Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/lib/libc/db/btree/bt_split.c
39507 views
1
/*-
2
* SPDX-License-Identifier: BSD-3-Clause
3
*
4
* Copyright (c) 1990, 1993, 1994
5
* The Regents of the University of California. All rights reserved.
6
*
7
* This code is derived from software contributed to Berkeley by
8
* Mike Olson.
9
*
10
* Redistribution and use in source and binary forms, with or without
11
* modification, are permitted provided that the following conditions
12
* are met:
13
* 1. Redistributions of source code must retain the above copyright
14
* notice, this list of conditions and the following disclaimer.
15
* 2. Redistributions in binary form must reproduce the above copyright
16
* notice, this list of conditions and the following disclaimer in the
17
* documentation and/or other materials provided with the distribution.
18
* 3. Neither the name of the University nor the names of its contributors
19
* may be used to endorse or promote products derived from this software
20
* without specific prior written permission.
21
*
22
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32
* SUCH DAMAGE.
33
*/
34
35
#include <sys/param.h>
36
37
#include <limits.h>
38
#include <stdio.h>
39
#include <stdlib.h>
40
#include <string.h>
41
42
#include <db.h>
43
#include "btree.h"
44
45
static int bt_broot(BTREE *, PAGE *, PAGE *, PAGE *);
46
static PAGE *bt_page(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
47
static int bt_preserve(BTREE *, pgno_t);
48
static PAGE *bt_psplit(BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t);
49
static PAGE *bt_root(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
50
static int bt_rroot(BTREE *, PAGE *, PAGE *, PAGE *);
51
static recno_t rec_total(PAGE *);
52
53
#ifdef STATISTICS
54
u_long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
55
#endif
56
57
/*
58
* __BT_SPLIT -- Split the tree.
59
*
60
* Parameters:
61
* t: tree
62
* sp: page to split
63
* key: key to insert
64
* data: data to insert
65
* flags: BIGKEY/BIGDATA flags
66
* ilen: insert length
67
* skip: index to leave open
68
*
69
* Returns:
70
* RET_ERROR, RET_SUCCESS
71
*/
72
int
73
__bt_split(BTREE *t, PAGE *sp, const DBT *key, const DBT *data, int flags,
74
size_t ilen, u_int32_t argskip)
75
{
76
BINTERNAL *bi;
77
BLEAF *bl, *tbl;
78
DBT a, b;
79
EPGNO *parent;
80
PAGE *h, *l, *r, *lchild, *rchild;
81
indx_t nxtindex;
82
u_int16_t skip;
83
u_int32_t n, nbytes, nksize;
84
int parentsplit;
85
char *dest;
86
87
/*
88
* Split the page into two pages, l and r. The split routines return
89
* a pointer to the page into which the key should be inserted and with
90
* skip set to the offset which should be used. Additionally, l and r
91
* are pinned.
92
*/
93
skip = argskip;
94
h = sp->pgno == P_ROOT ?
95
bt_root(t, sp, &l, &r, &skip, ilen) :
96
bt_page(t, sp, &l, &r, &skip, ilen);
97
if (h == NULL)
98
return (RET_ERROR);
99
100
/*
101
* Insert the new key/data pair into the leaf page. (Key inserts
102
* always cause a leaf page to split first.)
103
*/
104
h->linp[skip] = h->upper -= ilen;
105
dest = (char *)h + h->upper;
106
if (F_ISSET(t, R_RECNO))
107
WR_RLEAF(dest, data, flags)
108
else
109
WR_BLEAF(dest, key, data, flags)
110
111
/* If the root page was split, make it look right. */
112
if (sp->pgno == P_ROOT &&
113
(F_ISSET(t, R_RECNO) ?
114
bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
115
goto err2;
116
117
/*
118
* Now we walk the parent page stack -- a LIFO stack of the pages that
119
* were traversed when we searched for the page that split. Each stack
120
* entry is a page number and a page index offset. The offset is for
121
* the page traversed on the search. We've just split a page, so we
122
* have to insert a new key into the parent page.
123
*
124
* If the insert into the parent page causes it to split, may have to
125
* continue splitting all the way up the tree. We stop if the root
126
* splits or the page inserted into didn't have to split to hold the
127
* new key. Some algorithms replace the key for the old page as well
128
* as the new page. We don't, as there's no reason to believe that the
129
* first key on the old page is any better than the key we have, and,
130
* in the case of a key being placed at index 0 causing the split, the
131
* key is unavailable.
