*psigs = suiteb_sigalgs;
2539
return 1;
2540
2541
case SSL_CERT_FLAG_SUITEB_192_LOS:
2542
*psigs = suiteb_sigalgs + 1;
2543
return 1;
2544
}
2545
/*
2546
* We use client_sigalgs (if not NULL) if we're a server
2547
* and sending a certificate request or if we're a client and
2548
* determining which shared algorithm to use.
2549
*/
2550
if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
2551
*psigs = s->cert->client_sigalgs;
2552
return s->cert->client_sigalgslen;
2553
} else if (s->cert->conf_sigalgs) {
2554
*psigs = s->cert->conf_sigalgs;
2555
return s->cert->conf_sigalgslen;
2556
} else {
2557
*psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2558
return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2559
}
2560
}
2561
2562
/*
2563
* Called by servers only. Checks that we have a sig alg that supports the
2564
* specified EC curve.
2565
*/
2566
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
2567
{
2568
const uint16_t *sigs;
2569
size_t siglen, i;
2570
2571
if (s->cert->conf_sigalgs) {
2572
sigs = s->cert->conf_sigalgs;
2573
siglen = s->cert->conf_sigalgslen;
2574
} else {
2575
sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2576
siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2577
}
2578
2579
for (i = 0; i < siglen; i++) {
2580
const SIGALG_LOOKUP *lu =
2581
tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
2582
2583
if (lu == NULL)
2584
continue;
2585
if (lu->sig == EVP_PKEY_EC
2586
&& lu->curve != NID_undef
2587
&& curve == lu->curve)
2588
return 1;
2589
}
2590
2591
return 0;
2592
}
2593
2594
/*
2595
* Return the number of security bits for the signature algorithm, or 0 on
2596
* error.
2597
*/
2598
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
2599
{
2600
const EVP_MD *md = NULL;
2601
int secbits = 0;
2602
2603
if (!tls1_lookup_md(ctx, lu, &md))
2604
return 0;
2605
if (md != NULL)
2606
{
2607
int md_type = EVP_MD_get_type(md);
2608
2609
/* Security bits: half digest bits */
2610
secbits = EVP_MD_get_size(md) * 4;
2611
if (secbits <= 0)
2612
return 0;
2613
/*
2614
* SHA1 and MD5 are known to be broken. Reduce security bits so that
2615
* they're no longer accepted at security level 1. The real values don't
2616
* really matter as long as they're lower than 80, which is our
2617
* security level 1.
2618
* https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
2619
* SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
2620
* https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
2621
* puts a chosen-prefix attack for MD5 at 2^39.
2622
*/
2623
if (md_type == NID_sha1)
2624
secbits = 64;
2625
else if (md_type == NID_md5_sha1)
2626
secbits = 67;
2627
else if (md_type == NID_md5)
2628
secbits = 39;
2629
} else {
2630
/* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
2631
if (lu->sigalg == TLSEXT_SIGALG_ed25519)
2632
secbits = 128;
2633
else if (lu->sigalg == TLSEXT_SIGALG_ed448)
2634
secbits = 224;
2635
}
2636
/*
2637
* For provider-based sigalgs we have secbits information available
2638
* in the (provider-loaded) sigalg_list structure
2639
*/
2640
if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2641
&& ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2642
secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2643
}
2644
return secbits;
2645
}
2646
2647
static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
2648
{
2649
int minversion, maxversion;
2650
int minproto, maxproto;
2651
2652
if (!lu->available)
2653
return 0;
2654
2655
if (SSL_CONNECTION_IS_DTLS(sc)) {
2656
if (sc->ssl.method->version == DTLS_ANY_VERSION) {
2657
minproto = sc->min_proto_version;
2658
maxproto = sc->max_proto_version;
2659
} else {
2660
maxproto = minproto = sc->version;
2661
}
2662
minversion = lu->mindtls;
2663
maxversion = lu->maxdtls;
2664
} else {
2665
if (sc->ssl.method->version == TLS_ANY_VERSION) {
2666
minproto = sc->min_proto_version;
2667
maxproto = sc->max_proto_version;
2668
} else {
2669
maxproto = minproto = sc->version;
2670
}
2671
minversion = lu->mintls;
2672
maxversion = lu->maxtls;
2673
}
2674
if (minversion == -1 || maxversion == -1
2675
|| (minversion != 0 && maxproto != 0
2676
&& ssl_version_cmp(sc, minversion, maxproto) > 0)
2677
|| (maxversion != 0 && minproto != 0
2678
&& ssl_version_cmp(sc, maxversion, minproto) < 0)
2679
|| !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
2680
return 0;
2681
return 1;
2682
}
2683
2684
/*
2685
* Check signature algorithm is consistent with sent supported signature
2686
* algorithms and if so set relevant digest and signature scheme in
2687
* s.
2688
*/
2689
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2690
{
2691
const uint16_t *sent_sigs;
2692
const EVP_MD *md = NULL;
2693
char sigalgstr[2];
2694
size_t sent_sigslen, i, cidx;
2695
int pkeyid = -1;
2696
const SIGALG_LOOKUP *lu;
2697
int secbits = 0;
2698
2699
pkeyid = EVP_PKEY_get_id(pkey);
2700
2701
if (SSL_CONNECTION_IS_TLS13(s)) {
2702
/* Disallow DSA for TLS 1.3 */
2703
if (pkeyid == EVP_PKEY_DSA) {
2704
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2705
return 0;
2706
}
2707
/* Only allow PSS for TLS 1.3 */
2708
if (pkeyid == EVP_PKEY_RSA)
2709
pkeyid = EVP_PKEY_RSA_PSS;
2710
}
2711
2712
/* Is this code point available and compatible with the protocol */
2713
lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
2714
if (lu == NULL || !tls_sigalg_compat(s, lu)) {
2715
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2716
return 0;
2717
}
2718
2719
/* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
2720
if (pkeyid == EVP_PKEY_KEYMGMT)
2721
pkeyid = lu->sig;
2722
2723
/* Should never happen */
2724
if (pkeyid == -1) {
2725
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2726
return -1;
2727
}
2728
2729
/*
2730
* Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2731
* is consistent with signature: RSA keys can be used for RSA-PSS
2732
*/
2733
if ((SSL_CONNECTION_IS_TLS13(s)
2734
&& (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2735
|| (pkeyid != lu->sig
2736
&& (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2737
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2738
return 0;
2739
}
2740
/* Check the sigalg is consistent with the key OID */
2741
if (!ssl_cert_lookup_by_nid(
2742
(pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2743
&cidx, SSL_CONNECTION_GET_CTX(s))
2744
|| lu->sig_idx != (int)cidx) {
2745
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2746
return 0;
2747
}
2748
2749
if (pkeyid == EVP_PKEY_EC) {
2750
2751
/* Check point compression is permitted */
2752
if (!tls1_check_pkey_comp(s, pkey)) {
2753
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2754
SSL_R_ILLEGAL_POINT_COMPRESSION);
2755
return 0;
2756
}
2757
2758
/* For TLS 1.3 or Suite B check curve matches signature algorithm */
2759
if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2760
int curve = ssl_get_EC_curve_nid(pkey);
2761
2762
if (lu->curve != NID_undef && curve != lu->curve) {
2763
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2764
return 0;
2765
}
2766
}
2767
if (!SSL_CONNECTION_IS_TLS13(s)) {
2768
/* Check curve matches extensions */
2769
if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2770
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2771
return 0;
2772
}
2773
if (tls1_suiteb(s)) {
2774
/* Check sigalg matches a permissible Suite B value */
2775
if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2776
&& sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2777
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2778
SSL_R_WRONG_SIGNATURE_TYPE);
2779
return 0;
2780
}
2781
}
2782
}
2783
} else if (tls1_suiteb(s)) {
2784
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2785
return 0;
2786
}
2787
2788
/* Check signature matches a type we sent */
2789
sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2790
for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2791
if (sig == *sent_sigs)
2792
break;
2793
}
2794
/* Allow fallback to SHA1 if not strict mode */
2795
if (i == sent_sigslen && (lu->hash != NID_sha1
2796
|| s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2797
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2798
return 0;
2799
}
2800
if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2801
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2802
return 0;
2803
}
2804
/*
2805
* Make sure security callback allows algorithm. For historical
2806
* reasons we have to pass the sigalg as a two byte char array.
2807
*/
2808
sigalgstr[0] = (sig >> 8) & 0xff;
2809
sigalgstr[1] = sig & 0xff;
2810
secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2811
if (secbits == 0 ||
2812
!ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
2813
md != NULL ? EVP_MD_get_type(md) : NID_undef,
2814
(void *)sigalgstr)) {
2815
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2816
return 0;
2817
}
2818
/* Store the sigalg the peer uses */
2819
s->s3.tmp.peer_sigalg = lu;
2820
return 1;
2821
}
2822
2823
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2824
{
2825
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2826
2827
if (sc == NULL)
2828
return 0;
2829
2830
if (sc->s3.tmp.peer_sigalg == NULL)
2831
return 0;
2832
*pnid = sc->s3.tmp.peer_sigalg->sig;
2833
return 1;
2834
}
2835
2836
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2837
{
2838
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2839
2840
if (sc == NULL)
2841
return 0;
2842
2843
if (sc->s3.tmp.sigalg == NULL)
2844
return 0;
2845
*pnid = sc->s3.tmp.sigalg->sig;
2846
return 1;
2847
}
2848
2849
/*
2850
* Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2851
* supported, doesn't appear in supported signature algorithms, isn't supported
2852
* by the enabled protocol versions or by the security level.
