Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/lib/libc/db/hash/hash_bigkey.c
39507 views
1
/*-
2
* SPDX-License-Identifier: BSD-3-Clause
3
*
4
* Copyright (c) 1990, 1993, 1994
5
* The Regents of the University of California. All rights reserved.
6
*
7
* This code is derived from software contributed to Berkeley by
8
* Margo Seltzer.
9
*
10
* Redistribution and use in source and binary forms, with or without
11
* modification, are permitted provided that the following conditions
12
* are met:
13
* 1. Redistributions of source code must retain the above copyright
14
* notice, this list of conditions and the following disclaimer.
15
* 2. Redistributions in binary form must reproduce the above copyright
16
* notice, this list of conditions and the following disclaimer in the
17
* documentation and/or other materials provided with the distribution.
18
* 3. Neither the name of the University nor the names of its contributors
19
* may be used to endorse or promote products derived from this software
20
* without specific prior written permission.
21
*
22
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32
* SUCH DAMAGE.
33
*/
34
35
/*
36
* PACKAGE: hash
37
* DESCRIPTION:
38
* Big key/data handling for the hashing package.
39
*
40
* ROUTINES:
41
* External
42
* __big_keydata
43
* __big_split
44
* __big_insert
45
* __big_return
46
* __big_delete
47
* __find_last_page
48
* Internal
49
* collect_key
50
* collect_data
51
*/
52
53
#include <sys/param.h>
54
55
#include <errno.h>
56
#include <stdio.h>
57
#include <stdlib.h>
58
#include <string.h>
59
60
#ifdef DEBUG
61
#include <assert.h>
62
#endif
63
64
#include <db.h>
65
#include "hash.h"
66
#include "page.h"
67
#include "extern.h"
68
69
static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int);
70
static int collect_data(HTAB *, BUFHEAD *, int, int);
71
72
/*
73
* Big_insert
74
*
75
* You need to do an insert and the key/data pair is too big
76
*
77
* Returns:
78
* 0 ==> OK
79
*-1 ==> ERROR
80
*/
81
int
82
__big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
83
{
84
u_int16_t *p;
85
int key_size, n;
86
unsigned int val_size;
87
u_int16_t space, move_bytes, off;
88
char *cp, *key_data, *val_data;
89
90
cp = bufp->page; /* Character pointer of p. */
91
p = (u_int16_t *)cp;
92
93
key_data = (char *)key->data;
94
key_size = key->size;
95
val_data = (char *)val->data;
96
val_size = val->size;
97
98
/* First move the Key */
99
for (space = FREESPACE(p) - BIGOVERHEAD; key_size;
100
space = FREESPACE(p) - BIGOVERHEAD) {
101
move_bytes = MIN(space, key_size);
102
off = OFFSET(p) - move_bytes;
103
memmove(cp + off, key_data, move_bytes);
104
key_size -= move_bytes;
105
key_data += move_bytes;
106
n = p[0];
107
p[++n] = off;
108
p[0] = ++n;
109
FREESPACE(p) = off - PAGE_META(n);
110
OFFSET(p) = off;
111
p[n] = PARTIAL_KEY;
112
bufp = __add_ovflpage(hashp, bufp);
113
if (!bufp)
114
return (-1);
115
n = p[0];
116
if (!key_size) {
117
space = FREESPACE(p);
118
if (space) {
119
move_bytes = MIN(space, val_size);
120
/*
121
* If the data would fit exactly in the
122
* remaining space, we must overflow it to the
123
* next page; otherwise the invariant that the
124
* data must end on a page with FREESPACE
125
* non-zero would fail.