132
*
133
* There are a maximum of 5 pages pinned at any time. We keep the left
134
* and right pages pinned while working on the parent. The 5 are the
135
* two children, left parent and right parent (when the parent splits)
136
* and the root page or the overflow key page when calling bt_preserve.
137
* This code must make sure that all pins are released other than the
138
* root page or overflow page which is unlocked elsewhere.
139
*/
140
while ((parent = BT_POP(t)) != NULL) {
141
lchild = l;
142
rchild = r;
143
144
/* Get the parent page. */
145
if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
146
goto err2;
147
148
/*
149
* The new key goes ONE AFTER the index, because the split
150
* was to the right.
151
*/
152
skip = parent->index + 1;
153
154
/*
155
* Calculate the space needed on the parent page.
156
*
157
* Prefix trees: space hack when inserting into BINTERNAL
158
* pages. Retain only what's needed to distinguish between
159
* the new entry and the LAST entry on the page to its left.
160
* If the keys compare equal, retain the entire key. Note,
161
* we don't touch overflow keys, and the entire key must be
162
* retained for the next-to-left most key on the leftmost
163
* page of each level, or the search will fail. Applicable
164
* ONLY to internal pages that have leaf pages as children.
165
* Further reduction of the key between pairs of internal
166
* pages loses too much information.
167
*/
168
switch (rchild->flags & P_TYPE) {
169
case P_BINTERNAL:
170
bi = GETBINTERNAL(rchild, 0);
171
nbytes = NBINTERNAL(bi->ksize);
172
break;
173
case P_BLEAF:
174
bl = GETBLEAF(rchild, 0);
175
nbytes = NBINTERNAL(bl->ksize);
176
if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
177
(h->prevpg != P_INVALID || skip > 1)) {
178
tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
179
a.size = tbl->ksize;
180
a.data = tbl->bytes;
181
b.size = bl->ksize;
182
b.data = bl->bytes;
183
nksize = t->bt_pfx(&a, &b);
184
n = NBINTERNAL(nksize);
185
if (n < nbytes) {
186
#ifdef STATISTICS
187
bt_pfxsaved += nbytes - n;
188
#endif
189
nbytes = n;
190
} else
191
nksize = 0;
192
} else
193
nksize = 0;
194
break;
195
case P_RINTERNAL:
196
case P_RLEAF:
197
nbytes = NRINTERNAL;
198
break;
199
default:
200
abort();
201
}
202
203
/* Split the parent page if necessary or shift the indices. */
204
if ((u_int32_t)(h->upper - h->lower) < nbytes + sizeof(indx_t)) {
205
sp = h;
206
h = h->pgno == P_ROOT ?
207
bt_root(t, h, &l, &r, &skip, nbytes) :
208
bt_page(t, h, &l, &r, &skip, nbytes);
209
if (h == NULL)
210
goto err1;
211
parentsplit = 1;
212
} else {
213
if (skip < (nxtindex = NEXTINDEX(h)))
214
memmove(h->linp + skip + 1, h->linp + skip,
215
(nxtindex - skip) * sizeof(indx_t));
216
h->lower += sizeof(indx_t);
217
parentsplit = 0;
218
}
219
220
/* Insert the key into the parent page. */
221
switch (rchild->flags & P_TYPE) {
222
case P_BINTERNAL:
223
h->linp[skip] = h->upper -= nbytes;
224
dest = (char *)h + h->linp[skip];
225
memmove(dest, bi, nbytes);
226
((BINTERNAL *)dest)->pgno = rchild->pgno;
227
break;
228
case P_BLEAF:
229
h->linp[skip] = h->upper -= nbytes;
230
dest = (char *)h + h->linp[skip];
231
WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
232
rchild->pgno, bl->flags & P_BIGKEY);
233
memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
234
if (bl->flags & P_BIGKEY) {
235
pgno_t pgno;
236
memcpy(&pgno, bl->bytes, sizeof(pgno));
237
if (bt_preserve(t, pgno) == RET_ERROR)
238
goto err1;
239
}
240
break;
241
case P_RINTERNAL:
242
/*
243
* Update the left page count. If split
244
* added at index 0, fix the correct page.