2853
*
2854
* This function should only be used for checking which ciphers are supported
2855
* by the client.
2856
*
2857
* Call ssl_cipher_disabled() to check that it's enabled or not.
2858
*/
2859
int ssl_set_client_disabled(SSL_CONNECTION *s)
2860
{
2861
s->s3.tmp.mask_a = 0;
2862
s->s3.tmp.mask_k = 0;
2863
ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2864
if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2865
&s->s3.tmp.max_ver, NULL) != 0)
2866
return 0;
2867
#ifndef OPENSSL_NO_PSK
2868
/* with PSK there must be client callback set */
2869
if (!s->psk_client_callback) {
2870
s->s3.tmp.mask_a |= SSL_aPSK;
2871
s->s3.tmp.mask_k |= SSL_PSK;
2872
}
2873
#endif /* OPENSSL_NO_PSK */
2874
#ifndef OPENSSL_NO_SRP
2875
if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2876
s->s3.tmp.mask_a |= SSL_aSRP;
2877
s->s3.tmp.mask_k |= SSL_kSRP;
2878
}
2879
#endif
2880
return 1;
2881
}
2882
2883
/*
2884
* ssl_cipher_disabled - check that a cipher is disabled or not
2885
* @s: SSL connection that you want to use the cipher on
2886
* @c: cipher to check
2887
* @op: Security check that you want to do
2888
* @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2889
*
2890
* Returns 1 when it's disabled, 0 when enabled.
2891
*/
2892
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2893
int op, int ecdhe)
2894
{
2895
int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2896
int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2897
2898
if (c->algorithm_mkey & s->s3.tmp.mask_k
2899
|| c->algorithm_auth & s->s3.tmp.mask_a)
2900
return 1;
2901
if (s->s3.tmp.max_ver == 0)
2902
return 1;
2903
2904
if (SSL_IS_QUIC_INT_HANDSHAKE(s))
2905
/* For QUIC, only allow these ciphersuites. */
2906
switch (SSL_CIPHER_get_id(c)) {
2907
case TLS1_3_CK_AES_128_GCM_SHA256:
2908
case TLS1_3_CK_AES_256_GCM_SHA384:
2909
case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2910
break;
2911
default:
2912
return 1;
2913
}
2914
2915
/*
2916
* For historical reasons we will allow ECHDE to be selected by a server
2917
* in SSLv3 if we are a client
2918
*/
2919
if (minversion == TLS1_VERSION
2920
&& ecdhe
2921
&& (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2922
minversion = SSL3_VERSION;
2923
2924
if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2925
|| ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2926
return 1;
2927
2928
return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2929
}
2930
2931
int tls_use_ticket(SSL_CONNECTION *s)
2932
{
2933
if ((s->options & SSL_OP_NO_TICKET))
2934
return 0;
2935
return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2936
}
2937
2938
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2939
{
2940
size_t i;
2941
2942
/* Clear any shared signature algorithms */
2943
OPENSSL_free(s->shared_sigalgs);
2944
s->shared_sigalgs = NULL;
2945
s->shared_sigalgslen = 0;
2946
2947
/* Clear certificate validity flags */
2948
if (s->s3.tmp.valid_flags)
2949
memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2950
else
2951
s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2952
if (s->s3.tmp.valid_flags == NULL)
2953
return 0;
2954
/*
2955
* If peer sent no signature algorithms check to see if we support
2956
* the default algorithm for each certificate type
2957
*/
2958
if (s->s3.tmp.peer_cert_sigalgs == NULL
2959
&& s->s3.tmp.peer_sigalgs == NULL) {
2960
const uint16_t *sent_sigs;
2961
size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2962
2963
for (i = 0; i < s->ssl_pkey_num; i++) {
2964
const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2965
size_t j;
2966
2967
if (lu == NULL)
2968
continue;
2969
/* Check default matches a type we sent */
2970
for (j = 0; j < sent_sigslen; j++) {
2971
if (lu->sigalg == sent_sigs[j]) {
2972
s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2973
break;
2974
}
2975
}
2976
}
2977
return 1;
2978
}
2979
2980
if (!tls1_process_sigalgs(s)) {
2981
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2982
return 0;
2983
}
2984
if (s->shared_sigalgs != NULL)
2985
return 1;
2986
2987
/* Fatal error if no shared signature algorithms */
2988
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2989
SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2990
return 0;
2991
}
2992
2993
/*-
2994
* Gets the ticket information supplied by the client if any.
2995
*
2996
* hello: The parsed ClientHello data
2997
* ret: (output) on return, if a ticket was decrypted, then this is set to
2998
* point to the resulting session.
2999
*/
3000
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
3001
CLIENTHELLO_MSG *hello,
3002
SSL_SESSION **ret)
3003
{
3004
size_t size;
3005
RAW_EXTENSION *ticketext;
3006
3007
*ret = NULL;
3008
s->ext.ticket_expected = 0;
3009
3010
/*
3011
* If tickets disabled or not supported by the protocol version
3012
* (e.g. TLSv1.3) behave as if no ticket present to permit stateful
3013
* resumption.
3014
*/
3015
if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
3016
return SSL_TICKET_NONE;
3017
3018
ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
3019
if (!ticketext->present)
3020
return SSL_TICKET_NONE;
3021
3022
size = PACKET_remaining(&ticketext->data);
3023
3024
return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
3025
hello->session_id, hello->session_id_len, ret);
3026
}
3027
3028
/*-
3029
* tls_decrypt_ticket attempts to decrypt a session ticket.
3030
*
3031
* If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
3032
* expecting a pre-shared key ciphersuite, in which case we have no use for
3033
* session tickets and one will never be decrypted, nor will
3034
* s->ext.ticket_expected be set to 1.
3035
*
3036
* Side effects:
3037
* Sets s->ext.ticket_expected to 1 if the server will have to issue
3038
* a new session ticket to the client because the client indicated support
3039
* (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3040
* a session ticket or we couldn't use the one it gave us, or if
3041
* s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
3042
* Otherwise, s->ext.ticket_expected is set to 0.
3043
*
3044
* etick: points to the body of the session ticket extension.
3045
* eticklen: the length of the session tickets extension.
3046
* sess_id: points at the session ID.
3047
* sesslen: the length of the session ID.
3048
* psess: (output) on return, if a ticket was decrypted, then this is set to
3049
* point to the resulting session.
3050
*/
3051
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
3052
const unsigned char *etick,
3053
size_t eticklen,
3054
const unsigned char *sess_id,
3055
size_t sesslen, SSL_SESSION **psess)
3056
{
3057
SSL_SESSION *sess = NULL;
3058
unsigned char *sdec;
3059
const unsigned char *p;
3060
int slen, ivlen, renew_ticket = 0, declen;
3061
SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
3062
size_t mlen;
3063
unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3064
SSL_HMAC *hctx = NULL;
3065
EVP_CIPHER_CTX *ctx = NULL;
3066
SSL_CTX *tctx = s->session_ctx;
3067
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3068
3069
if (eticklen == 0) {
3070
/*
3071
* The client will accept a ticket but doesn't currently have
3072
* one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
3073
*/
3074
ret = SSL_TICKET_EMPTY;
3075
goto end;
3076
}
3077
if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
3078
/*
3079
* Indicate that the ticket couldn't be decrypted rather than
3080
* generating the session from ticket now, trigger
3081
* abbreviated handshake based on external mechanism to
3082
* calculate the master secret later.
3083
*/
3084
ret = SSL_TICKET_NO_DECRYPT;
3085
goto end;
3086
}
3087
3088
/* Need at least keyname + iv */
3089
if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
3090
ret = SSL_TICKET_NO_DECRYPT;
3091
goto end;
3092
}
3093
3094
/* Initialize session ticket encryption and HMAC contexts */
3095
hctx = ssl_hmac_new(tctx);
3096
if (hctx == NULL) {
3097
ret = SSL_TICKET_FATAL_ERR_MALLOC;
3098
goto end;
3099
}
3100
ctx = EVP_CIPHER_CTX_new();
3101
if (ctx == NULL) {
3102
ret = SSL_TICKET_FATAL_ERR_MALLOC;
3103
goto end;
3104
}
3105
#ifndef OPENSSL_NO_DEPRECATED_3_0
3106
if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
3107
#else
3108
if (tctx->ext.ticket_key_evp_cb != NULL)
3109
#endif
3110
{
3111
unsigned char *nctick = (unsigned char *)etick;
3112
int rv = 0;
3113
3114
if (tctx->ext.ticket_key_evp_cb != NULL)
3115
rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
3116
nctick,
3117
nctick + TLSEXT_KEYNAME_LENGTH,
3118
ctx,
3119
ssl_hmac_get0_EVP_MAC_CTX(hctx),
3120
0);
3121
#ifndef OPENSSL_NO_DEPRECATED_3_0
3122
else if (tctx->ext.ticket_key_cb != NULL)
3123
/* if 0 is returned, write an empty ticket */
3124
rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
3125
nctick + TLSEXT_KEYNAME_LENGTH,
3126
ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
3127
#endif
3128
if (rv < 0) {
3129
ret = SSL_TICKET_FATAL_ERR_OTHER;
3130
goto end;
3131
}
3132
if (rv == 0) {
3133
ret = SSL_TICKET_NO_DECRYPT;
3134
goto end;
3135
}
3136
if (rv == 2)
3137
renew_ticket = 1;
3138
} else {
3139
EVP_CIPHER *aes256cbc = NULL;
3140
3141
/* Check key name matches */
3142
if (memcmp(etick, tctx->ext.tick_key_name,
3143
TLSEXT_KEYNAME_LENGTH) != 0) {
3144
ret = SSL_TICKET_NO_DECRYPT;
3145
goto end;
3146
}
3147
3148
aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
3149
sctx->propq);
3150
if (aes256cbc == NULL
3151
|| ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
3152
sizeof(tctx->ext.secure->tick_hmac_key),
3153
"SHA256") <= 0
3154
|| EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
3155
tctx->ext.secure->tick_aes_key,
3156
etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
3157
EVP_CIPHER_free(aes256cbc);
3158
ret = SSL_TICKET_FATAL_ERR_OTHER;
3159
goto end;
3160
}
3161
EVP_CIPHER_free(aes256cbc);
3162
if (SSL_CONNECTION_IS_TLS13(s))
3163
renew_ticket = 1;
3164
}
3165
/*
3166
* Attempt to process session ticket, first conduct sanity and integrity
3167
* checks on ticket.
