Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/libexec/rtld-elf/rtld.c
102382 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5
* Copyright 2003 Alexander Kabaev <[email protected]>.
6
* Copyright 2009-2013 Konstantin Belousov <[email protected]>.
7
* Copyright 2012 John Marino <[email protected]>.
8
* Copyright 2014-2017 The FreeBSD Foundation
9
* All rights reserved.
10
*
11
* Portions of this software were developed by Konstantin Belousov
12
* under sponsorship from the FreeBSD Foundation.
13
*
14
* Redistribution and use in source and binary forms, with or without
15
* modification, are permitted provided that the following conditions
16
* are met:
17
* 1. Redistributions of source code must retain the above copyright
18
* notice, this list of conditions and the following disclaimer.
19
* 2. Redistributions in binary form must reproduce the above copyright
20
* notice, this list of conditions and the following disclaimer in the
21
* documentation and/or other materials provided with the distribution.
22
*
23
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33
*/
34
35
/*
36
* Dynamic linker for ELF.
37
*
38
* John Polstra <[email protected]>.
39
*/
40
41
#include <sys/param.h>
42
#include <sys/ktrace.h>
43
#include <sys/mman.h>
44
#include <sys/mount.h>
45
#include <sys/stat.h>
46
#include <sys/sysctl.h>
47
#include <sys/uio.h>
48
#include <sys/utsname.h>
49
50
#include <dlfcn.h>
51
#include <err.h>
52
#include <errno.h>
53
#include <fcntl.h>
54
#include <stdarg.h>
55
#include <stdio.h>
56
#include <stdlib.h>
57
#include <string.h>
58
#include <unistd.h>
59
60
#include "debug.h"
61
#include "libmap.h"
62
#include "notes.h"
63
#include "rtld.h"
64
#include "rtld_libc.h"
65
#include "rtld_malloc.h"
66
#include "rtld_paths.h"
67
#include "rtld_printf.h"
68
#include "rtld_tls.h"
69
#include "rtld_utrace.h"
70
71
/* Types. */
72
typedef void (*func_ptr_type)(void);
73
typedef void *(*path_enum_proc)(const char *path, size_t len, void *arg);
74
75
/* Variables that cannot be static: */
76
extern struct r_debug r_debug; /* For GDB */
77
extern int _thread_autoinit_dummy_decl;
78
extern void (*__cleanup)(void);
79
80
struct dlerror_save {
81
int seen;
82
char *msg;
83
};
84
85
struct tcb_list_entry {
86
TAILQ_ENTRY(tcb_list_entry) next;
87
};
88
89
/*
90
* Function declarations.
91
*/
92
static bool allocate_tls_offset_common(size_t *offp, size_t tlssize,
93
size_t tlsalign, size_t tlspoffset);
94
static const char *basename(const char *);
95
static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
96
const Elf_Dyn **, const Elf_Dyn **);
97
static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
98
const Elf_Dyn *);
99
static bool digest_dynamic(Obj_Entry *, int);
100
static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
101
static void distribute_static_tls(Objlist *);
102
static Obj_Entry *dlcheck(void *);
103
static int dlclose_locked(void *, RtldLockState *);
104
static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
105
int lo_flags, int mode, RtldLockState *lockstate);
106
static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
107
static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
108
static bool donelist_check(DoneList *, const Obj_Entry *);
109
static void dump_auxv(Elf_Auxinfo **aux_info);
110
static void errmsg_restore(struct dlerror_save *);
111
static struct dlerror_save *errmsg_save(void);
112
static void *fill_search_info(const char *, size_t, void *);
113
static char *find_library(const char *, const Obj_Entry *, int *);
114
static const char *gethints(bool);
115
static void hold_object(Obj_Entry *);
116
static void unhold_object(Obj_Entry *);
117
static void init_dag(Obj_Entry *);
118
static void init_marker(Obj_Entry *);
119
static void init_pagesizes(Elf_Auxinfo **aux_info);
120
static void init_rtld(caddr_t, Elf_Auxinfo **);
121
static void initlist_add_neededs(Needed_Entry *, Objlist *, Objlist *);
122
static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *,
123
Objlist *);
124
static void initlist_for_loaded_obj(Obj_Entry *obj, Obj_Entry *tail,
125
Objlist *list);
126
static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
127
static void linkmap_add(Obj_Entry *);
128
static void linkmap_delete(Obj_Entry *);
129
static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
130
static void unload_filtees(Obj_Entry *, RtldLockState *);
131
static int load_needed_objects(Obj_Entry *, int);
132
static int load_preload_objects(const char *, bool);
133
static int load_kpreload(const void *addr);
134
static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
135
static void map_stacks_exec(RtldLockState *);
136
static int obj_disable_relro(Obj_Entry *);
137
static int obj_enforce_relro(Obj_Entry *);
138
static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
139
static void objlist_call_init(Objlist *, RtldLockState *);
140
static void objlist_clear(Objlist *);
141
static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
142
static void objlist_init(Objlist *);
143
static void objlist_push_head(Objlist *, Obj_Entry *);
144
static void objlist_push_tail(Objlist *, Obj_Entry *);
145
static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
146
static void objlist_remove(Objlist *, Obj_Entry *);
147
static int open_binary_fd(const char *argv0, bool search_in_path,
148
const char **binpath_res);
149
static int parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
150
const char **argv0, bool *dir_ignore);
151
static int parse_integer(const char *);
152
static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
153
static void print_usage(const char *argv0);
154
static void release_object(Obj_Entry *);
155
static int relocate_object_dag(Obj_Entry *root, bool bind_now,
156
Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
157
static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
158
int flags, RtldLockState *lockstate);
159
static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
160
RtldLockState *);
161
static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
162
static int rtld_dirname(const char *, char *);
163
static int rtld_dirname_abs(const char *, char *);
164
static void *rtld_dlopen(const char *name, int fd, int mode);
165
static void rtld_exit(void);
166
static void rtld_nop_exit(void);
167
static char *search_library_path(const char *, const char *, const char *,
168
int *);
169
static char *search_library_pathfds(const char *, const char *, int *);
170
static const void **get_program_var_addr(const char *, RtldLockState *);
171
static void set_program_var(const char *, const void *);
172
static int symlook_default(SymLook *, const Obj_Entry *refobj);
173
static int symlook_global(SymLook *, DoneList *);
174
static void symlook_init_from_req(SymLook *, const SymLook *);
175
static int symlook_list(SymLook *, const Objlist *, DoneList *);
176
static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
177
static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
178
static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
179
static void *tls_get_addr_slow(struct tcb *, int, size_t, bool) __noinline;
180
static void trace_loaded_objects(Obj_Entry *, bool);
181
static void unlink_object(Obj_Entry *);
182
static void unload_object(Obj_Entry *, RtldLockState *lockstate);
183
static void unref_dag(Obj_Entry *);
184
static void ref_dag(Obj_Entry *);
185
static char *origin_subst_one(Obj_Entry *, char *, const char *, const char *,
186
bool);
187
static char *origin_subst(Obj_Entry *, const char *);
188
static bool obj_resolve_origin(Obj_Entry *obj);
189
static void preinit_main(void);
190
static int rtld_verify_versions(const Objlist *);
191
static int rtld_verify_object_versions(Obj_Entry *);
192
static void object_add_name(Obj_Entry *, const char *);
193
static int object_match_name(const Obj_Entry *, const char *);
194
static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
195
static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
196
struct dl_phdr_info *phdr_info);
197
static uint32_t gnu_hash(const char *);
198
static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
199
const unsigned long);
200
201
void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
202
void _r_debug_postinit(struct link_map *) __noinline __exported;
203
204
int __sys_openat(int, const char *, int, ...);
205
206
/*
207
* Data declarations.
208
*/
209
struct r_debug r_debug __exported; /* for GDB; */
210
static bool libmap_disable; /* Disable libmap */
211
static bool ld_loadfltr; /* Immediate filters processing */
212
static const char *libmap_override; /* Maps to use in addition to libmap.conf */
213
static bool trust; /* False for setuid and setgid programs */
214
static bool dangerous_ld_env; /* True if environment variables have been
215
used to affect the libraries loaded */
216
bool ld_bind_not; /* Disable PLT update */
217
static const char *ld_bind_now; /* Environment variable for immediate binding */
218
static const char *ld_debug; /* Environment variable for debugging */
219
static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
220
weak definition */
221
static const char *ld_library_path; /* Environment variable for search path */
222
static const char
223
*ld_library_dirs; /* Environment variable for library descriptors */
224
static const char *ld_preload; /* Environment variable for libraries to
225
load first */
226
static const char *ld_preload_fds; /* Environment variable for libraries
227
represented by descriptors */
228
static const char
229
*ld_elf_hints_path; /* Environment variable for alternative hints path */
230
static const char *ld_tracing; /* Called from ldd to print libs */
231
static const char *ld_utrace; /* Use utrace() to log events. */
232
static struct obj_entry_q obj_list; /* Queue of all loaded objects */
233
static Obj_Entry *obj_main; /* The main program shared object */
234
static Obj_Entry obj_rtld; /* The dynamic linker shared object */
235
static unsigned int obj_count; /* Number of objects in obj_list */
236
static unsigned int obj_loads; /* Number of loads of objects (gen count) */
237
size_t ld_static_tls_extra = /* Static TLS extra space (bytes) */
238
RTLD_STATIC_TLS_EXTRA;
239
240
static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
241
STAILQ_HEAD_INITIALIZER(list_global);
242
static Objlist list_main = /* Objects loaded at program startup */
243
STAILQ_HEAD_INITIALIZER(list_main);
244
static Objlist list_fini = /* Objects needing fini() calls */
245
STAILQ_HEAD_INITIALIZER(list_fini);
246
247
Elf_Sym sym_zero; /* For resolving undefined weak refs. */
248
249
#define GDB_STATE(s, m) \
250
r_debug.r_state = s; \
251
r_debug_state(&r_debug, m);
252
253
extern Elf_Dyn _DYNAMIC;
254
#pragma weak _DYNAMIC
255
256
int dlclose(void *) __exported;
257
char *dlerror(void) __exported;
258
void *dlopen(const char *, int) __exported;
259
void *fdlopen(int, int) __exported;
260
void *dlsym(void *, const char *) __exported;
261
dlfunc_t dlfunc(void *, const char *) __exported;
262
void *dlvsym(void *, const char *, const char *) __exported;
263
int dladdr(const void *, Dl_info *) __exported;
264
void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
265
void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
266
int dlinfo(void *, int, void *) __exported;
267
int _dl_iterate_phdr_locked(__dl_iterate_hdr_callback, void *) __exported;
268
int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
269
int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
270
int _rtld_get_stack_prot(void) __exported;
271
int _rtld_is_dlopened(void *) __exported;
272
void _rtld_error(const char *, ...) __exported;
273
const char *rtld_get_var(const char *name) __exported;
274
int rtld_set_var(const char *name, const char *val) __exported;
275
276
/* Only here to fix -Wmissing-prototypes warnings */
277
int __getosreldate(void);
278
func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
279
Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
280
281
int npagesizes;
282
static int osreldate;
283
size_t *pagesizes;
284
size_t page_size;
285
286
static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
287
static int max_stack_flags;
288
289
/*
290
* Global declarations normally provided by crt1. The dynamic linker is
291
* not built with crt1, so we have to provide them ourselves.
292
*/
293
char *__progname;
294
char **environ;
295
296
/*
297
* Used to pass argc, argv to init functions.
298
*/
299
int main_argc;
300
char **main_argv;
301
302
/*
303
* Globals to control TLS allocation.
304
*/
305
size_t tls_last_offset; /* Static TLS offset of last module */
306
size_t tls_last_size; /* Static TLS size of last module */
307
size_t tls_static_space; /* Static TLS space allocated */
308
static size_t tls_static_max_align;
309
Elf_Addr tls_dtv_generation = 1; /* Used to detect when dtv size changes */
310
int tls_max_index = 1; /* Largest module index allocated */
311
312
static TAILQ_HEAD(, tcb_list_entry) tcb_list =
313
TAILQ_HEAD_INITIALIZER(tcb_list);
314
static size_t tcb_list_entry_offset;
315
316
static bool ld_library_path_rpath = false;
317
bool ld_fast_sigblock = false;
318
319
/*
320
* Globals for path names, and such
321
*/
322
const char *ld_elf_hints_default = _PATH_ELF_HINTS;
323
const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
324
const char *ld_path_rtld = _PATH_RTLD;
325
const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
326
const char *ld_env_prefix = LD_;
327
328
static void (*rtld_exit_ptr)(void);
329
330
/*
331
* Fill in a DoneList with an allocation large enough to hold all of
332
* the currently-loaded objects. Keep this as a macro since it calls
333
* alloca and we want that to occur within the scope of the caller.
334
*/
335
#define donelist_init(dlp) \
336
((dlp)->objs = alloca(obj_count * sizeof(dlp)->objs[0]), \
337
assert((dlp)->objs != NULL), (dlp)->num_alloc = obj_count, \
338
(dlp)->num_used = 0)
339
340
#define LD_UTRACE(e, h, mb, ms, r, n) \
341
do { \
342
if (ld_utrace != NULL) \
343
ld_utrace_log(e, h, mb, ms, r, n); \
344
} while (0)
345
346
static void
347
ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
348
int refcnt, const char *name)
349
{
350
struct utrace_rtld ut;
351
static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] __nonstring =
352
RTLD_UTRACE_SIG;
353
354
memset(&ut, 0, sizeof(ut)); /* clear holes */
355
memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
356
ut.event = event;
357
ut.handle = handle;
358
ut.mapbase = mapbase;
359
ut.mapsize = mapsize;
360
ut.refcnt = refcnt;
361
if (name != NULL)
362
strlcpy(ut.name, name, sizeof(ut.name));
363
utrace(&ut, sizeof(ut));
364
}
365
366
struct ld_env_var_desc {
367
const char *const n;
368
const char *val;
369
const bool unsecure : 1;
370
const bool can_update : 1;
371
const bool debug : 1;
372
bool owned : 1;
373
};
374
#define LD_ENV_DESC(var, unsec, ...) \
375
[LD_##var] = { .n = #var, .unsecure = unsec, __VA_ARGS__ }
376
377
static struct ld_env_var_desc ld_env_vars[] = {
378
LD_ENV_DESC(BIND_NOW, false),
379
LD_ENV_DESC(PRELOAD, true),
380
LD_ENV_DESC(LIBMAP, true),
381
LD_ENV_DESC(LIBRARY_PATH, true, .can_update = true),
382
LD_ENV_DESC(LIBRARY_PATH_FDS, true, .can_update = true),
383
LD_ENV_DESC(LIBMAP_DISABLE, true),
384
LD_ENV_DESC(BIND_NOT, true),
385
LD_ENV_DESC(DEBUG, true, .can_update = true, .debug = true),
386
LD_ENV_DESC(ELF_HINTS_PATH, true),
387
LD_ENV_DESC(LOADFLTR, true),
388
LD_ENV_DESC(LIBRARY_PATH_RPATH, true, .can_update = true),
389
LD_ENV_DESC(PRELOAD_FDS, true),
390
LD_ENV_DESC(DYNAMIC_WEAK, true, .can_update = true),
391
LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
392
LD_ENV_DESC(UTRACE, false, .can_update = true),
393
LD_ENV_DESC(DUMP_REL_PRE, false, .can_update = true),
394
LD_ENV_DESC(DUMP_REL_POST, false, .can_update = true),
395
LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
396
LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
397
LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
398
LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
399
LD_ENV_DESC(SHOW_AUXV, true),
400
LD_ENV_DESC(STATIC_TLS_EXTRA, false),
401
LD_ENV_DESC(NO_DL_ITERATE_PHDR_AFTER_FORK, false),
402
};
403
404
const char *
405
ld_get_env_var(int idx)
406
{
407
return (ld_env_vars[idx].val);
408
}
409
410
static const char *
411
rtld_get_env_val(char **env, const char *name, size_t name_len)
412
{
413
char **m, *n, *v;
414
415
for (m = env; *m != NULL; m++) {
416
n = *m;
417
v = strchr(n, '=');
418
if (v == NULL) {
419
/* corrupt environment? */
420
continue;
421
}
422
if (v - n == (ptrdiff_t)name_len &&
423
strncmp(name, n, name_len) == 0)
424
return (v + 1);
425
}
426
return (NULL);
427
}
428
429
static void
430
rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
431
{
432
struct ld_env_var_desc *lvd;
433
size_t prefix_len, nlen;
434
char **m, *n, *v;
435
int i;
436
437
prefix_len = strlen(env_prefix);
438
for (m = env; *m != NULL; m++) {
439
n = *m;
440
if (strncmp(env_prefix, n, prefix_len) != 0) {
441
/* Not a rtld environment variable. */
442
continue;
443
}
444
n += prefix_len;
445
v = strchr(n, '=');
446
if (v == NULL) {
447
/* corrupt environment? */
448
continue;
449
}
450
for (i = 0; i < (int)nitems(ld_env_vars); i++) {
451
lvd = &ld_env_vars[i];
452
if (lvd->val != NULL) {
453
/* Saw higher-priority variable name already. */
454
continue;
455
}
456
nlen = strlen(lvd->n);
457
if (v - n == (ptrdiff_t)nlen &&
458
strncmp(lvd->n, n, nlen) == 0) {
459
lvd->val = v + 1;
460
break;
461
}
462
}
463
}
464
}
465
466
static void
467
rtld_init_env_vars(char **env)
468
{
469
rtld_init_env_vars_for_prefix(env, ld_env_prefix);
470
}
471
472
static void
473
set_ld_elf_hints_path(void)
474
{
475
if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
476
ld_elf_hints_path = ld_elf_hints_default;
477
}
478
479
uintptr_t
480
rtld_round_page(uintptr_t x)
481
{
482
return (roundup2(x, page_size));
483
}
484
485
uintptr_t
486
rtld_trunc_page(uintptr_t x)
487
{
488
return (rounddown2(x, page_size));
489
}
490
491
/*
492
* Main entry point for dynamic linking. The first argument is the
493
* stack pointer. The stack is expected to be laid out as described
494
* in the SVR4 ABI specification, Intel 386 Processor Supplement.
495
* Specifically, the stack pointer points to a word containing
496
* ARGC. Following that in the stack is a null-terminated sequence
497
* of pointers to argument strings. Then comes a null-terminated
498
* sequence of pointers to environment strings. Finally, there is a
499
* sequence of "auxiliary vector" entries.
500
*
501
* The second argument points to a place to store the dynamic linker's
502
* exit procedure pointer and the third to a place to store the main
503
* program's object.
504
*
505
* The return value is the main program's entry point.
506
*/
507
func_ptr_type
508
_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
509
{
510
Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT], auxtmp;
511
Objlist_Entry *entry;
512
Obj_Entry *last_interposer, *obj, *preload_tail;
513
const Elf_Phdr *phdr;
514
Objlist initlist;
515
RtldLockState lockstate;
516
struct stat st;
517
Elf_Addr *argcp;
518
char **argv, **env, **envp, *kexecpath;
519
const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
520
struct ld_env_var_desc *lvd;
521
caddr_t imgentry;
522
char buf[MAXPATHLEN];
523
int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
524
size_t sz;
525
bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
526
527
/*
528
* On entry, the dynamic linker itself has not been relocated yet.
529
* Be very careful not to reference any global data until after
530
* init_rtld has returned. It is OK to reference file-scope statics
531
* and string constants, and to call static and global functions.
532
*/
533
534
/* Find the auxiliary vector on the stack. */
535
argcp = sp;
536
argc = *sp++;
537
argv = (char **)sp;
538
sp += argc + 1; /* Skip over arguments and NULL terminator */
539
env = (char **)sp;
540
while (*sp++ != 0) /* Skip over environment, and NULL terminator */
541
;
542
aux = (Elf_Auxinfo *)sp;
543
544
/* Digest the auxiliary vector. */
545
for (i = 0; i < AT_COUNT; i++)
546
aux_info[i] = NULL;
547
for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
548
if (auxp->a_type < AT_COUNT)
549
aux_info[auxp->a_type] = auxp;
550
}
551
arch_fix_auxv(aux, aux_info);
552
553
/* Initialize and relocate ourselves. */
554
assert(aux_info[AT_BASE] != NULL);
555
init_rtld((caddr_t)aux_info[AT_BASE]->a_un.a_ptr, aux_info);
556
557
dlerror_dflt_init();
558
559
__progname = obj_rtld.path;
560
argv0 = argv[0] != NULL ? argv[0] : "(null)";
561
environ = env;
562
main_argc = argc;
563
main_argv = argv;
564
565
if (aux_info[AT_BSDFLAGS] != NULL &&
566
(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
567
ld_fast_sigblock = true;
568
569
trust = !issetugid();
570
direct_exec = false;
571
572
md_abi_variant_hook(aux_info);
573
rtld_init_env_vars(env);
574
575
fd = -1;
576
if (aux_info[AT_EXECFD] != NULL) {
577
fd = aux_info[AT_EXECFD]->a_un.a_val;
578
} else {
579
assert(aux_info[AT_PHDR] != NULL);
580
phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
581
if (phdr == obj_rtld.phdr) {
582
if (!trust) {
583
_rtld_error(
584
"Tainted process refusing to run binary %s",
585
argv0);
586
rtld_die();
587
}
588
direct_exec = true;
589
590
dbg("opening main program in direct exec mode");
591
if (argc >= 2) {
592
rtld_argc = parse_args(argv, argc,
593
&search_in_path, &fd, &argv0, &dir_ignore);
594
explicit_fd = (fd != -1);
595
binpath = NULL;
596
if (!explicit_fd)
597
fd = open_binary_fd(argv0,
598
search_in_path, &binpath);
599
if (fstat(fd, &st) == -1) {
600
_rtld_error(
601
"Failed to fstat FD %d (%s): %s",
602
fd,
603
explicit_fd ?
604
"user-provided descriptor" :
605
argv0,
606
rtld_strerror(errno));
607
rtld_die();
608
}
609
610
/*
611
* Rough emulation of the permission checks done
612
* by execve(2), only Unix DACs are checked,
613
* ACLs are ignored. Preserve the semantic of
614
* disabling owner to execute if owner x bit is
615
* cleared, even if others x bit is enabled.
616
* mmap(2) does not allow to mmap with PROT_EXEC
617
* if binary' file comes from noexec mount. We
618
* cannot set a text reference on the binary.
619
*/
620
dir_enable = false;
621
if (st.st_uid == geteuid()) {
622
if ((st.st_mode & S_IXUSR) != 0)
623
dir_enable = true;
624
} else if (st.st_gid == getegid()) {
625
if ((st.st_mode & S_IXGRP) != 0)
626
dir_enable = true;
627
} else if ((st.st_mode & S_IXOTH) != 0) {
628
dir_enable = true;
629
}
630
if (!dir_enable && !dir_ignore) {
631
_rtld_error(
632
"No execute permission for binary %s",
633
argv0);
634
rtld_die();
635
}
636
637
/*
638
* For direct exec mode, argv[0] is the
639
* interpreter name, we must remove it and shift
640
* arguments left before invoking binary main.
641
* Since stack layout places environment
642
* pointers and aux vectors right after the
643
* terminating NULL, we must shift environment
644
* and aux as well.
