Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/lib/libcrypt/crypt-sha256.c
34815 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2011 The FreeBSD Project. All rights reserved.
5
*
6
* Redistribution and use in source and binary forms, with or without
7
* modification, are permitted provided that the following conditions
8
* are met:
9
* 1. Redistributions of source code must retain the above copyright
10
* notice, this list of conditions and the following disclaimer.
11
* 2. Redistributions in binary form must reproduce the above copyright
12
* notice, this list of conditions and the following disclaimer in the
13
* documentation and/or other materials provided with the distribution.
14
*
15
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25
* SUCH DAMAGE.
26
*/
27
28
/* Based on:
29
* SHA256-based Unix crypt implementation. Released into the Public Domain by
30
* Ulrich Drepper <[email protected]>. */
31
32
#include <sys/cdefs.h>
33
#include <sys/endian.h>
34
#include <sys/param.h>
35
36
#include <errno.h>
37
#include <limits.h>
38
#include <sha256.h>
39
#include <stdbool.h>
40
#include <stdint.h>
41
#include <stdio.h>
42
#include <stdlib.h>
43
#include <string.h>
44
#include <strings.h>
45
46
#include "crypt.h"
47
48
/* Define our magic string to mark salt for SHA256 "encryption" replacement. */
49
static const char sha256_salt_prefix[] = "$5$";
50
51
/* Prefix for optional rounds specification. */
52
static const char sha256_rounds_prefix[] = "rounds=";
53
54
/* Maximum salt string length. */
55
#define SALT_LEN_MAX 16
56
/* Default number of rounds if not explicitly specified. */
57
#define ROUNDS_DEFAULT 5000
58
/* Minimum number of rounds. */
59
#define ROUNDS_MIN 1000
60
/* Maximum number of rounds. */
61
#define ROUNDS_MAX 999999999
62
63
int
64
crypt_sha256(const char *key, const char *salt, char *buffer)
65
{
66
u_long srounds;
67
uint8_t alt_result[32], temp_result[32];
68
SHA256_CTX ctx, alt_ctx;
69
size_t salt_len, key_len, cnt, rounds;
70
char *cp, *p_bytes, *s_bytes, *endp;
71
const char *num;
72
bool rounds_custom;
73
74
/* Default number of rounds. */
75
rounds = ROUNDS_DEFAULT;
76
rounds_custom = false;
77
78
/* Find beginning of salt string. The prefix should normally always
79
* be present. Just in case it is not. */
80
if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0)
81
/* Skip salt prefix. */
82
salt += sizeof(sha256_salt_prefix) - 1;
83
84
if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1)
85
== 0) {
86
num = salt + sizeof(sha256_rounds_prefix) - 1;
87
srounds = strtoul(num, &endp, 10);
88
89
if (*endp == '$') {
90
salt = endp + 1;
91
rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
92
rounds_custom = true;
93
}
94
}
95
96
salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
97
key_len = strlen(key);
98
99
/* Prepare for the real work. */
100
SHA256_Init(&ctx);
101
102
/* Add the key string. */
103
SHA256_Update(&ctx, key, key_len);
104
105
/* The last part is the salt string. This must be at most 8
106
* characters and it ends at the first `$' character (for
107
* compatibility with existing implementations). */
108
SHA256_Update(&ctx, salt, salt_len);
109
110
/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
111
* final result will be added to the first context. */
112
SHA256_Init(&alt_ctx);
113
114
/* Add key. */
115
SHA256_Update(&alt_ctx, key, key_len);
116
117
/* Add salt. */
118
SHA256_Update(&alt_ctx, salt, salt_len);
119
120
/* Add key again. */
121
SHA256_Update(&alt_ctx, key, key_len);
122
123
/* Now get result of this (32 bytes) and add it to the other context. */
124
SHA256_Final(alt_result, &alt_ctx);
125
126
/* Add for any character in the key one byte of the alternate sum. */
127
for (cnt = key_len; cnt > 32; cnt -= 32)
128
SHA256_Update(&ctx, alt_result, 32);
129
SHA256_Update(&ctx, alt_result, cnt);
130
131
/* Take the binary representation of the length of the key and for
132
* every 1 add the alternate sum, for every 0 the key. */
133
for (cnt = key_len; cnt > 0; cnt >>= 1)
134
if ((cnt & 1) != 0)
135
SHA256_Update(&ctx, alt_result, 32);
136
else
137
SHA256_Update(&ctx, key, key_len);
138
139
/* Create intermediate result. */
140
SHA256_Final(alt_result, &ctx);
141
142
/* Start computation of P byte sequence. */
143
SHA256_Init(&alt_ctx);
144
145
/* For every character in the password add the entire password. */
146
for (cnt = 0; cnt < key_len; ++cnt)
147
SHA256_Update(&alt_ctx, key, key_len);
148
149
/* Finish the digest. */
150
SHA256_Final(temp_result, &alt_ctx);
151
152
/* Create byte sequence P. */
153
cp = p_bytes = alloca(key_len);
154
for (cnt = key_len; cnt >= 32; cnt -= 32) {
155
memcpy(cp, temp_result, 32);
156
cp += 32;
157
}
158
memcpy(cp, temp_result, cnt);
159
160
/* Start computation of S byte sequence. */
161
SHA256_Init(&alt_ctx);
162
163
/* For every character in the password add the entire password. */
164
for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