3168
*/
3169
mlen = ssl_hmac_size(hctx);
3170
if (mlen == 0) {
3171
ret = SSL_TICKET_FATAL_ERR_OTHER;
3172
goto end;
3173
}
3174
3175
ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
3176
if (ivlen < 0) {
3177
ret = SSL_TICKET_FATAL_ERR_OTHER;
3178
goto end;
3179
}
3180
3181
/* Sanity check ticket length: must exceed keyname + IV + HMAC */
3182
if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
3183
ret = SSL_TICKET_NO_DECRYPT;
3184
goto end;
3185
}
3186
eticklen -= mlen;
3187
/* Check HMAC of encrypted ticket */
3188
if (ssl_hmac_update(hctx, etick, eticklen) <= 0
3189
|| ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
3190
ret = SSL_TICKET_FATAL_ERR_OTHER;
3191
goto end;
3192
}
3193
3194
if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3195
ret = SSL_TICKET_NO_DECRYPT;
3196
goto end;
3197
}
3198
/* Attempt to decrypt session data */
3199
/* Move p after IV to start of encrypted ticket, update length */
3200
p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
3201
eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
3202
sdec = OPENSSL_malloc(eticklen);
3203
if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
3204
(int)eticklen) <= 0) {
3205
OPENSSL_free(sdec);
3206
ret = SSL_TICKET_FATAL_ERR_OTHER;
3207
goto end;
3208
}
3209
if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
3210
OPENSSL_free(sdec);
3211
ret = SSL_TICKET_NO_DECRYPT;
3212
goto end;
3213
}
3214
slen += declen;
3215
p = sdec;
3216
3217
sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
3218
slen -= p - sdec;
3219
OPENSSL_free(sdec);
3220
if (sess) {
3221
/* Some additional consistency checks */
3222
if (slen != 0) {
3223
SSL_SESSION_free(sess);
3224
sess = NULL;
3225
ret = SSL_TICKET_NO_DECRYPT;
3226
goto end;
3227
}
3228
/*
3229
* The session ID, if non-empty, is used by some clients to detect
3230
* that the ticket has been accepted. So we copy it to the session
3231
* structure. If it is empty set length to zero as required by
3232
* standard.
3233
*/
3234
if (sesslen) {
3235
memcpy(sess->session_id, sess_id, sesslen);
3236
sess->session_id_length = sesslen;
3237
}
3238
if (renew_ticket)
3239
ret = SSL_TICKET_SUCCESS_RENEW;
3240
else
3241
ret = SSL_TICKET_SUCCESS;
3242
goto end;
3243
}
3244
ERR_clear_error();
3245
/*
3246
* For session parse failure, indicate that we need to send a new ticket.
3247
*/
3248
ret = SSL_TICKET_NO_DECRYPT;
3249
3250
end:
3251
EVP_CIPHER_CTX_free(ctx);
3252
ssl_hmac_free(hctx);
3253
3254
/*
3255
* If set, the decrypt_ticket_cb() is called unless a fatal error was
3256
* detected above. The callback is responsible for checking |ret| before it
3257
* performs any action
3258
*/
3259
if (s->session_ctx->decrypt_ticket_cb != NULL
3260
&& (ret == SSL_TICKET_EMPTY
3261
|| ret == SSL_TICKET_NO_DECRYPT
3262
|| ret == SSL_TICKET_SUCCESS
3263
|| ret == SSL_TICKET_SUCCESS_RENEW)) {
3264
size_t keyname_len = eticklen;
3265
int retcb;
3266
3267
if (keyname_len > TLSEXT_KEYNAME_LENGTH)
3268
keyname_len = TLSEXT_KEYNAME_LENGTH;
3269
retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
3270
sess, etick, keyname_len,
3271
ret,
3272
s->session_ctx->ticket_cb_data);
3273
switch (retcb) {
3274
case SSL_TICKET_RETURN_ABORT:
3275
ret = SSL_TICKET_FATAL_ERR_OTHER;
3276
break;
3277
3278
case SSL_TICKET_RETURN_IGNORE:
3279
ret = SSL_TICKET_NONE;
3280
SSL_SESSION_free(sess);
3281
sess = NULL;
3282
break;
3283
3284
case SSL_TICKET_RETURN_IGNORE_RENEW:
3285
if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
3286
ret = SSL_TICKET_NO_DECRYPT;
3287
/* else the value of |ret| will already do the right thing */
3288
SSL_SESSION_free(sess);
3289
sess = NULL;
3290
break;
3291
3292
case SSL_TICKET_RETURN_USE:
3293
case SSL_TICKET_RETURN_USE_RENEW:
3294
if (ret != SSL_TICKET_SUCCESS
3295
&& ret != SSL_TICKET_SUCCESS_RENEW)
3296
ret = SSL_TICKET_FATAL_ERR_OTHER;
3297
else if (retcb == SSL_TICKET_RETURN_USE)
3298
ret = SSL_TICKET_SUCCESS;
3299
else
3300
ret = SSL_TICKET_SUCCESS_RENEW;
3301
break;
3302
3303
default:
3304
ret = SSL_TICKET_FATAL_ERR_OTHER;
3305
}
3306
}
3307
3308
if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
3309
switch (ret) {
3310
case SSL_TICKET_NO_DECRYPT:
3311
case SSL_TICKET_SUCCESS_RENEW:
3312
case SSL_TICKET_EMPTY:
3313
s->ext.ticket_expected = 1;
3314
}
3315
}
3316
3317
*psess = sess;
3318
3319
return ret;
3320
}
3321
3322
/* Check to see if a signature algorithm is allowed */
3323
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
3324
const SIGALG_LOOKUP *lu)
3325
{
3326
unsigned char sigalgstr[2];
3327
int secbits;
3328
3329
if (lu == NULL || !lu->available)
3330
return 0;
3331
/* DSA is not allowed in TLS 1.3 */
3332
if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
3333
return 0;
3334
/*
3335
* At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
3336
* spec
3337
*/
3338
if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
3339
&& s->s3.tmp.min_ver >= TLS1_3_VERSION
3340
&& (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
3341
|| lu->hash_idx == SSL_MD_MD5_IDX
3342
|| lu->hash_idx == SSL_MD_SHA224_IDX))
3343
return 0;
3344
3345
/* See if public key algorithm allowed */
3346
if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
3347
return 0;
3348
3349
if (lu->sig == NID_id_GostR3410_2012_256
3350
|| lu->sig == NID_id_GostR3410_2012_512
3351
|| lu->sig == NID_id_GostR3410_2001) {
3352
/* We never allow GOST sig algs on the server with TLSv1.3 */
3353
if (s->server && SSL_CONNECTION_IS_TLS13(s))
3354
return 0;
3355
if (!s->server
3356
&& SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
3357
&& s->s3.tmp.max_ver >= TLS1_3_VERSION) {
3358
int i, num;
3359
STACK_OF(SSL_CIPHER) *sk;
3360
3361
/*
3362
* We're a client that could negotiate TLSv1.3. We only allow GOST
3363
* sig algs if we could negotiate TLSv1.2 or below and we have GOST
3364
* ciphersuites enabled.
3365
*/
3366
3367
if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
3368
return 0;
3369
3370
sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
3371
num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
3372
for (i = 0; i < num; i++) {
3373
const SSL_CIPHER *c;
3374
3375
c = sk_SSL_CIPHER_value(sk, i);
3376
/* Skip disabled ciphers */
3377
if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
3378
continue;
3379
3380
if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
3381
break;
3382
}
3383
if (i == num)
3384
return 0;
3385
}
3386
}
3387
3388
/* Finally see if security callback allows it */
3389
secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
3390
sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
3391
sigalgstr[1] = lu->sigalg & 0xff;
3392
return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
3393
}
3394
3395
/*
3396
* Get a mask of disabled public key algorithms based on supported signature
3397
* algorithms. For example if no signature algorithm supports RSA then RSA is
3398
* disabled.
3399
*/
3400
3401
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
3402
{
3403
const uint16_t *sigalgs;
3404
size_t i, sigalgslen;
3405
uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
3406
/*
3407
* Go through all signature algorithms seeing if we support any
3408
* in disabled_mask.