645
*/
646
main_argc = argc - rtld_argc;
647
for (i = 0; i <= main_argc; i++)
648
argv[i] = argv[i + rtld_argc];
649
*argcp -= rtld_argc;
650
environ = env = envp = argv + main_argc + 1;
651
dbg("move env from %p to %p", envp + rtld_argc,
652
envp);
653
do {
654
*envp = *(envp + rtld_argc);
655
} while (*envp++ != NULL);
656
aux = auxp = (Elf_Auxinfo *)envp;
657
auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
658
dbg("move aux from %p to %p", auxpf, aux);
659
/*
660
* XXXKIB insert place for AT_EXECPATH if not
661
* present
662
*/
663
for (;; auxp++, auxpf++) {
664
/*
665
* NB: Use a temporary since *auxpf and
666
* *auxp overlap if rtld_argc is 1
667
*/
668
auxtmp = *auxpf;
669
*auxp = auxtmp;
670
if (auxp->a_type == AT_NULL)
671
break;
672
}
673
/*
674
* Since the auxiliary vector has moved,
675
* redigest it.
676
*/
677
for (i = 0; i < AT_COUNT; i++)
678
aux_info[i] = NULL;
679
for (auxp = aux; auxp->a_type != AT_NULL;
680
auxp++) {
681
if (auxp->a_type < AT_COUNT)
682
aux_info[auxp->a_type] = auxp;
683
}
684
685
/*
686
* Point AT_EXECPATH auxv and aux_info to the
687
* binary path.
688
*/
689
if (binpath == NULL) {
690
aux_info[AT_EXECPATH] = NULL;
691
} else {
692
if (aux_info[AT_EXECPATH] == NULL) {
693
aux_info[AT_EXECPATH] = xmalloc(
694
sizeof(Elf_Auxinfo));
695
aux_info[AT_EXECPATH]->a_type =
696
AT_EXECPATH;
697
}
698
aux_info[AT_EXECPATH]->a_un.a_ptr =
699
__DECONST(void *, binpath);
700
}
701
} else {
702
_rtld_error("No binary");
703
rtld_die();
704
}
705
}
706
}
707
708
ld_bind_now = ld_get_env_var(LD_BIND_NOW);
709
710
/*
711
* If the process is tainted, then we un-set the dangerous environment
712
* variables. The process will be marked as tainted until setuid(2)
713
* is called. If any child process calls setuid(2) we do not want any
714
* future processes to honor the potentially un-safe variables.
715
*/
716
if (!trust) {
717
for (i = 0; i < (int)nitems(ld_env_vars); i++) {
718
lvd = &ld_env_vars[i];
719
if (lvd->unsecure)
720
lvd->val = NULL;
721
}
722
}
723
724
ld_debug = ld_get_env_var(LD_DEBUG);
725
if (ld_bind_now == NULL)
726
ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
727
ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
728
libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
729
libmap_override = ld_get_env_var(LD_LIBMAP);
730
ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
731
ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
732
ld_preload = ld_get_env_var(LD_PRELOAD);
733
ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
734
ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
735
ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
736
library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
737
if (library_path_rpath != NULL) {
738
if (library_path_rpath[0] == 'y' ||
739
library_path_rpath[0] == 'Y' ||
740
library_path_rpath[0] == '1')
741
ld_library_path_rpath = true;
742
else
743
ld_library_path_rpath = false;
744
}
745
static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
746
if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
747
sz = parse_integer(static_tls_extra);
748
if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
749
ld_static_tls_extra = sz;
750
}
751
dangerous_ld_env = libmap_disable || libmap_override != NULL ||
752
ld_library_path != NULL || ld_preload != NULL ||
753
ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
754
static_tls_extra != NULL;
755
ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
756
ld_utrace = ld_get_env_var(LD_UTRACE);
757
758
set_ld_elf_hints_path();
759
if (ld_debug != NULL && *ld_debug != '\0')
760
debug = 1;
761
dbg("%s is initialized, base address = %p", __progname,
762
(caddr_t)aux_info[AT_BASE]->a_un.a_ptr);
763
dbg("RTLD dynamic = %p", obj_rtld.dynamic);
764
dbg("RTLD pltgot = %p", obj_rtld.pltgot);
765
766
dbg("initializing thread locks");
767
lockdflt_init();
768
769
/*
770
* Load the main program, or process its program header if it is
771
* already loaded.
772
*/
773
if (fd != -1) { /* Load the main program. */
774
dbg("loading main program");
775
obj_main = map_object(fd, argv0, NULL, true);
776
close(fd);
777
if (obj_main == NULL)
778
rtld_die();
779
max_stack_flags = obj_main->stack_flags;
780
} else { /* Main program already loaded. */
781
dbg("processing main program's program header");
782
assert(aux_info[AT_PHDR] != NULL);
783
phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
784
assert(aux_info[AT_PHNUM] != NULL);
785
phnum = aux_info[AT_PHNUM]->a_un.a_val;
786
assert(aux_info[AT_PHENT] != NULL);
787
assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
788
assert(aux_info[AT_ENTRY] != NULL);
789
imgentry = (caddr_t)aux_info[AT_ENTRY]->a_un.a_ptr;
790
if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) ==
791
NULL)
792
rtld_die();
793
}
794
795
if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
796
kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
797
dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
798
if (kexecpath[0] == '/')
799
obj_main->path = kexecpath;
800
else if (getcwd(buf, sizeof(buf)) == NULL ||
801
strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
802
strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
803
obj_main->path = xstrdup(argv0);
804
else
805
obj_main->path = xstrdup(buf);
806
} else {
807
dbg("No AT_EXECPATH or direct exec");
808
obj_main->path = xstrdup(argv0);
809
}
810
dbg("obj_main path %s", obj_main->path);
811
obj_main->mainprog = true;
812
813
if (aux_info[AT_STACKPROT] != NULL &&
814
aux_info[AT_STACKPROT]->a_un.a_val != 0)
815
stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
816
817
#ifndef COMPAT_libcompat
818
/*
819
* Get the actual dynamic linker pathname from the executable if
820
* possible. (It should always be possible.) That ensures that
821
* gdb will find the right dynamic linker even if a non-standard
822
* one is being used.
823
*/
824
if (obj_main->interp != NULL &&
825
strcmp(obj_main->interp, obj_rtld.path) != 0) {
826
free(obj_rtld.path);
827
obj_rtld.path = xstrdup(obj_main->interp);
828
__progname = obj_rtld.path;
829
}
830
#endif
831
832
if (!digest_dynamic(obj_main, 0))
833
rtld_die();
834
dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
835
obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
836
obj_main->dynsymcount);
837
838
linkmap_add(obj_main);
839
linkmap_add(&obj_rtld);
840
LD_UTRACE(UTRACE_LOAD_OBJECT, obj_main, obj_main->mapbase,
841
obj_main->mapsize, 0, obj_main->path);
842
LD_UTRACE(UTRACE_LOAD_OBJECT, &obj_rtld, obj_rtld.mapbase,
843
obj_rtld.mapsize, 0, obj_rtld.path);
844
845
/* Link the main program into the list of objects. */
846
TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
847
obj_count++;
848
obj_loads++;
849
850
/* Initialize a fake symbol for resolving undefined weak references. */
851
sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
852
sym_zero.st_shndx = SHN_UNDEF;
853
sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
854
855
if (!libmap_disable)
856
libmap_disable = (bool)lm_init(libmap_override);
857
858
if (aux_info[AT_KPRELOAD] != NULL &&
859
aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
860
dbg("loading kernel vdso");
861
if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
862
rtld_die();
863
}
864
865
dbg("loading LD_PRELOAD_FDS libraries");
866
if (load_preload_objects(ld_preload_fds, true) == -1)
867
rtld_die();
868
869
dbg("loading LD_PRELOAD libraries");
870
if (load_preload_objects(ld_preload, false) == -1)
871
rtld_die();
872
preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
873
874
dbg("loading needed objects");
875
if (load_needed_objects(obj_main,
876
ld_tracing != NULL ? RTLD_LO_TRACE : 0) == -1)
877
rtld_die();
878
879
/* Make a list of all objects loaded at startup. */
880
last_interposer = obj_main;
881
TAILQ_FOREACH(obj, &obj_list, next) {
882
if (obj->marker)
883
continue;
884
if (obj->z_interpose && obj != obj_main) {
885
objlist_put_after(&list_main, last_interposer, obj);
886
last_interposer = obj;
887
} else {
888
objlist_push_tail(&list_main, obj);
889
}
890
obj->refcount++;
891
}
892
893
dbg("checking for required versions");
894
if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
895
rtld_die();
896
897
if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
898
dump_auxv(aux_info);
899
900
if (ld_tracing) { /* We're done */
901
trace_loaded_objects(obj_main, true);
902
exit(0);
903
}
904
905
if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
906
dump_relocations(obj_main);
907
exit(0);
908
}
909
910
/*
911
* Processing tls relocations requires having the tls offsets
912
* initialized. Prepare offsets before starting initial
913
* relocation processing.
914
*/
915
dbg("initializing initial thread local storage offsets");
916
STAILQ_FOREACH(entry, &list_main, link) {
917
/*
918
* Allocate all the initial objects out of the static TLS
919
* block even if they didn't ask for it.
920
*/
921
allocate_tls_offset(entry->obj);
922
}
923
924
if (!allocate_tls_offset_common(&tcb_list_entry_offset,
925
sizeof(struct tcb_list_entry), _Alignof(struct tcb_list_entry),
926
0)) {
927
/*
928
* This should be impossible as the static block size is not
929
* yet fixed, but catch and diagnose it failing if that ever
930
* changes or somehow turns out to be false.
931
*/
932
_rtld_error("Could not allocate offset for tcb_list_entry");
933
rtld_die();
934
}
935
dbg("tcb_list_entry_offset %zu", tcb_list_entry_offset);
936
937
if (relocate_objects(obj_main,
938
ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld,
939
SYMLOOK_EARLY, NULL) == -1)
940
rtld_die();
941
942
dbg("doing copy relocations");
943
if (do_copy_relocations(obj_main) == -1)
944
rtld_die();
945
946
if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
947
dump_relocations(obj_main);
948
exit(0);
949
}
950
951
ifunc_init(aux_info);
952
953
/*
954
* Setup TLS for main thread. This must be done after the
955
* relocations are processed, since tls initialization section
956
* might be the subject for relocations.
957
*/
958
dbg("initializing initial thread local storage");
959
allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
960
961
dbg("initializing key program variables");
962
set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
963
set_program_var("environ", env);
964
set_program_var("__elf_aux_vector", aux);
965
966
/* Make a list of init functions to call. */
967
objlist_init(&initlist);
968
initlist_for_loaded_obj(globallist_curr(TAILQ_FIRST(&obj_list)),
969
preload_tail, &initlist);
970
971
r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
972
973
map_stacks_exec(NULL);
974
975
if (!obj_main->crt_no_init) {
976
/*
977
* Make sure we don't call the main program's init and fini
978
* functions for binaries linked with old crt1 which calls
979
* _init itself.
980
*/
981
obj_main->init = obj_main->fini = 0;
982
obj_main->preinit_array = obj_main->init_array =
983
obj_main->fini_array = NULL;
984
}
985
986
if (direct_exec) {
987
/* Set osrel for direct-execed binary */
988
mib[0] = CTL_KERN;
989
mib[1] = KERN_PROC;
990
mib[2] = KERN_PROC_OSREL;
991
mib[3] = getpid();
992
osrel = obj_main->osrel;
993
sz = sizeof(old_osrel);
994
dbg("setting osrel to %d", osrel);
995
(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
996
}
997
998
wlock_acquire(rtld_bind_lock, &lockstate);
999
1000
dbg("resolving ifuncs");
1001
if (initlist_objects_ifunc(&initlist,
1002
ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
1003
&lockstate) == -1)
1004
rtld_die();
1005
1006
rtld_exit_ptr = rtld_exit;
1007
if (obj_main->crt_no_init)
1008
preinit_main();
1009
objlist_call_init(&initlist, &lockstate);
1010
_r_debug_postinit(&obj_main->linkmap);
1011
objlist_clear(&initlist);
1012
dbg("loading filtees");
1013
TAILQ_FOREACH(obj, &obj_list, next) {
1014
if (obj->marker)
1015
continue;
1016
if (ld_loadfltr || obj->z_loadfltr)
1017
load_filtees(obj, 0, &lockstate);
1018
}
1019
1020
dbg("enforcing main obj relro");
1021
if (obj_enforce_relro(obj_main) == -1)
1022
rtld_die();
1023
1024
lock_release(rtld_bind_lock, &lockstate);
1025
1026
dbg("transferring control to program entry point = %p",
1027
obj_main->entry);
1028
1029
/* Return the exit procedure and the program entry point. */
1030
*exit_proc = rtld_exit_ptr;
1031
*objp = obj_main;
1032
return ((func_ptr_type)obj_main->entry);
1033
}
1034
1035
void *
1036
rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1037
{
1038
void *ptr;
1039
Elf_Addr target;
1040
1041
ptr = (void *)make_function_pointer(def, obj);
1042
target = call_ifunc_resolver(ptr);
1043
return ((void *)target);
1044
}
1045
1046
Elf_Addr
1047
_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1048
{
1049
const Elf_Rel *rel;
1050
const Elf_Sym *def;
1051
const Obj_Entry *defobj;
1052
Elf_Addr *where;
1053
Elf_Addr target;
1054
RtldLockState lockstate;
1055
1056
relock:
1057
rlock_acquire(rtld_bind_lock, &lockstate);
1058
if (sigsetjmp(lockstate.env, 0) != 0)
1059
lock_upgrade(rtld_bind_lock, &lockstate);
1060
if (obj->pltrel)
1061
rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1062
else
1063
rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1064
1065
where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1066
def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1067
NULL, &lockstate);
1068
if (def == NULL)
1069
rtld_die();
1070
if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
1071
if (lockstate_wlocked(&lockstate)) {
1072
lock_release(rtld_bind_lock, &lockstate);
1073
goto relock;
1074
}
1075
target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1076
} else {
1077
target = (Elf_Addr)(defobj->relocbase + def->st_value);
1078
}
1079
1080
dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", defobj->strtab + def->st_name,
1081
obj->path == NULL ? NULL : basename(obj->path), (void *)target,
1082
defobj->path == NULL ? NULL : basename(defobj->path));
1083
1084
/*
1085
* Write the new contents for the jmpslot. Note that depending on
1086
* architecture, the value which we need to return back to the
1087
* lazy binding trampoline may or may not be the target
1088
* address. The value returned from reloc_jmpslot() is the value
1089
* that the trampoline needs.
1090
*/
1091
target = reloc_jmpslot(where, target, defobj, obj, rel);
1092
lock_release(rtld_bind_lock, &lockstate);
1093
return (target);
1094
}
1095
1096
/*
1097
* Error reporting function. Use it like printf. If formats the message
1098
* into a buffer, and sets things up so that the next call to dlerror()
1099
* will return the message.
1100
*/
1101
void
1102
_rtld_error(const char *fmt, ...)
1103
{
1104
va_list ap;
1105
1106
va_start(ap, fmt);
1107
rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz, fmt,
1108
ap);
1109
va_end(ap);
1110
*lockinfo.dlerror_seen() = 0;
1111
dbg("rtld_error: %s", lockinfo.dlerror_loc());
1112
LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1113
}
1114
1115
/*
1116
* Return a dynamically-allocated copy of the current error message, if any.
1117
*/
1118
static struct dlerror_save *
1119
errmsg_save(void)
1120
{
1121
struct dlerror_save *res;
1122
1123
res = xmalloc(sizeof(*res));
1124
res->seen = *lockinfo.dlerror_seen();
1125
if (res->seen == 0)
1126
res->msg = xstrdup(lockinfo.dlerror_loc());
1127
return (res);
1128
}
1129
1130
/*
1131
* Restore the current error message from a copy which was previously saved
1132
* by errmsg_save(). The copy is freed.
1133
*/
1134
static void
1135
errmsg_restore(struct dlerror_save *saved_msg)
1136
{
1137
if (saved_msg == NULL || saved_msg->seen == 1) {
1138
*lockinfo.dlerror_seen() = 1;
1139
} else {
1140
*lockinfo.dlerror_seen() = 0;
1141
strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1142
lockinfo.dlerror_loc_sz);
1143
free(saved_msg->msg);
1144
}
1145
free(saved_msg);
1146
}
1147
1148
static const char *
1149
basename(const char *name)
1150
{
1151
const char *p;
1152
1153
p = strrchr(name, '/');
1154
return (p != NULL ? p + 1 : name);
1155
}
1156
1157
static struct utsname uts;
1158
1159
static char *
1160
origin_subst_one(Obj_Entry *obj, char *real, const char *kw, const char *subst,
1161
bool may_free)
1162
{
1163
char *p, *p1, *res, *resp;
1164
int subst_len, kw_len, subst_count, old_len, new_len;
1165
1166
kw_len = strlen(kw);
1167
1168
/*
1169
* First, count the number of the keyword occurrences, to
1170
* preallocate the final string.
1171
*/
1172
for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1173
p1 = strstr(p, kw);
1174
if (p1 == NULL)
1175
break;
1176
}
1177
1178
/*
1179
* If the keyword is not found, just return.
1180
*
1181
* Return non-substituted string if resolution failed. We
1182
* cannot do anything more reasonable, the failure mode of the
1183
* caller is unresolved library anyway.
1184
*/
1185
if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1186
return (may_free ? real : xstrdup(real));
1187
if (obj != NULL)
1188
subst = obj->origin_path;
1189
1190
/*
1191
* There is indeed something to substitute. Calculate the
1192
* length of the resulting string, and allocate it.
1193
*/
1194
subst_len = strlen(subst);
1195
old_len = strlen(real);
1196
new_len = old_len + (subst_len - kw_len) * subst_count;
1197
res = xmalloc(new_len + 1);
1198
1199
/*
1200
* Now, execute the substitution loop.
1201
*/
1202
for (p = real, resp = res, *resp = '\0';;) {
1203
p1 = strstr(p, kw);
1204
if (p1 != NULL) {
1205
/* Copy the prefix before keyword. */
1206
memcpy(resp, p, p1 - p);
1207
resp += p1 - p;
1208
/* Keyword replacement. */
1209
memcpy(resp, subst, subst_len);
1210
resp += subst_len;
1211
*resp = '\0';
1212
p = p1 + kw_len;
1213
} else
1214
break;
1215
}
1216
1217
/* Copy to the end of string and finish. */
1218
strcat(resp, p);
1219
if (may_free)
1220
free(real);
1221
return (res);
1222
}
1223
1224
static const struct {
1225
const char *kw;
1226
bool pass_obj;
1227
const char *subst;
1228
} tokens[] = {
1229
{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1230
{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1231
{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1232
{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1233
{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1234
{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1235
{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1236
{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1237
{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1238
{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1239
};
1240
1241
static char *
1242
origin_subst(Obj_Entry *obj, const char *real)
1243
{
1244
char *res;
1245
int i;
1246
1247
if (obj == NULL || !trust)
1248
return (xstrdup(real));
1249
if (uts.sysname[0] == '\0') {
1250
if (uname(&uts) != 0) {
1251
_rtld_error("utsname failed: %d", errno);
1252
return (NULL);
1253
}
1254
}
1255
1256
/* __DECONST is safe here since without may_free real is unchanged */
1257
res = __DECONST(char *, real);
1258
for (i = 0; i < (int)nitems(tokens); i++) {
1259
res = origin_subst_one(tokens[i].pass_obj ? obj : NULL, res,
1260
tokens[i].kw, tokens[i].subst, i != 0);
1261
}
1262
return (res);
1263
}
1264
1265
void
1266
rtld_die(void)
1267
{
1268
const char *msg = dlerror();
1269
1270
if (msg == NULL)
1271
msg = "Fatal error";
1272
rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1273
rtld_fdputstr(STDERR_FILENO, msg);
1274
rtld_fdputchar(STDERR_FILENO, '\n');
1275
_exit(1);
1276
}
1277
1278
/*
1279
* Process a shared object's DYNAMIC section, and save the important
1280
* information in its Obj_Entry structure.
1281
*/
1282
static void
1283
digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1284
const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1285
{
1286
const Elf_Dyn *dynp;
1287
Needed_Entry **needed_tail = &obj->needed;
1288
Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1289
Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1290
const Elf_Hashelt *hashtab;
1291
const Elf32_Word *hashval;
1292
Elf32_Word bkt, nmaskwords;
1293
int bloom_size32;
1294
int plttype = DT_REL;
1295
1296
*dyn_rpath = NULL;
1297
*dyn_soname = NULL;
1298
*dyn_runpath = NULL;
1299
1300
obj->bind_now = false;
1301
dynp = obj->dynamic;
1302
if (dynp == NULL)
1303
return;
1304
for (; dynp->d_tag != DT_NULL; dynp++) {
1305
switch (dynp->d_tag) {
1306
case DT_REL:
1307
obj->rel = (const Elf_Rel *)(obj->relocbase +
1308
dynp->d_un.d_ptr);
1309
break;
1310
1311
case DT_RELSZ:
1312
obj->relsize = dynp->d_un.d_val;
1313
break;
1314
1315
case DT_RELENT:
1316
assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1317
break;
1318
1319
case DT_JMPREL:
1320
obj->pltrel = (const Elf_Rel *)(obj->relocbase +
1321
dynp->d_un.d_ptr);
1322
break;
1323
1324
case DT_PLTRELSZ:
1325
obj->pltrelsize = dynp->d_un.d_val;
1326
break;
1327
1328
case DT_RELA:
1329
obj->rela = (const Elf_Rela *)(obj->relocbase +
1330
dynp->d_un.d_ptr);
1331
break;
1332
1333
case DT_RELASZ:
1334
obj->relasize = dynp->d_un.d_val;
1335
break;
1336
1337
case DT_RELAENT:
1338
assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1339
break;
1340
1341
case DT_RELR:
1342
obj->relr = (const Elf_Relr *)(obj->relocbase +
1343
dynp->d_un.d_ptr);
1344
break;
1345
1346
case DT_RELRSZ:
1347
obj->relrsize = dynp->d_un.d_val;
1348
break;
1349
1350
case DT_RELRENT:
1351
assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1352
break;
1353
1354
case DT_PLTREL:
1355
plttype = dynp->d_un.d_val;
1356
assert(
1357
dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1358
break;
1359
1360
case DT_SYMTAB:
1361
obj->symtab = (const Elf_Sym *)(obj->relocbase +
1362
dynp->d_un.d_ptr);
1363
break;
1364
1365
case DT_SYMENT:
1366
assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1367
break;
1368
1369
case DT_STRTAB:
1370
obj->strtab = (const char *)(obj->relocbase +
1371
dynp->d_un.d_ptr);
1372
break;
1373
1374
case DT_STRSZ:
1375
obj->strsize = dynp->d_un.d_val;
1376
break;
1377
1378
case DT_VERNEED:
1379
obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1380
dynp->d_un.d_val);
1381
break;
1382
1383
case DT_VERNEEDNUM:
1384
obj->verneednum = dynp->d_un.d_val;
1385
break;
1386
1387
case DT_VERDEF:
1388
obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1389
dynp->d_un.d_val);
1390
break;
1391
1392
case DT_VERDEFNUM:
1393
obj->verdefnum = dynp->d_un.d_val;
1394
break;
1395
1396
case DT_VERSYM:
1397
obj->versyms = (const Elf_Versym *)(obj->relocbase +
1398
dynp->d_un.d_val);
1399
break;
1400
1401
case DT_HASH: {
1402
hashtab = (const Elf_Hashelt *)(obj->relocbase +
1403
dynp->d_un.d_ptr);
1404
obj->nbuckets = hashtab[0];
1405
obj->nchains = hashtab[1];
1406
obj->buckets = hashtab + 2;
1407
obj->chains = obj->buckets + obj->nbuckets;
1408
obj->valid_hash_sysv = obj->nbuckets > 0 &&
1409
obj->nchains > 0 && obj->buckets != NULL;
1410
} break;
1411
1412
case DT_GNU_HASH: {
1413
hashtab = (const Elf_Hashelt *)(obj->relocbase +
1414
dynp->d_un.d_ptr);
1415
obj->nbuckets_gnu = hashtab[0];
1416
obj->symndx_gnu = hashtab[1];
1417
nmaskwords = hashtab[2];
1418
bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1419
obj->maskwords_bm_gnu = nmaskwords - 1;
1420
obj->shift2_gnu = hashtab[3];
1421
obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1422
obj->buckets_gnu = hashtab + 4 + bloom_size32;
1423
obj->chain_zero_gnu = obj->buckets_gnu +
1424
obj->nbuckets_gnu - obj->symndx_gnu;
1425
/* Number of bitmask words is required to be power of 2
1426
*/
1427
obj->valid_hash_gnu = powerof2(nmaskwords) &&
1428
obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1429
} break;
1430
1431
case DT_NEEDED:
1432
if (!obj->rtld) {
1433
Needed_Entry *nep = NEW(Needed_Entry);
1434
nep->name = dynp->d_un.d_val;
1435
nep->obj = NULL;
1436
nep->next = NULL;
1437
1438
*needed_tail = nep;
1439
needed_tail = &nep->next;
1440
}
1441
break;
1442
1443
case DT_FILTER:
1444
if (!obj->rtld) {
1445
Needed_Entry *nep = NEW(Needed_Entry);
1446
nep->name = dynp->d_un.d_val;
1447
nep->obj = NULL;
1448
nep->next = NULL;
1449
1450
*needed_filtees_tail = nep;
1451
needed_filtees_tail = &nep->next;
1452
1453
if (obj->linkmap.l_refname == NULL)
1454
obj->linkmap.l_refname =
1455
(char *)dynp->d_un.d_val;
1456
}
1457
break;
1458
1459
case DT_AUXILIARY:
1460
if (!obj->rtld) {
1461
Needed_Entry *nep = NEW(Needed_Entry);
1462
nep->name = dynp->d_un.d_val;
1463
nep->obj = NULL;
1464
nep->next = NULL;
1465
1466
*needed_aux_filtees_tail = nep;
1467
needed_aux_filtees_tail = &nep->next;
1468
}
1469
break;
1470
1471
case DT_PLTGOT:
1472
obj->pltgot = (Elf_Addr *)(obj->relocbase +
1473
dynp->d_un.d_ptr);
1474
break;
1475
1476
case DT_TEXTREL:
1477
obj->textrel = true;
1478
break;
1479
1480
case DT_SYMBOLIC:
1481
obj->symbolic = true;
1482
break;
1483
1484
case DT_RPATH:
1485
/*
1486
* We have to wait until later to process this, because
1487
* we might not have gotten the address of the string
1488
* table yet.