126
*/
127
if (space == val_size && val_size == val->size)
128
goto toolarge;
129
off = OFFSET(p) - move_bytes;
130
memmove(cp + off, val_data, move_bytes);
131
val_data += move_bytes;
132
val_size -= move_bytes;
133
p[n] = off;
134
p[n - 2] = FULL_KEY_DATA;
135
FREESPACE(p) = FREESPACE(p) - move_bytes;
136
OFFSET(p) = off;
137
} else {
138
toolarge:
139
p[n - 2] = FULL_KEY;
140
}
141
}
142
p = (u_int16_t *)bufp->page;
143
cp = bufp->page;
144
bufp->flags |= BUF_MOD;
145
}
146
147
/* Now move the data */
148
for (space = FREESPACE(p) - BIGOVERHEAD; val_size;
149
space = FREESPACE(p) - BIGOVERHEAD) {
150
move_bytes = MIN(space, val_size);
151
/*
152
* Here's the hack to make sure that if the data ends on the
153
* same page as the key ends, FREESPACE is at least one.
154
*/
155
if (space == val_size && val_size == val->size)
156
move_bytes--;
157
off = OFFSET(p) - move_bytes;
158
memmove(cp + off, val_data, move_bytes);
159
val_size -= move_bytes;
160
val_data += move_bytes;
161
n = p[0];
162
p[++n] = off;
163
p[0] = ++n;
164
FREESPACE(p) = off - PAGE_META(n);
165
OFFSET(p) = off;
166
if (val_size) {
167
p[n] = FULL_KEY;
168
bufp = __add_ovflpage(hashp, bufp);
169
if (!bufp)
170
return (-1);
171
cp = bufp->page;
172
p = (u_int16_t *)cp;
173
} else
174
p[n] = FULL_KEY_DATA;
175
bufp->flags |= BUF_MOD;
176
}
177
return (0);
178
}
179
180
/*
181
* Called when bufp's page contains a partial key (index should be 1)
182
*
183
* All pages in the big key/data pair except bufp are freed. We cannot
184
* free bufp because the page pointing to it is lost and we can't get rid
185
* of its pointer.
186
*
187
* Returns:
188
* 0 => OK
189
*-1 => ERROR
190
*/
191
int
192
__big_delete(HTAB *hashp, BUFHEAD *bufp)
193
{
194
BUFHEAD *last_bfp, *rbufp;
195
u_int16_t *bp, pageno;
196
int key_done, n;
197
198
rbufp = bufp;
199
last_bfp = NULL;
200
bp = (u_int16_t *)bufp->page;
201
pageno = 0;
202
key_done = 0;
203
204
while (!key_done || (bp[2] != FULL_KEY_DATA)) {
205
if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
206
key_done = 1;
207
208
/*
209
* If there is freespace left on a FULL_KEY_DATA page, then
210
* the data is short and fits entirely on this page, and this
211
* is the last page.
212
*/
213
if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
214
break;
215
pageno = bp[bp[0] - 1];
216
rbufp->flags |= BUF_MOD;
217
rbufp = __get_buf(hashp, pageno, rbufp, 0);
218
if (last_bfp)
219
__free_ovflpage(hashp, last_bfp);
220
last_bfp = rbufp;
221
if (!rbufp)
222
return (-1); /* Error. */
223
bp = (u_int16_t *)rbufp->page;
224
}
225
226
/*
227
* If we get here then rbufp points to the last page of the big
228
* key/data pair. Bufp points to the first one -- it should now be
229
* empty pointing to the next page after this pair. Can't free it
230
* because we don't have the page pointing to it.