3409
*/
3410
sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
3411
for (i = 0; i < sigalgslen; i++, sigalgs++) {
3412
const SIGALG_LOOKUP *lu =
3413
tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
3414
const SSL_CERT_LOOKUP *clu;
3415
3416
if (lu == NULL)
3417
continue;
3418
3419
clu = ssl_cert_lookup_by_idx(lu->sig_idx,
3420
SSL_CONNECTION_GET_CTX(s));
3421
if (clu == NULL)
3422
continue;
3423
3424
/* If algorithm is disabled see if we can enable it */
3425
if ((clu->amask & disabled_mask) != 0
3426
&& tls12_sigalg_allowed(s, op, lu))
3427
disabled_mask &= ~clu->amask;
3428
}
3429
*pmask_a |= disabled_mask;
3430
}
3431
3432
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
3433
const uint16_t *psig, size_t psiglen)
3434
{
3435
size_t i;
3436
int rv = 0;
3437
3438
for (i = 0; i < psiglen; i++, psig++) {
3439
const SIGALG_LOOKUP *lu =
3440
tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
3441
3442
if (lu == NULL || !tls_sigalg_compat(s, lu))
3443
continue;
3444
if (!WPACKET_put_bytes_u16(pkt, *psig))
3445
return 0;
3446
/*
3447
* If TLS 1.3 must have at least one valid TLS 1.3 message
3448
* signing algorithm: i.e. neither RSA nor SHA1/SHA224
3449
*/
3450
if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
3451
|| (lu->sig != EVP_PKEY_RSA
3452
&& lu->hash != NID_sha1
3453
&& lu->hash != NID_sha224)))
3454
rv = 1;
3455
}
3456
if (rv == 0)
3457
ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3458
return rv;
3459
}
3460
3461
/* Given preference and allowed sigalgs set shared sigalgs */
3462
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
3463
const SIGALG_LOOKUP **shsig,
3464
const uint16_t *pref, size_t preflen,
3465
const uint16_t *allow, size_t allowlen)
3466
{
3467
const uint16_t *ptmp, *atmp;
3468
size_t i, j, nmatch = 0;
3469
for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
3470
const SIGALG_LOOKUP *lu =
3471
tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
3472
3473
/* Skip disabled hashes or signature algorithms */
3474
if (lu == NULL
3475
|| !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
3476
continue;
3477
for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
3478
if (*ptmp == *atmp) {
3479
nmatch++;
3480
if (shsig)
3481
*shsig++ = lu;
3482
break;
3483
}
3484
}
3485
}
3486
return nmatch;
3487
}
3488
3489
/* Set shared signature algorithms for SSL structures */
3490
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
3491
{
3492
const uint16_t *pref, *allow, *conf;
3493
size_t preflen, allowlen, conflen;
3494
size_t nmatch;
3495
const SIGALG_LOOKUP **salgs = NULL;
3496
CERT *c = s->cert;
3497
unsigned int is_suiteb = tls1_suiteb(s);
3498
3499
OPENSSL_free(s->shared_sigalgs);
3500
s->shared_sigalgs = NULL;
3501
s->shared_sigalgslen = 0;
3502
/* If client use client signature algorithms if not NULL */
3503
if (!s->server && c->client_sigalgs && !is_suiteb) {
3504
conf = c->client_sigalgs;
3505
conflen = c->client_sigalgslen;
3506
} else if (c->conf_sigalgs && !is_suiteb) {
3507
conf = c->conf_sigalgs;
3508
conflen = c->conf_sigalgslen;
3509
} else
3510
conflen = tls12_get_psigalgs(s, 0, &conf);
3511
if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
3512
pref = conf;
3513
preflen = conflen;
3514
allow = s->s3.tmp.peer_sigalgs;
3515
allowlen = s->s3.tmp.peer_sigalgslen;
3516
} else {
3517
allow = conf;
3518
allowlen = conflen;
3519
pref = s->s3.tmp.peer_sigalgs;
3520
preflen = s->s3.tmp.peer_sigalgslen;
3521
}
3522
nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3523
if (nmatch) {
3524
if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
3525
return 0;
3526
nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3527
} else {
3528
salgs = NULL;
3529
}
3530
s->shared_sigalgs = salgs;
3531
s->shared_sigalgslen = nmatch;
3532
return 1;
3533
}
3534
3535
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
3536
{
3537
unsigned int stmp;
3538
size_t size, i;
3539
uint16_t *buf;
3540
3541
size = PACKET_remaining(pkt);
3542
3543
/* Invalid data length */
3544
if (size == 0 || (size & 1) != 0)
3545
return 0;
3546
3547
size >>= 1;
3548
3549
if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
3550
return 0;
3551
for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
3552
buf[i] = stmp;
3553
3554
if (i != size) {
3555
OPENSSL_free(buf);
3556
return 0;
3557
}
3558
3559
OPENSSL_free(*pdest);
3560
*pdest = buf;
3561
*pdestlen = size;
3562
3563
return 1;
3564
}
3565
3566
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
3567
{
3568
/* Extension ignored for inappropriate versions */
3569
if (!SSL_USE_SIGALGS(s))
3570
return 1;
3571
/* Should never happen */
3572
if (s->cert == NULL)
3573
return 0;
3574
3575
if (cert)
3576
return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
3577
&s->s3.tmp.peer_cert_sigalgslen);
3578
else
3579
return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
3580
&s->s3.tmp.peer_sigalgslen);
3581
3582
}
3583
3584
/* Set preferred digest for each key type */
3585
3586
int tls1_process_sigalgs(SSL_CONNECTION *s)
3587
{
3588
size_t i;
3589
uint32_t *pvalid = s->s3.tmp.valid_flags;
3590
3591
if (!tls1_set_shared_sigalgs(s))
3592
return 0;
3593
3594
for (i = 0; i < s->ssl_pkey_num; i++)
3595
pvalid[i] = 0;
3596
3597
for (i = 0; i < s->shared_sigalgslen; i++) {
3598
const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
3599
int idx = sigptr->sig_idx;
3600
3601
/* Ignore PKCS1 based sig algs in TLSv1.3 */
3602
if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
3603
continue;
3604
/* If not disabled indicate we can explicitly sign */
3605
if (pvalid[idx] == 0
3606
&& !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
3607
pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3608
}
3609
return 1;
3610
}
3611
3612
int SSL_get_sigalgs(SSL *s, int idx,
3613
int *psign, int *phash, int *psignhash,
3614
unsigned char *rsig, unsigned char *rhash)
3615
{
3616
uint16_t *psig;
3617
size_t numsigalgs;
3618
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3619
3620
if (sc == NULL)
3621
return 0;
3622
3623
psig = sc->s3.tmp.peer_sigalgs;
3624
numsigalgs = sc->s3.tmp.peer_sigalgslen;
3625
3626
if (psig == NULL || numsigalgs > INT_MAX)
3627
return 0;
3628
if (idx >= 0) {
3629
const SIGALG_LOOKUP *lu;
3630
3631
if (idx >= (int)numsigalgs)
3632
return 0;
3633
psig += idx;
3634
if (rhash != NULL)
3635
*rhash = (unsigned char)((*psig >> 8) & 0xff);
3636
if (rsig != NULL)
3637
*rsig = (unsigned char)(*psig & 0xff);
3638
lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
3639
if (psign != NULL)
3640
*psign = lu != NULL ? lu->sig : NID_undef;
3641
if (phash != NULL)
3642
*phash = lu != NULL ? lu->hash : NID_undef;
3643
if (psignhash != NULL)
3644
*psignhash = lu != NULL ? lu->sigandhash : NID_undef;
3645
}
3646
return (int)numsigalgs;
3647
}
3648
3649
int SSL_get_shared_sigalgs(SSL *s, int idx,
3650
int *psign, int *phash, int *psignhash,
3651
unsigned char *rsig, unsigned char *rhash)
3652
{
3653
const SIGALG_LOOKUP *shsigalgs;
3654
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3655
3656
if (sc == NULL)
3657
return 0;
3658
3659
if (sc->shared_sigalgs == NULL
3660
|| idx < 0
3661
|| idx >= (int)sc->shared_sigalgslen
3662
|| sc->shared_sigalgslen > INT_MAX)
3663
return 0;
3664
shsigalgs = sc->shared_sigalgs[idx];
3665
if (phash != NULL)
3666
*phash = shsigalgs->hash;
3667
if (psign != NULL)
3668
*psign = shsigalgs->sig;
3669
if (psignhash != NULL)
3670
*psignhash = shsigalgs->sigandhash;
3671
if (rsig != NULL)
3672
*rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
3673
if (rhash != NULL)
3674
*rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
3675
return (int)sc->shared_sigalgslen;
3676
}
3677
3678
/* Maximum possible number of unique entries in sigalgs array */
3679
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
3680
3681
typedef struct {
3682
size_t sigalgcnt;
3683
/* TLSEXT_SIGALG_XXX values */
3684
uint16_t sigalgs[TLS_MAX_SIGALGCNT];
3685
SSL_CTX *ctx;
3686
} sig_cb_st;
3687
3688
static void get_sigorhash(int *psig, int *phash, const char *str)
3689
{
3690
if (OPENSSL_strcasecmp(str, "RSA") == 0) {
3691
*psig = EVP_PKEY_RSA;
3692
} else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
3693
|| OPENSSL_strcasecmp(str, "PSS") == 0) {
3694
*psig = EVP_PKEY_RSA_PSS;
3695
} else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
3696
*psig = EVP_PKEY_DSA;
3697
} else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
3698
*psig = EVP_PKEY_EC;
3699
} else {
3700
*phash = OBJ_sn2nid(str);
3701
if (*phash == NID_undef)
3702
*phash = OBJ_ln2nid(str);
3703
}
3704
}
3705
/* Maximum length of a signature algorithm string component */
3706
#define TLS_MAX_SIGSTRING_LEN 40
3707
3708
static int sig_cb(const char *elem, int len, void *arg)
3709
{
3710
sig_cb_st *sarg = arg;
3711
size_t i = 0;
3712
const SIGALG_LOOKUP *s;
3713
char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3714
const char *iana, *alias;
3715
int sig_alg = NID_undef, hash_alg = NID_undef;
3716
int ignore_unknown = 0;
3717
3718
if (elem == NULL)
3719
return 0;
3720
if (elem[0] == '?') {
3721
ignore_unknown = 1;
3722
++elem;
3723
--len;
3724
}
3725
if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3726
return 0;
3727
if (len > (int)(sizeof(etmp) - 1))
3728
return 0;
3729
memcpy(etmp, elem, len);
3730
etmp[len] = 0;
3731
p = strchr(etmp, '+');
3732
/*
3733
* We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3734
* if there's no '+' in the provided name, look for the new-style combined
3735
* name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3736
* Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3737
* rsa_pss_rsae_* that differ only by public key OID; in such cases
3738
* we will pick the _rsae_ variant, by virtue of them appearing earlier
3739
* in the table.