1489
*/
1490
*dyn_rpath = dynp;
1491
break;
1492
1493
case DT_SONAME:
1494
*dyn_soname = dynp;
1495
break;
1496
1497
case DT_RUNPATH:
1498
*dyn_runpath = dynp;
1499
break;
1500
1501
case DT_INIT:
1502
obj->init = (uintptr_t)(obj->relocbase +
1503
dynp->d_un.d_ptr);
1504
break;
1505
1506
case DT_PREINIT_ARRAY:
1507
obj->preinit_array = (uintptr_t *)(obj->relocbase +
1508
dynp->d_un.d_ptr);
1509
break;
1510
1511
case DT_PREINIT_ARRAYSZ:
1512
obj->preinit_array_num = dynp->d_un.d_val /
1513
sizeof(uintptr_t);
1514
break;
1515
1516
case DT_INIT_ARRAY:
1517
obj->init_array = (uintptr_t *)(obj->relocbase +
1518
dynp->d_un.d_ptr);
1519
break;
1520
1521
case DT_INIT_ARRAYSZ:
1522
obj->init_array_num = dynp->d_un.d_val /
1523
sizeof(uintptr_t);
1524
break;
1525
1526
case DT_FINI:
1527
obj->fini = (uintptr_t)(obj->relocbase +
1528
dynp->d_un.d_ptr);
1529
break;
1530
1531
case DT_FINI_ARRAY:
1532
obj->fini_array = (uintptr_t *)(obj->relocbase +
1533
dynp->d_un.d_ptr);
1534
break;
1535
1536
case DT_FINI_ARRAYSZ:
1537
obj->fini_array_num = dynp->d_un.d_val /
1538
sizeof(uintptr_t);
1539
break;
1540
1541
case DT_DEBUG:
1542
if (!early)
1543
dbg("Filling in DT_DEBUG entry");
1544
(__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr =
1545
(Elf_Addr)&r_debug;
1546
break;
1547
1548
case DT_FLAGS:
1549
if (dynp->d_un.d_val & DF_ORIGIN)
1550
obj->z_origin = true;
1551
if (dynp->d_un.d_val & DF_SYMBOLIC)
1552
obj->symbolic = true;
1553
if (dynp->d_un.d_val & DF_TEXTREL)
1554
obj->textrel = true;
1555
if (dynp->d_un.d_val & DF_BIND_NOW)
1556
obj->bind_now = true;
1557
if (dynp->d_un.d_val & DF_STATIC_TLS)
1558
obj->static_tls = true;
1559
break;
1560
1561
case DT_FLAGS_1:
1562
if (dynp->d_un.d_val & DF_1_NOOPEN)
1563
obj->z_noopen = true;
1564
if (dynp->d_un.d_val & DF_1_ORIGIN)
1565
obj->z_origin = true;
1566
if (dynp->d_un.d_val & DF_1_GLOBAL)
1567
obj->z_global = true;
1568
if (dynp->d_un.d_val & DF_1_BIND_NOW)
1569
obj->bind_now = true;
1570
if (dynp->d_un.d_val & DF_1_NODELETE)
1571
obj->z_nodelete = true;
1572
if (dynp->d_un.d_val & DF_1_LOADFLTR)
1573
obj->z_loadfltr = true;
1574
if (dynp->d_un.d_val & DF_1_INTERPOSE)
1575
obj->z_interpose = true;
1576
if (dynp->d_un.d_val & DF_1_NODEFLIB)
1577
obj->z_nodeflib = true;
1578
if (dynp->d_un.d_val & DF_1_PIE)
1579
obj->z_pie = true;
1580
if (dynp->d_un.d_val & DF_1_INITFIRST)
1581
obj->z_initfirst = true;
1582
break;
1583
1584
default:
1585
if (arch_digest_dynamic(obj, dynp))
1586
break;
1587
1588
if (!early) {
1589
dbg("Ignoring d_tag %ld = %#lx",
1590
(long)dynp->d_tag, (long)dynp->d_tag);
1591
}
1592
break;
1593
}
1594
}
1595
1596
obj->traced = false;
1597
1598
if (plttype == DT_RELA) {
1599
obj->pltrela = (const Elf_Rela *)obj->pltrel;
1600
obj->pltrel = NULL;
1601
obj->pltrelasize = obj->pltrelsize;
1602
obj->pltrelsize = 0;
1603
}
1604
1605
/* Determine size of dynsym table (equal to nchains of sysv hash) */
1606
if (obj->valid_hash_sysv)
1607
obj->dynsymcount = obj->nchains;
1608
else if (obj->valid_hash_gnu) {
1609
obj->dynsymcount = 0;
1610
for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1611
if (obj->buckets_gnu[bkt] == 0)
1612
continue;
1613
hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1614
do
1615
obj->dynsymcount++;
1616
while ((*hashval++ & 1u) == 0);
1617
}
1618
obj->dynsymcount += obj->symndx_gnu;
1619
}
1620
1621
if (obj->linkmap.l_refname != NULL)
1622
obj->linkmap.l_refname = obj->strtab +
1623
(unsigned long)obj->linkmap.l_refname;
1624
}
1625
1626
static bool
1627
obj_resolve_origin(Obj_Entry *obj)
1628
{
1629
if (obj->origin_path != NULL)
1630
return (true);
1631
obj->origin_path = xmalloc(PATH_MAX);
1632
return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1633
}
1634
1635
static bool
1636
digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1637
const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1638
{
1639
if (obj->z_origin && !obj_resolve_origin(obj))
1640
return (false);
1641
1642
if (dyn_runpath != NULL) {
1643
obj->runpath = (const char *)obj->strtab +
1644
dyn_runpath->d_un.d_val;
1645
obj->runpath = origin_subst(obj, obj->runpath);
1646
} else if (dyn_rpath != NULL) {
1647
obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1648
obj->rpath = origin_subst(obj, obj->rpath);
1649
}
1650
if (dyn_soname != NULL)
1651
object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1652
return (true);
1653
}
1654
1655
static bool
1656
digest_dynamic(Obj_Entry *obj, int early)
1657
{
1658
const Elf_Dyn *dyn_rpath;
1659
const Elf_Dyn *dyn_soname;
1660
const Elf_Dyn *dyn_runpath;
1661
1662
digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1663
return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1664
}
1665
1666
/*
1667
* Process a shared object's program header. This is used only for the
1668
* main program, when the kernel has already loaded the main program
1669
* into memory before calling the dynamic linker. It creates and
1670
* returns an Obj_Entry structure.
1671
*/
1672
static Obj_Entry *
1673
digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1674
{
1675
Obj_Entry *obj;
1676
const Elf_Phdr *phlimit = phdr + phnum;
1677
const Elf_Phdr *ph;
1678
Elf_Addr note_start, note_end;
1679
int nsegs = 0;
1680
1681
obj = obj_new();
1682
for (ph = phdr; ph < phlimit; ph++) {
1683
if (ph->p_type != PT_PHDR)
1684
continue;
1685
1686
obj->phdr = phdr;
1687
obj->phnum = ph->p_memsz / sizeof(*ph);
1688
obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1689
break;
1690
}
1691
1692
obj->stack_flags = PF_X | PF_R | PF_W;
1693
1694
for (ph = phdr; ph < phlimit; ph++) {
1695
switch (ph->p_type) {
1696
case PT_INTERP:
1697
obj->interp = (const char *)(ph->p_vaddr +
1698
obj->relocbase);
1699
break;
1700
1701
case PT_LOAD:
1702
if (nsegs == 0) { /* First load segment */
1703
obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1704
obj->mapbase = obj->vaddrbase + obj->relocbase;
1705
} else { /* Last load segment */
1706
obj->mapsize = rtld_round_page(
1707
ph->p_vaddr + ph->p_memsz) -
1708
obj->vaddrbase;
1709
}
1710
nsegs++;
1711
break;
1712
1713
case PT_DYNAMIC:
1714
obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr +
1715
obj->relocbase);
1716
break;
1717
1718
case PT_TLS:
1719
obj->tlsindex = 1;
1720
obj->tlssize = ph->p_memsz;
1721
obj->tlsalign = ph->p_align;
1722
obj->tlsinitsize = ph->p_filesz;
1723
obj->tlsinit = (void *)(ph->p_vaddr + obj->relocbase);
1724
obj->tlspoffset = ph->p_offset;
1725
break;
1726
1727
case PT_GNU_STACK:
1728
obj->stack_flags = ph->p_flags;
1729
break;
1730
1731
case PT_NOTE:
1732
note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1733
note_end = note_start + ph->p_filesz;
1734
digest_notes(obj, note_start, note_end);
1735
break;
1736
}
1737
}
1738
if (nsegs < 1) {
1739
_rtld_error("%s: too few PT_LOAD segments", path);
1740
return (NULL);
1741
}
1742
1743
obj->entry = entry;
1744
return (obj);
1745
}
1746
1747
void
1748
digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1749
{
1750
const Elf_Note *note;
1751
const char *note_name;
1752
uintptr_t p;
1753
1754
for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1755
note = (const Elf_Note *)((const char *)(note + 1) +
1756
roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1757
roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1758
if (arch_digest_note(obj, note))
1759
continue;
1760
1761
if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1762
note->n_descsz != sizeof(int32_t))
1763
continue;
1764
if (note->n_type != NT_FREEBSD_ABI_TAG &&
1765
note->n_type != NT_FREEBSD_FEATURE_CTL &&
1766
note->n_type != NT_FREEBSD_NOINIT_TAG)
1767
continue;
1768
note_name = (const char *)(note + 1);
1769
if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1770
sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1771
continue;
1772
switch (note->n_type) {
1773
case NT_FREEBSD_ABI_TAG:
1774
/* FreeBSD osrel note */
1775
p = (uintptr_t)(note + 1);
1776
p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1777
obj->osrel = *(const int32_t *)(p);
1778
dbg("note osrel %d", obj->osrel);
1779
break;
1780
case NT_FREEBSD_FEATURE_CTL:
1781
/* FreeBSD ABI feature control note */
1782
p = (uintptr_t)(note + 1);
1783
p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1784
obj->fctl0 = *(const uint32_t *)(p);
1785
dbg("note fctl0 %#x", obj->fctl0);
1786
break;
1787
case NT_FREEBSD_NOINIT_TAG:
1788
/* FreeBSD 'crt does not call init' note */
1789
obj->crt_no_init = true;
1790
dbg("note crt_no_init");
1791
break;
1792
}
1793
}
1794
}
1795
1796
static Obj_Entry *
1797
dlcheck(void *handle)
1798
{
1799
Obj_Entry *obj;
1800
1801
TAILQ_FOREACH(obj, &obj_list, next) {
1802
if (obj == (Obj_Entry *)handle)
1803
break;
1804
}
1805
1806
if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1807
_rtld_error("Invalid shared object handle %p", handle);
1808
return (NULL);
1809
}
1810
return (obj);
1811
}
1812
1813
/*
1814
* If the given object is already in the donelist, return true. Otherwise
1815
* add the object to the list and return false.
1816
*/
1817
static bool
1818
donelist_check(DoneList *dlp, const Obj_Entry *obj)
1819
{
1820
unsigned int i;
1821
1822
for (i = 0; i < dlp->num_used; i++)
1823
if (dlp->objs[i] == obj)
1824
return (true);
1825
/*
1826
* Our donelist allocation should always be sufficient. But if
1827
* our threads locking isn't working properly, more shared objects
1828
* could have been loaded since we allocated the list. That should
1829
* never happen, but we'll handle it properly just in case it does.
1830
*/
1831
if (dlp->num_used < dlp->num_alloc)
1832
dlp->objs[dlp->num_used++] = obj;
1833
return (false);
1834
}
1835
1836
/*
1837
* SysV hash function for symbol table lookup. It is a slightly optimized
1838
* version of the hash specified by the System V ABI.
1839
*/
1840
Elf32_Word
1841
elf_hash(const char *name)
1842
{
1843
const unsigned char *p = (const unsigned char *)name;
1844
Elf32_Word h = 0;
1845
1846
while (*p != '\0') {
1847
h = (h << 4) + *p++;
1848
h ^= (h >> 24) & 0xf0;
1849
}
1850
return (h & 0x0fffffff);
1851
}
1852
1853
/*
1854
* The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1855
* unsigned in case it's implemented with a wider type.
1856
*/
1857
static uint32_t
1858
gnu_hash(const char *s)
1859
{
1860
uint32_t h;
1861
unsigned char c;
1862
1863
h = 5381;
1864
for (c = *s; c != '\0'; c = *++s)
1865
h = h * 33 + c;
1866
return (h & 0xffffffff);
1867
}
1868
1869
/*
1870
* Find the library with the given name, and return its full pathname.
1871
* The returned string is dynamically allocated. Generates an error
1872
* message and returns NULL if the library cannot be found.
1873
*
1874
* If the second argument is non-NULL, then it refers to an already-
1875
* loaded shared object, whose library search path will be searched.
1876
*
1877
* If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1878
* descriptor (which is close-on-exec) will be passed out via the third
1879
* argument.
1880
*
1881
* The search order is:
1882
* DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1883
* DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1884
* LD_LIBRARY_PATH
1885
* DT_RUNPATH in the referencing file
1886
* ldconfig hints (if -z nodefaultlib, filter out default library directories
1887
* from list)
1888
* /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1889
*
1890
* (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1891
*/
1892
static char *
1893
find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1894
{
1895
char *pathname, *refobj_path;
1896
const char *name;
1897
bool nodeflib, objgiven;
1898
1899
objgiven = refobj != NULL;
1900
1901
if (libmap_disable || !objgiven ||
1902
(name = lm_find(refobj->path, xname)) == NULL)
1903
name = xname;
1904
1905
if (strchr(name, '/') != NULL) { /* Hard coded pathname */
1906
if (name[0] != '/' && !trust) {
1907
_rtld_error(
1908
"Absolute pathname required for shared object \"%s\"",
1909
name);
1910
return (NULL);
1911
}
1912
return (origin_subst(__DECONST(Obj_Entry *, refobj),
1913
__DECONST(char *, name)));
1914
}
1915
1916
dbg(" Searching for \"%s\"", name);
1917
refobj_path = objgiven ? refobj->path : NULL;
1918
1919
/*
1920
* If refobj->rpath != NULL, then refobj->runpath is NULL. Fall
1921
* back to pre-conforming behaviour if user requested so with
1922
* LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1923
* nodeflib.
1924
*/
1925
if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1926
pathname = search_library_path(name, ld_library_path,
1927
refobj_path, fdp);
1928
if (pathname != NULL)
1929
return (pathname);
1930
if (refobj != NULL) {
1931
pathname = search_library_path(name, refobj->rpath,
1932
refobj_path, fdp);
1933
if (pathname != NULL)
1934
return (pathname);
1935
}
1936
pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1937
if (pathname != NULL)
1938
return (pathname);
1939
pathname = search_library_path(name, gethints(false),
1940
refobj_path, fdp);
1941
if (pathname != NULL)
1942
return (pathname);
1943
pathname = search_library_path(name, ld_standard_library_path,
1944
refobj_path, fdp);
1945
if (pathname != NULL)
1946
return (pathname);
1947
} else {
1948
nodeflib = objgiven ? refobj->z_nodeflib : false;
1949
if (objgiven) {
1950
pathname = search_library_path(name, refobj->rpath,
1951
refobj->path, fdp);
1952
if (pathname != NULL)
1953
return (pathname);
1954
}
1955
if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1956
pathname = search_library_path(name, obj_main->rpath,
1957
refobj_path, fdp);
1958
if (pathname != NULL)
1959
return (pathname);
1960
}
1961
pathname = search_library_path(name, ld_library_path,
1962
refobj_path, fdp);
1963
if (pathname != NULL)
1964
return (pathname);
1965
if (objgiven) {
1966
pathname = search_library_path(name, refobj->runpath,
1967
refobj_path, fdp);
1968
if (pathname != NULL)
1969
return (pathname);
1970
}
1971
pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1972
if (pathname != NULL)
1973
return (pathname);
1974
pathname = search_library_path(name, gethints(nodeflib),
1975
refobj_path, fdp);
1976
if (pathname != NULL)
1977
return (pathname);
1978
if (objgiven && !nodeflib) {
1979
pathname = search_library_path(name,
1980
ld_standard_library_path, refobj_path, fdp);
1981
if (pathname != NULL)
1982
return (pathname);
1983
}
1984
}
1985
1986
if (objgiven && refobj->path != NULL) {
1987
_rtld_error(
1988
"Shared object \"%s\" not found, required by \"%s\"",
1989
name, basename(refobj->path));
1990
} else {
1991
_rtld_error("Shared object \"%s\" not found", name);
1992
}
1993
return (NULL);
1994
}
1995
1996
/*
1997
* Given a symbol number in a referencing object, find the corresponding
1998
* definition of the symbol. Returns a pointer to the symbol, or NULL if
1999
* no definition was found. Returns a pointer to the Obj_Entry of the
2000
* defining object via the reference parameter DEFOBJ_OUT.
2001
*/
2002
const Elf_Sym *
2003
find_symdef(unsigned long symnum, const Obj_Entry *refobj,
2004
const Obj_Entry **defobj_out, int flags, SymCache *cache,
2005
RtldLockState *lockstate)
2006
{
2007
const Elf_Sym *ref;
2008
const Elf_Sym *def;
2009
const Obj_Entry *defobj;
2010
const Ver_Entry *ve;
2011
SymLook req;
2012
const char *name;
2013
int res;
2014
2015
/*
2016
* If we have already found this symbol, get the information from
2017
* the cache.
2018
*/
2019
if (symnum >= refobj->dynsymcount)
2020
return (NULL); /* Bad object */
2021
if (cache != NULL && cache[symnum].sym != NULL) {
2022
*defobj_out = cache[symnum].obj;
2023
return (cache[symnum].sym);
2024
}
2025
2026
ref = refobj->symtab + symnum;
2027
name = refobj->strtab + ref->st_name;
2028
def = NULL;
2029
defobj = NULL;
2030
ve = NULL;
2031
2032
/*
2033
* We don't have to do a full scale lookup if the symbol is local.
2034
* We know it will bind to the instance in this load module; to
2035
* which we already have a pointer (ie ref). By not doing a lookup,
2036
* we not only improve performance, but it also avoids unresolvable
2037
* symbols when local symbols are not in the hash table. This has
2038
* been seen with the ia64 toolchain.
2039
*/
2040
if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2041
if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2042
_rtld_error("%s: Bogus symbol table entry %lu",
2043
refobj->path, symnum);
2044
}
2045
symlook_init(&req, name);
2046
req.flags = flags;
2047
ve = req.ventry = fetch_ventry(refobj, symnum);
2048
req.lockstate = lockstate;
2049
res = symlook_default(&req, refobj);
2050
if (res == 0) {
2051
def = req.sym_out;
2052
defobj = req.defobj_out;
2053
}
2054
} else {
2055
def = ref;
2056
defobj = refobj;
2057
}
2058
2059
/*
2060
* If we found no definition and the reference is weak, treat the
2061
* symbol as having the value zero.
2062
*/
2063
if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2064
def = &sym_zero;
2065
defobj = obj_main;
2066
}
2067
2068
if (def != NULL) {
2069
*defobj_out = defobj;
2070
/*
2071
* Record the information in the cache to avoid subsequent
2072
* lookups.
2073
*/
2074
if (cache != NULL) {
2075
cache[symnum].sym = def;
2076
cache[symnum].obj = defobj;
2077
}
2078
} else {
2079
if (refobj != &obj_rtld)
2080
_rtld_error("%s: Undefined symbol \"%s%s%s\"",
2081
refobj->path, name, ve != NULL ? "@" : "",
2082
ve != NULL ? ve->name : "");
2083
}
2084
return (def);
2085
}
2086
2087
/* Convert between native byte order and forced little resp. big endian. */
2088
#define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2089
2090
/*
2091
* Return the search path from the ldconfig hints file, reading it if
2092
* necessary. If nostdlib is true, then the default search paths are
2093
* not added to result.
2094
*
2095
* Returns NULL if there are problems with the hints file,
2096
* or if the search path there is empty.