231
*/
232
233
/* This is information from the last page of the pair. */
234
n = bp[0];
235
pageno = bp[n - 1];
236
237
/* Now, bp is the first page of the pair. */
238
bp = (u_int16_t *)bufp->page;
239
if (n > 2) {
240
/* There is an overflow page. */
241
bp[1] = pageno;
242
bp[2] = OVFLPAGE;
243
bufp->ovfl = rbufp->ovfl;
244
} else
245
/* This is the last page. */
246
bufp->ovfl = NULL;
247
n -= 2;
248
bp[0] = n;
249
FREESPACE(bp) = hashp->BSIZE - PAGE_META(n);
250
OFFSET(bp) = hashp->BSIZE;
251
252
bufp->flags |= BUF_MOD;
253
if (rbufp)
254
__free_ovflpage(hashp, rbufp);
255
if (last_bfp && last_bfp != rbufp)
256
__free_ovflpage(hashp, last_bfp);
257
258
hashp->NKEYS--;
259
return (0);
260
}
261
/*
262
* Returns:
263
* 0 = key not found
264
* -1 = get next overflow page
265
* -2 means key not found and this is big key/data
266
* -3 error
267
*/
268
int
269
__find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size)
270
{
271
u_int16_t *bp;
272
char *p;
273
int ksize;
274
u_int16_t bytes;
275
char *kkey;
276
277
bp = (u_int16_t *)bufp->page;
278
p = bufp->page;
279
ksize = size;
280
kkey = key;
281
282
for (bytes = hashp->BSIZE - bp[ndx];
283
bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
284
bytes = hashp->BSIZE - bp[ndx]) {
285
if (memcmp(p + bp[ndx], kkey, bytes))
286
return (-2);
287
kkey += bytes;
288
ksize -= bytes;
289
bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0);
290
if (!bufp)
291
return (-3);
292
p = bufp->page;
293
bp = (u_int16_t *)p;
294
ndx = 1;
295
}
296
297
if (bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) {
298
#ifdef HASH_STATISTICS
299
++hash_collisions;
300
#endif
301
return (-2);
302
} else
303
return (ndx);
304
}
305
306
/*
307
* Given the buffer pointer of the first overflow page of a big pair,
308
* find the end of the big pair
309
*
310
* This will set bpp to the buffer header of the last page of the big pair.
311
* It will return the pageno of the overflow page following the last page
312
* of the pair; 0 if there isn't any (i.e. big pair is the last key in the
313
* bucket)
314
*/
315
u_int16_t
316
__find_last_page(HTAB *hashp, BUFHEAD **bpp)
317
{
318
BUFHEAD *bufp;
319
u_int16_t *bp, pageno;
320
int n;
321
322
bufp = *bpp;
323
bp = (u_int16_t *)bufp->page;
324
for (;;) {
325
n = bp[0];
326
327
/*
328
* This is the last page if: the tag is FULL_KEY_DATA and
329
* either only 2 entries OVFLPAGE marker is explicit there
330
* is freespace on the page.
331
*/
332
if (bp[2] == FULL_KEY_DATA &&
333
((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
334
break;
335
336
pageno = bp[n - 1];
337
bufp = __get_buf(hashp, pageno, bufp, 0);
338
if (!bufp)
339
return (0); /* Need to indicate an error! */
340
bp = (u_int16_t *)bufp->page;
341
}
342
343
*bpp = bufp;
344
if (bp[0] > 2)
345
return (bp[3]);
346
else
347
return (0);
348
}
349
350
/*
351
* Return the data for the key/data pair that begins on this page at this
352
* index (index should always be 1).
353
*/
354
int
355
__big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current)
356
{
357
BUFHEAD *save_p;
358
u_int16_t *bp, len, off, save_addr;
359
char *tp;
360
361
bp = (u_int16_t *)bufp->page;
362
while (bp[ndx + 1] == PARTIAL_KEY) {
363
bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
364
if (!bufp)
365
return (-1);
366
bp = (u_int16_t *)bufp->page;
367
ndx = 1;
368
}
369
370
if (bp[ndx + 1] == FULL_KEY) {
371
bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
372
if (!bufp)
373
return (-1);
374
bp = (u_int16_t *)bufp->page;
375
save_p = bufp;
376
save_addr = save_p->addr;
377
off = bp[1];
378
len = 0;
379
} else
380
if (!FREESPACE(bp)) {
381
/*
382
* This is a hack. We can't distinguish between
383
* FULL_KEY_DATA that contains complete data or
384
* incomplete data, so we require that if the data
385
* is complete, there is at least 1 byte of free
386
* space left.