3740
*/
3741
if (p == NULL) {
3742
if (sarg->ctx != NULL) {
3743
for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3744
iana = sarg->ctx->sigalg_lookup_cache[i].name;
3745
alias = sarg->ctx->sigalg_lookup_cache[i].name12;
3746
if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3747
|| OPENSSL_strcasecmp(etmp, iana) == 0) {
3748
/* Ignore known, but unavailable sigalgs. */
3749
if (!sarg->ctx->sigalg_lookup_cache[i].available)
3750
return 1;
3751
sarg->sigalgs[sarg->sigalgcnt++] =
3752
sarg->ctx->sigalg_lookup_cache[i].sigalg;
3753
goto found;
3754
}
3755
}
3756
} else {
3757
/* Syntax checks use the built-in sigalgs */
3758
for (i = 0, s = sigalg_lookup_tbl;
3759
i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3760
iana = s->name;
3761
alias = s->name12;
3762
if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3763
|| OPENSSL_strcasecmp(etmp, iana) == 0) {
3764
sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3765
goto found;
3766
}
3767
}
3768
}
3769
} else {
3770
*p = 0;
3771
p++;
3772
if (*p == 0)
3773
return 0;
3774
get_sigorhash(&sig_alg, &hash_alg, etmp);
3775
get_sigorhash(&sig_alg, &hash_alg, p);
3776
if (sig_alg != NID_undef && hash_alg != NID_undef) {
3777
if (sarg->ctx != NULL) {
3778
for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3779
s = &sarg->ctx->sigalg_lookup_cache[i];
3780
if (s->hash == hash_alg && s->sig == sig_alg) {
3781
/* Ignore known, but unavailable sigalgs. */
3782
if (!sarg->ctx->sigalg_lookup_cache[i].available)
3783
return 1;
3784
sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3785
goto found;
3786
}
3787
}
3788
} else {
3789
for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
3790
s = &sigalg_lookup_tbl[i];
3791
if (s->hash == hash_alg && s->sig == sig_alg) {
3792
sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3793
goto found;
3794
}
3795
}
3796
}
3797
}
3798
}
3799
/* Ignore unknown algorithms if ignore_unknown */
3800
return ignore_unknown;
3801
3802
found:
3803
/* Ignore duplicates */
3804
for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3805
if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3806
sarg->sigalgcnt--;
3807
return 1;
3808
}
3809
}
3810
return 1;
3811
}
3812
3813
/*
3814
* Set supported signature algorithms based on a colon separated list of the
3815
* form sig+hash e.g. RSA+SHA512:DSA+SHA512
3816
*/
3817
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3818
{
3819
sig_cb_st sig;
3820
sig.sigalgcnt = 0;
3821
3822
if (ctx != NULL)
3823
sig.ctx = ctx;
3824
if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3825
return 0;
3826
if (sig.sigalgcnt == 0) {
3827
ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3828
"No valid signature algorithms in '%s'", str);
3829
return 0;
3830
}
3831
if (c == NULL)
3832
return 1;
3833
return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3834
}
3835
3836
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3837
int client)
3838
{
3839
uint16_t *sigalgs;
3840
3841
if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3842
return 0;
3843
memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3844
3845
if (client) {
3846
OPENSSL_free(c->client_sigalgs);
3847
c->client_sigalgs = sigalgs;
3848
c->client_sigalgslen = salglen;
3849
} else {
3850
OPENSSL_free(c->conf_sigalgs);
3851
c->conf_sigalgs = sigalgs;
3852
c->conf_sigalgslen = salglen;
3853
}
3854
3855
return 1;
3856
}
3857
3858
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3859
{
3860
uint16_t *sigalgs, *sptr;
3861
size_t i;
3862
3863
if (salglen & 1)
3864
return 0;
3865
if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3866
return 0;
3867
for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3868
size_t j;
3869
const SIGALG_LOOKUP *curr;
3870
int md_id = *psig_nids++;
3871
int sig_id = *psig_nids++;
3872
3873
for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3874
j++, curr++) {
3875
if (curr->hash == md_id && curr->sig == sig_id) {
3876
*sptr++ = curr->sigalg;
3877
break;
3878
}
3879
}
3880
3881
if (j == OSSL_NELEM(sigalg_lookup_tbl))
3882
goto err;
3883
}
3884
3885
if (client) {
3886
OPENSSL_free(c->client_sigalgs);
3887
c->client_sigalgs = sigalgs;
3888
c->client_sigalgslen = salglen / 2;
3889
} else {
3890
OPENSSL_free(c->conf_sigalgs);
3891
c->conf_sigalgs = sigalgs;
3892
c->conf_sigalgslen = salglen / 2;
3893
}
3894
3895
return 1;
3896
3897
err:
3898
OPENSSL_free(sigalgs);
3899
return 0;
3900
}
3901
3902
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3903
{
3904
int sig_nid, use_pc_sigalgs = 0;
3905
size_t i;
3906
const SIGALG_LOOKUP *sigalg;
3907
size_t sigalgslen;
3908
3909
/*-
3910
* RFC 8446, section 4.2.3:
3911
*
3912
* The signatures on certificates that are self-signed or certificates
3913
* that are trust anchors are not validated, since they begin a
3914
* certification path (see [RFC5280], Section 3.2). A certificate that
3915
* begins a certification path MAY use a signature algorithm that is not
3916
* advertised as being supported in the "signature_algorithms"
3917
* extension.
3918
*/
3919
if (default_nid == -1 || X509_self_signed(x, 0))
3920
return 1;
3921
sig_nid = X509_get_signature_nid(x);
3922
if (default_nid)
3923
return sig_nid == default_nid ? 1 : 0;
3924
3925
if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3926
/*
3927
* If we're in TLSv1.3 then we only get here if we're checking the
3928
* chain. If the peer has specified peer_cert_sigalgs then we use them
3929
* otherwise we default to normal sigalgs.
3930
*/
3931
sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3932
use_pc_sigalgs = 1;
3933
} else {
3934
sigalgslen = s->shared_sigalgslen;
3935
}
3936
for (i = 0; i < sigalgslen; i++) {
3937
int mdnid, pknid;
3938
3939
sigalg = use_pc_sigalgs
3940
? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
3941
s->s3.tmp.peer_cert_sigalgs[i])
3942
: s->shared_sigalgs[i];
3943
if (sigalg == NULL)
3944
continue;
3945
if (sig_nid == sigalg->sigandhash)
3946
return 1;
3947
if (sigalg->sig != EVP_PKEY_RSA_PSS)
3948
continue;
3949
/*
3950
* Accept RSA PKCS#1 signatures in certificates when the signature
3951
* algorithms include RSA-PSS with a matching digest algorithm.
3952
*
3953
* When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
3954
* points, and we're doing strict checking of the certificate chain (in
3955
* a cert_cb via SSL_check_chain()) we may then reject RSA signed
3956
* certificates in the chain, but the TLS requirement on PSS should not
3957
* extend to certificates. Though the peer can in fact list the legacy
3958
* sigalgs for just this purpose, it is not likely that a better chain
3959
* signed with RSA-PSS is available.
3960
*/
3961
if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
3962
continue;
3963
if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
3964
return 1;
3965
}
3966
return 0;
3967
}
3968
3969
/* Check to see if a certificate issuer name matches list of CA names */
3970
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3971
{
3972
const X509_NAME *nm;
3973
int i;
3974
nm = X509_get_issuer_name(x);
3975
for (i = 0; i < sk_X509_NAME_num(names); i++) {
3976
if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3977
return 1;
3978
}
3979
return 0;
3980
}
3981
3982
/*
3983
* Check certificate chain is consistent with TLS extensions and is usable by
3984
* server. This servers two purposes: it allows users to check chains before
3985
* passing them to the server and it allows the server to check chains before
3986
* attempting to use them.
