Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/lib/libc/db/btree/btree.h
39535 views
1
/*-
2
* SPDX-License-Identifier: BSD-3-Clause
3
*
4
* Copyright (c) 1991, 1993, 1994
5
* The Regents of the University of California. All rights reserved.
6
*
7
* This code is derived from software contributed to Berkeley by
8
* Mike Olson.
9
*
10
* Redistribution and use in source and binary forms, with or without
11
* modification, are permitted provided that the following conditions
12
* are met:
13
* 1. Redistributions of source code must retain the above copyright
14
* notice, this list of conditions and the following disclaimer.
15
* 2. Redistributions in binary form must reproduce the above copyright
16
* notice, this list of conditions and the following disclaimer in the
17
* documentation and/or other materials provided with the distribution.
18
* 3. Neither the name of the University nor the names of its contributors
19
* may be used to endorse or promote products derived from this software
20
* without specific prior written permission.
21
*
22
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32
* SUCH DAMAGE.
33
*/
34
35
/* Macros to set/clear/test flags. */
36
#define F_SET(p, f) (p)->flags |= (f)
37
#define F_CLR(p, f) (p)->flags &= ~(f)
38
#define F_ISSET(p, f) ((p)->flags & (f))
39
40
#include <mpool.h>
41
42
#define DEFMINKEYPAGE (2) /* Minimum keys per page */
43
#define MINCACHE (5) /* Minimum cached pages */
44
#define MINPSIZE (512) /* Minimum page size */
45
46
/*
47
* Page 0 of a btree file contains a copy of the meta-data. This page is also
48
* used as an out-of-band page, i.e. page pointers that point to nowhere point
49
* to page 0. Page 1 is the root of the btree.
50
*/
51
#define P_INVALID 0 /* Invalid tree page number. */
52
#define P_META 0 /* Tree metadata page number. */
53
#define P_ROOT 1 /* Tree root page number. */
54
55
/*
56
* There are five page layouts in the btree: btree internal pages (BINTERNAL),
57
* btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
58
* (RLEAF) and overflow pages. All five page types have a page header (PAGE).
59
* This implementation requires that values within structures NOT be padded.
60
* (ANSI C permits random padding.) If your compiler pads randomly you'll have
61
* to do some work to get this package to run.
62
*/
63
typedef struct _page {
64
pgno_t pgno; /* this page's page number */
65
pgno_t prevpg; /* left sibling */
66
pgno_t nextpg; /* right sibling */
67
68
#define P_BINTERNAL 0x01 /* btree internal page */
69
#define P_BLEAF 0x02 /* leaf page */
70
#define P_OVERFLOW 0x04 /* overflow page */
71
#define P_RINTERNAL 0x08 /* recno internal page */
72
#define P_RLEAF 0x10 /* leaf page */
73
#define P_TYPE 0x1f /* type mask */
74
#define P_PRESERVE 0x20 /* never delete this chain of pages */
75
u_int32_t flags;
76
77
indx_t lower; /* lower bound of free space on page */
78
indx_t upper; /* upper bound of free space on page */
79
indx_t linp[1]; /* indx_t-aligned VAR. LENGTH DATA */
80
} PAGE;
81
82
/* First and next index. */
83
#define BTDATAOFF \
84
(sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) + \
85
sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
86
#define NEXTINDEX(p) (((p)->lower - BTDATAOFF) / sizeof(indx_t))
87
88
/*
89
* For pages other than overflow pages, there is an array of offsets into the
90
* rest of the page immediately following the page header. Each offset is to
91
* an item which is unique to the type of page. The h_lower offset is just
92
* past the last filled-in index. The h_upper offset is the first item on the
93
* page. Offsets are from the beginning of the page.
94
*
95
* If an item is too big to store on a single page, a flag is set and the item
96
* is a { page, size } pair such that the page is the first page of an overflow
97
* chain with size bytes of item. Overflow pages are simply bytes without any
98
* external structure.
