Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/lib/libdevstat/devstat.c
39475 views
1
/*-
2
* SPDX-License-Identifier: BSD-3-Clause
3
*
4
* Copyright (c) 1997, 1998 Kenneth D. Merry.
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
* 3. The name of the author may not be used to endorse or promote products
16
* derived from this software without specific prior written permission.
17
*
18
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28
* SUCH DAMAGE.
29
*/
30
31
#include <sys/types.h>
32
#include <sys/sysctl.h>
33
#include <sys/errno.h>
34
#include <sys/resource.h>
35
#include <sys/queue.h>
36
37
#include <ctype.h>
38
#include <err.h>
39
#include <fcntl.h>
40
#include <limits.h>
41
#include <stdio.h>
42
#include <stdlib.h>
43
#include <string.h>
44
#include <stdarg.h>
45
#include <kvm.h>
46
#include <nlist.h>
47
48
#include "devstat.h"
49
50
int
51
compute_stats(struct devstat *current, struct devstat *previous,
52
long double etime, u_int64_t *total_bytes,
53
u_int64_t *total_transfers, u_int64_t *total_blocks,
54
long double *kb_per_transfer, long double *transfers_per_second,
55
long double *mb_per_second, long double *blocks_per_second,
56
long double *ms_per_transaction);
57
58
typedef enum {
59
DEVSTAT_ARG_NOTYPE,
60
DEVSTAT_ARG_UINT64,
61
DEVSTAT_ARG_LD,
62
DEVSTAT_ARG_SKIP
63
} devstat_arg_type;
64
65
char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
66
67
/*
68
* Table to match descriptive strings with device types. These are in
69
* order from most common to least common to speed search time.
70
*/
71
struct devstat_match_table match_table[] = {
72
{"da", DEVSTAT_TYPE_DIRECT, DEVSTAT_MATCH_TYPE},
73
{"cd", DEVSTAT_TYPE_CDROM, DEVSTAT_MATCH_TYPE},
74
{"scsi", DEVSTAT_TYPE_IF_SCSI, DEVSTAT_MATCH_IF},
75
{"ide", DEVSTAT_TYPE_IF_IDE, DEVSTAT_MATCH_IF},
76
{"other", DEVSTAT_TYPE_IF_OTHER, DEVSTAT_MATCH_IF},
77
{"nvme", DEVSTAT_TYPE_IF_NVME, DEVSTAT_MATCH_IF},
78
{"worm", DEVSTAT_TYPE_WORM, DEVSTAT_MATCH_TYPE},
79
{"sa", DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
80
{"pass", DEVSTAT_TYPE_PASS, DEVSTAT_MATCH_PASS},
81
{"optical", DEVSTAT_TYPE_OPTICAL, DEVSTAT_MATCH_TYPE},
82
{"array", DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE},
83
{"changer", DEVSTAT_TYPE_CHANGER, DEVSTAT_MATCH_TYPE},
84
{"scanner", DEVSTAT_TYPE_SCANNER, DEVSTAT_MATCH_TYPE},
85
{"printer", DEVSTAT_TYPE_PRINTER, DEVSTAT_MATCH_TYPE},
86
{"floppy", DEVSTAT_TYPE_FLOPPY, DEVSTAT_MATCH_TYPE},
87
{"proc", DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE},
88
{"comm", DEVSTAT_TYPE_COMM, DEVSTAT_MATCH_TYPE},
89
{"enclosure", DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE},
90
{NULL, 0, 0}
91
};
92
93
struct devstat_args {
94
devstat_metric metric;
95
devstat_arg_type argtype;
96
} devstat_arg_list[] = {
97
{ DSM_NONE, DEVSTAT_ARG_NOTYPE },
98
{ DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
99
{ DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
100
{ DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
101
{ DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
102
{ DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
103
{ DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
104
{ DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
105
{ DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
106
{ DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
107
{ DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
108
{ DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
109
{ DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
110
{ DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
111
{ DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
112
{ DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
113
{ DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
114
{ DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
115
{ DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
116
{ DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
117
{ DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
118
{ DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
119
{ DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
120
{ DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
121
{ DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
122
{ DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
123
{ DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
124
{ DSM_SKIP, DEVSTAT_ARG_SKIP },
125
{ DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 },
126
{ DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 },
127
{ DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 },
128
{ DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD },
129
{ DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD },
130
{ DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
131
{ DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
132
{ DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD },
133
{ DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD },
134
{ DSM_BUSY_PCT, DEVSTAT_ARG_LD },
135
{ DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 },
136
{ DSM_TOTAL_DURATION, DEVSTAT_ARG_LD },
137
{ DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD },
138
{ DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD },
139
{ DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD },
140
{ DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD },
141
{ DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD },
142
};
143
144
static const char *namelist[] = {
145
#define X_NUMDEVS 0
146
"_devstat_num_devs",
147
#define X_GENERATION 1
148
"_devstat_generation",
149
#define X_VERSION 2
150
"_devstat_version",
151
#define X_DEVICE_STATQ 3
152
"_device_statq",
153
#define X_TIME_UPTIME 4
154
"_time_uptime",
155
#define X_END 5
156
};
157
158
/*
159
* Local function declarations.
160
*/
161
static int compare_select(const void *arg1, const void *arg2);
162
static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
163
static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes);
164
static char *get_devstat_kvm(kvm_t *kd);
165
166
#define KREADNL(kd, var, val) \
167
readkmem_nl(kd, namelist[var], &val, sizeof(val))
168
169
int
170
devstat_getnumdevs(kvm_t *kd)
171
{
172
size_t numdevsize;
173
int numdevs;
174
175
numdevsize = sizeof(int);
176
177
/*
178
* Find out how many devices we have in the system.
179
*/
180
if (kd == NULL) {
181
if (sysctlbyname("kern.devstat.numdevs", &numdevs,
182
&numdevsize, NULL, 0) == -1) {
183
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
184
"%s: error getting number of devices\n"
185
"%s: %s", __func__, __func__,
186
strerror(errno));
187
return(-1);
188
} else
189
return(numdevs);
190
} else {
191
192
if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
193
return(-1);
194
else
195
return(numdevs);
196
}
197
}
198
199
/*
200
* This is an easy way to get the generation number, but the generation is
201
* supplied in a more atmoic manner by the kern.devstat.all sysctl.
202
* Because this generation sysctl is separate from the statistics sysctl,
203
* the device list and the generation could change between the time that
204
* this function is called and the device list is retrieved.
205
*/
206
long
207
devstat_getgeneration(kvm_t *kd)
208
{
209
size_t gensize;
210
long generation;
211
212
gensize = sizeof(long);
213
214
/*
215
* Get the current generation number.