3987
*/
3988
3989
/* Flags which need to be set for a certificate when strict mode not set */
3990
3991
#define CERT_PKEY_VALID_FLAGS \
3992
(CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3993
/* Strict mode flags */
3994
#define CERT_PKEY_STRICT_FLAGS \
3995
(CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3996
| CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3997
3998
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3999
STACK_OF(X509) *chain, int idx)
4000
{
4001
int i;
4002
int rv = 0;
4003
int check_flags = 0, strict_mode;
4004
CERT_PKEY *cpk = NULL;
4005
CERT *c = s->cert;
4006
uint32_t *pvalid;
4007
unsigned int suiteb_flags = tls1_suiteb(s);
4008
4009
/*
4010
* Meaning of idx:
4011
* idx == -1 means SSL_check_chain() invocation
4012
* idx == -2 means checking client certificate chains
4013
* idx >= 0 means checking SSL_PKEY index
4014
*
4015
* For RPK, where there may be no cert, we ignore -1
4016
*/
4017
if (idx != -1) {
4018
if (idx == -2) {
4019
cpk = c->key;
4020
idx = (int)(cpk - c->pkeys);
4021
} else
4022
cpk = c->pkeys + idx;
4023
pvalid = s->s3.tmp.valid_flags + idx;
4024
x = cpk->x509;
4025
pk = cpk->privatekey;
4026
chain = cpk->chain;
4027
strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4028
if (tls12_rpk_and_privkey(s, idx)) {
4029
if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
4030
return 0;
4031
*pvalid = rv = CERT_PKEY_RPK;
4032
return rv;
4033
}
4034
/* If no cert or key, forget it */
4035
if (x == NULL || pk == NULL)
4036
goto end;
4037
} else {
4038
size_t certidx;
4039
4040
if (x == NULL || pk == NULL)
4041
return 0;
4042
4043
if (ssl_cert_lookup_by_pkey(pk, &certidx,
4044
SSL_CONNECTION_GET_CTX(s)) == NULL)
4045
return 0;
4046
idx = certidx;
4047
pvalid = s->s3.tmp.valid_flags + idx;
4048
4049
if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4050
check_flags = CERT_PKEY_STRICT_FLAGS;
4051
else
4052
check_flags = CERT_PKEY_VALID_FLAGS;
4053
strict_mode = 1;
4054
}
4055
4056
if (suiteb_flags) {
4057
int ok;
4058
if (check_flags)
4059
check_flags |= CERT_PKEY_SUITEB;
4060
ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4061
if (ok == X509_V_OK)
4062
rv |= CERT_PKEY_SUITEB;
4063
else if (!check_flags)
4064
goto end;
4065
}
4066
4067
/*
4068
* Check all signature algorithms are consistent with signature
4069
* algorithms extension if TLS 1.2 or later and strict mode.
4070
*/
4071
if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
4072
&& strict_mode) {
4073
int default_nid;
4074
int rsign = 0;
4075
4076
if (s->s3.tmp.peer_cert_sigalgs != NULL
4077
|| s->s3.tmp.peer_sigalgs != NULL) {
4078
default_nid = 0;
4079
/* If no sigalgs extension use defaults from RFC5246 */
4080
} else {
4081
switch (idx) {
4082
case SSL_PKEY_RSA:
4083
rsign = EVP_PKEY_RSA;
4084
default_nid = NID_sha1WithRSAEncryption;
4085
break;
4086
4087
case SSL_PKEY_DSA_SIGN:
4088
rsign = EVP_PKEY_DSA;
4089
default_nid = NID_dsaWithSHA1;
4090
break;
4091
4092
case SSL_PKEY_ECC:
4093
rsign = EVP_PKEY_EC;
4094
default_nid = NID_ecdsa_with_SHA1;
4095
break;
4096
4097
case SSL_PKEY_GOST01:
4098
rsign = NID_id_GostR3410_2001;
4099
default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
4100
break;
4101
4102
case SSL_PKEY_GOST12_256:
4103
rsign = NID_id_GostR3410_2012_256;
4104
default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
4105
break;
4106
4107
case SSL_PKEY_GOST12_512:
4108
rsign = NID_id_GostR3410_2012_512;
4109
default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
4110
break;
4111
4112
default:
4113
default_nid = -1;
4114
break;
4115
}
4116
}
4117
/*
4118
* If peer sent no signature algorithms extension and we have set
4119
* preferred signature algorithms check we support sha1.
4120
*/
4121
if (default_nid > 0 && c->conf_sigalgs) {
4122
size_t j;
4123
const uint16_t *p = c->conf_sigalgs;
4124
for (j = 0; j < c->conf_sigalgslen; j++, p++) {
4125
const SIGALG_LOOKUP *lu =
4126
tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
4127
4128
if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
4129
break;
4130
}
4131
if (j == c->conf_sigalgslen) {
4132
if (check_flags)
4133
goto skip_sigs;
4134
else
4135
goto end;
4136
}
4137
}
4138
/* Check signature algorithm of each cert in chain */
4139
if (SSL_CONNECTION_IS_TLS13(s)) {
4140
/*
4141
* We only get here if the application has called SSL_check_chain(),
4142
* so check_flags is always set.
4143
*/
4144
if (find_sig_alg(s, x, pk) != NULL)
4145
rv |= CERT_PKEY_EE_SIGNATURE;
4146
} else if (!tls1_check_sig_alg(s, x, default_nid)) {
4147
if (!check_flags)
4148
goto end;
4149
} else
4150
rv |= CERT_PKEY_EE_SIGNATURE;
4151
rv |= CERT_PKEY_CA_SIGNATURE;
4152
for (i = 0; i < sk_X509_num(chain); i++) {
4153
if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
4154
if (check_flags) {
4155
rv &= ~CERT_PKEY_CA_SIGNATURE;
4156
break;
4157
} else
4158
goto end;
4159
}
4160
}
4161
}
4162
/* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4163
else if (check_flags)
4164
rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4165
skip_sigs:
4166
/* Check cert parameters are consistent */
4167
if (tls1_check_cert_param(s, x, 1))
4168
rv |= CERT_PKEY_EE_PARAM;
4169
else if (!check_flags)
4170
goto end;
4171
if (!s->server)
4172
rv |= CERT_PKEY_CA_PARAM;
4173
/* In strict mode check rest of chain too */
4174
else if (strict_mode) {
4175
rv |= CERT_PKEY_CA_PARAM;
4176
for (i = 0; i < sk_X509_num(chain); i++) {
4177
X509 *ca = sk_X509_value(chain, i);
4178
if (!tls1_check_cert_param(s, ca, 0)) {
4179
if (check_flags) {
4180
rv &= ~CERT_PKEY_CA_PARAM;
4181
break;
4182
} else
4183
goto end;
4184
}
4185
}
4186
}
4187
if (!s->server && strict_mode) {
4188
STACK_OF(X509_NAME) *ca_dn;
4189
int check_type = 0;
4190
4191
if (EVP_PKEY_is_a(pk, "RSA"))
4192
check_type = TLS_CT_RSA_SIGN;
4193
else if (EVP_PKEY_is_a(pk, "DSA"))
4194
check_type = TLS_CT_DSS_SIGN;
4195
else if (EVP_PKEY_is_a(pk, "EC"))
4196
check_type = TLS_CT_ECDSA_SIGN;
4197
4198
if (check_type) {
4199
const uint8_t *ctypes = s->s3.tmp.ctype;
4200
size_t j;
4201
4202
for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
4203
if (*ctypes == check_type) {
4204
rv |= CERT_PKEY_CERT_TYPE;
4205
break;
4206
}
4207
}
4208
if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4209
goto end;
4210
} else {
4211
rv |= CERT_PKEY_CERT_TYPE;
4212
}
4213
4214
ca_dn = s->s3.tmp.peer_ca_names;
4215
4216
if (ca_dn == NULL
4217
|| sk_X509_NAME_num(ca_dn) == 0
4218
|| ssl_check_ca_name(ca_dn, x))
4219
rv |= CERT_PKEY_ISSUER_NAME;
4220
else
4221
for (i = 0; i < sk_X509_num(chain); i++) {
4222
X509 *xtmp = sk_X509_value(chain, i);
4223
4224
if (ssl_check_ca_name(ca_dn, xtmp)) {
4225
rv |= CERT_PKEY_ISSUER_NAME;
4226
break;
4227
}
4228
}
4229
4230
if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4231
goto end;
4232
} else
4233
rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4234
4235
if (!check_flags || (rv & check_flags) == check_flags)
4236
rv |= CERT_PKEY_VALID;
4237
4238
end:
4239
4240
if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
4241
rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
4242
else
4243
rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4244
4245
/*
4246
* When checking a CERT_PKEY structure all flags are irrelevant if the
4247
* chain is invalid.