245
*/
246
if (skip > 0)
247
dest = (char *)h + h->linp[skip - 1];
248
else
249
dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
250
((RINTERNAL *)dest)->nrecs = rec_total(lchild);
251
((RINTERNAL *)dest)->pgno = lchild->pgno;
252
253
/* Update the right page count. */
254
h->linp[skip] = h->upper -= nbytes;
255
dest = (char *)h + h->linp[skip];
256
((RINTERNAL *)dest)->nrecs = rec_total(rchild);
257
((RINTERNAL *)dest)->pgno = rchild->pgno;
258
break;
259
case P_RLEAF:
260
/*
261
* Update the left page count. If split
262
* added at index 0, fix the correct page.
263
*/
264
if (skip > 0)
265
dest = (char *)h + h->linp[skip - 1];
266
else
267
dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
268
((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
269
((RINTERNAL *)dest)->pgno = lchild->pgno;
270
271
/* Update the right page count. */
272
h->linp[skip] = h->upper -= nbytes;
273
dest = (char *)h + h->linp[skip];
274
((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
275
((RINTERNAL *)dest)->pgno = rchild->pgno;
276
break;
277
default:
278
abort();
279
}
280
281
/* Unpin the held pages. */
282
if (!parentsplit) {
283
mpool_put(t->bt_mp, h, MPOOL_DIRTY);
284
break;
285
}
286
287
/* If the root page was split, make it look right. */
288
if (sp->pgno == P_ROOT &&
289
(F_ISSET(t, R_RECNO) ?
290
bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
291
goto err1;
292
293
mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
294
mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
295
}
296
297
/* Unpin the held pages. */
298
mpool_put(t->bt_mp, l, MPOOL_DIRTY);
299
mpool_put(t->bt_mp, r, MPOOL_DIRTY);
300
301
/* Clear any pages left on the stack. */
302
return (RET_SUCCESS);
303
304
/*
305
* If something fails in the above loop we were already walking back
306
* up the tree and the tree is now inconsistent. Nothing much we can
307
* do about it but release any memory we're holding.
308
*/
309
err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
310
mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
311
312
err2: mpool_put(t->bt_mp, l, 0);
313
mpool_put(t->bt_mp, r, 0);
314
__dbpanic(t->bt_dbp);
315
return (RET_ERROR);
316
}
317
318
/*
319
* BT_PAGE -- Split a non-root page of a btree.
320
*
321
* Parameters:
322
* t: tree
323
* h: root page
324
* lp: pointer to left page pointer
325
* rp: pointer to right page pointer
326
* skip: pointer to index to leave open
327
* ilen: insert length
328
*
329
* Returns:
330
* Pointer to page in which to insert or NULL on error.
331
*/
332
static PAGE *
333
bt_page(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
334
{
335
PAGE *l, *r, *tp;
336
pgno_t npg;
337
338
#ifdef STATISTICS
339
++bt_split;
340
#endif
341
/* Put the new right page for the split into place. */
342
if ((r = __bt_new(t, &npg)) == NULL)
343
return (NULL);
344
r->pgno = npg;
345
r->lower = BTDATAOFF;
346
r->upper = t->bt_psize;
347
r->nextpg = h->nextpg;
348
r->prevpg = h->pgno;
349
r->flags = h->flags & P_TYPE;
350
351
/*
352
* If we're splitting the last page on a level because we're appending
353
* a key to it (skip is NEXTINDEX()), it's likely that the data is
354
* sorted. Adding an empty page on the side of the level is less work
355
* and can push the fill factor much higher than normal. If we're
356
* wrong it's no big deal, we'll just do the split the right way next
357
* time. It may look like it's equally easy to do a similar hack for
358
* reverse sorted data, that is, split the tree left, but it's not.
359
* Don't even try.
360
*/
361
if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
362
#ifdef STATISTICS
363
++bt_sortsplit;
364
#endif
365
h->nextpg = r->pgno;
366
r->lower = BTDATAOFF + sizeof(indx_t);
367
*skip = 0;
368
*lp = h;
369
*rp = r;
370
return (r);
371
}
372
373
/* Put the new left page for the split into place. */
374
if ((l = (PAGE *)calloc(1, t->bt_psize)) == NULL) {
375
mpool_put(t->bt_mp, r, 0);
376
return (NULL);
377
}
378
l->pgno = h->pgno;
379
l->nextpg = r->pgno;
380
l->prevpg = h->prevpg;
381
l->lower = BTDATAOFF;
382
l->upper = t->bt_psize;
383
l->flags = h->flags & P_TYPE;
384
385
/* Fix up the previous pointer of the page after the split page. */
386
if (h->nextpg != P_INVALID) {
387
if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
388
free(l);
389
/* XXX mpool_free(t->bt_mp, r->pgno); */
390
return (NULL);
391
}
392
tp->prevpg = r->pgno;
393
mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
394
}
395
396
/*
397
* Split right. The key/data pairs aren't sorted in the btree page so
398
* it's simpler to copy the data from the split page onto two new pages
399
* instead of copying half the data to the right page and compacting
400
* the left page in place. Since the left page can't change, we have
401
* to swap the original and the allocated left page after the split.