216
*/
217
if (kd == NULL) {
218
if (sysctlbyname("kern.devstat.generation", &generation,
219
&gensize, NULL, 0) == -1) {
220
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
221
"%s: error getting devstat generation\n%s: %s",
222
__func__, __func__, strerror(errno));
223
return(-1);
224
} else
225
return(generation);
226
} else {
227
if (KREADNL(kd, X_GENERATION, generation) == -1)
228
return(-1);
229
else
230
return(generation);
231
}
232
}
233
234
/*
235
* Get the current devstat version. The return value of this function
236
* should be compared with DEVSTAT_VERSION, which is defined in
237
* sys/devicestat.h. This will enable userland programs to determine
238
* whether they are out of sync with the kernel.
239
*/
240
int
241
devstat_getversion(kvm_t *kd)
242
{
243
size_t versize;
244
int version;
245
246
versize = sizeof(int);
247
248
/*
249
* Get the current devstat version.
250
*/
251
if (kd == NULL) {
252
if (sysctlbyname("kern.devstat.version", &version, &versize,
253
NULL, 0) == -1) {
254
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
255
"%s: error getting devstat version\n%s: %s",
256
__func__, __func__, strerror(errno));
257
return(-1);
258
} else
259
return(version);
260
} else {
261
if (KREADNL(kd, X_VERSION, version) == -1)
262
return(-1);
263
else
264
return(version);
265
}
266
}
267
268
/*
269
* Check the devstat version we know about against the devstat version the
270
* kernel knows about. If they don't match, print an error into the
271
* devstat error buffer, and return -1. If they match, return 0.
272
*/
273
int
274
devstat_checkversion(kvm_t *kd)
275
{
276
int buflen, res, retval = 0, version;
277
278
version = devstat_getversion(kd);
279
280
if (version != DEVSTAT_VERSION) {
281
/*
282
* If getversion() returns an error (i.e. -1), then it
283
* has printed an error message in the buffer. Therefore,
284
* we need to add a \n to the end of that message before we
285
* print our own message in the buffer.
286
*/
287
if (version == -1)
288
buflen = strlen(devstat_errbuf);
289
else
290
buflen = 0;
291
292
res = snprintf(devstat_errbuf + buflen,
293
DEVSTAT_ERRBUF_SIZE - buflen,
294
"%s%s: userland devstat version %d is not "
295
"the same as the kernel\n%s: devstat "
296
"version %d\n", version == -1 ? "\n" : "",
297
__func__, DEVSTAT_VERSION, __func__, version);
298
299
if (res < 0)
300
devstat_errbuf[buflen] = '\0';
301
302
buflen = strlen(devstat_errbuf);
303
if (version < DEVSTAT_VERSION)
304
res = snprintf(devstat_errbuf + buflen,
305
DEVSTAT_ERRBUF_SIZE - buflen,
306
"%s: libdevstat newer than kernel\n",
307
__func__);
308
else
309
res = snprintf(devstat_errbuf + buflen,
310
DEVSTAT_ERRBUF_SIZE - buflen,
311
"%s: kernel newer than libdevstat\n",
312
__func__);
313
314
if (res < 0)
315
devstat_errbuf[buflen] = '\0';
316
317
retval = -1;
318
}
319
320
return(retval);
321
}
322
323
/*
324
* Get the current list of devices and statistics, and the current
325
* generation number.
326
*
327
* Return values:
328
* -1 -- error
329
* 0 -- device list is unchanged
330
* 1 -- device list has changed
331
*/
332
int
333
devstat_getdevs(kvm_t *kd, struct statinfo *stats)
334
{
335
int error;
336
size_t dssize;
337
long oldgeneration;
338
int retval = 0;
339
struct devinfo *dinfo;
340
struct timespec ts;
341
342
dinfo = stats->dinfo;
343
344
if (dinfo == NULL) {
345
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
346
"%s: stats->dinfo was NULL", __func__);
347
return(-1);
348
}
349
350
oldgeneration = dinfo->generation;
351
352
if (kd == NULL) {
353
clock_gettime(CLOCK_MONOTONIC, &ts);
354
stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9;
355
356
/* If this is our first time through, mem_ptr will be null. */
357
if (dinfo->mem_ptr == NULL) {
358
/*
359
* Get the number of devices. If it's negative, it's an
360
* error. Don't bother setting the error string, since
361
* getnumdevs() has already done that for us.
362
*/
363
if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
364
return(-1);
365
366
/*
367
* The kern.devstat.all sysctl returns the current
368
* generation number, as well as all the devices.
369
* So we need four bytes more.
370
*/
371
dssize = (dinfo->numdevs * sizeof(struct devstat)) +
372
sizeof(long);
373
dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
374
if (dinfo->mem_ptr == NULL) {
375
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
376
"%s: Cannot allocate memory for mem_ptr element",
377
__func__);
378
return(-1);
379
}
380
} else
381
dssize = (dinfo->numdevs * sizeof(struct devstat)) +
382
sizeof(long);
383
384
/*
385
* Request all of the devices. We only really allow for one
386
* ENOMEM failure. It would, of course, be possible to just go
387
* in a loop and keep reallocing the device structure until we
388
* don't get ENOMEM back. I'm not sure it's worth it, though.
389
* If devices are being added to the system that quickly, maybe
390
* the user can just wait until all devices are added.
391
*/
392
for (;;) {
393
error = sysctlbyname("kern.devstat.all",
394
dinfo->mem_ptr,
395
&dssize, NULL, 0);
396
if (error != -1 || errno != EBUSY)
397
break;
398
}
399
if (error == -1) {
400
/*
401
* If we get ENOMEM back, that means that there are
402
* more devices now, so we need to allocate more
403
* space for the device array.
404
*/
405
if (errno == ENOMEM) {
406
/*
407
* No need to set the error string here,
408
* devstat_getnumdevs() will do that if it fails.
409
*/
410
if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
411
return(-1);
412
413
dssize = (dinfo->numdevs *
414
sizeof(struct devstat)) + sizeof(long);
415
dinfo->mem_ptr = (u_int8_t *)
416
realloc(dinfo->mem_ptr, dssize);
417
if ((error = sysctlbyname("kern.devstat.all",
418
dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
419
snprintf(devstat_errbuf,
420
sizeof(devstat_errbuf),
421
"%s: error getting device "
422
"stats\n%s: %s", __func__,
423
__func__, strerror(errno));
424
return(-1);
425
}
426
} else {
427
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
428
"%s: error getting device stats\n"
429
"%s: %s", __func__, __func__,
430
strerror(errno));
431
return(-1);
432
}
433
}
434
435
} else {
436
if (KREADNL(kd, X_TIME_UPTIME, ts.tv_sec) == -1)
437
return(-1);
438
else
439
stats->snap_time = ts.tv_sec;
440
441
/*
442
* This is of course non-atomic, but since we are working
443
* on a core dump, the generation is unlikely to change
444
*/
445
if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1)
446
return(-1);
447
if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL)
448
return(-1);
449
}
450
/*
451
* The sysctl spits out the generation as the first four bytes,
452
* then all of the device statistics structures.