99
*
100
* The page number and size fields in the items are pgno_t-aligned so they can
101
* be manipulated without copying. (This presumes that 32 bit items can be
102
* manipulated on this system.)
103
*/
104
#define LALIGN(n) (((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
105
#define NOVFLSIZE (sizeof(pgno_t) + sizeof(u_int32_t))
106
107
/*
108
* For the btree internal pages, the item is a key. BINTERNALs are {key, pgno}
109
* pairs, such that the key compares less than or equal to all of the records
110
* on that page. For a tree without duplicate keys, an internal page with two
111
* consecutive keys, a and b, will have all records greater than or equal to a
112
* and less than b stored on the page associated with a. Duplicate keys are
113
* somewhat special and can cause duplicate internal and leaf page records and
114
* some minor modifications of the above rule.
115
*/
116
typedef struct _binternal {
117
u_int32_t ksize; /* key size */
118
pgno_t pgno; /* page number stored on */
119
#define P_BIGDATA 0x01 /* overflow data */
120
#define P_BIGKEY 0x02 /* overflow key */
121
u_char flags;
122
char bytes[1]; /* data */
123
} BINTERNAL;
124
125
/* Get the page's BINTERNAL structure at index indx. */
126
#define GETBINTERNAL(pg, indx) \
127
((BINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
128
129
/* Get the number of bytes in the entry. */
130
#define NBINTERNAL(len) \
131
LALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
132
133
/* Copy a BINTERNAL entry to the page. */
134
#define WR_BINTERNAL(p, size, pgno, flags) { \
135
*(u_int32_t *)p = size; \
136
p += sizeof(u_int32_t); \
137
*(pgno_t *)p = pgno; \
138
p += sizeof(pgno_t); \
139
*(u_char *)p = flags; \
140
p += sizeof(u_char); \
141
}
142
143
/*
144
* For the recno internal pages, the item is a page number with the number of
145
* keys found on that page and below.
146
*/
147
typedef struct _rinternal {
148
recno_t nrecs; /* number of records */
149
pgno_t pgno; /* page number stored below */
150
} RINTERNAL;
151
152
/* Get the page's RINTERNAL structure at index indx. */
153
#define GETRINTERNAL(pg, indx) \
154
((RINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
155
156
/* Get the number of bytes in the entry. */
157
#define NRINTERNAL \
158
LALIGN(sizeof(recno_t) + sizeof(pgno_t))
159
160
/* Copy a RINTERAL entry to the page. */
161
#define WR_RINTERNAL(p, nrecs, pgno) { \
162
*(recno_t *)p = nrecs; \
163
p += sizeof(recno_t); \
164
*(pgno_t *)p = pgno; \
165
}
166
167
/* For the btree leaf pages, the item is a key and data pair. */
168
typedef struct _bleaf {
169
u_int32_t ksize; /* size of key */
170
u_int32_t dsize; /* size of data */
171
u_char flags; /* P_BIGDATA, P_BIGKEY */
172
char bytes[1]; /* data */
173
} BLEAF;
174
175
/* Get the page's BLEAF structure at index indx. */
176
#define GETBLEAF(pg, indx) \
177
((BLEAF *)((char *)(pg) + (pg)->linp[indx]))
178
179
/* Get the number of bytes in the entry. */
180
#define NBLEAF(p) NBLEAFDBT((p)->ksize, (p)->dsize)
181
182
/* Get the number of bytes in the user's key/data pair. */
183
#define NBLEAFDBT(ksize, dsize) \
184
LALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) + \
185
(ksize) + (dsize))
186
187
/* Copy a BLEAF entry to the page. */
188
#define WR_BLEAF(p, key, data, flags) { \
189
*(u_int32_t *)p = key->size; \
190
p += sizeof(u_int32_t); \
191
*(u_int32_t *)p = data->size; \
192
p += sizeof(u_int32_t); \
193
*(u_char *)p = flags; \
194
p += sizeof(u_char); \
195
memmove(p, key->data, key->size); \
196
p += key->size; \
197
memmove(p, data->data, data->size); \
198
}
199
200