165
SHA256_Update(&alt_ctx, salt, salt_len);
166
167
/* Finish the digest. */
168
SHA256_Final(temp_result, &alt_ctx);
169
170
/* Create byte sequence S. */
171
cp = s_bytes = alloca(salt_len);
172
for (cnt = salt_len; cnt >= 32; cnt -= 32) {
173
memcpy(cp, temp_result, 32);
174
cp += 32;
175
}
176
memcpy(cp, temp_result, cnt);
177
178
/* Repeatedly run the collected hash value through SHA256 to burn CPU
179
* cycles. */
180
for (cnt = 0; cnt < rounds; ++cnt) {
181
/* New context. */
182
SHA256_Init(&ctx);
183
184
/* Add key or last result. */
185
if ((cnt & 1) != 0)
186
SHA256_Update(&ctx, p_bytes, key_len);
187
else
188
SHA256_Update(&ctx, alt_result, 32);
189
190
/* Add salt for numbers not divisible by 3. */
191
if (cnt % 3 != 0)
192
SHA256_Update(&ctx, s_bytes, salt_len);
193
194
/* Add key for numbers not divisible by 7. */
195
if (cnt % 7 != 0)
196
SHA256_Update(&ctx, p_bytes, key_len);
197
198
/* Add key or last result. */
199
if ((cnt & 1) != 0)
200
SHA256_Update(&ctx, alt_result, 32);
201
else
202
SHA256_Update(&ctx, p_bytes, key_len);
203
204
/* Create intermediate result. */
205
SHA256_Final(alt_result, &ctx);
206
}
207
208
/* Now we can construct the result string. It consists of three
209
* parts. */
210
cp = stpcpy(buffer, sha256_salt_prefix);
211
212
if (rounds_custom)
213
cp += sprintf(cp, "%s%zu$", sha256_rounds_prefix, rounds);
214
215
cp = stpncpy(cp, salt, salt_len);
216
217
*cp++ = '$';
218
219
b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &cp);
220
b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &cp);
221
b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &cp);
222
b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &cp);
223
b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &cp);
224
b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &cp);
225
b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &cp);
226
b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &cp);
227
b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &cp);
228
b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &cp);
229
b64_from_24bit(0, alt_result[31], alt_result[30], 3, &cp);
230
*cp = '\0'; /* Terminate the string. */
231
232
/* Clear the buffer for the intermediate result so that people
233
* attaching to processes or reading core dumps cannot get any
234
* information. We do it in this way to clear correct_words[] inside
235
* the SHA256 implementation as well. */
236
SHA256_Init(&ctx);
237
SHA256_Final(alt_result, &ctx);
238
explicit_bzero(temp_result, sizeof(temp_result));
239
explicit_bzero(p_bytes, key_len);
240
explicit_bzero(s_bytes, salt_len);
241
242
return (0);
243
}
244
245
#ifdef TEST
246
247
static const struct {
248
const char *input;
249
const char result[32];
250
} tests[] =
251
{
252
/* Test vectors from FIPS 180-2: appendix B.1. */
253
{
254
"abc",
255
"\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
256
"\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad"
257
},
258
/* Test vectors from FIPS 180-2: appendix B.2. */
259
{
260
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
261
"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
262
"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
263
},
264
/* Test vectors from the NESSIE project. */
265
{
266
"",
267
"\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24"
268
"\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55"
269
},
270
{
271
"a",
272
"\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d"
273
"\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb"
274
},
275
{
276
"message digest",
277
"\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad"
278
"\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50"
279
},
280
{
281
"abcdefghijklmnopqrstuvwxyz",
282
"\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52"
283
"\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73"
284
},
285
{
286
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
287
"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
288
"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
289
},
290
{
291
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
292
"\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80"
293
"\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0"
294
},
295
{
296
"123456789012345678901234567890123456789012345678901234567890"
297
"12345678901234567890",
298
"\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e"
299
"\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e"
300
}
301
};
302
303
#define ntests (sizeof (tests) / sizeof (tests[0]))
304
305
static const struct {
306
const char *salt;
307
const char *input;
308
const char *expected;
309
} tests2[] =
310
{
311
{
312
"$5$saltstring", "Hello world!",
313
"$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"
314
},
315
{
316
"$5$rounds=10000$saltstringsaltstring", "Hello world!",
317
"$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2."