2097
*/
2098
static const char *
2099
gethints(bool nostdlib)
2100
{
2101
static char *filtered_path;
2102
static const char *hints;
2103
static struct elfhints_hdr hdr;
2104
struct fill_search_info_args sargs, hargs;
2105
struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2106
struct dl_serpath *SLPpath, *hintpath;
2107
char *p;
2108
struct stat hint_stat;
2109
unsigned int SLPndx, hintndx, fndx, fcount;
2110
int fd;
2111
size_t flen;
2112
uint32_t dl;
2113
uint32_t magic; /* Magic number */
2114
uint32_t version; /* File version (1) */
2115
uint32_t strtab; /* Offset of string table in file */
2116
uint32_t dirlist; /* Offset of directory list in string table */
2117
uint32_t dirlistlen; /* strlen(dirlist) */
2118
bool is_le; /* Does the hints file use little endian */
2119
bool skip;
2120
2121
/* First call, read the hints file */
2122
if (hints == NULL) {
2123
/* Keep from trying again in case the hints file is bad. */
2124
hints = "";
2125
2126
if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) ==
2127
-1) {
2128
dbg("failed to open hints file \"%s\"",
2129
ld_elf_hints_path);
2130
return (NULL);
2131
}
2132
2133
/*
2134
* Check of hdr.dirlistlen value against type limit
2135
* intends to pacify static analyzers. Further
2136
* paranoia leads to checks that dirlist is fully
2137
* contained in the file range.
2138
*/
2139
if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2140
dbg("failed to read %lu bytes from hints file \"%s\"",
2141
(u_long)sizeof hdr, ld_elf_hints_path);
2142
cleanup1:
2143
close(fd);
2144
hdr.dirlistlen = 0;
2145
return (NULL);
2146
}
2147
dbg("host byte-order: %s-endian",
2148
le32toh(1) == 1 ? "little" : "big");
2149
dbg("hints file byte-order: %s-endian",
2150
hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2151
is_le = /*htole32(1) == 1 || */ hdr.magic ==
2152
htole32(ELFHINTS_MAGIC);
2153
magic = COND_SWAP(hdr.magic);
2154
version = COND_SWAP(hdr.version);
2155
strtab = COND_SWAP(hdr.strtab);
2156
dirlist = COND_SWAP(hdr.dirlist);
2157
dirlistlen = COND_SWAP(hdr.dirlistlen);
2158
if (magic != ELFHINTS_MAGIC) {
2159
dbg("invalid magic number %#08x (expected: %#08x)",
2160
magic, ELFHINTS_MAGIC);
2161
goto cleanup1;
2162
}
2163
if (version != 1) {
2164
dbg("hints file version %d (expected: 1)", version);
2165
goto cleanup1;
2166
}
2167
if (dirlistlen > UINT_MAX / 2) {
2168
dbg("directory list is to long: %d > %d", dirlistlen,
2169
UINT_MAX / 2);
2170
goto cleanup1;
2171
}
2172
if (fstat(fd, &hint_stat) == -1) {
2173
dbg("failed to find length of hints file \"%s\"",
2174
ld_elf_hints_path);
2175
goto cleanup1;
2176
}
2177
dl = strtab;
2178
if (dl + dirlist < dl) {
2179
dbg("invalid string table position %d", dl);
2180
goto cleanup1;
2181
}
2182
dl += dirlist;
2183
if (dl + dirlistlen < dl) {
2184
dbg("invalid directory list offset %d", dirlist);
2185
goto cleanup1;
2186
}
2187
dl += dirlistlen;
2188
if (dl > hint_stat.st_size) {
2189
dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2190
ld_elf_hints_path, dl,
2191
(uintmax_t)hint_stat.st_size);
2192
goto cleanup1;
2193
}
2194
p = xmalloc(dirlistlen + 1);
2195
if (pread(fd, p, dirlistlen + 1, strtab + dirlist) !=
2196
(ssize_t)dirlistlen + 1 || p[dirlistlen] != '\0') {
2197
free(p);
2198
dbg(
2199
"failed to read %d bytes starting at %d from hints file \"%s\"",
2200
dirlistlen + 1, strtab + dirlist,
2201
ld_elf_hints_path);
2202
goto cleanup1;
2203
}
2204
hints = p;
2205
close(fd);
2206
}
2207
2208
/*
2209
* If caller agreed to receive list which includes the default
2210
* paths, we are done. Otherwise, if we still did not
2211
* calculated filtered result, do it now.
2212
*/
2213
if (!nostdlib)
2214
return (hints[0] != '\0' ? hints : NULL);
2215
if (filtered_path != NULL)
2216
goto filt_ret;
2217
2218
/*
2219
* Obtain the list of all configured search paths, and the
2220
* list of the default paths.
2221
*
2222
* First estimate the size of the results.
2223
*/
2224
smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2225
smeta.dls_cnt = 0;
2226
hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2227
hmeta.dls_cnt = 0;
2228
2229
sargs.request = RTLD_DI_SERINFOSIZE;
2230
sargs.serinfo = &smeta;
2231
hargs.request = RTLD_DI_SERINFOSIZE;
2232
hargs.serinfo = &hmeta;
2233
2234
path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2235
&sargs);
2236
path_enumerate(hints, fill_search_info, NULL, &hargs);
2237
2238
SLPinfo = xmalloc(smeta.dls_size);
2239
hintinfo = xmalloc(hmeta.dls_size);
2240
2241
/*
2242
* Next fetch both sets of paths.
2243
*/
2244
sargs.request = RTLD_DI_SERINFO;
2245
sargs.serinfo = SLPinfo;
2246
sargs.serpath = &SLPinfo->dls_serpath[0];
2247
sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2248
2249
hargs.request = RTLD_DI_SERINFO;
2250
hargs.serinfo = hintinfo;
2251
hargs.serpath = &hintinfo->dls_serpath[0];
2252
hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2253
2254
path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2255
&sargs);
2256
path_enumerate(hints, fill_search_info, NULL, &hargs);
2257
2258
/*
2259
* Now calculate the difference between two sets, by excluding
2260
* standard paths from the full set.
2261
*/
2262
fndx = 0;
2263
fcount = 0;
2264
filtered_path = xmalloc(dirlistlen + 1);
2265
hintpath = &hintinfo->dls_serpath[0];
2266
for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2267
skip = false;
2268
SLPpath = &SLPinfo->dls_serpath[0];
2269
/*
2270
* Check each standard path against current.
2271
*/
2272
for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2273
/* matched, skip the path */
2274
if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2275
skip = true;
2276
break;
2277
}
2278
}
2279
if (skip)
2280
continue;
2281
/*
2282
* Not matched against any standard path, add the path
2283
* to result. Separate consequtive paths with ':'.
2284
*/
2285
if (fcount > 0) {
2286
filtered_path[fndx] = ':';
2287
fndx++;
2288
}
2289
fcount++;
2290
flen = strlen(hintpath->dls_name);
2291
strncpy((filtered_path + fndx), hintpath->dls_name, flen);
2292
fndx += flen;
2293
}
2294
filtered_path[fndx] = '\0';
2295
2296
free(SLPinfo);
2297
free(hintinfo);
2298
2299
filt_ret:
2300
return (filtered_path[0] != '\0' ? filtered_path : NULL);
2301
}
2302
2303
static void
2304
init_dag(Obj_Entry *root)
2305
{
2306
const Needed_Entry *needed;
2307
const Objlist_Entry *elm;
2308
DoneList donelist;
2309
2310
if (root->dag_inited)
2311
return;
2312
donelist_init(&donelist);
2313
2314
/* Root object belongs to own DAG. */
2315
objlist_push_tail(&root->dldags, root);
2316
objlist_push_tail(&root->dagmembers, root);
2317
donelist_check(&donelist, root);
2318
2319
/*
2320
* Add dependencies of root object to DAG in breadth order
2321
* by exploiting the fact that each new object get added
2322
* to the tail of the dagmembers list.
2323
*/
2324
STAILQ_FOREACH(elm, &root->dagmembers, link) {
2325
for (needed = elm->obj->needed; needed != NULL;
2326
needed = needed->next) {
2327
if (needed->obj == NULL ||
2328
donelist_check(&donelist, needed->obj))
2329
continue;
2330
objlist_push_tail(&needed->obj->dldags, root);
2331
objlist_push_tail(&root->dagmembers, needed->obj);
2332
}
2333
}
2334
root->dag_inited = true;
2335
}
2336
2337
static void
2338
init_marker(Obj_Entry *marker)
2339
{
2340
bzero(marker, sizeof(*marker));
2341
marker->marker = true;
2342
}
2343
2344
Obj_Entry *
2345
globallist_curr(const Obj_Entry *obj)
2346
{
2347
for (;;) {
2348
if (obj == NULL)
2349
return (NULL);
2350
if (!obj->marker)
2351
return (__DECONST(Obj_Entry *, obj));
2352
obj = TAILQ_PREV(obj, obj_entry_q, next);
2353
}
2354
}
2355
2356
Obj_Entry *
2357
globallist_next(const Obj_Entry *obj)
2358
{
2359
for (;;) {
2360
obj = TAILQ_NEXT(obj, next);
2361
if (obj == NULL)
2362
return (NULL);
2363
if (!obj->marker)
2364
return (__DECONST(Obj_Entry *, obj));
2365
}
2366
}
2367
2368
/* Prevent the object from being unmapped while the bind lock is dropped. */
2369
static void
2370
hold_object(Obj_Entry *obj)
2371
{
2372
obj->holdcount++;
2373
}
2374
2375
static void
2376
unhold_object(Obj_Entry *obj)
2377
{
2378
assert(obj->holdcount > 0);
2379
if (--obj->holdcount == 0 && obj->unholdfree)
2380
release_object(obj);
2381
}
2382
2383
static void
2384
process_z(Obj_Entry *root)
2385
{
2386
const Objlist_Entry *elm;
2387
Obj_Entry *obj;
2388
2389
/*
2390
* Walk over object DAG and process every dependent object
2391
* that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2392
* to grow their own DAG.
2393
*
2394
* For DF_1_GLOBAL, DAG is required for symbol lookups in
2395
* symlook_global() to work.
2396
*
2397
* For DF_1_NODELETE, the DAG should have its reference upped.
2398
*/
2399
STAILQ_FOREACH(elm, &root->dagmembers, link) {
2400
obj = elm->obj;
2401
if (obj == NULL)
2402
continue;
2403
if (obj->z_nodelete && !obj->ref_nodel) {
2404
dbg("obj %s -z nodelete", obj->path);
2405
init_dag(obj);
2406
ref_dag(obj);
2407
obj->ref_nodel = true;
2408
}
2409
if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2410
dbg("obj %s -z global", obj->path);
2411
objlist_push_tail(&list_global, obj);
2412
init_dag(obj);
2413
}
2414
}
2415
}
2416
2417
static void
2418
parse_rtld_phdr(Obj_Entry *obj)
2419
{
2420
const Elf_Phdr *ph;
2421
Elf_Addr note_start, note_end;
2422
bool first_seg;
2423
2424
first_seg = true;
2425
obj->stack_flags = PF_X | PF_R | PF_W;
2426
for (ph = obj->phdr; ph < obj->phdr + obj->phnum; ph++) {
2427
switch (ph->p_type) {
2428
case PT_LOAD:
2429
if (first_seg) {
2430
obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
2431
first_seg = false;
2432
}
2433
obj->mapsize = rtld_round_page(ph->p_vaddr +
2434
ph->p_memsz) - obj->vaddrbase;
2435
break;
2436
case PT_GNU_STACK:
2437
obj->stack_flags = ph->p_flags;
2438
break;
2439
case PT_NOTE:
2440
note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2441
note_end = note_start + ph->p_filesz;
2442
digest_notes(obj, note_start, note_end);
2443
break;
2444
}
2445
}
2446
}
2447
2448
/*
2449
* Initialize the dynamic linker. The argument is the address at which
2450
* the dynamic linker has been mapped into memory. The primary task of
2451
* this function is to relocate the dynamic linker.
2452
*/
2453
static void
2454
init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2455
{
2456
Obj_Entry objtmp; /* Temporary rtld object */
2457
const Elf_Ehdr *ehdr;
2458
const Elf_Dyn *dyn_rpath;
2459
const Elf_Dyn *dyn_soname;
2460
const Elf_Dyn *dyn_runpath;
2461
2462
/*
2463
* Conjure up an Obj_Entry structure for the dynamic linker.
2464
*
2465
* The "path" member can't be initialized yet because string constants
2466
* cannot yet be accessed. Below we will set it correctly.
2467
*/
2468
memset(&objtmp, 0, sizeof(objtmp));
2469
objtmp.path = NULL;
2470
objtmp.rtld = true;
2471
objtmp.mapbase = mapbase;
2472
#ifdef PIC
2473
objtmp.relocbase = mapbase;
2474
#endif
2475
2476
objtmp.dynamic = rtld_dynamic(&objtmp);
2477
digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2478
assert(objtmp.needed == NULL);
2479
assert(!objtmp.textrel);
2480
/*
2481
* Temporarily put the dynamic linker entry into the object list, so
2482
* that symbols can be found.
2483
*/
2484
relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2485
2486
ehdr = (Elf_Ehdr *)mapbase;
2487
objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2488
objtmp.phnum = ehdr->e_phnum;
2489
2490
/* Initialize the object list. */
2491
TAILQ_INIT(&obj_list);
2492
2493
/* Now that non-local variables can be accesses, copy out obj_rtld. */
2494
memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2495
2496
/* The page size is required by the dynamic memory allocator. */
2497
init_pagesizes(aux_info);
2498
2499
if (aux_info[AT_OSRELDATE] != NULL)
2500
osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2501
2502
digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2503
2504
/* Replace the path with a dynamically allocated copy. */
2505
obj_rtld.path = xstrdup(ld_path_rtld);
2506
2507
parse_rtld_phdr(&obj_rtld);
2508
if (obj_enforce_relro(&obj_rtld) == -1)
2509
rtld_die();
2510
2511
r_debug.r_version = R_DEBUG_VERSION;
2512
r_debug.r_brk = r_debug_state;
2513
r_debug.r_state = RT_CONSISTENT;
2514
r_debug.r_ldbase = obj_rtld.relocbase;
2515
}
2516
2517
/*
2518
* Retrieve the array of supported page sizes. The kernel provides the page
2519
* sizes in increasing order.
2520
*/
2521
static void
2522
init_pagesizes(Elf_Auxinfo **aux_info)
2523
{
2524
static size_t psa[MAXPAGESIZES];
2525
int mib[2];
2526
size_t len, size;
2527
2528
if (aux_info[AT_PAGESIZES] != NULL &&
2529
aux_info[AT_PAGESIZESLEN] != NULL) {
2530
size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2531
pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2532
} else {
2533
len = 2;
2534
if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2535
size = sizeof(psa);
2536
else {
2537
/* As a fallback, retrieve the base page size. */
2538
size = sizeof(psa[0]);
2539
if (aux_info[AT_PAGESZ] != NULL) {
2540
psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2541
goto psa_filled;
2542
} else {
2543
mib[0] = CTL_HW;
2544
mib[1] = HW_PAGESIZE;
2545
len = 2;
2546
}
2547
}
2548
if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2549
_rtld_error("sysctl for hw.pagesize(s) failed");
2550
rtld_die();
2551
}
2552
psa_filled:
2553
pagesizes = psa;
2554
}
2555
npagesizes = size / sizeof(pagesizes[0]);
2556
/* Discard any invalid entries at the end of the array. */
2557
while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2558
npagesizes--;
2559
2560
page_size = pagesizes[0];
2561
}
2562
2563
/*
2564
* Add the init functions from a needed object list (and its recursive
2565
* needed objects) to "list". This is not used directly; it is a helper
2566
* function for initlist_add_objects(). The write lock must be held
2567
* when this function is called.
2568
*/
2569
static void
2570
initlist_add_neededs(Needed_Entry *needed, Objlist *list, Objlist *iflist)
2571
{
2572
/* Recursively process the successor needed objects. */
2573
if (needed->next != NULL)
2574
initlist_add_neededs(needed->next, list, iflist);
2575
2576
/* Process the current needed object. */
2577
if (needed->obj != NULL)
2578
initlist_add_objects(needed->obj, needed->obj, list, iflist);
2579
}
2580
2581
/*
2582
* Scan all of the DAGs rooted in the range of objects from "obj" to
2583
* "tail" and add their init functions to "list". This recurses over
2584
* the DAGs and ensure the proper init ordering such that each object's
2585
* needed libraries are initialized before the object itself. At the
2586
* same time, this function adds the objects to the global finalization
2587
* list "list_fini" in the opposite order. The write lock must be
2588
* held when this function is called.
2589
*/
2590
static void
2591
initlist_for_loaded_obj(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2592
{
2593
Objlist iflist; /* initfirst objs and their needed */
2594
Objlist_Entry *tmp;
2595
2596
objlist_init(&iflist);
2597
initlist_add_objects(obj, tail, list, &iflist);
2598
2599
STAILQ_FOREACH(tmp, &iflist, link) {
2600
Obj_Entry *tobj = tmp->obj;
2601
2602
if ((tobj->fini != 0 || tobj->fini_array != NULL) &&
2603
!tobj->on_fini_list) {
2604
objlist_push_tail(&list_fini, tobj);
2605
tobj->on_fini_list = true;
2606
}
2607
}
2608
2609
/*
2610
* This might result in the same object appearing more
2611
* than once on the init list. objlist_call_init()
2612
* uses obj->init_scanned to avoid dup calls.
2613
*/
2614
STAILQ_REVERSE(&iflist, Struct_Objlist_Entry, link);
2615
STAILQ_FOREACH(tmp, &iflist, link)
2616
objlist_push_head(list, tmp->obj);
2617
2618
objlist_clear(&iflist);
2619
}
2620
2621
static void
2622
initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list,
2623
Objlist *iflist)
2624
{
2625
Obj_Entry *nobj;
2626
2627
if (obj->init_done)
2628
return;
2629
2630
if (obj->z_initfirst || list == NULL) {
2631
/*
2632
* Ignore obj->init_scanned. The object might indeed
2633
* already be on the init list, but due to being
2634
* needed by an initfirst object, we must put it at
2635
* the head of the init list. obj->init_done protects
2636
* against double-initialization.
2637
*/
2638
if (obj->needed != NULL)
2639
initlist_add_neededs(obj->needed, NULL, iflist);
2640
if (obj->needed_filtees != NULL)
2641
initlist_add_neededs(obj->needed_filtees, NULL,
2642
iflist);
2643
if (obj->needed_aux_filtees != NULL)
2644
initlist_add_neededs(obj->needed_aux_filtees,
2645
NULL, iflist);
2646
objlist_push_tail(iflist, obj);
2647
} else {
2648
if (obj->init_scanned)
2649
return;
2650
obj->init_scanned = true;
2651
2652
/* Recursively process the successor objects. */
2653
nobj = globallist_next(obj);
2654
if (nobj != NULL && obj != tail)
2655
initlist_add_objects(nobj, tail, list, iflist);
2656
2657
/* Recursively process the needed objects. */
2658
if (obj->needed != NULL)
2659
initlist_add_neededs(obj->needed, list, iflist);
2660
if (obj->needed_filtees != NULL)
2661
initlist_add_neededs(obj->needed_filtees, list,
2662
iflist);
2663
if (obj->needed_aux_filtees != NULL)
2664
initlist_add_neededs(obj->needed_aux_filtees, list,
2665
iflist);
2666
2667
/* Add the object to the init list. */
2668
objlist_push_tail(list, obj);
2669
2670
/*
2671
* Add the object to the global fini list in the
2672
* reverse order.
2673
*/
2674
if ((obj->fini != 0 || obj->fini_array != NULL) &&
2675
!obj->on_fini_list) {
2676
objlist_push_head(&list_fini, obj);
2677
obj->on_fini_list = true;
2678
}
2679
}
2680
}
2681
2682
static void
2683
free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2684
{
2685
Needed_Entry *needed, *needed1;
2686
2687
for (needed = n; needed != NULL; needed = needed->next) {
2688
if (needed->obj != NULL) {
2689
dlclose_locked(needed->obj, lockstate);
2690
needed->obj = NULL;
2691
}
2692
}
2693
for (needed = n; needed != NULL; needed = needed1) {
2694
needed1 = needed->next;
2695
free(needed);
2696
}
2697
}
2698
2699
static void
2700
unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2701
{
2702
free_needed_filtees(obj->needed_filtees, lockstate);
2703
obj->needed_filtees = NULL;
2704
free_needed_filtees(obj->needed_aux_filtees, lockstate);
2705
obj->needed_aux_filtees = NULL;
2706
obj->filtees_loaded = false;
2707
}
2708
2709
static void
2710
load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2711
RtldLockState *lockstate)
2712
{
2713
for (; needed != NULL; needed = needed->next) {
2714
needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2715
flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW :
2716
RTLD_LAZY) | RTLD_LOCAL, lockstate);
2717
}
2718
}
2719
2720
static void
2721
load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2722
{
2723
if (obj->filtees_loaded || obj->filtees_loading)
2724
return;
2725
lock_restart_for_upgrade(lockstate);
2726
obj->filtees_loading = true;
2727
load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2728
load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2729
obj->filtees_loaded = true;
2730
obj->filtees_loading = false;
2731
}
2732
2733
static int
2734
process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2735
{
2736
Obj_Entry *obj1;
2737
2738
for (; needed != NULL; needed = needed->next) {
2739
obj1 = needed->obj = load_object(obj->strtab + needed->name, -1,
2740
obj, flags & ~RTLD_LO_NOLOAD);
2741
if (obj1 == NULL && !ld_tracing &&
2742
(flags & RTLD_LO_FILTEES) == 0)
2743
return (-1);
2744
}
2745
return (0);
2746
}
2747
2748
/*
2749
* Given a shared object, traverse its list of needed objects, and load
2750
* each of them. Returns 0 on success. Generates an error message and
2751
* returns -1 on failure.
2752
*/
2753
static int
2754
load_needed_objects(Obj_Entry *first, int flags)
2755
{
2756
Obj_Entry *obj;
2757
2758
for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2759
if (obj->marker)
2760
continue;
2761
if (process_needed(obj, obj->needed, flags) == -1)
2762
return (-1);
2763
}
2764
return (0);
2765
}
2766
2767
static int
2768
load_preload_objects(const char *penv, bool isfd)
2769
{
2770
Obj_Entry *obj;
2771
const char *name;
2772
size_t len;
2773
char savech, *p, *psave;
2774
int fd;
2775
static const char delim[] = " \t:;";
2776
2777
if (penv == NULL)
2778
return (0);
2779
2780
p = psave = xstrdup(penv);
2781
p += strspn(p, delim);
2782
while (*p != '\0') {
2783
len = strcspn(p, delim);
2784
2785
savech = p[len];
2786
p[len] = '\0';
2787
if (isfd) {
2788
name = NULL;
2789
fd = parse_integer(p);
2790
if (fd == -1) {
2791
free(psave);
2792
return (-1);
2793
}
2794
} else {
2795
name = p;
2796
fd = -1;
2797
}
2798
2799
obj = load_object(name, fd, NULL, 0);
2800
if (obj == NULL) {
2801
free(psave);
2802
return (-1); /* XXX - cleanup */
2803
}
2804
obj->z_interpose = true;
2805
p[len] = savech;
2806
p += len;
2807
p += strspn(p, delim);
2808
}
2809
LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2810
2811
free(psave);
2812
return (0);
2813
}
2814
2815
static const char *
2816
printable_path(const char *path)
2817
{
2818
return (path == NULL ? "<unknown>" : path);
2819
}
2820
2821
/*
2822
* Load a shared object into memory, if it is not already loaded. The
2823
* object may be specified by name or by user-supplied file descriptor
2824
* fd_u. In the later case, the fd_u descriptor is not closed, but its
2825
* duplicate is.