387
*/
388
off = bp[bp[0]];
389
len = bp[1] - off;
390
save_p = bufp;
391
save_addr = bufp->addr;
392
bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
393
if (!bufp)
394
return (-1);
395
bp = (u_int16_t *)bufp->page;
396
} else {
397
/* The data is all on one page. */
398
tp = (char *)bp;
399
off = bp[bp[0]];
400
val->data = (u_char *)tp + off;
401
val->size = bp[1] - off;
402
if (set_current) {
403
if (bp[0] == 2) { /* No more buckets in
404
* chain */
405
hashp->cpage = NULL;
406
hashp->cbucket++;
407
hashp->cndx = 1;
408
} else {
409
hashp->cpage = __get_buf(hashp,
410
bp[bp[0] - 1], bufp, 0);
411
if (!hashp->cpage)
412
return (-1);
413
hashp->cndx = 1;
414
if (!((u_int16_t *)
415
hashp->cpage->page)[0]) {
416
hashp->cbucket++;
417
hashp->cpage = NULL;
418
}
419
}
420
}
421
return (0);
422
}
423
424
val->size = (size_t)collect_data(hashp, bufp, (int)len, set_current);
425
if (val->size == (size_t)-1)
426
return (-1);
427
if (save_p->addr != save_addr) {
428
/* We are pretty short on buffers. */
429
errno = EINVAL; /* OUT OF BUFFERS */
430
return (-1);
431
}
432
memmove(hashp->tmp_buf, (save_p->page) + off, len);
433
val->data = (u_char *)hashp->tmp_buf;
434
return (0);
435
}
436
/*
437
* Count how big the total datasize is by recursing through the pages. Then
438
* allocate a buffer and copy the data as you recurse up.
439
*/
440
static int
441
collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set)
442
{
443
u_int16_t *bp;
444
char *p;
445
BUFHEAD *xbp;
446
u_int16_t save_addr;
447
int mylen, totlen;
448
449
p = bufp->page;
450
bp = (u_int16_t *)p;
451
mylen = hashp->BSIZE - bp[1];
452
save_addr = bufp->addr;
453
454
if (bp[2] == FULL_KEY_DATA) { /* End of Data */
455
totlen = len + mylen;
456
if (hashp->tmp_buf)
457
free(hashp->tmp_buf);
458
if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL)
459
return (-1);
460
if (set) {
461
hashp->cndx = 1;
462
if (bp[0] == 2) { /* No more buckets in chain */
463
hashp->cpage = NULL;
464
hashp->cbucket++;
465
} else {
466
hashp->cpage =
467
__get_buf(hashp, bp[bp[0] - 1], bufp, 0);
468
if (!hashp->cpage)
469
return (-1);
470
else if (!((u_int16_t *)hashp->cpage->page)[0]) {
471
hashp->cbucket++;
472
hashp->cpage = NULL;
473
}
474
}
475
}
476
} else {
477
xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
478
if (!xbp || ((totlen =
479
collect_data(hashp, xbp, len + mylen, set)) < 1))
480
return (-1);
481
}
482
if (bufp->addr != save_addr) {
483
errno = EINVAL; /* Out of buffers. */
484
return (-1);
485
}
486
memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen);
487
return (totlen);
488
}
489
490
/*
491
* Fill in the key and data for this big pair.
492
*/
493
int
494
__big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set)
495
{
496
key->size = (size_t)collect_key(hashp, bufp, 0, val, set);
497
if (key->size == (size_t)-1)
498
return (-1);
499
key->data = (u_char *)hashp->tmp_key;
500
return (0);
501
}
502
503
/*
504
* Count how big the total key size is by recursing through the pages. Then
505
* collect the data, allocate a buffer and copy the key as you recurse up.