318
"opqey6IcA"
319
},
320
{
321
"$5$rounds=5000$toolongsaltstring", "This is just a test",
322
"$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8"
323
"mGRcvxa5"
324
},
325
{
326
"$5$rounds=1400$anotherlongsaltstring",
327
"a very much longer text to encrypt. This one even stretches over more"
328
"than one line.",
329
"$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12"
330
"oP84Bnq1"
331
},
332
{
333
"$5$rounds=77777$short",
334
"we have a short salt string but not a short password",
335
"$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/"
336
},
337
{
338
"$5$rounds=123456$asaltof16chars..", "a short string",
339
"$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/"
340
"cZKmF/wJvD"
341
},
342
{
343
"$5$rounds=10$roundstoolow", "the minimum number is still observed",
344
"$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97"
345
"2bIC"
346
},
347
};
348
349
#define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
350
351
int
352
main(void)
353
{
354
SHA256_CTX ctx;
355
uint8_t sum[32];
356
int result = 0;
357
int i, cnt;
358
359
for (cnt = 0; cnt < (int)ntests; ++cnt) {
360
SHA256_Init(&ctx);
361
SHA256_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input));
362
SHA256_Final(sum, &ctx);
363
if (memcmp(tests[cnt].result, sum, 32) != 0) {
364
for (i = 0; i < 32; i++)
365
printf("%02X", tests[cnt].result[i]);
366
printf("\n");
367
for (i = 0; i < 32; i++)
368
printf("%02X", sum[i]);
369
printf("\n");
370
printf("test %d run %d failed\n", cnt, 1);
371
result = 1;
372
}
373
374
SHA256_Init(&ctx);
375
for (i = 0; tests[cnt].input[i] != '\0'; ++i)
376
SHA256_Update(&ctx, &tests[cnt].input[i], 1);
377
SHA256_Final(sum, &ctx);
378
if (memcmp(tests[cnt].result, sum, 32) != 0) {
379
for (i = 0; i < 32; i++)
380
printf("%02X", tests[cnt].result[i]);
381
printf("\n");
382
for (i = 0; i < 32; i++)
383
printf("%02X", sum[i]);
384
printf("\n");
385
printf("test %d run %d failed\n", cnt, 2);
386
result = 1;
387
}
388
}
389
390
/* Test vector from FIPS 180-2: appendix B.3. */
391
char buf[1000];
392
393
memset(buf, 'a', sizeof(buf));
394
SHA256_Init(&ctx);
395
for (i = 0; i < 1000; ++i)
396
SHA256_Update(&ctx, buf, sizeof(buf));
397
SHA256_Final(sum, &ctx);
398
static const char expected[32] =
399
"\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
400
"\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0";
401
402
if (memcmp(expected, sum, 32) != 0) {
403
printf("test %d failed\n", cnt);
404
result = 1;
405
}
406
407
for (cnt = 0; cnt < ntests2; ++cnt) {
408
char *cp = crypt_sha256(tests2[cnt].input, tests2[cnt].salt);
409
410
if (strcmp(cp, tests2[cnt].expected) != 0) {
411
printf("test %d: expected \"%s\", got \"%s\"\n",
412
cnt, tests2[cnt].expected, cp);
413
result = 1;
414
}
415
}
416
417
if (result == 0)
418
puts("all tests OK");
419
420
return result;
421
}
422
423
#endif /* TEST */
424
425