/* For the recno leaf pages, the item is a data entry. */
201
typedef struct _rleaf {
202
u_int32_t dsize; /* size of data */
203
u_char flags; /* P_BIGDATA */
204
char bytes[1];
205
} RLEAF;
206
207
/* Get the page's RLEAF structure at index indx. */
208
#define GETRLEAF(pg, indx) \
209
((RLEAF *)((char *)(pg) + (pg)->linp[indx]))
210
211
/* Get the number of bytes in the entry. */
212
#define NRLEAF(p) NRLEAFDBT((p)->dsize)
213
214
/* Get the number of bytes from the user's data. */
215
#define NRLEAFDBT(dsize) \
216
LALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
217
218
/* Copy a RLEAF entry to the page. */
219
#define WR_RLEAF(p, data, flags) { \
220
*(u_int32_t *)p = data->size; \
221
p += sizeof(u_int32_t); \
222
*(u_char *)p = flags; \
223
p += sizeof(u_char); \
224
memmove(p, data->data, data->size); \
225
}
226
227
/*
228
* A record in the tree is either a pointer to a page and an index in the page
229
* or a page number and an index. These structures are used as a cursor, stack
230
* entry and search returns as well as to pass records to other routines.
231
*
232
* One comment about searches. Internal page searches must find the largest
233
* record less than key in the tree so that descents work. Leaf page searches
234
* must find the smallest record greater than key so that the returned index
235
* is the record's correct position for insertion.
236
*/
237
typedef struct _epgno {
238
pgno_t pgno; /* the page number */
239
indx_t index; /* the index on the page */
240
} EPGNO;
241
242
typedef struct _epg {
243
PAGE *page; /* the (pinned) page */
244
indx_t index; /* the index on the page */
245
} EPG;
246
247
/*
248
* About cursors. The cursor (and the page that contained the key/data pair
249
* that it referenced) can be deleted, which makes things a bit tricky. If
250
* there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
251
* or there simply aren't any duplicates of the key) we copy the key that it
252
* referenced when it's deleted, and reacquire a new cursor key if the cursor
253
* is used again. If there are duplicates keys, we move to the next/previous
254
* key, and set a flag so that we know what happened. NOTE: if duplicate (to
255
* the cursor) keys are added to the tree during this process, it is undefined
256
* if they will be returned or not in a cursor scan.
257
*
258
* The flags determine the possible states of the cursor:
259
*
260
* CURS_INIT The cursor references *something*.
261
* CURS_ACQUIRE The cursor was deleted, and a key has been saved so that
262
* we can reacquire the right position in the tree.
263
* CURS_AFTER, CURS_BEFORE
264
* The cursor was deleted, and now references a key/data pair
265
* that has not yet been returned, either before or after the
266
* deleted key/data pair.
267
* XXX
268
* This structure is broken out so that we can eventually offer multiple
269
* cursors as part of the DB interface.
270
*/
271
typedef struct _cursor {
272
EPGNO pg; /* B: Saved tree reference. */
273
DBT key; /* B: Saved key, or key.data == NULL. */
274
recno_t rcursor; /* R: recno cursor (1-based) */
275
276
#define CURS_ACQUIRE 0x01 /* B: Cursor needs to be reacquired. */
277
#define CURS_AFTER 0x02 /* B: Unreturned cursor after key. */
278
#define CURS_BEFORE 0x04 /* B: Unreturned cursor before key. */
279
#define CURS_INIT 0x08 /* RB: Cursor initialized. */
280
u_int8_t flags;
281
} CURSOR;
282
283
/*
284
* The metadata of the tree. The nrecs field is used only by the RECNO code.
285
* This is because the btree doesn't really need it and it requires that every
286
* put or delete call modify the metadata.