4248
*/
4249
if (!check_flags) {
4250
if (rv & CERT_PKEY_VALID) {
4251
*pvalid = rv;
4252
} else {
4253
/* Preserve sign and explicit sign flag, clear rest */
4254
*pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4255
return 0;
4256
}
4257
}
4258
return rv;
4259
}
4260
4261
/* Set validity of certificates in an SSL structure */
4262
void tls1_set_cert_validity(SSL_CONNECTION *s)
4263
{
4264
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
4265
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
4266
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4267
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4268
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
4269
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
4270
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
4271
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
4272
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
4273
}
4274
4275
/* User level utility function to check a chain is suitable */
4276
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4277
{
4278
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
4279
4280
if (sc == NULL)
4281
return 0;
4282
4283
return tls1_check_chain(sc, x, pk, chain, -1);
4284
}
4285
4286
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
4287
{
4288
EVP_PKEY *dhp = NULL;
4289
BIGNUM *p;
4290
int dh_secbits = 80, sec_level_bits;
4291
EVP_PKEY_CTX *pctx = NULL;
4292
OSSL_PARAM_BLD *tmpl = NULL;
4293
OSSL_PARAM *params = NULL;
4294
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4295
4296
if (s->cert->dh_tmp_auto != 2) {
4297
if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
4298
if (s->s3.tmp.new_cipher->strength_bits == 256)
4299
dh_secbits = 128;
4300
else
4301
dh_secbits = 80;
4302
} else {
4303
if (s->s3.tmp.cert == NULL)
4304
return NULL;
4305
dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
4306
}
4307
}
4308
4309
/* Do not pick a prime that is too weak for the current security level */
4310
sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
4311
NULL, NULL);
4312
if (dh_secbits < sec_level_bits)
4313
dh_secbits = sec_level_bits;
4314
4315
if (dh_secbits >= 192)
4316
p = BN_get_rfc3526_prime_8192(NULL);
4317
else if (dh_secbits >= 152)
4318
p = BN_get_rfc3526_prime_4096(NULL);
4319
else if (dh_secbits >= 128)
4320
p = BN_get_rfc3526_prime_3072(NULL);
4321
else if (dh_secbits >= 112)
4322
p = BN_get_rfc3526_prime_2048(NULL);
4323
else
4324
p = BN_get_rfc2409_prime_1024(NULL);
4325
if (p == NULL)
4326
goto err;
4327
4328
pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
4329
if (pctx == NULL
4330
|| EVP_PKEY_fromdata_init(pctx) != 1)
4331
goto err;
4332
4333
tmpl = OSSL_PARAM_BLD_new();
4334
if (tmpl == NULL
4335
|| !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
4336
|| !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
4337
goto err;
4338
4339
params = OSSL_PARAM_BLD_to_param(tmpl);
4340
if (params == NULL
4341
|| EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
4342
goto err;
4343
4344
err:
4345
OSSL_PARAM_free(params);
4346
OSSL_PARAM_BLD_free(tmpl);
4347
EVP_PKEY_CTX_free(pctx);
4348
BN_free(p);
4349
return dhp;
4350
}
4351
4352
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4353
int op)
4354
{
4355
int secbits = -1;
4356
EVP_PKEY *pkey = X509_get0_pubkey(x);
4357
4358
if (pkey) {
4359
/*
4360
* If no parameters this will return -1 and fail using the default
4361
* security callback for any non-zero security level. This will
4362
* reject keys which omit parameters but this only affects DSA and
4363
* omission of parameters is never (?) done in practice.
4364
*/
4365
secbits = EVP_PKEY_get_security_bits(pkey);
4366
}
4367
if (s != NULL)
4368
return ssl_security(s, op, secbits, 0, x);
4369
else
4370
return ssl_ctx_security(ctx, op, secbits, 0, x);
4371
}
4372
4373
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4374
int op)
4375
{
4376
/* Lookup signature algorithm digest */
4377
int secbits, nid, pknid;
4378
4379
/* Don't check signature if self signed */
4380
if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
4381
return 1;
4382
if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
4383
secbits = -1;
4384
/* If digest NID not defined use signature NID */
4385
if (nid == NID_undef)
4386
nid = pknid;
4387
if (s != NULL)
4388
return ssl_security(s, op, secbits, nid, x);
4389
else
4390
return ssl_ctx_security(ctx, op, secbits, nid, x);
4391
}
4392
4393
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
4394
int is_ee)
4395
{
4396
if (vfy)
4397
vfy = SSL_SECOP_PEER;
4398
if (is_ee) {
4399
if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4400
return SSL_R_EE_KEY_TOO_SMALL;
4401
} else {
4402
if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4403
return SSL_R_CA_KEY_TOO_SMALL;
4404
}
4405
if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4406
return SSL_R_CA_MD_TOO_WEAK;
4407
return 1;
4408
}
4409
4410
/*
4411
* Check security of a chain, if |sk| includes the end entity certificate then
4412
* |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
4413
* one to the peer. Return values: 1 if ok otherwise error code to use
4414
*/
4415
4416
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
4417
X509 *x, int vfy)
4418
{
4419
int rv, start_idx, i;
4420
4421
if (x == NULL) {
4422
x = sk_X509_value(sk, 0);
4423
if (x == NULL)
4424
return ERR_R_INTERNAL_ERROR;
4425
start_idx = 1;
4426
} else
4427
start_idx = 0;
4428
4429
rv = ssl_security_cert(s, NULL, x, vfy, 1);
4430
if (rv != 1)
4431
return rv;
4432
4433
for (i = start_idx; i < sk_X509_num(sk); i++) {
4434
x = sk_X509_value(sk, i);
4435
rv = ssl_security_cert(s, NULL, x, vfy, 0);
4436
if (rv != 1)
4437
return rv;
4438
}
4439
return 1;
4440
}
4441
4442
/*
4443
* For TLS 1.2 servers check if we have a certificate which can be used
4444
* with the signature algorithm "lu" and return index of certificate.
4445
*/
4446
4447
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
4448
const SIGALG_LOOKUP *lu)
4449
{
4450
int sig_idx = lu->sig_idx;
4451
const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
4452
SSL_CONNECTION_GET_CTX(s));
4453
4454
/* If not recognised or not supported by cipher mask it is not suitable */
4455
if (clu == NULL
4456
|| (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
4457
|| (clu->nid == EVP_PKEY_RSA_PSS
4458
&& (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
4459
return -1;
4460
4461
/* If doing RPK, the CERT_PKEY won't be "valid" */
4462
if (tls12_rpk_and_privkey(s, sig_idx))
4463
return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
4464
4465
return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
4466
}
4467
4468
/*
4469
* Checks the given cert against signature_algorithm_cert restrictions sent by
4470
* the peer (if any) as well as whether the hash from the sigalg is usable with
4471
* the key.
4472
* Returns true if the cert is usable and false otherwise.
4473
*/
4474
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
4475
X509 *x, EVP_PKEY *pkey)
4476
{
4477
const SIGALG_LOOKUP *lu;
4478
int mdnid, pknid, supported;
4479
size_t i;
4480
const char *mdname = NULL;
4481
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4482
4483
/*
4484
* If the given EVP_PKEY cannot support signing with this digest,
4485
* the answer is simply 'no'.
4486
*/
4487
if (sig->hash != NID_undef)
4488
mdname = OBJ_nid2sn(sig->hash);
4489
supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
4490
mdname,
4491
sctx->propq);
4492
if (supported <= 0)
4493
return 0;
4494
4495
/*
4496
* The TLS 1.3 signature_algorithms_cert extension places restrictions
4497
* on the sigalg with which the certificate was signed (by its issuer).
4498
*/
4499
if (s->s3.tmp.peer_cert_sigalgs != NULL) {
4500
if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
4501
return 0;
4502
for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
4503
lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
4504
s->s3.tmp.peer_cert_sigalgs[i]);
4505
if (lu == NULL)
4506
continue;
4507
4508
/*
4509
* This does not differentiate between the
4510
* rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
4511
* have a chain here that lets us look at the key OID in the
4512
* signing certificate.
4513
*/
4514
if (mdnid == lu->hash && pknid == lu->sig)
4515
return 1;
4516
}
4517
return 0;
4518
}
4519
4520
/*
4521
* Without signat_algorithms_cert, any certificate for which we have
4522
* a viable public key is permitted.
4523
*/
4524
return 1;
4525
}
4526
4527
/*
4528
* Returns true if |s| has a usable certificate configured for use
4529
* with signature scheme |sig|.
4530
* "Usable" includes a check for presence as well as applying
4531
* the signature_algorithm_cert restrictions sent by the peer (if any).
4532
* Returns false if no usable certificate is found.
4533
*/
4534
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
4535
{
4536
/* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
4537
if (idx == -1)
4538
idx = sig->sig_idx;
4539
if (!ssl_has_cert(s, idx))
4540
return 0;
4541
4542
return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
4543
s->cert->pkeys[idx].privatekey);
4544
}
4545
4546
/*
4547
* Returns true if the supplied cert |x| and key |pkey| is usable with the
4548
* specified signature scheme |sig|, or false otherwise.
4549
*/
4550
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
4551
EVP_PKEY *pkey)
4552
{
4553
size_t idx;
4554
4555
if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
4556
return 0;
4557
4558
/* Check the key is consistent with the sig alg */
4559
if ((int)idx != sig->sig_idx)
4560
return 0;
4561
4562
return check_cert_usable(s, sig, x, pkey);
4563
}
4564
4565
/*
4566
* Find a signature scheme that works with the supplied certificate |x| and key
4567
* |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
4568
* available certs/keys to find one that works.
4569
*/
4570
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
4571
EVP_PKEY *pkey)
4572
{
4573
const SIGALG_LOOKUP *lu = NULL;
4574
size_t i;
4575
int curve = -1;
4576
EVP_PKEY *tmppkey;
4577
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4578
4579
/* Look for a shared sigalgs matching possible certificates */
4580
for (i = 0; i < s->shared_sigalgslen; i++) {
4581
/* Skip SHA1, SHA224, DSA and RSA if not PSS */
4582
lu = s->shared_sigalgs[i];
4583
if (lu->hash == NID_sha1
4584
|| lu->hash == NID_sha224
4585
|| lu->sig == EVP_PKEY_DSA
4586
|| lu->sig == EVP_PKEY_RSA
4587
|| !tls_sigalg_compat(s, lu))
4588
continue;
4589
4590
/* Check that we have a cert, and signature_algorithms_cert */
4591
if (!tls1_lookup_md(sctx, lu, NULL))
4592
continue;
4593
if ((pkey == NULL && !has_usable_cert(s, lu, -1))
4594
|| (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
4595
continue;
4596
4597
tmppkey = (pkey != NULL) ? pkey
4598
: s->cert->pkeys[lu->sig_idx].privatekey;
4599
4600
if (lu->sig == EVP_PKEY_EC) {
4601
if (curve == -1)
4602
curve = ssl_get_EC_curve_nid(tmppkey);
4603
if (lu->curve != NID_undef && curve != lu->curve)
4604
continue;
4605
} else if (lu->sig == EVP_PKEY_RSA_PSS) {
4606
/* validate that key is large enough for the signature algorithm */
4607
if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
4608
continue;
4609
}
4610
break;
4611
}
4612
4613
if (i == s->shared_sigalgslen)
4614
return NULL;
4615
4616
return lu;
4617
}
4618
4619
/*
4620
* Choose an appropriate signature algorithm based on available certificates
4621
* Sets chosen certificate and signature algorithm.