402
*/
403
tp = bt_psplit(t, h, l, r, skip, ilen);
404
405
/* Move the new left page onto the old left page. */
406
memmove(h, l, t->bt_psize);
407
if (tp == l)
408
tp = h;
409
free(l);
410
411
*lp = h;
412
*rp = r;
413
return (tp);
414
}
415
416
/*
417
* BT_ROOT -- Split the root page of a btree.
418
*
419
* Parameters:
420
* t: tree
421
* h: root page
422
* lp: pointer to left page pointer
423
* rp: pointer to right page pointer
424
* skip: pointer to index to leave open
425
* ilen: insert length
426
*
427
* Returns:
428
* Pointer to page in which to insert or NULL on error.
429
*/
430
static PAGE *
431
bt_root(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
432
{
433
PAGE *l, *r, *tp;
434
pgno_t lnpg, rnpg;
435
436
#ifdef STATISTICS
437
++bt_split;
438
++bt_rootsplit;
439
#endif
440
/* Put the new left and right pages for the split into place. */
441
if ((l = __bt_new(t, &lnpg)) == NULL ||
442
(r = __bt_new(t, &rnpg)) == NULL)
443
return (NULL);
444
l->pgno = lnpg;
445
r->pgno = rnpg;
446
l->nextpg = r->pgno;
447
r->prevpg = l->pgno;
448
l->prevpg = r->nextpg = P_INVALID;
449
l->lower = r->lower = BTDATAOFF;
450
l->upper = r->upper = t->bt_psize;
451
l->flags = r->flags = h->flags & P_TYPE;
452
453
/* Split the root page. */
454
tp = bt_psplit(t, h, l, r, skip, ilen);
455
456
*lp = l;
457
*rp = r;
458
return (tp);
459
}
460
461
/*
462
* BT_RROOT -- Fix up the recno root page after it has been split.
463
*
464
* Parameters:
465
* t: tree
466
* h: root page
467
* l: left page
468
* r: right page
469
*
470
* Returns:
471
* RET_ERROR, RET_SUCCESS
472
*/
473
static int
474
bt_rroot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
475
{
476
char *dest;
477
478
/* Insert the left and right keys, set the header information. */
479
h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
480
dest = (char *)h + h->upper;
481
WR_RINTERNAL(dest,
482
l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
483
484
__PAST_END(h->linp, 1) = h->upper -= NRINTERNAL;
485
dest = (char *)h + h->upper;
486
WR_RINTERNAL(dest,
487
r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
488
489
h->lower = BTDATAOFF + 2 * sizeof(indx_t);
490
491
/* Unpin the root page, set to recno internal page. */
492
h->flags &= ~P_TYPE;
493
h->flags |= P_RINTERNAL;
494
mpool_put(t->bt_mp, h, MPOOL_DIRTY);
495
496
return (RET_SUCCESS);
497
}
498
499
/*
500
* BT_BROOT -- Fix up the btree root page after it has been split.
501
*
502
* Parameters:
503
* t: tree
504
* h: root page
505
* l: left page
506
* r: right page
507
*
508
* Returns:
509
* RET_ERROR, RET_SUCCESS
510
*/
511
static int
512
bt_broot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
513
{
514
BINTERNAL *bi;
515
BLEAF *bl;
516
u_int32_t nbytes;
517
char *dest;
518
519
/*
520
* If the root page was a leaf page, change it into an internal page.
521
* We copy the key we split on (but not the key's data, in the case of
522
* a leaf page) to the new root page.
523
*
524
* The btree comparison code guarantees that the left-most key on any
525
* level of the tree is never used, so it doesn't need to be filled in.