2826
*
2827
* Returns a pointer to the Obj_Entry for the object. Returns NULL
2828
* on failure.
2829
*/
2830
static Obj_Entry *
2831
load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2832
{
2833
Obj_Entry *obj;
2834
int fd;
2835
struct stat sb;
2836
char *path;
2837
2838
fd = -1;
2839
if (name != NULL) {
2840
TAILQ_FOREACH(obj, &obj_list, next) {
2841
if (obj->marker || obj->doomed)
2842
continue;
2843
if (object_match_name(obj, name))
2844
return (obj);
2845
}
2846
2847
path = find_library(name, refobj, &fd);
2848
if (path == NULL)
2849
return (NULL);
2850
} else
2851
path = NULL;
2852
2853
if (fd >= 0) {
2854
/*
2855
* search_library_pathfds() opens a fresh file descriptor for
2856
* the library, so there is no need to dup().
2857
*/
2858
} else if (fd_u == -1) {
2859
/*
2860
* If we didn't find a match by pathname, or the name is not
2861
* supplied, open the file and check again by device and inode.
2862
* This avoids false mismatches caused by multiple links or ".."
2863
* in pathnames.
2864
*
2865
* To avoid a race, we open the file and use fstat() rather than
2866
* using stat().
2867
*/
2868
if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2869
_rtld_error("Cannot open \"%s\"", path);
2870
free(path);
2871
return (NULL);
2872
}
2873
} else {
2874
fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2875
if (fd == -1) {
2876
_rtld_error("Cannot dup fd");
2877
free(path);
2878
return (NULL);
2879
}
2880
}
2881
if (fstat(fd, &sb) == -1) {
2882
_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2883
close(fd);
2884
free(path);
2885
return (NULL);
2886
}
2887
TAILQ_FOREACH(obj, &obj_list, next) {
2888
if (obj->marker || obj->doomed)
2889
continue;
2890
if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2891
break;
2892
}
2893
if (obj != NULL) {
2894
if (name != NULL)
2895
object_add_name(obj, name);
2896
free(path);
2897
close(fd);
2898
return (obj);
2899
}
2900
if (flags & RTLD_LO_NOLOAD) {
2901
free(path);
2902
close(fd);
2903
return (NULL);
2904
}
2905
2906
/* First use of this object, so we must map it in */
2907
obj = do_load_object(fd, name, path, &sb, flags);
2908
if (obj == NULL)
2909
free(path);
2910
close(fd);
2911
2912
return (obj);
2913
}
2914
2915
static Obj_Entry *
2916
do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2917
int flags)
2918
{
2919
Obj_Entry *obj;
2920
struct statfs fs;
2921
2922
/*
2923
* First, make sure that environment variables haven't been
2924
* used to circumvent the noexec flag on a filesystem.
2925
* We ignore fstatfs(2) failures, since fd might reference
2926
* not a file, e.g. shmfd.
2927
*/
2928
if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2929
(fs.f_flags & MNT_NOEXEC) != 0) {
2930
_rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2931
return (NULL);
2932
}
2933
2934
dbg("loading \"%s\"", printable_path(path));
2935
obj = map_object(fd, printable_path(path), sbp, false);
2936
if (obj == NULL)
2937
return (NULL);
2938
2939
/*
2940
* If DT_SONAME is present in the object, digest_dynamic2 already
2941
* added it to the object names.
2942
*/
2943
if (name != NULL)
2944
object_add_name(obj, name);
2945
obj->path = path;
2946
if (!digest_dynamic(obj, 0))
2947
goto errp;
2948
dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2949
obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2950
if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2951
dbg("refusing to load PIE executable \"%s\"", obj->path);
2952
_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2953
goto errp;
2954
}
2955
if (obj->z_noopen &&
2956
(flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == RTLD_LO_DLOPEN) {
2957
dbg("refusing to load non-loadable \"%s\"", obj->path);
2958
_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2959
goto errp;
2960
}
2961
2962
obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2963
TAILQ_INSERT_TAIL(&obj_list, obj, next);
2964
obj_count++;
2965
obj_loads++;
2966
linkmap_add(obj); /* for GDB & dlinfo() */
2967
max_stack_flags |= obj->stack_flags;
2968
2969
dbg(" %p .. %p: %s", obj->mapbase, obj->mapbase + obj->mapsize - 1,
2970
obj->path);
2971
if (obj->textrel)
2972
dbg(" WARNING: %s has impure text", obj->path);
2973
LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2974
obj->path);
2975
2976
return (obj);
2977
2978
errp:
2979
munmap(obj->mapbase, obj->mapsize);
2980
obj_free(obj);
2981
return (NULL);
2982
}
2983
2984
static int
2985
load_kpreload(const void *addr)
2986
{
2987
Obj_Entry *obj;
2988
const Elf_Ehdr *ehdr;
2989
const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2990
static const char kname[] = "[vdso]";
2991
2992
ehdr = addr;
2993
if (!check_elf_headers(ehdr, "kpreload"))
2994
return (-1);
2995
obj = obj_new();
2996
phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2997
obj->phdr = phdr;
2998
obj->phnum = ehdr->e_phnum;
2999
phlimit = phdr + ehdr->e_phnum;
3000
seg0 = segn = NULL;
3001
3002
for (; phdr < phlimit; phdr++) {
3003
switch (phdr->p_type) {
3004
case PT_DYNAMIC:
3005
phdyn = phdr;
3006
break;
3007
case PT_GNU_STACK:
3008
/* Absense of PT_GNU_STACK implies stack_flags == 0. */
3009
obj->stack_flags = phdr->p_flags;
3010
break;
3011
case PT_LOAD:
3012
if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
3013
seg0 = phdr;
3014
if (segn == NULL ||
3015
segn->p_vaddr + segn->p_memsz <
3016
phdr->p_vaddr + phdr->p_memsz)
3017
segn = phdr;
3018
break;
3019
}
3020
}
3021
3022
obj->mapbase = __DECONST(caddr_t, addr);
3023
obj->mapsize = segn->p_vaddr + segn->p_memsz;
3024
obj->vaddrbase = 0;
3025
obj->relocbase = obj->mapbase;
3026
3027
object_add_name(obj, kname);
3028
obj->path = xstrdup(kname);
3029
obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
3030
3031
if (!digest_dynamic(obj, 0)) {
3032
obj_free(obj);
3033
return (-1);
3034
}
3035
3036
/*
3037
* We assume that kernel-preloaded object does not need
3038
* relocation. It is currently written into read-only page,
3039
* handling relocations would mean we need to allocate at
3040
* least one additional page per AS.
3041
*/
3042
dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
3043
obj->path, obj->mapbase, obj->phdr, seg0,
3044
obj->relocbase + seg0->p_vaddr, obj->dynamic);
3045
3046
TAILQ_INSERT_TAIL(&obj_list, obj, next);
3047
obj_count++;
3048
obj_loads++;
3049
linkmap_add(obj); /* for GDB & dlinfo() */
3050
max_stack_flags |= obj->stack_flags;
3051
3052
LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3053
obj->path);
3054
return (0);
3055
}
3056
3057
Obj_Entry *
3058
obj_from_addr(const void *addr)
3059
{
3060
Obj_Entry *obj;
3061
3062
TAILQ_FOREACH(obj, &obj_list, next) {
3063
if (obj->marker)
3064
continue;
3065
if (addr < (void *)obj->mapbase)
3066
continue;
3067
if (addr < (void *)(obj->mapbase + obj->mapsize))
3068
return obj;
3069
}
3070
return (NULL);
3071
}
3072
3073
static void
3074
preinit_main(void)
3075
{
3076
uintptr_t *preinit_addr;
3077
int index;
3078
3079
preinit_addr = obj_main->preinit_array;
3080
if (preinit_addr == NULL)
3081
return;
3082
3083
for (index = 0; index < obj_main->preinit_array_num; index++) {
3084
if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
3085
dbg("calling preinit function for %s at %p",
3086
obj_main->path, (void *)preinit_addr[index]);
3087
LD_UTRACE(UTRACE_INIT_CALL, obj_main,
3088
(void *)preinit_addr[index], 0, 0, obj_main->path);
3089
call_init_pointer(obj_main, preinit_addr[index]);
3090
}
3091
}
3092
}
3093
3094
/*
3095
* Call the finalization functions for each of the objects in "list"
3096
* belonging to the DAG of "root" and referenced once. If NULL "root"
3097
* is specified, every finalization function will be called regardless
3098
* of the reference count and the list elements won't be freed. All of
3099
* the objects are expected to have non-NULL fini functions.
3100
*/
3101
static void
3102
objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
3103
{
3104
Objlist_Entry *elm;
3105
struct dlerror_save *saved_msg;
3106
uintptr_t *fini_addr;
3107
int index;
3108
3109
assert(root == NULL || root->refcount == 1);
3110
3111
if (root != NULL)
3112
root->doomed = true;
3113
3114
/*
3115
* Preserve the current error message since a fini function might
3116
* call into the dynamic linker and overwrite it.
3117
*/
3118
saved_msg = errmsg_save();
3119
do {
3120
STAILQ_FOREACH(elm, list, link) {
3121
if (root != NULL &&
3122
(elm->obj->refcount != 1 ||
3123
objlist_find(&root->dagmembers, elm->obj) ==
3124
NULL))
3125
continue;
3126
/* Remove object from fini list to prevent recursive
3127
* invocation. */
3128
STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3129
/* Ensure that new references cannot be acquired. */
3130
elm->obj->doomed = true;
3131
3132
hold_object(elm->obj);
3133
lock_release(rtld_bind_lock, lockstate);
3134
/*
3135
* It is legal to have both DT_FINI and DT_FINI_ARRAY
3136
* defined. When this happens, DT_FINI_ARRAY is
3137
* processed first.
3138
*/
3139
fini_addr = elm->obj->fini_array;
3140
if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3141
for (index = elm->obj->fini_array_num - 1;
3142
index >= 0; index--) {
3143
if (fini_addr[index] != 0 &&
3144
fini_addr[index] != 1) {
3145
dbg("calling fini function for %s at %p",
3146
elm->obj->path,
3147
(void *)fini_addr[index]);
3148
LD_UTRACE(UTRACE_FINI_CALL,
3149
elm->obj,
3150
(void *)fini_addr[index], 0,
3151
0, elm->obj->path);
3152
call_initfini_pointer(elm->obj,
3153
fini_addr[index]);
3154
}
3155
}
3156
}
3157
if (elm->obj->fini != 0) {
3158
dbg("calling fini function for %s at %p",
3159
elm->obj->path, (void *)elm->obj->fini);
3160
LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3161
(void *)elm->obj->fini, 0, 0,
3162
elm->obj->path);
3163
call_initfini_pointer(elm->obj, elm->obj->fini);
3164
}
3165
wlock_acquire(rtld_bind_lock, lockstate);
3166
unhold_object(elm->obj);
3167
/* No need to free anything if process is going down. */
3168
if (root != NULL)
3169
free(elm);
3170
/*
3171
* We must restart the list traversal after every fini
3172
* call because a dlclose() call from the fini function
3173
* or from another thread might have modified the
3174
* reference counts.
3175
*/
3176
break;
3177
}
3178
} while (elm != NULL);
3179
errmsg_restore(saved_msg);
3180
}
3181
3182
/*
3183
* Call the initialization functions for each of the objects in
3184
* "list". All of the objects are expected to have non-NULL init
3185
* functions.
3186
*/
3187
static void
3188
objlist_call_init(Objlist *list, RtldLockState *lockstate)
3189
{
3190
Objlist_Entry *elm;
3191
Obj_Entry *obj;
3192
struct dlerror_save *saved_msg;
3193
uintptr_t *init_addr;
3194
void (*reg)(void (*)(void));
3195
int index;
3196
3197
/*
3198
* Clean init_scanned flag so that objects can be rechecked and
3199
* possibly initialized earlier if any of vectors called below
3200
* cause the change by using dlopen.
3201
*/
3202
TAILQ_FOREACH(obj, &obj_list, next) {
3203
if (obj->marker)
3204
continue;
3205
obj->init_scanned = false;
3206
}
3207
3208
/*
3209
* Preserve the current error message since an init function might
3210
* call into the dynamic linker and overwrite it.
3211
*/
3212
saved_msg = errmsg_save();
3213
STAILQ_FOREACH(elm, list, link) {
3214
if (elm->obj->init_done) /* Initialized early. */
3215
continue;
3216
/*
3217
* Race: other thread might try to use this object before
3218
* current one completes the initialization. Not much can be
3219
* done here without better locking.
3220
*/
3221
elm->obj->init_done = true;
3222
hold_object(elm->obj);
3223
reg = NULL;
3224
if (elm->obj == obj_main && obj_main->crt_no_init) {
3225
reg = (void (*)(void (*)(void)))
3226
get_program_var_addr("__libc_atexit", lockstate);
3227
}
3228
lock_release(rtld_bind_lock, lockstate);
3229
if (reg != NULL) {
3230
reg(rtld_exit);
3231
rtld_exit_ptr = rtld_nop_exit;
3232
}
3233
3234
/*
3235
* It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3236
* When this happens, DT_INIT is processed first.
3237
*/
3238
if (elm->obj->init != 0) {
3239
dbg("calling init function for %s at %p",
3240
elm->obj->path, (void *)elm->obj->init);
3241
LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3242
(void *)elm->obj->init, 0, 0, elm->obj->path);
3243
call_init_pointer(elm->obj, elm->obj->init);
3244
}
3245
init_addr = elm->obj->init_array;
3246
if (init_addr != NULL) {
3247
for (index = 0; index < elm->obj->init_array_num;
3248
index++) {
3249
if (init_addr[index] != 0 &&
3250
init_addr[index] != 1) {
3251
dbg("calling init function for %s at %p",
3252
elm->obj->path,
3253
(void *)init_addr[index]);
3254
LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3255
(void *)init_addr[index], 0, 0,
3256
elm->obj->path);
3257
call_init_pointer(elm->obj,
3258
init_addr[index]);
3259
}
3260
}
3261
}
3262
wlock_acquire(rtld_bind_lock, lockstate);
3263
unhold_object(elm->obj);
3264
}
3265
errmsg_restore(saved_msg);
3266
}
3267
3268
static void
3269
objlist_clear(Objlist *list)
3270
{
3271
Objlist_Entry *elm;
3272
3273
while (!STAILQ_EMPTY(list)) {
3274
elm = STAILQ_FIRST(list);
3275
STAILQ_REMOVE_HEAD(list, link);
3276
free(elm);
3277
}
3278
}
3279
3280
static Objlist_Entry *
3281
objlist_find(Objlist *list, const Obj_Entry *obj)
3282
{
3283
Objlist_Entry *elm;
3284
3285
STAILQ_FOREACH(elm, list, link)
3286
if (elm->obj == obj)
3287
return elm;
3288
return (NULL);
3289
}
3290
3291
static void
3292
objlist_init(Objlist *list)
3293
{
3294
STAILQ_INIT(list);
3295
}
3296
3297
static void
3298
objlist_push_head(Objlist *list, Obj_Entry *obj)
3299
{
3300
Objlist_Entry *elm;
3301
3302
elm = NEW(Objlist_Entry);
3303
elm->obj = obj;
3304
STAILQ_INSERT_HEAD(list, elm, link);
3305
}
3306
3307
static void
3308
objlist_push_tail(Objlist *list, Obj_Entry *obj)
3309
{
3310
Objlist_Entry *elm;
3311
3312
elm = NEW(Objlist_Entry);
3313
elm->obj = obj;
3314
STAILQ_INSERT_TAIL(list, elm, link);
3315
}
3316
3317
static void
3318
objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3319
{
3320
Objlist_Entry *elm, *listelm;
3321
3322
STAILQ_FOREACH(listelm, list, link) {
3323
if (listelm->obj == listobj)
3324
break;
3325
}
3326
elm = NEW(Objlist_Entry);
3327
elm->obj = obj;
3328
if (listelm != NULL)
3329
STAILQ_INSERT_AFTER(list, listelm, elm, link);
3330
else
3331
STAILQ_INSERT_TAIL(list, elm, link);
3332
}
3333
3334
static void
3335
objlist_remove(Objlist *list, Obj_Entry *obj)
3336
{
3337
Objlist_Entry *elm;
3338
3339
if ((elm = objlist_find(list, obj)) != NULL) {
3340
STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3341
free(elm);
3342
}
3343
}
3344
3345
/*
3346
* Relocate dag rooted in the specified object.
3347
* Returns 0 on success, or -1 on failure.
3348
*/
3349
3350
static int
3351
relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3352
int flags, RtldLockState *lockstate)
3353
{
3354
Objlist_Entry *elm;
3355
int error;
3356
3357
error = 0;
3358
STAILQ_FOREACH(elm, &root->dagmembers, link) {
3359
error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3360
lockstate);
3361
if (error == -1)
3362
break;
3363
}
3364
return (error);
3365
}
3366
3367
/*
3368
* Prepare for, or clean after, relocating an object marked with
3369
* DT_TEXTREL or DF_TEXTREL. Before relocating, all read-only
3370
* segments are remapped read-write. After relocations are done, the
3371
* segment's permissions are returned back to the modes specified in
3372
* the phdrs. If any relocation happened, or always for wired
3373
* program, COW is triggered.
3374
*/
3375
static int
3376
reloc_textrel_prot(Obj_Entry *obj, bool before)
3377
{
3378
const Elf_Phdr *ph;
3379
void *base;
3380
size_t sz;
3381
int prot;
3382
3383
for (ph = obj->phdr; ph < obj->phdr + obj->phnum; ph++) {
3384
if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3385
continue;
3386
base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3387
sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3388
rtld_trunc_page(ph->p_vaddr);
3389
prot = before ? (PROT_READ | PROT_WRITE) :
3390
convert_prot(ph->p_flags);
3391
if (mprotect(base, sz, prot) == -1) {
3392
_rtld_error("%s: Cannot write-%sable text segment: %s",
3393
obj->path, before ? "en" : "dis",
3394
rtld_strerror(errno));
3395
return (-1);
3396
}
3397
}
3398
return (0);
3399
}
3400
3401
/* Process RELR relative relocations. */
3402
static void
3403
reloc_relr(Obj_Entry *obj)
3404
{
3405
const Elf_Relr *relr, *relrlim;
3406
Elf_Addr *where;
3407
3408
relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3409
for (relr = obj->relr; relr < relrlim; relr++) {
3410
Elf_Relr entry = *relr;
3411
3412
if ((entry & 1) == 0) {
3413
where = (Elf_Addr *)(obj->relocbase + entry);
3414
*where++ += (Elf_Addr)obj->relocbase;
3415
} else {
3416
for (long i = 0; (entry >>= 1) != 0; i++)
3417
if ((entry & 1) != 0)
3418
where[i] += (Elf_Addr)obj->relocbase;
3419
where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3420
}
3421
}
3422
}
3423
3424
/*
3425
* Relocate single object.
3426
* Returns 0 on success, or -1 on failure.
3427
*/
3428
static int
3429
relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, int flags,
3430
RtldLockState *lockstate)
3431
{
3432
if (obj->relocated)
3433
return (0);
3434
obj->relocated = true;
3435
if (obj != rtldobj)
3436
dbg("relocating \"%s\"", obj->path);
3437
3438
if (obj->symtab == NULL || obj->strtab == NULL ||
3439
!(obj->valid_hash_sysv || obj->valid_hash_gnu))
3440
dbg("object %s has no run-time symbol table", obj->path);
3441
3442
/* There are relocations to the write-protected text segment. */
3443
if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3444
return (-1);
3445
3446
/* Process the non-PLT non-IFUNC relocations. */
3447
if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3448
return (-1);
3449
reloc_relr(obj);
3450
3451
/* Re-protected the text segment. */
3452
if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3453
return (-1);
3454
3455
/* Set the special PLT or GOT entries. */
3456
init_pltgot(obj);
3457
3458
/* Process the PLT relocations. */
3459
if (reloc_plt(obj, flags, lockstate) == -1)
3460
return (-1);
3461
/* Relocate the jump slots if we are doing immediate binding. */
3462
if ((obj->bind_now || bind_now) &&
3463
reloc_jmpslots(obj, flags, lockstate) == -1)
3464
return (-1);
3465
3466
if (obj != rtldobj && !obj->mainprog && obj_enforce_relro(obj) == -1)
3467
return (-1);
3468
3469
/*
3470
* Set up the magic number and version in the Obj_Entry. These
3471
* were checked in the crt1.o from the original ElfKit, so we
3472
* set them for backward compatibility.
3473
*/
3474
obj->magic = RTLD_MAGIC;
3475
obj->version = RTLD_VERSION;
3476
3477
return (0);
3478
}
3479
3480
/*
3481
* Relocate newly-loaded shared objects. The argument is a pointer to
3482
* the Obj_Entry for the first such object. All objects from the first
3483
* to the end of the list of objects are relocated. Returns 0 on success,
3484
* or -1 on failure.
3485
*/
3486
static int
3487
relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, int flags,
3488
RtldLockState *lockstate)
3489
{
3490
Obj_Entry *obj;
3491
int error;
3492
3493
for (error = 0, obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3494
if (obj->marker)
3495
continue;
3496
error = relocate_object(obj, bind_now, rtldobj, flags,
3497
lockstate);
3498
if (error == -1)
3499
break;
3500
}
3501
return (error);
3502
}
3503
3504
/*
3505
* The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3506
* referencing STT_GNU_IFUNC symbols is postponed till the other
3507
* relocations are done. The indirect functions specified as
3508
* ifunc are allowed to call other symbols, so we need to have
3509
* objects relocated before asking for resolution from indirects.
3510
*
3511
* The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3512
* instead of the usual lazy handling of PLT slots. It is
3513
* consistent with how GNU does it.
3514
*/
3515
static int
3516
resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3517
RtldLockState *lockstate)
3518
{
3519
if (obj->ifuncs_resolved)
3520
return (0);
3521
obj->ifuncs_resolved = true;
3522
if (!obj->irelative && !obj->irelative_nonplt &&
3523
!((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3524
!obj->non_plt_gnu_ifunc)
3525
return (0);
3526
if (obj_disable_relro(obj) == -1 ||
3527
(obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3528
(obj->irelative_nonplt &&
3529
reloc_iresolve_nonplt(obj, lockstate) == -1) ||
3530
((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3531
reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3532
(obj->non_plt_gnu_ifunc &&
3533
reloc_non_plt(obj, &obj_rtld, flags | SYMLOOK_IFUNC,
3534
lockstate) == -1) ||
3535
obj_enforce_relro(obj) == -1)
3536
return (-1);
3537
return (0);
3538
}
3539
3540
static int
3541
initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3542
RtldLockState *lockstate)
3543
{
3544
Objlist_Entry *elm;
3545
Obj_Entry *obj;
3546
3547
STAILQ_FOREACH(elm, list, link) {
3548
obj = elm->obj;
3549
if (obj->marker)
3550
continue;
3551
if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
3552
return (-1);
3553
}
3554
return (0);
3555
}
3556
3557
/*
3558
* Cleanup procedure. It will be called (by the atexit mechanism) just
3559
* before the process exits.