453
*/
454
dinfo->generation = *(long *)dinfo->mem_ptr;
455
456
/*
457
* If the generation has changed, and if the current number of
458
* devices is not the same as the number of devices recorded in the
459
* devinfo structure, it is likely that the device list has shrunk.
460
* The reason that it is likely that the device list has shrunk in
461
* this case is that if the device list has grown, the sysctl above
462
* will return an ENOMEM error, and we will reset the number of
463
* devices and reallocate the device array. If the second sysctl
464
* fails, we will return an error and therefore never get to this
465
* point. If the device list has shrunk, the sysctl will not
466
* return an error since we have more space allocated than is
467
* necessary. So, in the shrinkage case, we catch it here and
468
* reallocate the array so that we don't use any more space than is
469
* necessary.
470
*/
471
if (oldgeneration != dinfo->generation) {
472
if (devstat_getnumdevs(kd) != dinfo->numdevs) {
473
if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
474
return(-1);
475
dssize = (dinfo->numdevs * sizeof(struct devstat)) +
476
sizeof(long);
477
dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
478
dssize);
479
}
480
retval = 1;
481
}
482
483
dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
484
485
return(retval);
486
}
487
488
/*
489
* selectdevs():
490
*
491
* Devices are selected/deselected based upon the following criteria:
492
* - devices specified by the user on the command line
493
* - devices matching any device type expressions given on the command line
494
* - devices with the highest I/O, if 'top' mode is enabled
495
* - the first n unselected devices in the device list, if maxshowdevs
496
* devices haven't already been selected and if the user has not
497
* specified any devices on the command line and if we're in "add" mode.
498
*
499
* Input parameters:
500
* - device selection list (dev_select)
501
* - current number of devices selected (num_selected)
502
* - total number of devices in the selection list (num_selections)
503
* - devstat generation as of the last time selectdevs() was called
504
* (select_generation)
505
* - current devstat generation (current_generation)
506
* - current list of devices and statistics (devices)
507
* - number of devices in the current device list (numdevs)
508
* - compiled version of the command line device type arguments (matches)
509
* - This is optional. If the number of devices is 0, this will be ignored.
510
* - The matching code pays attention to the current selection mode. So
511
* if you pass in a matching expression, it will be evaluated based
512
* upon the selection mode that is passed in. See below for details.
513
* - number of device type matching expressions (num_matches)
514
* - Set to 0 to disable the matching code.
515
* - list of devices specified on the command line by the user (dev_selections)
516
* - number of devices selected on the command line by the user
517
* (num_dev_selections)
518
* - Our selection mode. There are four different selection modes:
519
* - add mode. (DS_SELECT_ADD) Any devices matching devices explicitly
520
* selected by the user or devices matching a pattern given by the
521
* user will be selected in addition to devices that are already
522
* selected. Additional devices will be selected, up to maxshowdevs
523
* number of devices.
524
* - only mode. (DS_SELECT_ONLY) Only devices matching devices
525
* explicitly given by the user or devices matching a pattern
526
* given by the user will be selected. No other devices will be
527
* selected.
528
* - addonly mode. (DS_SELECT_ADDONLY) This is similar to add and
529
* only. Basically, this will not de-select any devices that are
530
* current selected, as only mode would, but it will also not
531
* gratuitously select up to maxshowdevs devices as add mode would.
532
* - remove mode. (DS_SELECT_REMOVE) Any devices matching devices
533
* explicitly selected by the user or devices matching a pattern
534
* given by the user will be de-selected.
535
* - maximum number of devices we can select (maxshowdevs)
536
* - flag indicating whether or not we're in 'top' mode (perf_select)
537
*
538
* Output data:
539
* - the device selection list may be modified and passed back out
540
* - the number of devices selected and the total number of items in the
541
* device selection list may be changed
542
* - the selection generation may be changed to match the current generation
543
*
544
* Return values:
545
* -1 -- error
546
* 0 -- selected devices are unchanged
547
* 1 -- selected devices changed
548
*/
549
int
550
devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
551
int *num_selections, long *select_generation,
552
long current_generation, struct devstat *devices,
553
int numdevs, struct devstat_match *matches, int num_matches,
554
char **dev_selections, int num_dev_selections,
555
devstat_select_mode select_mode, int maxshowdevs,
556
int perf_select)
557
{
558
int i, j, k;
559
int init_selections = 0, init_selected_var = 0;
560
struct device_selection *old_dev_select = NULL;
561
int old_num_selections = 0, old_num_selected;
562
int selection_number = 0;
563
int changed = 0, found = 0;
564
565
if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0))
566
return(-1);
567
568
/*
569
* We always want to make sure that we have as many dev_select
570
* entries as there are devices.
571
*/
572
/*
573
* In this case, we haven't selected devices before.
574
*/
575
if (*dev_select == NULL) {
576
*dev_select = (struct device_selection *)malloc(numdevs *
577
sizeof(struct device_selection));
578
*select_generation = current_generation;
579
init_selections = 1;
580
changed = 1;
581
/*
582
* In this case, we have selected devices before, but the device
583
* list has changed since we last selected devices, so we need to
584
* either enlarge or reduce the size of the device selection list.
585
* But delay the resizing until after copying the data to old_dev_select
586
* as to not lose any data in the case of reducing the size.
587
*/
588
} else if (*num_selections != numdevs) {
589
*select_generation = current_generation;
590
init_selections = 1;
591
/*
592
* In this case, we've selected devices before, and the selection
593
* list is the same size as it was the last time, but the device
594
* list has changed.
595
*/
596
} else if (*select_generation < current_generation) {
597
*select_generation = current_generation;
598
init_selections = 1;
599
}
600
601
if (*dev_select == NULL) {
602
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
603
"%s: Cannot (re)allocate memory for dev_select argument",
604
__func__);
605
return(-1);
606
}
607
608
/*
609
* If we're in "only" mode, we want to clear out the selected
610
* variable since we're going to select exactly what the user wants
611
* this time through.
612
*/
613
if (select_mode == DS_SELECT_ONLY)
614
init_selected_var = 1;
615
616
/*
617
* In all cases, we want to back up the number of selected devices.
618
* It is a quick and accurate way to determine whether the selected
619
* devices have changed.
620
*/
621
old_num_selected = *num_selected;
622
623
/*
624
* We want to make a backup of the current selection list if
625
* the list of devices has changed, or if we're in performance
626
* selection mode. In both cases, we don't want to make a backup
627
* if we already know for sure that the list will be different.