506
*/
507
static int
508
collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set)
509
{
510
BUFHEAD *xbp;
511
char *p;
512
int mylen, totlen;
513
u_int16_t *bp, save_addr;
514
515
p = bufp->page;
516
bp = (u_int16_t *)p;
517
mylen = hashp->BSIZE - bp[1];
518
519
save_addr = bufp->addr;
520
totlen = len + mylen;
521
if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) { /* End of Key. */
522
if (hashp->tmp_key != NULL)
523
free(hashp->tmp_key);
524
if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL)
525
return (-1);
526
if (__big_return(hashp, bufp, 1, val, set))
527
return (-1);
528
} else {
529
xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
530
if (!xbp || ((totlen =
531
collect_key(hashp, xbp, totlen, val, set)) < 1))
532
return (-1);
533
}
534
if (bufp->addr != save_addr) {
535
errno = EINVAL; /* MIS -- OUT OF BUFFERS */
536
return (-1);
537
}
538
memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen);
539
return (totlen);
540
}
541
542
/*
543
* Returns:
544
* 0 => OK
545
* -1 => error
546
*/
547
int
548
__big_split(HTAB *hashp,
549
BUFHEAD *op, /* Pointer to where to put keys that go in old bucket */
550
BUFHEAD *np, /* Pointer to new bucket page */
551
BUFHEAD *big_keyp, /* Pointer to first page containing the big key/data */
552
int addr, /* Address of big_keyp */
553
u_int32_t obucket, /* Old Bucket */
554
SPLIT_RETURN *ret)
555
{
556
BUFHEAD *bp, *tmpp;
557
DBT key, val;
558
u_int32_t change;
559
u_int16_t free_space, n, off, *tp;
560
561
bp = big_keyp;
562
563
/* Now figure out where the big key/data goes */
564
if (__big_keydata(hashp, big_keyp, &key, &val, 0))
565
return (-1);
566
change = (__call_hash(hashp, key.data, key.size) != obucket);
567
568
if ( (ret->next_addr = __find_last_page(hashp, &big_keyp)) ) {
569
if (!(ret->nextp =
570
__get_buf(hashp, ret->next_addr, big_keyp, 0)))
571
return (-1);
572
} else
573
ret->nextp = NULL;
574
575
/* Now make one of np/op point to the big key/data pair */
576
#ifdef DEBUG
577
assert(np->ovfl == NULL);
578
#endif
579
if (change)
580
tmpp = np;
581
else
582
tmpp = op;
583
584
tmpp->flags |= BUF_MOD;
585
#ifdef DEBUG1
586
(void)fprintf(stderr,
587
"BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
588
(tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
589
#endif
590
tmpp->ovfl = bp; /* one of op/np point to big_keyp */
591
tp = (u_int16_t *)tmpp->page;
592
#ifdef DEBUG
593
assert(FREESPACE(tp) >= OVFLSIZE);
594
#endif
595
n = tp[0];
596
off = OFFSET(tp);
597
free_space = FREESPACE(tp);
598
tp[++n] = (u_int16_t)addr;
599
tp[++n] = OVFLPAGE;
600
tp[0] = n;
601
OFFSET(tp) = off;
602
FREESPACE(tp) = free_space - OVFLSIZE;
603
604
/*
605
* Finally, set the new and old return values. BIG_KEYP contains a
606
* pointer to the last page of the big key_data pair. Make sure that
607
* big_keyp has no following page (2 elements) or create an empty
608
* following page.
609
*/
610
611
ret->newp = np;
612
ret->oldp = op;
613
614
tp = (u_int16_t *)big_keyp->page;
615
big_keyp->flags |= BUF_MOD;
616
if (tp[0] > 2) {
617
/*
618
* There may be either one or two offsets on this page. If
619
* there is one, then the overflow page is linked on normally
620
* and tp[4] is OVFLPAGE. If there are two, tp[4] contains
621
* the second offset and needs to get stuffed in after the
622
* next overflow page is added.
623
*/
624
n = tp[4];
625
free_space = FREESPACE(tp);
626
off = OFFSET(tp);
627
tp[0] -= 2;
628
FREESPACE(tp) = free_space + OVFLSIZE;
629
OFFSET(tp) = off;
630
tmpp = __add_ovflpage(hashp, big_keyp);
631
if (!tmpp)
632
return (-1);
633
tp[4] = n;
634
} else
635
tmpp = big_keyp;
636
637
if (change)
638
ret->newp = tmpp;
639
else
640
ret->oldp = tmpp;
641
return (0);
642
}
643
644