4622
*
4623
* For servers if we fail to find a required certificate it is a fatal error,
4624
* an appropriate error code is set and a TLS alert is sent.
4625
*
4626
* For clients fatalerrs is set to 0. If a certificate is not suitable it is not
4627
* a fatal error: we will either try another certificate or not present one
4628
* to the server. In this case no error is set.
4629
*/
4630
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
4631
{
4632
const SIGALG_LOOKUP *lu = NULL;
4633
int sig_idx = -1;
4634
4635
s->s3.tmp.cert = NULL;
4636
s->s3.tmp.sigalg = NULL;
4637
4638
if (SSL_CONNECTION_IS_TLS13(s)) {
4639
lu = find_sig_alg(s, NULL, NULL);
4640
if (lu == NULL) {
4641
if (!fatalerrs)
4642
return 1;
4643
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4644
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4645
return 0;
4646
}
4647
} else {
4648
/* If ciphersuite doesn't require a cert nothing to do */
4649
if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
4650
return 1;
4651
if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
4652
return 1;
4653
4654
if (SSL_USE_SIGALGS(s)) {
4655
size_t i;
4656
if (s->s3.tmp.peer_sigalgs != NULL) {
4657
int curve = -1;
4658
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4659
4660
/* For Suite B need to match signature algorithm to curve */
4661
if (tls1_suiteb(s))
4662
curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
4663
.privatekey);
4664
4665
/*
4666
* Find highest preference signature algorithm matching
4667
* cert type
4668
*/
4669
for (i = 0; i < s->shared_sigalgslen; i++) {
4670
/* Check the sigalg version bounds */
4671
lu = s->shared_sigalgs[i];
4672
if (!tls_sigalg_compat(s, lu))
4673
continue;
4674
if (s->server) {
4675
if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
4676
continue;
4677
} else {
4678
int cc_idx = s->cert->key - s->cert->pkeys;
4679
4680
sig_idx = lu->sig_idx;
4681
if (cc_idx != sig_idx)
4682
continue;
4683
}
4684
/* Check that we have a cert, and sig_algs_cert */
4685
if (!has_usable_cert(s, lu, sig_idx))
4686
continue;
4687
if (lu->sig == EVP_PKEY_RSA_PSS) {
4688
/* validate that key is large enough for the signature algorithm */
4689
EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
4690
4691
if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
4692
continue;
4693
}
4694
if (curve == -1 || lu->curve == curve)
4695
break;
4696
}
4697
#ifndef OPENSSL_NO_GOST
4698
/*
4699
* Some Windows-based implementations do not send GOST algorithms indication
4700
* in supported_algorithms extension, so when we have GOST-based ciphersuite,
4701
* we have to assume GOST support.
4702
*/
4703
if (i == s->shared_sigalgslen
4704
&& (s->s3.tmp.new_cipher->algorithm_auth
4705
& (SSL_aGOST01 | SSL_aGOST12)) != 0) {
4706
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4707
if (!fatalerrs)
4708
return 1;
4709
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4710
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4711
return 0;
4712
} else {
4713
i = 0;
4714
sig_idx = lu->sig_idx;
4715
}
4716
}
4717
#endif
4718
if (i == s->shared_sigalgslen) {
4719
if (!fatalerrs)
4720
return 1;
4721
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4722
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4723
return 0;
4724
}
4725
} else {
4726
/*
4727
* If we have no sigalg use defaults
4728
*/
4729
const uint16_t *sent_sigs;
4730
size_t sent_sigslen;
4731
4732
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4733
if (!fatalerrs)
4734
return 1;
4735
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4736
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4737
return 0;
4738
}
4739
4740
/* Check signature matches a type we sent */
4741
sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4742
for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4743
if (lu->sigalg == *sent_sigs
4744
&& has_usable_cert(s, lu, lu->sig_idx))
4745
break;
4746
}
4747
if (i == sent_sigslen) {
4748
if (!fatalerrs)
4749
return 1;
4750
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4751
SSL_R_WRONG_SIGNATURE_TYPE);
4752
return 0;
4753
}
4754
}
4755
} else {
4756
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4757
if (!fatalerrs)
4758
return 1;
4759
SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4760
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4761
return 0;
4762
}
4763
}
4764
}
4765
if (sig_idx == -1)
4766
sig_idx = lu->sig_idx;
4767
s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4768
s->cert->key = s->s3.tmp.cert;
4769
s->s3.tmp.sigalg = lu;
4770
return 1;
4771
}
4772
4773
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4774
{
4775
if (mode != TLSEXT_max_fragment_length_DISABLED
4776
&& !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4777
ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4778
return 0;
4779
}
4780
4781
ctx->ext.max_fragment_len_mode = mode;
4782
return 1;
4783
}
4784
4785
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4786
{
4787
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4788
4789
if (sc == NULL
4790
|| (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4791
return 0;
4792
4793
if (mode != TLSEXT_max_fragment_length_DISABLED
4794
&& !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4795
ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4796
return 0;
4797
}
4798
4799
sc->ext.max_fragment_len_mode = mode;
4800
return 1;
4801
}
4802
4803
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4804
{
4805
if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4806
return TLSEXT_max_fragment_length_DISABLED;
4807
return session->ext.max_fragment_len_mode;
4808
}
4809
4810
/*
4811
* Helper functions for HMAC access with legacy support included.
4812
*/
4813
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4814
{
4815
SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4816
EVP_MAC *mac = NULL;
4817
4818
if (ret == NULL)
4819
return NULL;
4820
#ifndef OPENSSL_NO_DEPRECATED_3_0
4821
if (ctx->ext.ticket_key_evp_cb == NULL
4822
&& ctx->ext.ticket_key_cb != NULL) {
4823
if (!ssl_hmac_old_new(ret))
4824
goto err;
4825
return ret;
4826
}
4827
#endif
4828
mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4829
if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4830
goto err;
4831
EVP_MAC_free(mac);
4832
return ret;
4833
err:
4834
EVP_MAC_CTX_free(ret->ctx);
4835
EVP_MAC_free(mac);
4836
OPENSSL_free(ret);
4837
return NULL;
4838
}
4839
4840
void ssl_hmac_free(SSL_HMAC *ctx)
4841
{
4842
if (ctx != NULL) {
4843
EVP_MAC_CTX_free(ctx->ctx);
4844
#ifndef OPENSSL_NO_DEPRECATED_3_0
4845
ssl_hmac_old_free(ctx);
4846
#endif
4847
OPENSSL_free(ctx);
4848
}
4849
}
4850
4851
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4852
{
4853
return ctx->ctx;
4854
}
4855
4856
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4857
{
4858
OSSL_PARAM params[2], *p = params;
4859
4860
if (ctx->ctx != NULL) {
4861
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4862
*p = OSSL_PARAM_construct_end();
4863
if (EVP_MAC_init(ctx->ctx, key, len, params))
4864
return 1;
4865
}
4866
#ifndef OPENSSL_NO_DEPRECATED_3_0
4867
if (ctx->old_ctx != NULL)
4868
return ssl_hmac_old_init(ctx, key, len, md);
4869
#endif
4870
return 0;
4871
}
4872
4873
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4874
{
4875
if (ctx->ctx != NULL)
4876
return EVP_MAC_update(ctx->ctx, data, len);
4877
#ifndef OPENSSL_NO_DEPRECATED_3_0
4878
if (ctx->old_ctx != NULL)
4879
return ssl_hmac_old_update(ctx, data, len);
4880
#endif
4881
return 0;
4882
}
4883
4884
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4885
size_t max_size)
4886
{
4887
if (ctx->ctx != NULL)
4888
return EVP_MAC_final(ctx->ctx, md, len, max_size);
4889
#ifndef OPENSSL_NO_DEPRECATED_3_0
4890
if (ctx->old_ctx != NULL)
4891
return ssl_hmac_old_final(ctx, md, len);
4892
#endif
4893
return 0;
4894
}
4895
4896
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4897
{
4898
if (ctx->ctx != NULL)
4899
return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4900
#ifndef OPENSSL_NO_DEPRECATED_3_0
4901
if (ctx->old_ctx != NULL)
4902
return ssl_hmac_old_size(ctx);
4903
#endif
4904
return 0;
4905
}
4906
4907
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4908
{
4909
char gname[OSSL_MAX_NAME_SIZE];
4910
4911
if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4912
return OBJ_txt2nid(gname);
4913
4914
return NID_undef;
4915
}
4916
4917
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4918
const unsigned char *enckey,
4919
size_t enckeylen)
4920
{
4921
if (EVP_PKEY_is_a(pkey, "DH")) {
4922
int bits = EVP_PKEY_get_bits(pkey);
4923
4924
if (bits <= 0 || enckeylen != (size_t)bits / 8)
4925
/* the encoded key must be padded to the length of the p */
4926
return 0;
4927
} else if (EVP_PKEY_is_a(pkey, "EC")) {
4928
if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4929
|| enckey[0] != 0x04)
4930
return 0;
4931
}
4932
4933
return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4934
}
4935
4936