628
* This is certainly the case if this is our first time through the
629
* selection code.
630
*/
631
if (((init_selected_var != 0) || (init_selections != 0)
632
|| (perf_select != 0)) && (changed == 0)){
633
old_dev_select = (struct device_selection *)malloc(
634
*num_selections * sizeof(struct device_selection));
635
if (old_dev_select == NULL) {
636
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
637
"%s: Cannot allocate memory for selection list backup",
638
__func__);
639
return(-1);
640
}
641
old_num_selections = *num_selections;
642
bcopy(*dev_select, old_dev_select,
643
sizeof(struct device_selection) * *num_selections);
644
}
645
646
if (!changed && *num_selections != numdevs) {
647
*dev_select = (struct device_selection *)reallocf(*dev_select,
648
numdevs * sizeof(struct device_selection));
649
}
650
651
if (init_selections != 0) {
652
bzero(*dev_select, sizeof(struct device_selection) * numdevs);
653
654
for (i = 0; i < numdevs; i++) {
655
(*dev_select)[i].device_number =
656
devices[i].device_number;
657
strncpy((*dev_select)[i].device_name,
658
devices[i].device_name,
659
DEVSTAT_NAME_LEN);
660
(*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
661
(*dev_select)[i].unit_number = devices[i].unit_number;
662
(*dev_select)[i].position = i;
663
}
664
*num_selections = numdevs;
665
} else if (init_selected_var != 0) {
666
for (i = 0; i < numdevs; i++)
667
(*dev_select)[i].selected = 0;
668
}
669
670
/* we haven't gotten around to selecting anything yet.. */
671
if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
672
|| (init_selected_var != 0))
673
*num_selected = 0;
674
675
/*
676
* Look through any devices the user specified on the command line
677
* and see if they match known devices. If so, select them.
678
*/
679
for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
680
char tmpstr[80];
681
682
snprintf(tmpstr, sizeof(tmpstr), "%s%d",
683
(*dev_select)[i].device_name,
684
(*dev_select)[i].unit_number);
685
for (j = 0; j < num_dev_selections; j++) {
686
if (strcmp(tmpstr, dev_selections[j]) == 0) {
687
/*
688
* Here we do different things based on the
689
* mode we're in. If we're in add or
690
* addonly mode, we only select this device
691
* if it hasn't already been selected.
692
* Otherwise, we would be unnecessarily
693
* changing the selection order and
694
* incrementing the selection count. If
695
* we're in only mode, we unconditionally
696
* select this device, since in only mode
697
* any previous selections are erased and
698
* manually specified devices are the first
699
* ones to be selected. If we're in remove
700
* mode, we de-select the specified device and
701
* decrement the selection count.
702
*/
703
switch(select_mode) {
704
case DS_SELECT_ADD:
705
case DS_SELECT_ADDONLY:
706
if ((*dev_select)[i].selected)
707
break;
708
/* FALLTHROUGH */
709
case DS_SELECT_ONLY:
710
(*dev_select)[i].selected =
711
++selection_number;
712
(*num_selected)++;
713
break;
714
case DS_SELECT_REMOVE:
715
(*dev_select)[i].selected = 0;
716
(*num_selected)--;
717
/*
718
* This isn't passed back out, we
719
* just use it to keep track of
720
* how many devices we've removed.
721
*/
722
num_dev_selections--;
723
break;
724
}
725
break;
726
}
727
}
728
}
729
730
/*
731
* Go through the user's device type expressions and select devices
732
* accordingly. We only do this if the number of devices already
733
* selected is less than the maximum number we can show.
734
*/
735
for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
736
/* We should probably indicate some error here */
737
if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
738
|| (matches[i].num_match_categories <= 0))
739
continue;
740
741
for (j = 0; j < numdevs; j++) {
742
int num_match_categories;
743
744
num_match_categories = matches[i].num_match_categories;
745
746
/*
747
* Determine whether or not the current device
748
* matches the given matching expression. This if
749
* statement consists of three components:
750
* - the device type check
751
* - the device interface check
752
* - the passthrough check
753
* If a the matching test is successful, it
754
* decrements the number of matching categories,
755
* and if we've reached the last element that
756
* needed to be matched, the if statement succeeds.
757
*
758
*/
759
if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
760
&& ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
761
(matches[i].device_type & DEVSTAT_TYPE_MASK))
762
&&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
763
|| (((matches[i].match_fields &
764
DEVSTAT_MATCH_PASS) == 0)
765
&& ((devices[j].device_type &
766
DEVSTAT_TYPE_PASS) == 0)))
767
&& (--num_match_categories == 0))
768
|| (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
769
&& ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
770
(matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
771
&&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
772
|| (((matches[i].match_fields &
773
DEVSTAT_MATCH_PASS) == 0)
774
&& ((devices[j].device_type &
775
DEVSTAT_TYPE_PASS) == 0)))
776
&& (--num_match_categories == 0))
777
|| (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
778
&& ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
779
&& (--num_match_categories == 0))) {
780
781
/*
782
* This is probably a non-optimal solution
783
* to the problem that the devices in the
784
* device list will not be in the same
785
* order as the devices in the selection
786
* array.
787
*/
788
for (k = 0; k < numdevs; k++) {
789
if ((*dev_select)[k].position == j) {
790
found = 1;
791
break;
792
}
793
}
794
795
/*
796
* There shouldn't be a case where a device
797
* in the device list is not in the
798
* selection list...but it could happen.
799
*/
800
if (found != 1) {
801
fprintf(stderr, "selectdevs: couldn't"
802
" find %s%d in selection "
803
"list\n",
804
devices[j].device_name,
805
devices[j].unit_number);
806
break;
807
}
808
809
/*
810
* We do different things based upon the
811
* mode we're in. If we're in add or only
812
* mode, we go ahead and select this device
813
* if it hasn't already been selected. If
814
* it has already been selected, we leave
815
* it alone so we don't mess up the
816
* selection ordering. Manually specified
817
* devices have already been selected, and
818
* they have higher priority than pattern
819
* matched devices. If we're in remove
820
* mode, we de-select the given device and
821
* decrement the selected count.
822
*/
823
switch(select_mode) {
824
case DS_SELECT_ADD:
825
case DS_SELECT_ADDONLY:
826
case DS_SELECT_ONLY:
827
if ((*dev_select)[k].selected != 0)
828
break;
829
(*dev_select)[k].selected =
830
++selection_number;
831
(*num_selected)++;
832
break;
833
case DS_SELECT_REMOVE:
834
(*dev_select)[k].selected = 0;
835
(*num_selected)--;
836
break;
837
}
838
}
839
}
840
}
841
842
/*
843
* Here we implement "top" mode. Devices are sorted in the
844
* selection array based on two criteria: whether or not they are
845
* selected (not selection number, just the fact that they are
846
* selected!) and the number of bytes in the "bytes" field of the
847
* selection structure. The bytes field generally must be kept up
848
* by the user. In the future, it may be maintained by library
849
* functions, but for now the user has to do the work.