3560
*/
3561
static void
3562
rtld_exit(void)
3563
{
3564
RtldLockState lockstate;
3565
3566
wlock_acquire(rtld_bind_lock, &lockstate);
3567
dbg("rtld_exit()");
3568
objlist_call_fini(&list_fini, NULL, &lockstate);
3569
/* No need to remove the items from the list, since we are exiting. */
3570
if (!libmap_disable)
3571
lm_fini();
3572
lock_release(rtld_bind_lock, &lockstate);
3573
}
3574
3575
static void
3576
rtld_nop_exit(void)
3577
{
3578
}
3579
3580
/*
3581
* Iterate over a search path, translate each element, and invoke the
3582
* callback on the result.
3583
*/
3584
static void *
3585
path_enumerate(const char *path, path_enum_proc callback,
3586
const char *refobj_path, void *arg)
3587
{
3588
const char *trans;
3589
if (path == NULL)
3590
return (NULL);
3591
3592
path += strspn(path, ":;");
3593
while (*path != '\0') {
3594
size_t len;
3595
char *res;
3596
3597
len = strcspn(path, ":;");
3598
trans = lm_findn(refobj_path, path, len);
3599
if (trans)
3600
res = callback(trans, strlen(trans), arg);
3601
else
3602
res = callback(path, len, arg);
3603
3604
if (res != NULL)
3605
return (res);
3606
3607
path += len;
3608
path += strspn(path, ":;");
3609
}
3610
3611
return (NULL);
3612
}
3613
3614
struct try_library_args {
3615
const char *name;
3616
size_t namelen;
3617
char *buffer;
3618
size_t buflen;
3619
int fd;
3620
};
3621
3622
static void *
3623
try_library_path(const char *dir, size_t dirlen, void *param)
3624
{
3625
struct try_library_args *arg;
3626
int fd;
3627
3628
arg = param;
3629
if (*dir == '/' || trust) {
3630
char *pathname;
3631
3632
if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3633
return (NULL);
3634
3635
pathname = arg->buffer;
3636
strncpy(pathname, dir, dirlen);
3637
pathname[dirlen] = '/';
3638
strcpy(pathname + dirlen + 1, arg->name);
3639
3640
dbg(" Trying \"%s\"", pathname);
3641
fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3642
if (fd >= 0) {
3643
dbg(" Opened \"%s\", fd %d", pathname, fd);
3644
pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3645
strcpy(pathname, arg->buffer);
3646
arg->fd = fd;
3647
return (pathname);
3648
} else {
3649
dbg(" Failed to open \"%s\": %s", pathname,
3650
rtld_strerror(errno));
3651
}
3652
}
3653
return (NULL);
3654
}
3655
3656
static char *
3657
search_library_path(const char *name, const char *path, const char *refobj_path,
3658
int *fdp)
3659
{
3660
char *p;
3661
struct try_library_args arg;
3662
3663
if (path == NULL)
3664
return (NULL);
3665
3666
arg.name = name;
3667
arg.namelen = strlen(name);
3668
arg.buffer = xmalloc(PATH_MAX);
3669
arg.buflen = PATH_MAX;
3670
arg.fd = -1;
3671
3672
p = path_enumerate(path, try_library_path, refobj_path, &arg);
3673
*fdp = arg.fd;
3674
3675
free(arg.buffer);
3676
3677
return (p);
3678
}
3679
3680
/*
3681
* Finds the library with the given name using the directory descriptors
3682
* listed in the LD_LIBRARY_PATH_FDS environment variable.
3683
*
3684
* Returns a freshly-opened close-on-exec file descriptor for the library,
3685
* or -1 if the library cannot be found.
3686
*/
3687
static char *
3688
search_library_pathfds(const char *name, const char *path, int *fdp)
3689
{
3690
char *envcopy, *fdstr, *found, *last_token;
3691
size_t len;
3692
int dirfd, fd;
3693
3694
dbg("%s('%s', '%s', fdp)", __func__, name, path);
3695
3696
/* Don't load from user-specified libdirs into setuid binaries. */
3697
if (!trust)
3698
return (NULL);
3699
3700
/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3701
if (path == NULL)
3702
return (NULL);
3703
3704
/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3705
if (name[0] == '/') {
3706
dbg("Absolute path (%s) passed to %s", name, __func__);
3707
return (NULL);
3708
}
3709
3710
/*
3711
* Use strtok_r() to walk the FD:FD:FD list. This requires a local
3712
* copy of the path, as strtok_r rewrites separator tokens
3713
* with '\0'.
3714
*/
3715
found = NULL;
3716
envcopy = xstrdup(path);
3717
for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3718
fdstr = strtok_r(NULL, ":", &last_token)) {
3719
dirfd = parse_integer(fdstr);
3720
if (dirfd < 0) {
3721
_rtld_error("failed to parse directory FD: '%s'",
3722
fdstr);
3723
break;
3724
}
3725
fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3726
if (fd >= 0) {
3727
*fdp = fd;
3728
len = strlen(fdstr) + strlen(name) + 3;
3729
found = xmalloc(len);
3730
if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) <
3731
0) {
3732
_rtld_error("error generating '%d/%s'", dirfd,
3733
name);
3734
rtld_die();
3735
}
3736
dbg("open('%s') => %d", found, fd);
3737
break;
3738
}
3739
}
3740
free(envcopy);
3741
3742
return (found);
3743
}
3744
3745
int
3746
dlclose(void *handle)
3747
{
3748
RtldLockState lockstate;
3749
int error;
3750
3751
wlock_acquire(rtld_bind_lock, &lockstate);
3752
error = dlclose_locked(handle, &lockstate);
3753
lock_release(rtld_bind_lock, &lockstate);
3754
return (error);
3755
}
3756
3757
static int
3758
dlclose_locked(void *handle, RtldLockState *lockstate)
3759
{
3760
Obj_Entry *root;
3761
3762
root = dlcheck(handle);
3763
if (root == NULL)
3764
return (-1);
3765
LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3766
root->path);
3767
3768
/* Unreference the object and its dependencies. */
3769
root->dl_refcount--;
3770
3771
if (root->refcount == 1) {
3772
/*
3773
* The object will be no longer referenced, so we must unload
3774
* it. First, call the fini functions.
3775
*/
3776
objlist_call_fini(&list_fini, root, lockstate);
3777
3778
unref_dag(root);
3779
3780
/* Finish cleaning up the newly-unreferenced objects. */
3781
GDB_STATE(RT_DELETE, &root->linkmap);
3782
unload_object(root, lockstate);
3783
GDB_STATE(RT_CONSISTENT, NULL);
3784
} else
3785
unref_dag(root);
3786
3787
LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3788
return (0);
3789
}
3790
3791
char *
3792
dlerror(void)
3793
{
3794
if (*(lockinfo.dlerror_seen()) != 0)
3795
return (NULL);
3796
*lockinfo.dlerror_seen() = 1;
3797
return (lockinfo.dlerror_loc());
3798
}
3799
3800
/*
3801
* This function is deprecated and has no effect.
3802
*/
3803
void
3804
dllockinit(void *context, void *(*_lock_create)(void *context)__unused,
3805
void (*_rlock_acquire)(void *lock) __unused,
3806
void (*_wlock_acquire)(void *lock) __unused,
3807
void (*_lock_release)(void *lock) __unused,
3808
void (*_lock_destroy)(void *lock) __unused,
3809
void (*context_destroy)(void *context))
3810
{
3811
static void *cur_context;
3812
static void (*cur_context_destroy)(void *);
3813
3814
/* Just destroy the context from the previous call, if necessary. */
3815
if (cur_context_destroy != NULL)
3816
cur_context_destroy(cur_context);
3817
cur_context = context;
3818
cur_context_destroy = context_destroy;
3819
}
3820
3821
void *
3822
dlopen(const char *name, int mode)
3823
{
3824
return (rtld_dlopen(name, -1, mode));
3825
}
3826
3827
void *
3828
fdlopen(int fd, int mode)
3829
{
3830
return (rtld_dlopen(NULL, fd, mode));
3831
}
3832
3833
static void *
3834
rtld_dlopen(const char *name, int fd, int mode)
3835
{
3836
RtldLockState lockstate;
3837
int lo_flags;
3838
3839
LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3840
ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3841
if (ld_tracing != NULL) {
3842
rlock_acquire(rtld_bind_lock, &lockstate);
3843
if (sigsetjmp(lockstate.env, 0) != 0)
3844
lock_upgrade(rtld_bind_lock, &lockstate);
3845
environ = __DECONST(char **,
3846
*get_program_var_addr("environ", &lockstate));
3847
lock_release(rtld_bind_lock, &lockstate);
3848
}
3849
lo_flags = RTLD_LO_DLOPEN;
3850
if (mode & RTLD_NODELETE)
3851
lo_flags |= RTLD_LO_NODELETE;
3852
if (mode & RTLD_NOLOAD)
3853
lo_flags |= RTLD_LO_NOLOAD;
3854
if (mode & RTLD_DEEPBIND)
3855
lo_flags |= RTLD_LO_DEEPBIND;
3856
if (ld_tracing != NULL)
3857
lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3858
3859
return (dlopen_object(name, fd, obj_main, lo_flags,
3860
mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3861
}
3862
3863
static void
3864
dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3865
{
3866
obj->dl_refcount--;
3867
unref_dag(obj);
3868
if (obj->refcount == 0)
3869
unload_object(obj, lockstate);
3870
}
3871
3872
static Obj_Entry *
3873
dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3874
int mode, RtldLockState *lockstate)
3875
{
3876
Obj_Entry *obj;
3877
Objlist initlist;
3878
RtldLockState mlockstate;
3879
int result;
3880
3881
dbg(
3882
"dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3883
name != NULL ? name : "<null>", fd,
3884
refobj == NULL ? "<null>" : refobj->path, lo_flags, mode);
3885
objlist_init(&initlist);
3886
3887
if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3888
wlock_acquire(rtld_bind_lock, &mlockstate);
3889
lockstate = &mlockstate;
3890
}
3891
GDB_STATE(RT_ADD, NULL);
3892
3893
obj = NULL;
3894
if (name == NULL && fd == -1) {
3895
obj = obj_main;
3896
obj->refcount++;
3897
} else {
3898
obj = load_object(name, fd, refobj, lo_flags);
3899
}
3900
3901
if (obj != NULL) {
3902
obj->dl_refcount++;
3903
if ((mode & RTLD_GLOBAL) != 0 &&
3904
objlist_find(&list_global, obj) == NULL)
3905
objlist_push_tail(&list_global, obj);
3906
3907
if (!obj->init_done) {
3908
/* We loaded something new and have to init something.
3909
*/
3910
if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3911
obj->deepbind = true;
3912
result = 0;
3913
if ((lo_flags & (RTLD_LO_EARLY |
3914
RTLD_LO_IGNSTLS)) == 0 &&
3915
obj->static_tls && !allocate_tls_offset(obj)) {
3916
_rtld_error(
3917
"%s: No space available for static Thread Local Storage",
3918
obj->path);
3919
result = -1;
3920
}
3921
if (result != -1)
3922
result = load_needed_objects(obj,
3923
lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY |
3924
RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3925
init_dag(obj);
3926
ref_dag(obj);
3927
if (result != -1)
3928
result = rtld_verify_versions(&obj->dagmembers);
3929
if (result != -1 && ld_tracing)
3930
goto trace;
3931
if (result == -1 || relocate_object_dag(obj,
3932
(mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3933
(lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3934
lockstate) == -1) {
3935
dlopen_cleanup(obj, lockstate);
3936
obj = NULL;
3937
} else if ((lo_flags & RTLD_LO_EARLY) != 0) {
3938
/*
3939
* Do not call the init functions for early
3940
* loaded filtees. The image is still not
3941
* initialized enough for them to work.
3942
*
3943
* Our object is found by the global object list
3944
* and will be ordered among all init calls done
3945
* right before transferring control to main.
3946
*/
3947
} else {
3948
/* Make list of init functions to call. */
3949
initlist_for_loaded_obj(obj, obj, &initlist);
3950
}
3951
/*
3952
* Process all no_delete or global objects here, given
3953
* them own DAGs to prevent their dependencies from
3954
* being unloaded. This has to be done after we have
3955
* loaded all of the dependencies, so that we do not
3956
* miss any.
3957
*/
3958
if (obj != NULL)
3959
process_z(obj);
3960
} else {
3961
/*
3962
* Bump the reference counts for objects on this DAG. If
3963
* this is the first dlopen() call for the object that
3964
* was already loaded as a dependency, initialize the
3965
* dag starting at it.
3966
*/
3967
init_dag(obj);
3968
ref_dag(obj);
3969
3970
if ((lo_flags & RTLD_LO_TRACE) != 0)
3971
goto trace;
3972
}
3973
if (obj != NULL &&
3974
((lo_flags & RTLD_LO_NODELETE) != 0 || obj->z_nodelete) &&
3975
!obj->ref_nodel) {
3976
dbg("obj %s nodelete", obj->path);
3977
ref_dag(obj);
3978
obj->z_nodelete = obj->ref_nodel = true;
3979
}
3980
}
3981
3982
LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3983
name);
3984
GDB_STATE(RT_CONSISTENT, obj ? &obj->linkmap : NULL);
3985
3986
if ((lo_flags & RTLD_LO_EARLY) == 0) {
3987
map_stacks_exec(lockstate);
3988
if (obj != NULL)
3989
distribute_static_tls(&initlist);
3990
}
3991
3992
if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) ==
3993
RTLD_NOW, (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3994
lockstate) == -1) {
3995
objlist_clear(&initlist);
3996
dlopen_cleanup(obj, lockstate);
3997
if (lockstate == &mlockstate)
3998
lock_release(rtld_bind_lock, lockstate);
3999
return (NULL);
4000
}
4001
4002
if ((lo_flags & RTLD_LO_EARLY) == 0) {
4003
/* Call the init functions. */
4004
objlist_call_init(&initlist, lockstate);
4005
}
4006
objlist_clear(&initlist);
4007
if (lockstate == &mlockstate)
4008
lock_release(rtld_bind_lock, lockstate);
4009
return (obj);
4010
trace:
4011
trace_loaded_objects(obj, false);
4012
if (lockstate == &mlockstate)
4013
lock_release(rtld_bind_lock, lockstate);
4014
exit(0);
4015
}
4016
4017
static void *
4018
do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
4019
int flags)
4020
{
4021
DoneList donelist;
4022
const Obj_Entry *obj, *defobj;
4023
const Elf_Sym *def;
4024
SymLook req;
4025
RtldLockState lockstate;
4026
tls_index ti;
4027
void *sym;
4028
int res;
4029
4030
def = NULL;
4031
defobj = NULL;
4032
symlook_init(&req, name);
4033
req.ventry = ve;
4034
req.flags = flags | SYMLOOK_IN_PLT;
4035
req.lockstate = &lockstate;
4036
4037
LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
4038
rlock_acquire(rtld_bind_lock, &lockstate);
4039
if (sigsetjmp(lockstate.env, 0) != 0)
4040
lock_upgrade(rtld_bind_lock, &lockstate);
4041
if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT ||
4042
handle == RTLD_SELF) {
4043
if ((obj = obj_from_addr(retaddr)) == NULL) {
4044
_rtld_error("Cannot determine caller's shared object");
4045
lock_release(rtld_bind_lock, &lockstate);
4046
LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4047
return (NULL);
4048
}
4049
if (handle == NULL) { /* Just the caller's shared object. */
4050
res = symlook_obj(&req, obj);
4051
if (res == 0) {
4052
def = req.sym_out;
4053
defobj = req.defobj_out;
4054
}
4055
} else if (handle == RTLD_NEXT || /* Objects after caller's */
4056
handle == RTLD_SELF) { /* ... caller included */
4057
if (handle == RTLD_NEXT)
4058
obj = globallist_next(obj);
4059
for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4060
if (obj->marker)
4061
continue;
4062
res = symlook_obj(&req, obj);
4063
if (res == 0) {
4064
if (def == NULL ||
4065
(ld_dynamic_weak &&
4066
ELF_ST_BIND(
4067
req.sym_out->st_info) !=
4068
STB_WEAK)) {
4069
def = req.sym_out;
4070
defobj = req.defobj_out;
4071
if (!ld_dynamic_weak ||
4072
ELF_ST_BIND(def->st_info) !=
4073
STB_WEAK)
4074
break;
4075
}
4076
}
4077
}
4078
/*
4079
* Search the dynamic linker itself, and possibly
4080
* resolve the symbol from there. This is how the
4081
* application links to dynamic linker services such as
4082
* dlopen. Note that we ignore ld_dynamic_weak == false
4083
* case, always overriding weak symbols by rtld
4084
* definitions.
4085
*/
4086
if (def == NULL ||
4087
ELF_ST_BIND(def->st_info) == STB_WEAK) {
4088
res = symlook_obj(&req, &obj_rtld);
4089
if (res == 0) {
4090
def = req.sym_out;
4091
defobj = req.defobj_out;
4092
}
4093
}
4094
} else {
4095
assert(handle == RTLD_DEFAULT);
4096
res = symlook_default(&req, obj);
4097
if (res == 0) {
4098
defobj = req.defobj_out;
4099
def = req.sym_out;
4100
}
4101
}
4102
} else {
4103
if ((obj = dlcheck(handle)) == NULL) {
4104
lock_release(rtld_bind_lock, &lockstate);
4105
LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4106
return (NULL);
4107
}
4108
4109
donelist_init(&donelist);
4110
if (obj->mainprog) {
4111
/* Handle obtained by dlopen(NULL, ...) implies global
4112
* scope. */
4113
res = symlook_global(&req, &donelist);
4114
if (res == 0) {
4115
def = req.sym_out;
4116
defobj = req.defobj_out;
4117
}
4118
/*
4119
* Search the dynamic linker itself, and possibly
4120
* resolve the symbol from there. This is how the
4121
* application links to dynamic linker services such as
4122
* dlopen.
4123
*/
4124
if (def == NULL ||
4125
ELF_ST_BIND(def->st_info) == STB_WEAK) {
4126
res = symlook_obj(&req, &obj_rtld);
4127
if (res == 0) {
4128
def = req.sym_out;
4129
defobj = req.defobj_out;
4130
}
4131
}
4132
} else {
4133
/* Search the whole DAG rooted at the given object. */
4134
res = symlook_list(&req, &obj->dagmembers, &donelist);
4135
if (res == 0) {
4136
def = req.sym_out;
4137
defobj = req.defobj_out;
4138
}
4139
}
4140
}
4141
4142
if (def != NULL) {
4143
lock_release(rtld_bind_lock, &lockstate);
4144
4145
/*
4146
* The value required by the caller is derived from the value
4147
* of the symbol. this is simply the relocated value of the
4148
* symbol.
4149
*/
4150
if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4151
sym = make_function_pointer(def, defobj);
4152
else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4153
sym = rtld_resolve_ifunc(defobj, def);
4154
else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4155
ti.ti_module = defobj->tlsindex;
4156
ti.ti_offset = def->st_value - TLS_DTV_OFFSET;
4157
sym = __tls_get_addr(&ti);
4158
} else
4159
sym = defobj->relocbase + def->st_value;
4160
LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4161
return (sym);
4162
}
4163
4164
_rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4165
ve != NULL ? ve->name : "");
4166
lock_release(rtld_bind_lock, &lockstate);
4167
LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4168
return (NULL);
4169
}
4170
4171
void *
4172
dlsym(void *handle, const char *name)
4173
{
4174
return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4175
SYMLOOK_DLSYM));
4176
}
4177
4178
dlfunc_t
4179
dlfunc(void *handle, const char *name)
4180
{
4181
union {
4182
void *d;
4183
dlfunc_t f;
4184
} rv;
4185
4186
rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4187
SYMLOOK_DLSYM);
4188
return (rv.f);
4189
}
4190
4191
void *
4192
dlvsym(void *handle, const char *name, const char *version)
4193
{
4194
Ver_Entry ventry;
4195
4196
ventry.name = version;
4197
ventry.file = NULL;
4198
ventry.hash = elf_hash(version);
4199
ventry.flags = 0;
4200
return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4201
SYMLOOK_DLSYM));
4202
}
4203
4204
int
4205
_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4206
{
4207
const Obj_Entry *obj;
4208
RtldLockState lockstate;
4209
4210
rlock_acquire(rtld_bind_lock, &lockstate);
4211
obj = obj_from_addr(addr);
4212
if (obj == NULL) {
4213
_rtld_error("No shared object contains address");
4214
lock_release(rtld_bind_lock, &lockstate);
4215
return (0);
4216
}
4217
rtld_fill_dl_phdr_info(obj, phdr_info);
4218
lock_release(rtld_bind_lock, &lockstate);
4219
return (1);
4220
}
4221
4222
int
4223
dladdr(const void *addr, Dl_info *info)
4224
{
4225
const Obj_Entry *obj;
4226
const Elf_Sym *def;
4227
void *symbol_addr;
4228
unsigned long symoffset;
4229
RtldLockState lockstate;
4230
4231
rlock_acquire(rtld_bind_lock, &lockstate);
4232
obj = obj_from_addr(addr);
4233
if (obj == NULL) {
4234
_rtld_error("No shared object contains address");
4235
lock_release(rtld_bind_lock, &lockstate);
4236
return (0);
4237
}
4238
info->dli_fname = obj->path;
4239
info->dli_fbase = obj->mapbase;
4240
info->dli_saddr = (void *)0;
4241
info->dli_sname = NULL;
4242
4243
/*
4244
* Walk the symbol list looking for the symbol whose address is
4245
* closest to the address sent in.
4246
*/
4247
for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4248
def = obj->symtab + symoffset;
4249
4250
/*
4251
* For skip the symbol if st_shndx is either SHN_UNDEF or
4252
* SHN_COMMON.
4253
*/
4254
if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4255
continue;
4256
4257
/*
4258
* If the symbol is greater than the specified address, or if it
4259
* is further away from addr than the current nearest symbol,
4260
* then reject it.
4261
*/
4262
symbol_addr = obj->relocbase + def->st_value;
4263
if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4264
continue;
4265
4266
/* Update our idea of the nearest symbol. */
4267
info->dli_sname = obj->strtab + def->st_name;
4268
info->dli_saddr = symbol_addr;
4269
4270
/* Exact match? */
4271
if (info->dli_saddr == addr)
4272
break;
4273
}
4274
lock_release(rtld_bind_lock, &lockstate);
4275
return (1);
4276
}
4277
4278
int
4279
dlinfo(void *handle, int request, void *p)
4280
{
4281
const Obj_Entry *obj;
4282
RtldLockState lockstate;
4283
int error;
4284
4285
rlock_acquire(rtld_bind_lock, &lockstate);
4286
4287
if (handle == NULL || handle == RTLD_SELF) {
4288
void *retaddr;
4289
4290
retaddr = __builtin_return_address(0); /* __GNUC__ only */
4291
if ((obj = obj_from_addr(retaddr)) == NULL)
4292
_rtld_error("Cannot determine caller's shared object");
4293
} else
4294
obj = dlcheck(handle);
4295
4296
if (obj == NULL) {
4297
lock_release(rtld_bind_lock, &lockstate);
4298
return (-1);
4299
}
4300
4301
error = 0;
4302
switch (request) {
4303
case RTLD_DI_LINKMAP:
4304
*((struct link_map const **)p) = &obj->linkmap;
4305
break;
4306
case RTLD_DI_ORIGIN:
4307
error = rtld_dirname(obj->path, p);
4308
break;
4309
4310
case RTLD_DI_SERINFOSIZE:
4311
case RTLD_DI_SERINFO:
4312
error = do_search_info(obj, request, (struct dl_serinfo *)p);
4313
break;
4314
4315
default:
4316
_rtld_error("Invalid request %d passed to dlinfo()", request);
4317
error = -1;
4318
}
4319
4320
lock_release(rtld_bind_lock, &lockstate);
4321
4322
return (error);
4323
}
4324
4325
static void
4326
rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4327
{
4328
phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4329
phdr_info->dlpi_name = obj->path;
4330
phdr_info->dlpi_phdr = obj->phdr;
4331
phdr_info->dlpi_phnum = obj->phnum;
4332
phdr_info->dlpi_tls_modid = obj->tlsindex;
4333
phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(_tcb_get(),
4334
obj->tlsindex, 0, true);
4335
phdr_info->dlpi_adds = obj_loads;
4336
phdr_info->dlpi_subs = obj_loads - obj_count;
4337
}
4338
4339
/*
4340
* It's completely UB to actually use this, so extreme caution is advised. It's
4341
* probably not what you want.