526
*/
527
nbytes = NBINTERNAL(0);
528
h->linp[0] = h->upper = t->bt_psize - nbytes;
529
dest = (char *)h + h->upper;
530
WR_BINTERNAL(dest, 0, l->pgno, 0);
531
532
switch (h->flags & P_TYPE) {
533
case P_BLEAF:
534
bl = GETBLEAF(r, 0);
535
nbytes = NBINTERNAL(bl->ksize);
536
__PAST_END(h->linp, 1) = h->upper -= nbytes;
537
dest = (char *)h + h->upper;
538
WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
539
memmove(dest, bl->bytes, bl->ksize);
540
541
/*
542
* If the key is on an overflow page, mark the overflow chain
543
* so it isn't deleted when the leaf copy of the key is deleted.
544
*/
545
if (bl->flags & P_BIGKEY) {
546
pgno_t pgno;
547
memcpy(&pgno, bl->bytes, sizeof(pgno));
548
if (bt_preserve(t, pgno) == RET_ERROR)
549
return (RET_ERROR);
550
}
551
break;
552
case P_BINTERNAL:
553
bi = GETBINTERNAL(r, 0);
554
nbytes = NBINTERNAL(bi->ksize);
555
__PAST_END(h->linp, 1) = h->upper -= nbytes;
556
dest = (char *)h + h->upper;
557
memmove(dest, bi, nbytes);
558
((BINTERNAL *)dest)->pgno = r->pgno;
559
break;
560
default:
561
abort();
562
}
563
564
/* There are two keys on the page. */
565
h->lower = BTDATAOFF + 2 * sizeof(indx_t);
566
567
/* Unpin the root page, set to btree internal page. */
568
h->flags &= ~P_TYPE;
569
h->flags |= P_BINTERNAL;
570
mpool_put(t->bt_mp, h, MPOOL_DIRTY);
571
572
return (RET_SUCCESS);
573
}
574
575
/*
576
* BT_PSPLIT -- Do the real work of splitting the page.
577
*
578
* Parameters:
579
* t: tree
580
* h: page to be split
581
* l: page to put lower half of data
582
* r: page to put upper half of data
583
* pskip: pointer to index to leave open
584
* ilen: insert length
585
*
586
* Returns:
587
* Pointer to page in which to insert.
588
*/
589
static PAGE *
590
bt_psplit(BTREE *t, PAGE *h, PAGE *l, PAGE *r, indx_t *pskip, size_t ilen)
591
{
592
BINTERNAL *bi;
593
BLEAF *bl;
594
CURSOR *c;
595
RLEAF *rl;
596
PAGE *rval;
597
void *src;
598
indx_t full, half, nxt, off, skip, top, used;
599
u_int32_t nbytes;
600
int bigkeycnt, isbigkey;
601
602
/*
603
* Split the data to the left and right pages. Leave the skip index
604
* open. Additionally, make some effort not to split on an overflow
605
* key. This makes internal page processing faster and can save
606
* space as overflow keys used by internal pages are never deleted.
607
*/
608
bigkeycnt = 0;
609
skip = *pskip;
610
full = t->bt_psize - BTDATAOFF;
611
half = full / 2;
612
used = 0;
613
for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
614
if (skip == off) {
615
nbytes = ilen;
616
isbigkey = 0; /* XXX: not really known. */
617
} else
618
switch (h->flags & P_TYPE) {
619
case P_BINTERNAL:
620
src = bi = GETBINTERNAL(h, nxt);
621
nbytes = NBINTERNAL(bi->ksize);
622
isbigkey = bi->flags & P_BIGKEY;
623
break;
624
case P_BLEAF:
625
src = bl = GETBLEAF(h, nxt);
626
nbytes = NBLEAF(bl);
627
isbigkey = bl->flags & P_BIGKEY;
628
break;
629
case P_RINTERNAL:
630
src = GETRINTERNAL(h, nxt);
631
nbytes = NRINTERNAL;
632
isbigkey = 0;
633
break;
634
case P_RLEAF:
635
src = rl = GETRLEAF(h, nxt);
636
nbytes = NRLEAF(rl);
637
isbigkey = 0;
638
break;
639
default:
640
abort();
641
}
642
643
/*
644
* If the key/data pairs are substantial fractions of the max
645
* possible size for the page, it's possible to get situations
646
* where we decide to try and copy too much onto the left page.
647
* Make sure that doesn't happen.