850
*
851
* At first glance, it may seem wrong that we don't go through and
852
* select every device in the case where the user hasn't specified
853
* any devices or patterns. In fact, though, it won't make any
854
* difference in the device sorting. In that particular case (i.e.
855
* when we're in "add" or "only" mode, and the user hasn't
856
* specified anything) the first time through no devices will be
857
* selected, so the only criterion used to sort them will be their
858
* performance. The second time through, and every time thereafter,
859
* all devices will be selected, so again selection won't matter.
860
*/
861
if (perf_select != 0) {
862
863
/* Sort the device array by throughput */
864
qsort(*dev_select, *num_selections,
865
sizeof(struct device_selection),
866
compare_select);
867
868
if (*num_selected == 0) {
869
/*
870
* Here we select every device in the array, if it
871
* isn't already selected. Because the 'selected'
872
* variable in the selection array entries contains
873
* the selection order, the devstats routine can show
874
* the devices that were selected first.
875
*/
876
for (i = 0; i < *num_selections; i++) {
877
if ((*dev_select)[i].selected == 0) {
878
(*dev_select)[i].selected =
879
++selection_number;
880
(*num_selected)++;
881
}
882
}
883
} else {
884
selection_number = 0;
885
for (i = 0; i < *num_selections; i++) {
886
if ((*dev_select)[i].selected != 0) {
887
(*dev_select)[i].selected =
888
++selection_number;
889
}
890
}
891
}
892
}
893
894
/*
895
* If we're in the "add" selection mode and if we haven't already
896
* selected maxshowdevs number of devices, go through the array and
897
* select any unselected devices. If we're in "only" mode, we
898
* obviously don't want to select anything other than what the user
899
* specifies. If we're in "remove" mode, it probably isn't a good
900
* idea to go through and select any more devices, since we might
901
* end up selecting something that the user wants removed. Through
902
* more complicated logic, we could actually figure this out, but
903
* that would probably require combining this loop with the various
904
* selections loops above.
905
*/
906
if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
907
for (i = 0; i < *num_selections; i++)
908
if ((*dev_select)[i].selected == 0) {
909
(*dev_select)[i].selected = ++selection_number;
910
(*num_selected)++;
911
}
912
}
913
914
/*
915
* Look at the number of devices that have been selected. If it
916
* has changed, set the changed variable. Otherwise, if we've
917
* made a backup of the selection list, compare it to the current
918
* selection list to see if the selected devices have changed.
919
*/
920
if ((changed == 0) && (old_num_selected != *num_selected))
921
changed = 1;
922
else if ((changed == 0) && (old_dev_select != NULL)) {
923
/*
924
* Now we go through the selection list and we look at
925
* it three different ways.
926
*/
927
for (i = 0; (i < *num_selections) && (changed == 0) &&
928
(i < old_num_selections); i++) {
929
/*
930
* If the device at index i in both the new and old
931
* selection arrays has the same device number and
932
* selection status, it hasn't changed. We
933
* continue on to the next index.
934
*/
935
if (((*dev_select)[i].device_number ==
936
old_dev_select[i].device_number)
937
&& ((*dev_select)[i].selected ==
938
old_dev_select[i].selected))
939
continue;
940
941
/*
942
* Now, if we're still going through the if
943
* statement, the above test wasn't true. So we
944
* check here to see if the device at index i in
945
* the current array is the same as the device at
946
* index i in the old array. If it is, that means
947
* that its selection number has changed. Set
948
* changed to 1 and exit the loop.
949
*/
950
else if ((*dev_select)[i].device_number ==
951
old_dev_select[i].device_number) {
952
changed = 1;
953
break;
954
}
955
/*
956
* If we get here, then the device at index i in
957
* the current array isn't the same device as the
958
* device at index i in the old array.
959
*/
960
else {
961
found = 0;
962
963
/*
964
* Search through the old selection array
965
* looking for a device with the same
966
* device number as the device at index i
967
* in the current array. If the selection
968
* status is the same, then we mark it as
969
* found. If the selection status isn't
970
* the same, we break out of the loop.
971
* Since found isn't set, changed will be
972
* set to 1 below.
973
*/
974
for (j = 0; j < old_num_selections; j++) {
975
if (((*dev_select)[i].device_number ==
976
old_dev_select[j].device_number)
977
&& ((*dev_select)[i].selected ==
978
old_dev_select[j].selected)){
979
found = 1;
980
break;
981
}
982
else if ((*dev_select)[i].device_number
983
== old_dev_select[j].device_number)
984
break;
985
}
986
if (found == 0)
987
changed = 1;
988
}
989
}
990
}
991
if (old_dev_select != NULL)
992
free(old_dev_select);
993
994
return(changed);
995
}
996
997
/*
998
* Comparison routine for qsort() above. Note that the comparison here is
999
* backwards -- generally, it should return a value to indicate whether
1000
* arg1 is <, =, or > arg2. Instead, it returns the opposite. The reason
1001
* it returns the opposite is so that the selection array will be sorted in
1002
* order of decreasing performance. We sort on two parameters. The first
1003
* sort key is whether or not one or the other of the devices in question
1004
* has been selected. If one of them has, and the other one has not, the
1005
* selected device is automatically more important than the unselected
1006
* device. If neither device is selected, we judge the devices based upon
1007
* performance.
1008
*/
1009
static int
1010
compare_select(const void *arg1, const void *arg2)
1011
{
1012
if ((((const struct device_selection *)arg1)->selected)
1013
&& (((const struct device_selection *)arg2)->selected == 0))
1014
return(-1);
1015
else if ((((const struct device_selection *)arg1)->selected == 0)
1016
&& (((const struct device_selection *)arg2)->selected))
1017
return(1);
1018
else if (((const struct device_selection *)arg2)->bytes <
1019
((const struct device_selection *)arg1)->bytes)
1020
return(-1);
1021
else if (((const struct device_selection *)arg2)->bytes >
1022
((const struct device_selection *)arg1)->bytes)
1023
return(1);
1024
else
1025
return(0);
1026
}
1027
1028
/*
1029
* Take a string with the general format "arg1,arg2,arg3", and build a
1030
* device matching expression from it.
1031
*/
1032
int
1033
devstat_buildmatch(char *match_str, struct devstat_match **matches,
1034
int *num_matches)
1035
{
1036
char *tstr[5];
1037
char **tempstr;
1038
int num_args;
1039
int i, j;
1040
1041
/* We can't do much without a string to parse */
1042
if (match_str == NULL) {
1043
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1044
"%s: no match expression", __func__);
1045
return(-1);
1046
}
1047
1048
/*
1049
* Break the (comma delimited) input string out into separate strings.