4342
*/
4343
int
4344
_dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback, void *param)
4345
{
4346
struct dl_phdr_info phdr_info;
4347
Obj_Entry *obj;
4348
int error;
4349
4350
for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;
4351
obj = globallist_next(obj)) {
4352
rtld_fill_dl_phdr_info(obj, &phdr_info);
4353
error = callback(&phdr_info, sizeof(phdr_info), param);
4354
if (error != 0)
4355
return (error);
4356
}
4357
4358
rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4359
return (callback(&phdr_info, sizeof(phdr_info), param));
4360
}
4361
4362
int
4363
dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4364
{
4365
struct dl_phdr_info phdr_info;
4366
Obj_Entry *obj, marker;
4367
RtldLockState bind_lockstate, phdr_lockstate;
4368
int error;
4369
4370
init_marker(&marker);
4371
error = 0;
4372
4373
wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4374
wlock_acquire(rtld_bind_lock, &bind_lockstate);
4375
for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4376
TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4377
rtld_fill_dl_phdr_info(obj, &phdr_info);
4378
hold_object(obj);
4379
lock_release(rtld_bind_lock, &bind_lockstate);
4380
4381
error = callback(&phdr_info, sizeof phdr_info, param);
4382
4383
wlock_acquire(rtld_bind_lock, &bind_lockstate);
4384
unhold_object(obj);
4385
obj = globallist_next(&marker);
4386
TAILQ_REMOVE(&obj_list, &marker, next);
4387
if (error != 0) {
4388
lock_release(rtld_bind_lock, &bind_lockstate);
4389
lock_release(rtld_phdr_lock, &phdr_lockstate);
4390
return (error);
4391
}
4392
}
4393
4394
if (error == 0) {
4395
rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4396
lock_release(rtld_bind_lock, &bind_lockstate);
4397
error = callback(&phdr_info, sizeof(phdr_info), param);
4398
}
4399
lock_release(rtld_phdr_lock, &phdr_lockstate);
4400
return (error);
4401
}
4402
4403
static void *
4404
fill_search_info(const char *dir, size_t dirlen, void *param)
4405
{
4406
struct fill_search_info_args *arg;
4407
4408
arg = param;
4409
4410
if (arg->request == RTLD_DI_SERINFOSIZE) {
4411
arg->serinfo->dls_cnt++;
4412
arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen +
4413
1;
4414
} else {
4415
struct dl_serpath *s_entry;
4416
4417
s_entry = arg->serpath;
4418
s_entry->dls_name = arg->strspace;
4419
s_entry->dls_flags = arg->flags;
4420
4421
strncpy(arg->strspace, dir, dirlen);
4422
arg->strspace[dirlen] = '\0';
4423
4424
arg->strspace += dirlen + 1;
4425
arg->serpath++;
4426
}
4427
4428
return (NULL);
4429
}
4430
4431
static int
4432
do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4433
{
4434
struct dl_serinfo _info;
4435
struct fill_search_info_args args;
4436
4437
args.request = RTLD_DI_SERINFOSIZE;
4438
args.serinfo = &_info;
4439
4440
_info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4441
_info.dls_cnt = 0;
4442
4443
path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4444
path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4445
path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4446
path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4447
&args);
4448
if (!obj->z_nodeflib)
4449
path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4450
&args);
4451
4452
if (request == RTLD_DI_SERINFOSIZE) {
4453
info->dls_size = _info.dls_size;
4454
info->dls_cnt = _info.dls_cnt;
4455
return (0);
4456
}
4457
4458
if (info->dls_cnt != _info.dls_cnt ||
4459
info->dls_size != _info.dls_size) {
4460
_rtld_error(
4461
"Uninitialized Dl_serinfo struct passed to dlinfo()");
4462
return (-1);
4463
}
4464
4465
args.request = RTLD_DI_SERINFO;
4466
args.serinfo = info;
4467
args.serpath = &info->dls_serpath[0];
4468
args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4469
4470
args.flags = LA_SER_RUNPATH;
4471
if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4472
return (-1);
4473
4474
args.flags = LA_SER_LIBPATH;
4475
if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) !=
4476
NULL)
4477
return (-1);
4478
4479
args.flags = LA_SER_RUNPATH;
4480
if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4481
return (-1);
4482
4483
args.flags = LA_SER_CONFIG;
4484
if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4485
&args) != NULL)
4486
return (-1);
4487
4488
args.flags = LA_SER_DEFAULT;
4489
if (!obj->z_nodeflib &&
4490
path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4491
&args) != NULL)
4492
return (-1);
4493
return (0);
4494
}
4495
4496
static int
4497
rtld_dirname(const char *path, char *bname)
4498
{
4499
const char *endp;
4500
4501
/* Empty or NULL string gets treated as "." */
4502
if (path == NULL || *path == '\0') {
4503
bname[0] = '.';
4504
bname[1] = '\0';
4505
return (0);
4506
}
4507
4508
/* Strip trailing slashes */
4509
endp = path + strlen(path) - 1;
4510
while (endp > path && *endp == '/')
4511
endp--;
4512
4513
/* Find the start of the dir */
4514
while (endp > path && *endp != '/')
4515
endp--;
4516
4517
/* Either the dir is "/" or there are no slashes */
4518
if (endp == path) {
4519
bname[0] = *endp == '/' ? '/' : '.';
4520
bname[1] = '\0';
4521
return (0);
4522
} else {
4523
do {
4524
endp--;
4525
} while (endp > path && *endp == '/');
4526
}
4527
4528
if (endp - path + 2 > PATH_MAX) {
4529
_rtld_error("Filename is too long: %s", path);
4530
return (-1);
4531
}
4532
4533
strncpy(bname, path, endp - path + 1);
4534
bname[endp - path + 1] = '\0';
4535
return (0);
4536
}
4537
4538
static int
4539
rtld_dirname_abs(const char *path, char *base)
4540
{
4541
char *last;
4542
4543
if (realpath(path, base) == NULL) {
4544
_rtld_error("realpath \"%s\" failed (%s)", path,
4545
rtld_strerror(errno));
4546
return (-1);
4547
}
4548
dbg("%s -> %s", path, base);
4549
last = strrchr(base, '/');
4550
if (last == NULL) {
4551
_rtld_error("non-abs result from realpath \"%s\"", path);
4552
return (-1);
4553
}
4554
if (last != base)
4555
*last = '\0';
4556
return (0);
4557
}
4558
4559
static void
4560
linkmap_add(Obj_Entry *obj)
4561
{
4562
struct link_map *l, *prev;
4563
4564
l = &obj->linkmap;
4565
l->l_name = obj->path;
4566
l->l_base = obj->mapbase;
4567
l->l_ld = obj->dynamic;
4568
l->l_addr = obj->relocbase;
4569
4570
if (r_debug.r_map == NULL) {
4571
r_debug.r_map = l;
4572
return;
4573
}
4574
4575
/*
4576
* Scan to the end of the list, but not past the entry for the
4577
* dynamic linker, which we want to keep at the very end.
4578
*/
4579
for (prev = r_debug.r_map;
4580
prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4581
prev = prev->l_next)
4582
;
4583
4584
/* Link in the new entry. */
4585
l->l_prev = prev;
4586
l->l_next = prev->l_next;
4587
if (l->l_next != NULL)
4588
l->l_next->l_prev = l;
4589
prev->l_next = l;
4590
}
4591
4592
static void
4593
linkmap_delete(Obj_Entry *obj)
4594
{
4595
struct link_map *l;
4596
4597
l = &obj->linkmap;
4598
if (l->l_prev == NULL) {
4599
if ((r_debug.r_map = l->l_next) != NULL)
4600
l->l_next->l_prev = NULL;
4601
return;
4602
}
4603
4604
if ((l->l_prev->l_next = l->l_next) != NULL)
4605
l->l_next->l_prev = l->l_prev;
4606
}
4607
4608
/*
4609
* Function for the debugger to set a breakpoint on to gain control.
4610
*
4611
* The two parameters allow the debugger to easily find and determine
4612
* what the runtime loader is doing and to whom it is doing it.
4613
*
4614
* When the loadhook trap is hit (r_debug_state, set at program
4615
* initialization), the arguments can be found on the stack:
4616
*
4617
* +8 struct link_map *m
4618
* +4 struct r_debug *rd
4619
* +0 RetAddr
4620
*/
4621
void
4622
r_debug_state(struct r_debug *rd __unused, struct link_map *m __unused)
4623
{
4624
/*
4625
* The following is a hack to force the compiler to emit calls to
4626
* this function, even when optimizing. If the function is empty,
4627
* the compiler is not obliged to emit any code for calls to it,
4628
* even when marked __noinline. However, gdb depends on those
4629
* calls being made.
4630
*/
4631
__compiler_membar();
4632
}
4633
4634
/*
4635
* A function called after init routines have completed. This can be used to
4636
* break before a program's entry routine is called, and can be used when
4637
* main is not available in the symbol table.
4638
*/
4639
void
4640
_r_debug_postinit(struct link_map *m __unused)
4641
{
4642
/* See r_debug_state(). */
4643
__compiler_membar();
4644
}
4645
4646
static void
4647
release_object(Obj_Entry *obj)
4648
{
4649
if (obj->holdcount > 0) {
4650
obj->unholdfree = true;
4651
return;
4652
}
4653
munmap(obj->mapbase, obj->mapsize);
4654
linkmap_delete(obj);
4655
obj_free(obj);
4656
}
4657
4658
/*
4659
* Get address of the pointer variable in the main program.
4660
* Prefer non-weak symbol over the weak one.
4661
*/
4662
static const void **
4663
get_program_var_addr(const char *name, RtldLockState *lockstate)
4664
{
4665
SymLook req;
4666
DoneList donelist;
4667
4668
symlook_init(&req, name);
4669
req.lockstate = lockstate;
4670
donelist_init(&donelist);
4671
if (symlook_global(&req, &donelist) != 0)
4672
return (NULL);
4673
if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4674
return ((const void **)make_function_pointer(req.sym_out,
4675
req.defobj_out));
4676
else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4677
return ((const void **)rtld_resolve_ifunc(req.defobj_out,
4678
req.sym_out));
4679
else
4680
return ((const void **)(req.defobj_out->relocbase +
4681
req.sym_out->st_value));
4682
}
4683
4684
/*
4685
* Set a pointer variable in the main program to the given value. This
4686
* is used to set key variables such as "environ" before any of the
4687
* init functions are called.
4688
*/
4689
static void
4690
set_program_var(const char *name, const void *value)
4691
{
4692
const void **addr;
4693
4694
if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4695
dbg("\"%s\": *%p <-- %p", name, addr, value);
4696
*addr = value;
4697
}
4698
}
4699
4700
/*
4701
* Search the global objects, including dependencies and main object,
4702
* for the given symbol.
4703
*/
4704
static int
4705
symlook_global(SymLook *req, DoneList *donelist)
4706
{
4707
SymLook req1;
4708
const Objlist_Entry *elm;
4709
int res;
4710
4711
symlook_init_from_req(&req1, req);
4712
4713
/* Search all objects loaded at program start up. */
4714
if (req->defobj_out == NULL || (ld_dynamic_weak &&
4715
ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4716
res = symlook_list(&req1, &list_main, donelist);
4717
if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4718
ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4719
req->sym_out = req1.sym_out;
4720
req->defobj_out = req1.defobj_out;
4721
assert(req->defobj_out != NULL);
4722
}
4723
}
4724
4725
/* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4726
STAILQ_FOREACH(elm, &list_global, link) {
4727
if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4728
ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4729
break;
4730
res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4731
if (res == 0 && (req->defobj_out == NULL ||
4732
ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4733
req->sym_out = req1.sym_out;
4734
req->defobj_out = req1.defobj_out;
4735
assert(req->defobj_out != NULL);
4736
}
4737
}
4738
4739
return (req->sym_out != NULL ? 0 : ESRCH);
4740
}
4741
4742
/*
4743
* Given a symbol name in a referencing object, find the corresponding
4744
* definition of the symbol. Returns a pointer to the symbol, or NULL if
4745
* no definition was found. Returns a pointer to the Obj_Entry of the
4746
* defining object via the reference parameter DEFOBJ_OUT.
4747
*/
4748
static int
4749
symlook_default(SymLook *req, const Obj_Entry *refobj)
4750
{
4751
DoneList donelist;
4752
const Objlist_Entry *elm;
4753
SymLook req1;
4754
int res;
4755
4756
donelist_init(&donelist);
4757
symlook_init_from_req(&req1, req);
4758
4759
/*
4760
* Look first in the referencing object if linked symbolically,
4761
* and similarly handle protected symbols.
4762
*/
4763
res = symlook_obj(&req1, refobj);
4764
if (res == 0 && (refobj->symbolic ||
4765
ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED ||
4766
refobj->deepbind)) {
4767
req->sym_out = req1.sym_out;
4768
req->defobj_out = req1.defobj_out;
4769
assert(req->defobj_out != NULL);
4770
}
4771
if (refobj->symbolic || req->defobj_out != NULL || refobj->deepbind)
4772
donelist_check(&donelist, refobj);
4773
4774
if (!refobj->deepbind)
4775
symlook_global(req, &donelist);
4776
4777
/* Search all dlopened DAGs containing the referencing object. */
4778
STAILQ_FOREACH(elm, &refobj->dldags, link) {
4779
if (req->sym_out != NULL && (!ld_dynamic_weak ||
4780
ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4781
break;
4782
res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4783
if (res == 0 && (req->sym_out == NULL ||
4784
ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4785
req->sym_out = req1.sym_out;
4786
req->defobj_out = req1.defobj_out;
4787
assert(req->defobj_out != NULL);
4788
}
4789
}
4790
4791
if (refobj->deepbind)
4792
symlook_global(req, &donelist);
4793
4794
/*
4795
* Search the dynamic linker itself, and possibly resolve the
4796
* symbol from there. This is how the application links to
4797
* dynamic linker services such as dlopen.
4798
*/
4799
if (req->sym_out == NULL ||
4800
ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4801
res = symlook_obj(&req1, &obj_rtld);
4802
if (res == 0) {
4803
req->sym_out = req1.sym_out;
4804
req->defobj_out = req1.defobj_out;
4805
assert(req->defobj_out != NULL);
4806
}
4807
}
4808
4809
return (req->sym_out != NULL ? 0 : ESRCH);
4810
}
4811
4812
static int
4813
symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4814
{
4815
const Elf_Sym *def;
4816
const Obj_Entry *defobj;
4817
const Objlist_Entry *elm;
4818
SymLook req1;
4819
int res;
4820
4821
def = NULL;
4822
defobj = NULL;
4823
STAILQ_FOREACH(elm, objlist, link) {
4824
if (donelist_check(dlp, elm->obj))
4825
continue;
4826
symlook_init_from_req(&req1, req);
4827
if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4828
if (def == NULL || (ld_dynamic_weak &&
4829
ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4830
def = req1.sym_out;
4831
defobj = req1.defobj_out;
4832
if (!ld_dynamic_weak ||
4833
ELF_ST_BIND(def->st_info) != STB_WEAK)
4834
break;
4835
}
4836
}
4837
}
4838
if (def != NULL) {
4839
req->sym_out = def;
4840
req->defobj_out = defobj;
4841
return (0);
4842
}
4843
return (ESRCH);
4844
}
4845
4846
/*
4847
* Search the chain of DAGS cointed to by the given Needed_Entry
4848
* for a symbol of the given name. Each DAG is scanned completely
4849
* before advancing to the next one. Returns a pointer to the symbol,
4850
* or NULL if no definition was found.
4851
*/
4852
static int
4853
symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4854
{
4855
const Elf_Sym *def;
4856
const Needed_Entry *n;
4857
const Obj_Entry *defobj;
4858
SymLook req1;
4859
int res;
4860
4861
def = NULL;
4862
defobj = NULL;
4863
symlook_init_from_req(&req1, req);
4864
for (n = needed; n != NULL; n = n->next) {
4865
if (n->obj == NULL || (res = symlook_list(&req1,
4866
&n->obj->dagmembers, dlp)) != 0)
4867
continue;
4868
if (def == NULL || (ld_dynamic_weak &&
4869
ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4870
def = req1.sym_out;
4871
defobj = req1.defobj_out;
4872
if (!ld_dynamic_weak ||
4873
ELF_ST_BIND(def->st_info) != STB_WEAK)
4874
break;
4875
}
4876
}
4877
if (def != NULL) {
4878
req->sym_out = def;
4879
req->defobj_out = defobj;
4880
return (0);
4881
}
4882
return (ESRCH);
4883
}
4884
4885
static int
4886
symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4887
Needed_Entry *needed)
4888
{
4889
DoneList donelist;
4890
int flags;
4891
4892
flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4893
load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4894
donelist_init(&donelist);
4895
symlook_init_from_req(req1, req);
4896
return (symlook_needed(req1, needed, &donelist));
4897
}
4898
4899
/*
4900
* Search the symbol table of a single shared object for a symbol of
4901
* the given name and version, if requested. Returns a pointer to the
4902
* symbol, or NULL if no definition was found. If the object is
4903
* filter, return filtered symbol from filtee.
4904
*
4905
* The symbol's hash value is passed in for efficiency reasons; that
4906
* eliminates many recomputations of the hash value.
4907
*/
4908
int
4909
symlook_obj(SymLook *req, const Obj_Entry *obj)
4910
{
4911
SymLook req1;
4912
int res, mres;
4913
4914
/*
4915
* If there is at least one valid hash at this point, we prefer to
4916
* use the faster GNU version if available.
4917
*/
4918
if (obj->valid_hash_gnu)
4919
mres = symlook_obj1_gnu(req, obj);
4920
else if (obj->valid_hash_sysv)
4921
mres = symlook_obj1_sysv(req, obj);
4922
else
4923
return (EINVAL);
4924
4925
if (mres == 0) {
4926
if (obj->needed_filtees != NULL) {
4927
res = symlook_obj_load_filtees(req, &req1, obj,
4928
obj->needed_filtees);
4929
if (res == 0) {
4930
req->sym_out = req1.sym_out;
4931
req->defobj_out = req1.defobj_out;
4932
}
4933
return (res);
4934
}
4935
if (obj->needed_aux_filtees != NULL) {
4936
res = symlook_obj_load_filtees(req, &req1, obj,
4937
obj->needed_aux_filtees);
4938
if (res == 0) {
4939
req->sym_out = req1.sym_out;
4940
req->defobj_out = req1.defobj_out;
4941
return (res);
4942
}
4943
}
4944
}
4945
return (mres);
4946
}
4947
4948
/* Symbol match routine common to both hash functions */
4949
static bool
4950
matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4951
const unsigned long symnum)
4952
{
4953
Elf_Versym verndx;
4954
const Elf_Sym *symp;
4955
const char *strp;
4956
4957
symp = obj->symtab + symnum;
4958
strp = obj->strtab + symp->st_name;
4959
4960
switch (ELF_ST_TYPE(symp->st_info)) {
4961
case STT_FUNC:
4962
case STT_NOTYPE:
4963
case STT_OBJECT:
4964
case STT_COMMON:
4965
case STT_GNU_IFUNC:
4966
if (symp->st_value == 0)
4967
return (false);
4968
/* fallthrough */
4969
case STT_TLS:
4970
if (symp->st_shndx != SHN_UNDEF)
4971
break;
4972
else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4973
(ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4974
break;
4975
/* fallthrough */
4976
default:
4977
return (false);
4978
}
4979
if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4980
return (false);
4981
4982
if (req->ventry == NULL) {
4983
if (obj->versyms != NULL) {
4984
verndx = VER_NDX(obj->versyms[symnum]);
4985
if (verndx > obj->vernum) {
4986
_rtld_error(
4987
"%s: symbol %s references wrong version %d",
4988
obj->path, obj->strtab + symnum, verndx);
4989
return (false);
4990
}
4991
/*
4992
* If we are not called from dlsym (i.e. this
4993
* is a normal relocation from unversioned
4994
* binary), accept the symbol immediately if
4995
* it happens to have first version after this
4996
* shared object became versioned. Otherwise,
4997
* if symbol is versioned and not hidden,
4998
* remember it. If it is the only symbol with
4999
* this name exported by the shared object, it
5000
* will be returned as a match by the calling
5001
* function. If symbol is global (verndx < 2)
5002
* accept it unconditionally.
5003
*/
5004
if ((req->flags & SYMLOOK_DLSYM) == 0 &&
5005
verndx == VER_NDX_GIVEN) {
5006
result->sym_out = symp;
5007
return (true);
5008
} else if (verndx >= VER_NDX_GIVEN) {
5009
if ((obj->versyms[symnum] & VER_NDX_HIDDEN) ==
5010
0) {
5011
if (result->vsymp == NULL)
5012
result->vsymp = symp;
5013
result->vcount++;
5014
}
5015
return (false);
5016
}
5017
}
5018
result->sym_out = symp;
5019
return (true);
5020
}
5021
if (obj->versyms == NULL) {
5022
if (object_match_name(obj, req->ventry->name)) {
5023
_rtld_error(
5024
"%s: object %s should provide version %s for symbol %s",
5025
obj_rtld.path, obj->path, req->ventry->name,
5026
obj->strtab + symnum);
5027
return (false);
5028
}
5029
} else {
5030
verndx = VER_NDX(obj->versyms[symnum]);
5031
if (verndx > obj->vernum) {
5032
_rtld_error("%s: symbol %s references wrong version %d",
5033
obj->path, obj->strtab + symnum, verndx);
5034
return (false);
5035
}
5036
if (obj->vertab[verndx].hash != req->ventry->hash ||
5037
strcmp(obj->vertab[verndx].name, req->ventry->name)) {
5038
/*
5039
* Version does not match. Look if this is a
5040
* global symbol and if it is not hidden. If
5041
* global symbol (verndx < 2) is available,
5042
* use it. Do not return symbol if we are
5043
* called by dlvsym, because dlvsym looks for
5044
* a specific version and default one is not
5045
* what dlvsym wants.
5046
*/
5047
if ((req->flags & SYMLOOK_DLSYM) ||
5048
(verndx >= VER_NDX_GIVEN) ||
5049
(obj->versyms[symnum] & VER_NDX_HIDDEN))
5050
return (false);
5051
}
5052
}
5053
result->sym_out = symp;
5054
return (true);
5055
}
5056
5057
/*
5058
* Search for symbol using SysV hash function.
5059
* obj->buckets is known not to be NULL at this point; the test for this was
5060
* performed with the obj->valid_hash_sysv assignment.