287
*/
288
typedef struct _btmeta {
289
u_int32_t magic; /* magic number */
290
u_int32_t version; /* version */
291
u_int32_t psize; /* page size */
292
u_int32_t free; /* page number of first free page */
293
u_int32_t nrecs; /* R: number of records */
294
295
#define SAVEMETA (B_NODUPS | R_RECNO)
296
u_int32_t flags; /* bt_flags & SAVEMETA */
297
} BTMETA;
298
299
/* The in-memory btree/recno data structure. */
300
typedef struct _btree {
301
MPOOL *bt_mp; /* memory pool cookie */
302
303
DB *bt_dbp; /* pointer to enclosing DB */
304
305
EPG bt_cur; /* current (pinned) page */
306
PAGE *bt_pinned; /* page pinned across calls */
307
308
CURSOR bt_cursor; /* cursor */
309
310
#define BT_PUSH(t, p, i) { \
311
t->bt_sp->pgno = p; \
312
t->bt_sp->index = i; \
313
++t->bt_sp; \
314
}
315
#define BT_POP(t) (t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
316
#define BT_CLR(t) (t->bt_sp = t->bt_stack)
317
EPGNO bt_stack[50]; /* stack of parent pages */
318
EPGNO *bt_sp; /* current stack pointer */
319
320
DBT bt_rkey; /* returned key */
321
DBT bt_rdata; /* returned data */
322
323
int bt_fd; /* tree file descriptor */
324
325
pgno_t bt_free; /* next free page */
326
u_int32_t bt_psize; /* page size */
327
indx_t bt_ovflsize; /* cut-off for key/data overflow */
328
int bt_lorder; /* byte order */
329
/* sorted order */
330
enum { NOT, BACK, FORWARD } bt_order;
331
EPGNO bt_last; /* last insert */
332
333
/* B: key comparison function */
334
int (*bt_cmp)(const DBT *, const DBT *);
335
/* B: prefix comparison function */
336
size_t (*bt_pfx)(const DBT *, const DBT *);
337
/* R: recno input function */
338
int (*bt_irec)(struct _btree *, recno_t);
339
340
FILE *bt_rfp; /* R: record FILE pointer */
341
int bt_rfd; /* R: record file descriptor */
342
343
caddr_t bt_cmap; /* R: current point in mapped space */
344
caddr_t bt_smap; /* R: start of mapped space */
345
caddr_t bt_emap; /* R: end of mapped space */
346
size_t bt_msize; /* R: size of mapped region. */
347
348
recno_t bt_nrecs; /* R: number of records */
349
size_t bt_reclen; /* R: fixed record length */
350
u_char bt_bval; /* R: delimiting byte/pad character */
351
352
/*
353
* NB:
354
* B_NODUPS and R_RECNO are stored on disk, and may not be changed.
355
*/
356
#define B_INMEM 0x00001 /* in-memory tree */
357
#define B_METADIRTY 0x00002 /* need to write metadata */
358
#define B_MODIFIED 0x00004 /* tree modified */
359
#define B_NEEDSWAP 0x00008 /* if byte order requires swapping */
360
#define B_RDONLY 0x00010 /* read-only tree */
361
362
#define B_NODUPS 0x00020 /* no duplicate keys permitted */
363
#define R_RECNO 0x00080 /* record oriented tree */
364
365
#define R_CLOSEFP 0x00040 /* opened a file pointer */
366
#define R_EOF 0x00100 /* end of input file reached. */
367
#define R_FIXLEN 0x00200 /* fixed length records */
368
#define R_MEMMAPPED 0x00400 /* memory mapped file. */
369
#define R_INMEM 0x00800 /* in-memory file */
370
#define R_MODIFIED 0x01000 /* modified file */
371
#define R_RDONLY 0x02000 /* read-only file */
372
373
#define B_DB_LOCK 0x04000 /* DB_LOCK specified. */
374
#define B_DB_SHMEM 0x08000 /* DB_SHMEM specified. */
375
#define B_DB_TXN 0x10000 /* DB_TXN specified. */
376
u_int32_t flags;
377
} BTREE;
378
379
#include "extern.h"
380
381