1050
*/
1051
for (tempstr = tstr, num_args = 0;
1052
(*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);)
1053
if (**tempstr != '\0') {
1054
num_args++;
1055
if (++tempstr >= &tstr[5])
1056
break;
1057
}
1058
1059
/* The user gave us too many type arguments */
1060
if (num_args > 3) {
1061
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1062
"%s: too many type arguments", __func__);
1063
return(-1);
1064
}
1065
1066
if (*num_matches == 0)
1067
*matches = NULL;
1068
1069
*matches = (struct devstat_match *)reallocf(*matches,
1070
sizeof(struct devstat_match) * (*num_matches + 1));
1071
1072
if (*matches == NULL) {
1073
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1074
"%s: Cannot allocate memory for matches list", __func__);
1075
return(-1);
1076
}
1077
1078
/* Make sure the current entry is clear */
1079
bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1080
1081
/*
1082
* Step through the arguments the user gave us and build a device
1083
* matching expression from them.
1084
*/
1085
for (i = 0; i < num_args; i++) {
1086
char *tempstr2, *tempstr3;
1087
1088
/*
1089
* Get rid of leading white space.
1090
*/
1091
tempstr2 = tstr[i];
1092
while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1093
tempstr2++;
1094
1095
/*
1096
* Get rid of trailing white space.
1097
*/
1098
tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1099
1100
while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1101
&& (isspace(*tempstr3))) {
1102
*tempstr3 = '\0';
1103
tempstr3--;
1104
}
1105
1106
/*
1107
* Go through the match table comparing the user's
1108
* arguments to known device types, interfaces, etc.
1109
*/
1110
for (j = 0; match_table[j].match_str != NULL; j++) {
1111
/*
1112
* We do case-insensitive matching, in case someone
1113
* wants to enter "SCSI" instead of "scsi" or
1114
* something like that. Only compare as many
1115
* characters as are in the string in the match
1116
* table. This should help if someone tries to use
1117
* a super-long match expression.
1118
*/
1119
if (strncasecmp(tempstr2, match_table[j].match_str,
1120
strlen(match_table[j].match_str)) == 0) {
1121
/*
1122
* Make sure the user hasn't specified two
1123
* items of the same type, like "da" and
1124
* "cd". One device cannot be both.
1125
*/
1126
if (((*matches)[*num_matches].match_fields &
1127
match_table[j].match_field) != 0) {
1128
snprintf(devstat_errbuf,
1129
sizeof(devstat_errbuf),
1130
"%s: cannot have more than "
1131
"one match item in a single "
1132
"category", __func__);
1133
return(-1);
1134
}
1135
/*
1136
* If we've gotten this far, we have a
1137
* winner. Set the appropriate fields in
1138
* the match entry.
1139
*/
1140
(*matches)[*num_matches].match_fields |=
1141
match_table[j].match_field;
1142
(*matches)[*num_matches].device_type |=
1143
match_table[j].type;
1144
(*matches)[*num_matches].num_match_categories++;
1145
break;
1146
}
1147
}
1148
/*
1149
* We should have found a match in the above for loop. If
1150
* not, that means the user entered an invalid device type
1151
* or interface.
1152
*/
1153
if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1154
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1155
"%s: unknown match item \"%s\"", __func__,
1156
tstr[i]);
1157
return(-1);
1158
}
1159
}
1160
1161
(*num_matches)++;
1162
1163
return(0);
1164
}
1165
1166
/*
1167
* Compute a number of device statistics. Only one field is mandatory, and
1168
* that is "current". Everything else is optional. The caller passes in
1169
* pointers to variables to hold the various statistics he desires. If he
1170
* doesn't want a particular staistic, he should pass in a NULL pointer.
1171
* Return values:
1172
* 0 -- success
1173
* -1 -- failure
1174
*/
1175
int
1176
compute_stats(struct devstat *current, struct devstat *previous,
1177
long double etime, u_int64_t *total_bytes,
1178
u_int64_t *total_transfers, u_int64_t *total_blocks,
1179
long double *kb_per_transfer, long double *transfers_per_second,
1180
long double *mb_per_second, long double *blocks_per_second,
1181
long double *ms_per_transaction)
1182
{
1183
return(devstat_compute_statistics(current, previous, etime,
1184
total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1185
total_bytes,
1186
total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1187
total_transfers,
1188
total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1189
total_blocks,
1190
kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1191
kb_per_transfer,
1192
transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1193
transfers_per_second,
1194
mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1195
mb_per_second,
1196
blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1197
blocks_per_second,
1198
ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1199
ms_per_transaction,
1200
DSM_NONE));
1201
}
1202
1203
1204
/* This is 1/2^64 */
1205
#define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20
1206
1207
long double
1208
devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time)
1209
{
1210
long double etime;
1211
1212
etime = cur_time->sec;
1213
etime += cur_time->frac * BINTIME_SCALE;
1214
if (prev_time != NULL) {
1215
etime -= prev_time->sec;
1216
etime -= prev_time->frac * BINTIME_SCALE;
1217
}
1218
return(etime);
1219
}
1220
1221
#define DELTA(field, index) \
1222
(current->field[(index)] - (previous ? previous->field[(index)] : 0))
1223
1224
#define DELTA_T(field) \
1225
devstat_compute_etime(&current->field, \
1226
(previous ? &previous->field : NULL))
1227
1228
int
1229
devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1230
long double etime, ...)
1231
{
1232
u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree;
1233
u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1234
u_int64_t totaltransfersother, totalblocks, totalblocksread;
1235
u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree;
1236
long double totalduration, totaldurationread, totaldurationwrite;
1237
long double totaldurationfree, totaldurationother;
1238
va_list ap;
1239
devstat_metric metric;
1240
u_int64_t *destu64;
1241
long double *destld;
1242
int retval;
1243
1244
retval = 0;
1245
1246
/*
1247
* current is the only mandatory field.