648
*/
649
if ((skip <= off && used + nbytes + sizeof(indx_t) >= full) ||
650
nxt == top - 1) {
651
--off;
652
break;
653
}
654
655
/* Copy the key/data pair, if not the skipped index. */
656
if (skip != off) {
657
++nxt;
658
659
l->linp[off] = l->upper -= nbytes;
660
memmove((char *)l + l->upper, src, nbytes);
661
}
662
663
used += nbytes + sizeof(indx_t);
664
if (used >= half) {
665
if (!isbigkey || bigkeycnt == 3)
666
break;
667
else
668
++bigkeycnt;
669
}
670
}
671
672
/*
673
* Off is the last offset that's valid for the left page.
674
* Nxt is the first offset to be placed on the right page.
675
*/
676
l->lower += (off + 1) * sizeof(indx_t);
677
678
/*
679
* If splitting the page that the cursor was on, the cursor has to be
680
* adjusted to point to the same record as before the split. If the
681
* cursor is at or past the skipped slot, the cursor is incremented by
682
* one. If the cursor is on the right page, it is decremented by the
683
* number of records split to the left page.
684
*/
685
c = &t->bt_cursor;
686
if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
687
if (c->pg.index >= skip)
688
++c->pg.index;
689
if (c->pg.index < nxt) /* Left page. */
690
c->pg.pgno = l->pgno;
691
else { /* Right page. */
692
c->pg.pgno = r->pgno;
693
c->pg.index -= nxt;
694
}
695
}
696
697
/*
698
* If the skipped index was on the left page, just return that page.
699
* Otherwise, adjust the skip index to reflect the new position on
700
* the right page.
701
*/
702
if (skip <= off) {
703
skip = MAX_PAGE_OFFSET;
704
rval = l;
705
} else {
706
rval = r;
707
*pskip -= nxt;
708
}
709
710
for (off = 0; nxt < top; ++off) {
711
if (skip == nxt) {
712
++off;
713
skip = MAX_PAGE_OFFSET;
714
}
715
switch (h->flags & P_TYPE) {
716
case P_BINTERNAL:
717
src = bi = GETBINTERNAL(h, nxt);
718
nbytes = NBINTERNAL(bi->ksize);
719
break;
720
case P_BLEAF:
721
src = bl = GETBLEAF(h, nxt);
722
nbytes = NBLEAF(bl);
723
break;
724
case P_RINTERNAL:
725
src = GETRINTERNAL(h, nxt);
726
nbytes = NRINTERNAL;
727
break;
728
case P_RLEAF:
729
src = rl = GETRLEAF(h, nxt);
730
nbytes = NRLEAF(rl);
731
break;
732
default:
733
abort();
734
}
735
++nxt;
736
r->linp[off] = r->upper -= nbytes;
737
memmove((char *)r + r->upper, src, nbytes);
738
}
739
r->lower += off * sizeof(indx_t);
740
741
/* If the key is being appended to the page, adjust the index. */
742
if (skip == top)
743
r->lower += sizeof(indx_t);
744
745
return (rval);
746
}
747
748
/*
749
* BT_PRESERVE -- Mark a chain of pages as used by an internal node.
750
*
751
* Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
752
* record that references them gets deleted. Chains pointed to by internal
753
* pages never get deleted. This routine marks a chain as pointed to by an
754
* internal page.
755
*
756
* Parameters:
757
* t: tree
758
* pg: page number of first page in the chain.
759
*
760
* Returns:
761
* RET_SUCCESS, RET_ERROR.
762
*/
763
static int
764
bt_preserve(BTREE *t, pgno_t pg)
765
{
766
PAGE *h;
767
768
if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
769
return (RET_ERROR);
770
h->flags |= P_PRESERVE;
771
mpool_put(t->bt_mp, h, MPOOL_DIRTY);
772
return (RET_SUCCESS);
773
}
774
775
/*
776
* REC_TOTAL -- Return the number of recno entries below a page.
777
*
778
* Parameters:
779
* h: page
780
*
781
* Returns:
782
* The number of recno entries below a page.
783
*
784
* XXX
785
* These values could be set by the bt_psplit routine. The problem is that the
786
* entry has to be popped off of the stack etc. or the values have to be passed
787
* all the way back to bt_split/bt_rroot and it's not very clean.
788
*/
789
static recno_t
790
rec_total(PAGE *h)
791
{
792
recno_t recs;
793
indx_t nxt, top;
794
795
for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
796
recs += GETRINTERNAL(h, nxt)->nrecs;
797
return (recs);
798
}
799
800