1248
*/
1249
if (current == NULL) {
1250
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1251
"%s: current stats structure was NULL", __func__);
1252
return(-1);
1253
}
1254
1255
totalbytesread = DELTA(bytes, DEVSTAT_READ);
1256
totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE);
1257
totalbytesfree = DELTA(bytes, DEVSTAT_FREE);
1258
totalbytes = totalbytesread + totalbyteswrite + totalbytesfree;
1259
1260
totaltransfersread = DELTA(operations, DEVSTAT_READ);
1261
totaltransferswrite = DELTA(operations, DEVSTAT_WRITE);
1262
totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA);
1263
totaltransfersfree = DELTA(operations, DEVSTAT_FREE);
1264
totaltransfers = totaltransfersread + totaltransferswrite +
1265
totaltransfersother + totaltransfersfree;
1266
1267
totalblocks = totalbytes;
1268
totalblocksread = totalbytesread;
1269
totalblockswrite = totalbyteswrite;
1270
totalblocksfree = totalbytesfree;
1271
1272
if (current->block_size > 0) {
1273
totalblocks /= current->block_size;
1274
totalblocksread /= current->block_size;
1275
totalblockswrite /= current->block_size;
1276
totalblocksfree /= current->block_size;
1277
} else {
1278
totalblocks /= 512;
1279
totalblocksread /= 512;
1280
totalblockswrite /= 512;
1281
totalblocksfree /= 512;
1282
}
1283
1284
totaldurationread = DELTA_T(duration[DEVSTAT_READ]);
1285
totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]);
1286
totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]);
1287
totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]);
1288
totalduration = totaldurationread + totaldurationwrite +
1289
totaldurationfree + totaldurationother;
1290
1291
va_start(ap, etime);
1292
1293
while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1294
1295
if (metric == DSM_NONE)
1296
break;
1297
1298
if (metric >= DSM_MAX) {
1299
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1300
"%s: metric %d is out of range", __func__,
1301
metric);
1302
retval = -1;
1303
goto bailout;
1304
}
1305
1306
switch (devstat_arg_list[metric].argtype) {
1307
case DEVSTAT_ARG_UINT64:
1308
destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1309
break;
1310
case DEVSTAT_ARG_LD:
1311
destld = (long double *)va_arg(ap, long double *);
1312
break;
1313
case DEVSTAT_ARG_SKIP:
1314
destld = (long double *)va_arg(ap, long double *);
1315
break;
1316
default:
1317
retval = -1;
1318
goto bailout;
1319
break; /* NOTREACHED */
1320
}
1321
1322
if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1323
continue;
1324
1325
switch (metric) {
1326
case DSM_TOTAL_BYTES:
1327
*destu64 = totalbytes;
1328
break;
1329
case DSM_TOTAL_BYTES_READ:
1330
*destu64 = totalbytesread;
1331
break;
1332
case DSM_TOTAL_BYTES_WRITE:
1333
*destu64 = totalbyteswrite;
1334
break;
1335
case DSM_TOTAL_BYTES_FREE:
1336
*destu64 = totalbytesfree;
1337
break;
1338
case DSM_TOTAL_TRANSFERS:
1339
*destu64 = totaltransfers;
1340
break;
1341
case DSM_TOTAL_TRANSFERS_READ:
1342
*destu64 = totaltransfersread;
1343
break;
1344
case DSM_TOTAL_TRANSFERS_WRITE:
1345
*destu64 = totaltransferswrite;
1346
break;
1347
case DSM_TOTAL_TRANSFERS_FREE:
1348
*destu64 = totaltransfersfree;
1349
break;
1350
case DSM_TOTAL_TRANSFERS_OTHER:
1351
*destu64 = totaltransfersother;
1352
break;
1353
case DSM_TOTAL_BLOCKS:
1354
*destu64 = totalblocks;
1355
break;
1356
case DSM_TOTAL_BLOCKS_READ:
1357
*destu64 = totalblocksread;
1358
break;
1359
case DSM_TOTAL_BLOCKS_WRITE:
1360
*destu64 = totalblockswrite;
1361
break;
1362
case DSM_TOTAL_BLOCKS_FREE:
1363
*destu64 = totalblocksfree;
1364
break;
1365
case DSM_KB_PER_TRANSFER:
1366
*destld = totalbytes;
1367
*destld /= 1024;
1368
if (totaltransfers > 0)
1369
*destld /= totaltransfers;
1370
else
1371
*destld = 0.0;
1372
break;
1373
case DSM_KB_PER_TRANSFER_READ:
1374
*destld = totalbytesread;
1375
*destld /= 1024;
1376
if (totaltransfersread > 0)
1377
*destld /= totaltransfersread;
1378
else
1379
*destld = 0.0;
1380
break;
1381
case DSM_KB_PER_TRANSFER_WRITE:
1382
*destld = totalbyteswrite;
1383
*destld /= 1024;
1384
if (totaltransferswrite > 0)
1385
*destld /= totaltransferswrite;
1386
else
1387
*destld = 0.0;
1388
break;
1389
case DSM_KB_PER_TRANSFER_FREE:
1390
*destld = totalbytesfree;
1391
*destld /= 1024;
1392
if (totaltransfersfree > 0)
1393
*destld /= totaltransfersfree;
1394
else
1395
*destld = 0.0;
1396
break;
1397
case DSM_TRANSFERS_PER_SECOND:
1398
if (etime > 0.0) {
1399
*destld = totaltransfers;
1400
*destld /= etime;
1401
} else
1402
*destld = 0.0;
1403
break;
1404
case DSM_TRANSFERS_PER_SECOND_READ:
1405
if (etime > 0.0) {
1406
*destld = totaltransfersread;
1407
*destld /= etime;
1408
} else
1409
*destld = 0.0;
1410
break;
1411
case DSM_TRANSFERS_PER_SECOND_WRITE:
1412
if (etime > 0.0) {
1413
*destld = totaltransferswrite;
1414
*destld /= etime;
1415
} else
1416
*destld = 0.0;
1417
break;
1418
case DSM_TRANSFERS_PER_SECOND_FREE:
1419
if (etime > 0.0) {
1420
*destld = totaltransfersfree;
1421
*destld /= etime;
1422
} else
1423
*destld = 0.0;
1424
break;
1425
case DSM_TRANSFERS_PER_SECOND_OTHER:
1426
if (etime > 0.0) {
1427
*destld = totaltransfersother;
1428
*destld /= etime;
1429
} else
1430
*destld = 0.0;
1431
break;
1432
case DSM_MB_PER_SECOND:
1433
*destld = totalbytes;
1434
*destld /= 1024 * 1024;
1435
if (etime > 0.0)
1436
*destld /= etime;
1437
else
1438
*destld = 0.0;
1439
break;
1440
case DSM_MB_PER_SECOND_READ:
1441
*destld = totalbytesread;
1442
*destld /= 1024 * 1024;
1443
if (etime > 0.0)
1444
*destld /= etime;
1445
else
1446
*destld = 0.0;
1447
break;
1448
case DSM_MB_PER_SECOND_WRITE:
1449
*destld = totalbyteswrite;
1450
*destld /= 1024 * 1024;
1451
if (etime > 0.0)
1452
*destld /= etime;
1453
else
1454
*destld = 0.0;
1455
break;
1456
case DSM_MB_PER_SECOND_FREE:
1457
*destld = totalbytesfree;
1458
*destld /= 1024 * 1024;
1459
if (etime > 0.0)
1460
*destld /= etime;
1461
else
1462
*destld = 0.0;
1463
break;
1464
case DSM_BLOCKS_PER_SECOND:
1465
*destld = totalblocks;
1466
if (etime > 0.0)
1467
*destld /= etime;
1468
else
1469
*destld = 0.0;
1470
break;
1471
case DSM_BLOCKS_PER_SECOND_READ:
1472
*destld = totalblocksread;
1473
if (etime > 0.0)
1474
*destld /= etime;
1475
else
1476
*destld = 0.0;
1477
break;
1478
case DSM_BLOCKS_PER_SECOND_WRITE:
1479
*destld = totalblockswrite;
1480
if (etime > 0.0)
1481
*destld /= etime;
1482
else
1483
*destld = 0.0;
1484
break;
1485
case DSM_BLOCKS_PER_SECOND_FREE:
1486
*destld = totalblocksfree;
1487
if (etime > 0.0)
1488
*destld /= etime;
1489
else
1490
*destld = 0.0;
1491
break;
1492
/*
1493
* Some devstat callers update the duration and some don't.
1494
* So this will only be accurate if they provide the
1495
* duration.
1496
*/
1497
case DSM_MS_PER_TRANSACTION:
1498
if (totaltransfers > 0) {
1499
*destld = totalduration;
1500
*destld /= totaltransfers;
1501
*destld *= 1000;
1502
} else
1503
*destld = 0.0;
1504
break;
1505
case DSM_MS_PER_TRANSACTION_READ:
1506
if (totaltransfersread > 0) {
1507
*destld = totaldurationread;
1508
*destld /= totaltransfersread;
1509
*destld *= 1000;
1510
} else
1511
*destld = 0.0;
1512
break;
1513
case DSM_MS_PER_TRANSACTION_WRITE:
1514
if (totaltransferswrite > 0) {
1515
*destld = totaldurationwrite;
1516
*destld /= totaltransferswrite;
1517
*destld *= 1000;
1518
} else
1519
*destld = 0.0;
1520
break;
1521
case DSM_MS_PER_TRANSACTION_FREE:
1522
if (totaltransfersfree > 0) {
1523
*destld = totaldurationfree;
1524
*destld /= totaltransfersfree;
1525
*destld *= 1000;
1526
} else
1527
*destld = 0.0;
1528
break;
1529
case DSM_MS_PER_TRANSACTION_OTHER:
1530
if (totaltransfersother > 0) {
1531
*destld = totaldurationother;
1532
*destld /= totaltransfersother;
1533
*destld *= 1000;
1534
} else
1535
*destld = 0.0;
1536
break;
1537
case DSM_BUSY_PCT:
1538
*destld = DELTA_T(busy_time);
1539
if (*destld < 0)
1540
*destld = 0;
1541
*destld /= etime;
1542
*destld *= 100;
1543
if (*destld < 0)
1544
*destld = 0;
1545
break;
1546
case DSM_QUEUE_LENGTH:
1547
*destu64 = current->start_count - current->end_count;
1548
break;
1549
case DSM_TOTAL_DURATION:
1550
*destld = totalduration;
1551
break;
1552
case DSM_TOTAL_DURATION_READ:
1553
*destld = totaldurationread;
1554
break;
1555
case DSM_TOTAL_DURATION_WRITE:
1556
*destld = totaldurationwrite;
1557
break;
1558
case DSM_TOTAL_DURATION_FREE:
1559
*destld = totaldurationfree;
1560
break;
1561
case DSM_TOTAL_DURATION_OTHER:
1562
*destld = totaldurationother;
1563
break;
1564
case DSM_TOTAL_BUSY_TIME:
1565
*destld = DELTA_T(busy_time);
1566
break;
1567
/*
1568
* XXX: comment out the default block to see if any case's are missing.
1569
*/
1570
#if 1
1571
default:
1572
/*
1573
* This shouldn't happen, since we should have
1574
* caught any out of range metrics at the top of
1575
* the loop.
1576
*/
1577
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1578
"%s: unknown metric %d", __func__, metric);
1579
retval = -1;
1580
goto bailout;
1581
break; /* NOTREACHED */
1582
#endif
1583
}
1584
}
1585
1586
bailout:
1587
1588
va_end(ap);
1589
return(retval);
1590
}
1591
1592
static int
1593
readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1594
{
1595
1596
if (kvm_read(kd, addr, buf, nbytes) == -1) {
1597
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1598
"%s: error reading value (kvm_read): %s", __func__,
1599
kvm_geterr(kd));
1600
return(-1);
1601
}
1602
return(0);
1603
}
1604
1605
static int
1606
readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes)
1607
{
1608
struct nlist nl[2];
1609
1610
nl[0].n_name = (char *)name;
1611
nl[1].n_name = NULL;
1612
1613
if (kvm_nlist(kd, nl) == -1) {
1614
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1615
"%s: error getting name list (kvm_nlist): %s",
1616
__func__, kvm_geterr(kd));
1617
return(-1);
1618
}
1619
return(readkmem(kd, nl[0].n_value, buf, nbytes));
1620
}
1621
1622
/*
1623
* This duplicates the functionality of the kernel sysctl handler for poking
1624
* through crash dumps.
1625
*/
1626
static char *
1627
get_devstat_kvm(kvm_t *kd)
1628
{
1629
int i, wp;
1630
long gen;
1631
struct devstat *nds;
1632
struct devstat ds;
1633
struct devstatlist dhead;
1634
int num_devs;
1635
char *rv = NULL;
1636
1637
if ((num_devs = devstat_getnumdevs(kd)) <= 0)
1638
return(NULL);
1639
if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1640
return(NULL);
1641
1642
nds = STAILQ_FIRST(&dhead);
1643
1644
if ((rv = malloc(sizeof(gen))) == NULL) {
1645
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1646
"%s: out of memory (initial malloc failed)",
1647
__func__);
1648
return(NULL);
1649
}
1650
gen = devstat_getgeneration(kd);
1651
memcpy(rv, &gen, sizeof(gen));
1652
wp = sizeof(gen);
1653
/*
1654
* Now push out all the devices.
1655
*/
1656
for (i = 0; (nds != NULL) && (i < num_devs);
1657
nds = STAILQ_NEXT(nds, dev_links), i++) {
1658
if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1659
free(rv);
1660
return(NULL);
1661
}
1662
nds = &ds;
1663
rv = (char *)reallocf(rv, sizeof(gen) +
1664
sizeof(ds) * (i + 1));
1665
if (rv == NULL) {
1666
snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1667
"%s: out of memory (malloc failed)",
1668
__func__);
1669
return(NULL);
1670
}
1671
memcpy(rv + wp, &ds, sizeof(ds));
1672
wp += sizeof(ds);
1673
}
1674
return(rv);
1675
}
1676
1677