5061
*/
5062
static int
5063
symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
5064
{
5065
unsigned long symnum;
5066
Sym_Match_Result matchres;
5067
5068
matchres.sym_out = NULL;
5069
matchres.vsymp = NULL;
5070
matchres.vcount = 0;
5071
5072
for (symnum = obj->buckets[req->hash % obj->nbuckets];
5073
symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
5074
if (symnum >= obj->nchains)
5075
return (ESRCH); /* Bad object */
5076
5077
if (matched_symbol(req, obj, &matchres, symnum)) {
5078
req->sym_out = matchres.sym_out;
5079
req->defobj_out = obj;
5080
return (0);
5081
}
5082
}
5083
if (matchres.vcount == 1) {
5084
req->sym_out = matchres.vsymp;
5085
req->defobj_out = obj;
5086
return (0);
5087
}
5088
return (ESRCH);
5089
}
5090
5091
/* Search for symbol using GNU hash function */
5092
static int
5093
symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
5094
{
5095
Elf_Addr bloom_word;
5096
const Elf32_Word *hashval;
5097
Elf32_Word bucket;
5098
Sym_Match_Result matchres;
5099
unsigned int h1, h2;
5100
unsigned long symnum;
5101
5102
matchres.sym_out = NULL;
5103
matchres.vsymp = NULL;
5104
matchres.vcount = 0;
5105
5106
/* Pick right bitmask word from Bloom filter array */
5107
bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
5108
obj->maskwords_bm_gnu];
5109
5110
/* Calculate modulus word size of gnu hash and its derivative */
5111
h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
5112
h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
5113
5114
/* Filter out the "definitely not in set" queries */
5115
if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
5116
return (ESRCH);
5117
5118
/* Locate hash chain and corresponding value element*/
5119
bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
5120
if (bucket == 0)
5121
return (ESRCH);
5122
hashval = &obj->chain_zero_gnu[bucket];
5123
do {
5124
if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
5125
symnum = hashval - obj->chain_zero_gnu;
5126
if (matched_symbol(req, obj, &matchres, symnum)) {
5127
req->sym_out = matchres.sym_out;
5128
req->defobj_out = obj;
5129
return (0);
5130
}
5131
}
5132
} while ((*hashval++ & 1) == 0);
5133
if (matchres.vcount == 1) {
5134
req->sym_out = matchres.vsymp;
5135
req->defobj_out = obj;
5136
return (0);
5137
}
5138
return (ESRCH);
5139
}
5140
5141
static void
5142
trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
5143
{
5144
*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
5145
if (*main_local == NULL)
5146
*main_local = "";
5147
5148
*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
5149
if (*fmt1 == NULL)
5150
*fmt1 = "\t%o => %p (%x)\n";
5151
5152
*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
5153
if (*fmt2 == NULL)
5154
*fmt2 = "\t%o (%x)\n";
5155
}
5156
5157
static void
5158
trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
5159
const char *main_local, const char *fmt1, const char *fmt2)
5160
{
5161
const char *fmt;
5162
int c;
5163
5164
if (fmt1 == NULL)
5165
fmt = fmt2;
5166
else
5167
/* XXX bogus */
5168
fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
5169
5170
while ((c = *fmt++) != '\0') {
5171
switch (c) {
5172
default:
5173
rtld_putchar(c);
5174
continue;
5175
case '\\':
5176
switch (c = *fmt) {
5177
case '\0':
5178
continue;
5179
case 'n':
5180
rtld_putchar('\n');
5181
break;
5182
case 't':
5183
rtld_putchar('\t');
5184
break;
5185
}
5186
break;
5187
case '%':
5188
switch (c = *fmt) {
5189
case '\0':
5190
continue;
5191
case '%':
5192
default:
5193
rtld_putchar(c);
5194
break;
5195
case 'A':
5196
rtld_putstr(main_local);
5197
break;
5198
case 'a':
5199
rtld_putstr(obj_main->path);
5200
break;
5201
case 'o':
5202
rtld_putstr(name);
5203
break;
5204
case 'p':
5205
rtld_putstr(path);
5206
break;
5207
case 'x':
5208
rtld_printf("%p",
5209
obj != NULL ? obj->mapbase : NULL);
5210
break;
5211
}
5212
break;
5213
}
5214
++fmt;
5215
}
5216
}
5217
5218
static void
5219
trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5220
{
5221
const char *fmt1, *fmt2, *main_local;
5222
const char *name, *path;
5223
bool first_spurious, list_containers;
5224
5225
trace_calc_fmts(&main_local, &fmt1, &fmt2);
5226
list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5227
5228
for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5229
Needed_Entry *needed;
5230
5231
if (obj->marker)
5232
continue;
5233
if (list_containers && obj->needed != NULL)
5234
rtld_printf("%s:\n", obj->path);
5235
for (needed = obj->needed; needed; needed = needed->next) {
5236
if (needed->obj != NULL) {
5237
if (needed->obj->traced && !list_containers)
5238
continue;
5239
needed->obj->traced = true;
5240
path = needed->obj->path;
5241
} else
5242
path = "not found";
5243
5244
name = obj->strtab + needed->name;
5245
trace_print_obj(needed->obj, name, path, main_local,
5246
fmt1, fmt2);
5247
}
5248
}
5249
5250
if (show_preload) {
5251
if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5252
fmt2 = "\t%p (%x)\n";
5253
first_spurious = true;
5254
5255
TAILQ_FOREACH(obj, &obj_list, next) {
5256
if (obj->marker || obj == obj_main || obj->traced)
5257
continue;
5258
5259
if (list_containers && first_spurious) {
5260
rtld_printf("[preloaded]\n");
5261
first_spurious = false;
5262
}
5263
5264
Name_Entry *fname = STAILQ_FIRST(&obj->names);
5265
name = fname == NULL ? "<unknown>" : fname->name;
5266
trace_print_obj(obj, name, obj->path, main_local, NULL,
5267
fmt2);
5268
}
5269
}
5270
}
5271
5272
/*
5273
* Unload a dlopened object and its dependencies from memory and from
5274
* our data structures. It is assumed that the DAG rooted in the
5275
* object has already been unreferenced, and that the object has a
5276
* reference count of 0.
5277
*/
5278
static void
5279
unload_object(Obj_Entry *root, RtldLockState *lockstate)
5280
{
5281
Obj_Entry marker, *obj, *next;
5282
5283
assert(root->refcount == 0);
5284
5285
/*
5286
* Pass over the DAG removing unreferenced objects from
5287
* appropriate lists.
5288
*/
5289
unlink_object(root);
5290
5291
/* Unmap all objects that are no longer referenced. */
5292
for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5293
next = TAILQ_NEXT(obj, next);
5294
if (obj->marker || obj->refcount != 0)
5295
continue;
5296
LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize,
5297
0, obj->path);
5298
dbg("unloading \"%s\"", obj->path);
5299
/*
5300
* Unlink the object now to prevent new references from
5301
* being acquired while the bind lock is dropped in
5302
* recursive dlclose() invocations.
5303
*/
5304
TAILQ_REMOVE(&obj_list, obj, next);
5305
obj_count--;
5306
5307
if (obj->filtees_loaded) {
5308
if (next != NULL) {
5309
init_marker(&marker);
5310
TAILQ_INSERT_BEFORE(next, &marker, next);
5311
unload_filtees(obj, lockstate);
5312
next = TAILQ_NEXT(&marker, next);
5313
TAILQ_REMOVE(&obj_list, &marker, next);
5314
} else
5315
unload_filtees(obj, lockstate);
5316
}
5317
release_object(obj);
5318
}
5319
}
5320
5321
static void
5322
unlink_object(Obj_Entry *root)
5323
{
5324
Objlist_Entry *elm;
5325
5326
if (root->refcount == 0) {
5327
/* Remove the object from the RTLD_GLOBAL list. */
5328
objlist_remove(&list_global, root);
5329
5330
/* Remove the object from all objects' DAG lists. */
5331
STAILQ_FOREACH(elm, &root->dagmembers, link) {
5332
objlist_remove(&elm->obj->dldags, root);
5333
if (elm->obj != root)
5334
unlink_object(elm->obj);
5335
}
5336
}
5337
}
5338
5339
static void
5340
ref_dag(Obj_Entry *root)
5341
{
5342
Objlist_Entry *elm;
5343
5344
assert(root->dag_inited);
5345
STAILQ_FOREACH(elm, &root->dagmembers, link)
5346
elm->obj->refcount++;
5347
}
5348
5349
static void
5350
unref_dag(Obj_Entry *root)
5351
{
5352
Objlist_Entry *elm;
5353
5354
assert(root->dag_inited);
5355
STAILQ_FOREACH(elm, &root->dagmembers, link)
5356
elm->obj->refcount--;
5357
}
5358
5359
/*
5360
* Common code for MD __tls_get_addr().
5361
*/
5362
static void *
5363
tls_get_addr_slow(struct tcb *tcb, int index, size_t offset, bool locked)
5364
{
5365
struct dtv *newdtv, *dtv;
5366
RtldLockState lockstate;
5367
int to_copy;
5368
5369
dtv = tcb->tcb_dtv;
5370
/* Check dtv generation in case new modules have arrived */
5371
if (dtv->dtv_gen != tls_dtv_generation) {
5372
if (!locked)
5373
wlock_acquire(rtld_bind_lock, &lockstate);
5374
newdtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5375
sizeof(struct dtv_slot));
5376
to_copy = dtv->dtv_size;
5377
if (to_copy > tls_max_index)
5378
to_copy = tls_max_index;
5379
memcpy(newdtv->dtv_slots, dtv->dtv_slots, to_copy *
5380
sizeof(struct dtv_slot));
5381
newdtv->dtv_gen = tls_dtv_generation;
5382
newdtv->dtv_size = tls_max_index;
5383
free(dtv);
5384
if (!locked)
5385
lock_release(rtld_bind_lock, &lockstate);
5386
dtv = tcb->tcb_dtv = newdtv;
5387
}
5388
5389
/* Dynamically allocate module TLS if necessary */
5390
if (dtv->dtv_slots[index - 1].dtvs_tls == 0) {
5391
/* Signal safe, wlock will block out signals. */
5392
if (!locked)
5393
wlock_acquire(rtld_bind_lock, &lockstate);
5394
if (!dtv->dtv_slots[index - 1].dtvs_tls)
5395
dtv->dtv_slots[index - 1].dtvs_tls =
5396
allocate_module_tls(tcb, index);
5397
if (!locked)
5398
lock_release(rtld_bind_lock, &lockstate);
5399
}
5400
return (dtv->dtv_slots[index - 1].dtvs_tls + offset);
5401
}
5402
5403
void *
5404
tls_get_addr_common(struct tcb *tcb, int index, size_t offset)
5405
{
5406
struct dtv *dtv;
5407
5408
dtv = tcb->tcb_dtv;
5409
/* Check dtv generation in case new modules have arrived */
5410
if (__predict_true(dtv->dtv_gen == tls_dtv_generation &&
5411
dtv->dtv_slots[index - 1].dtvs_tls != 0))
5412
return (dtv->dtv_slots[index - 1].dtvs_tls + offset);
5413
return (tls_get_addr_slow(tcb, index, offset, false));
5414
}
5415
5416
static struct tcb *
5417
tcb_from_tcb_list_entry(struct tcb_list_entry *tcbelm)
5418
{
5419
#ifdef TLS_VARIANT_I
5420
return ((struct tcb *)((char *)tcbelm - tcb_list_entry_offset));
5421
#else
5422
return ((struct tcb *)((char *)tcbelm + tcb_list_entry_offset));
5423
#endif
5424
}
5425
5426
static struct tcb_list_entry *
5427
tcb_list_entry_from_tcb(struct tcb *tcb)
5428
{
5429
#ifdef TLS_VARIANT_I
5430
return ((struct tcb_list_entry *)((char *)tcb + tcb_list_entry_offset));
5431
#else
5432
return ((struct tcb_list_entry *)((char *)tcb - tcb_list_entry_offset));
5433
#endif
5434
}
5435
5436
static void
5437
tcb_list_insert(struct tcb *tcb)
5438
{
5439
struct tcb_list_entry *tcbelm;
5440
5441
tcbelm = tcb_list_entry_from_tcb(tcb);
5442
TAILQ_INSERT_TAIL(&tcb_list, tcbelm, next);
5443
}
5444
5445
static void
5446
tcb_list_remove(struct tcb *tcb)
5447
{
5448
struct tcb_list_entry *tcbelm;
5449
5450
tcbelm = tcb_list_entry_from_tcb(tcb);
5451
TAILQ_REMOVE(&tcb_list, tcbelm, next);
5452
}
5453
5454
#ifdef TLS_VARIANT_I
5455
5456
/*
5457
* Return pointer to allocated TLS block
5458
*/
5459
static void *
5460
get_tls_block_ptr(void *tcb, size_t tcbsize)
5461
{
5462
size_t extra_size, post_size, pre_size, tls_block_size;
5463
size_t tls_init_align;
5464
5465
tls_init_align = MAX(obj_main->tlsalign, 1);
5466
5467
/* Compute fragments sizes. */
5468
extra_size = tcbsize - TLS_TCB_SIZE;
5469
post_size = calculate_tls_post_size(tls_init_align);
5470
tls_block_size = tcbsize + post_size;
5471
pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5472
5473
return ((char *)tcb - pre_size - extra_size);
5474
}
5475
5476
/*
5477
* Allocate Static TLS using the Variant I method.
5478
*
5479
* For details on the layout, see lib/libc/gen/tls.c.
5480
*
5481
* NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5482
* it is based on tls_last_offset, and TLS offsets here are really TCB
5483
* offsets, whereas libc's tls_static_space is just the executable's static
5484
* TLS segment.
5485
*
5486
* NB: This differs from NetBSD's ld.elf_so, where TLS offsets are relative to
5487
* the end of the TCB.
5488
*/
5489
void *
5490
allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5491
{
5492
Obj_Entry *obj;
5493
char *tls_block;
5494
struct dtv *dtv;
5495
struct tcb *tcb;
5496
char *addr;
5497
size_t i;
5498
size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5499
size_t tls_init_align, tls_init_offset, tls_bss_offset;
5500
5501
if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5502
return (oldtcb);
5503
5504
assert(tcbsize >= TLS_TCB_SIZE);
5505
maxalign = MAX(tcbalign, tls_static_max_align);
5506
tls_init_align = MAX(obj_main->tlsalign, 1);
5507
5508
/* Compute fragments sizes. */
5509
extra_size = tcbsize - TLS_TCB_SIZE;
5510
post_size = calculate_tls_post_size(tls_init_align);
5511
tls_block_size = tcbsize + post_size;
5512
pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5513
tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE -
5514
post_size;
5515
5516
/* Allocate whole TLS block */
5517
tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5518
tcb = (struct tcb *)(tls_block + pre_size + extra_size);
5519
5520
if (oldtcb != NULL) {
5521
memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5522
tls_static_space);
5523
free(get_tls_block_ptr(oldtcb, tcbsize));
5524
5525
/* Adjust the DTV. */
5526
dtv = tcb->tcb_dtv;
5527
for (i = 0; i < dtv->dtv_size; i++) {
5528
if ((uintptr_t)dtv->dtv_slots[i].dtvs_tls >=
5529
(uintptr_t)oldtcb &&
5530
(uintptr_t)dtv->dtv_slots[i].dtvs_tls <
5531
(uintptr_t)oldtcb + tls_static_space) {
5532
dtv->dtv_slots[i].dtvs_tls = (char *)tcb +
5533
(dtv->dtv_slots[i].dtvs_tls -
5534
(char *)oldtcb);
5535
}
5536
}
5537
} else {
5538
dtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5539
sizeof(struct dtv_slot));
5540
tcb->tcb_dtv = dtv;
5541
dtv->dtv_gen = tls_dtv_generation;
5542
dtv->dtv_size = tls_max_index;
5543
5544
for (obj = globallist_curr(objs); obj != NULL;
5545
obj = globallist_next(obj)) {
5546
if (obj->tlsoffset == 0)
5547
continue;
5548
tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5549
addr = (char *)tcb + obj->tlsoffset;
5550
if (tls_init_offset > 0)
5551
memset(addr, 0, tls_init_offset);
5552
if (obj->tlsinitsize > 0) {
5553
memcpy(addr + tls_init_offset, obj->tlsinit,
5554
obj->tlsinitsize);
5555
}
5556
if (obj->tlssize > obj->tlsinitsize) {
5557
tls_bss_offset = tls_init_offset +
5558
obj->tlsinitsize;
5559
memset(addr + tls_bss_offset, 0,
5560
obj->tlssize - tls_bss_offset);
5561
}
5562
dtv->dtv_slots[obj->tlsindex - 1].dtvs_tls = addr;
5563
}
5564
}
5565
5566
tcb_list_insert(tcb);
5567
return (tcb);
5568
}
5569
5570
void
5571
free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5572
{
5573
struct dtv *dtv;
5574
uintptr_t tlsstart, tlsend;
5575
size_t post_size;
5576
size_t i, tls_init_align __unused;
5577
5578
tcb_list_remove(tcb);
5579
5580
assert(tcbsize >= TLS_TCB_SIZE);
5581
tls_init_align = MAX(obj_main->tlsalign, 1);
5582
5583
/* Compute fragments sizes. */
5584
post_size = calculate_tls_post_size(tls_init_align);
5585
5586
tlsstart = (uintptr_t)tcb + TLS_TCB_SIZE + post_size;
5587
tlsend = (uintptr_t)tcb + tls_static_space;
5588
5589
dtv = ((struct tcb *)tcb)->tcb_dtv;
5590
for (i = 0; i < dtv->dtv_size; i++) {
5591
if (dtv->dtv_slots[i].dtvs_tls != NULL &&
5592
((uintptr_t)dtv->dtv_slots[i].dtvs_tls < tlsstart ||
5593
(uintptr_t)dtv->dtv_slots[i].dtvs_tls >= tlsend)) {
5594
free(dtv->dtv_slots[i].dtvs_tls);
5595
}
5596
}
5597
free(dtv);
5598
free(get_tls_block_ptr(tcb, tcbsize));
5599
}
5600
5601
#endif /* TLS_VARIANT_I */
5602
5603
#ifdef TLS_VARIANT_II
5604
5605
/*
5606
* Allocate Static TLS using the Variant II method.
5607
*/
5608
void *
5609
allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5610
{
5611
Obj_Entry *obj;
5612
size_t size, ralign;
5613
char *tls_block;
5614
struct dtv *dtv, *olddtv;
5615
struct tcb *tcb;
5616
char *addr;
5617
size_t i;
5618
5619
ralign = tcbalign;
5620
if (tls_static_max_align > ralign)
5621
ralign = tls_static_max_align;
5622
size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5623
5624
assert(tcbsize >= 2 * sizeof(uintptr_t));
5625
tls_block = xmalloc_aligned(size, ralign, 0 /* XXX */);
5626
dtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5627
sizeof(struct dtv_slot));
5628
5629
tcb = (struct tcb *)(tls_block + roundup(tls_static_space, ralign));
5630
tcb->tcb_self = tcb;
5631
tcb->tcb_dtv = dtv;
5632
5633
dtv->dtv_gen = tls_dtv_generation;
5634
dtv->dtv_size = tls_max_index;
5635
5636
if (oldtcb != NULL) {
5637
/*
5638
* Copy the static TLS block over whole.
5639
*/
5640
memcpy((char *)tcb - tls_static_space,
5641
(const char *)oldtcb - tls_static_space,
5642
tls_static_space);
5643
5644
/*
5645
* If any dynamic TLS blocks have been created tls_get_addr(),
5646
* move them over.
5647
*/
5648
olddtv = ((struct tcb *)oldtcb)->tcb_dtv;
5649
for (i = 0; i < olddtv->dtv_size; i++) {
5650
if ((uintptr_t)olddtv->dtv_slots[i].dtvs_tls <
5651
(uintptr_t)oldtcb - size ||
5652
(uintptr_t)olddtv->dtv_slots[i].dtvs_tls >
5653
(uintptr_t)oldtcb) {
5654
dtv->dtv_slots[i].dtvs_tls =
5655
olddtv->dtv_slots[i].dtvs_tls;
5656
olddtv->dtv_slots[i].dtvs_tls = NULL;
5657
}
5658
}
5659
5660
/*
5661
* We assume that this block was the one we created with
5662
* allocate_initial_tls().
5663
*/
5664
free_tls(oldtcb, 2 * sizeof(uintptr_t), sizeof(uintptr_t));
5665
} else {
5666
for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5667
if (obj->marker || obj->tlsoffset == 0)
5668
continue;
5669
addr = (char *)tcb - obj->tlsoffset;
5670
memset(addr + obj->tlsinitsize, 0, obj->tlssize -
5671
obj->tlsinitsize);
5672
if (obj->tlsinit) {
5673
memcpy(addr, obj->tlsinit, obj->tlsinitsize);
5674
obj->static_tls_copied = true;
5675
}
5676
dtv->dtv_slots[obj->tlsindex - 1].dtvs_tls = addr;
5677
}
5678
}
5679
5680
tcb_list_insert(tcb);
5681
return (tcb);
5682
}
5683
5684
void
5685
free_tls(void *tcb, size_t tcbsize __unused, size_t tcbalign)
5686
{
5687
struct dtv *dtv;
5688
size_t size, ralign;
5689
size_t i;
5690
uintptr_t tlsstart, tlsend;
5691
5692
tcb_list_remove(tcb);
5693
5694
/*
5695
* Figure out the size of the initial TLS block so that we can
5696
* find stuff which ___tls_get_addr() allocated dynamically.
5697
*/
5698
ralign = tcbalign;
5699
if (tls_static_max_align > ralign)
5700
ralign = tls_static_max_align;
5701
size = roundup(tls_static_space, ralign);
5702
5703
dtv = ((struct tcb *)tcb)->tcb_dtv;
5704
tlsend = (uintptr_t)tcb;
5705
tlsstart = tlsend - size;
5706
for (i = 0; i < dtv->dtv_size; i++) {
5707
if (dtv->dtv_slots[i].dtvs_tls != NULL &&
5708
((uintptr_t)dtv->dtv_slots[i].dtvs_tls < tlsstart ||
5709
(uintptr_t)dtv->dtv_slots[i].dtvs_tls > tlsend)) {
5710
free(dtv->dtv_slots[i].dtvs_tls);
5711
}
5712
}
5713
5714
free((void *)tlsstart);
5715
free(dtv);
5716
}
5717
5718
#endif /* TLS_VARIANT_II */
5719
5720
/*
5721
* Allocate TLS block for module with given index.
5722
*/
5723
void *
5724
allocate_module_tls(struct tcb *tcb, int index)
5725
{
5726
Obj_Entry *obj;
5727
char *p;
5728
5729
TAILQ_FOREACH(obj, &obj_list, next) {
5730
if (obj->marker)
5731
continue;
5732
if (obj->tlsindex == index)
5733
break;
5734
}
5735
if (obj == NULL) {
5736
_rtld_error("Can't find module with TLS index %d", index);
5737
rtld_die();
5738
}
5739
5740
if (obj->tls_static) {
5741
#ifdef TLS_VARIANT_I
5742
p = (char *)tcb + obj->tlsoffset;
5743
#else
5744
p = (char *)tcb - obj->tlsoffset;
5745
#endif
5746
return (p);
5747
}
5748
5749
obj->tls_dynamic = true;
5750
5751
p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5752
memcpy(p, obj->tlsinit, obj->tlsinitsize);
5753
memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5754
return (p);
5755
}
5756
5757
static bool
5758
allocate_tls_offset_common(size_t *offp, size_t tlssize, size_t tlsalign,
5759
size_t tlspoffset __unused)
5760
{
5761
size_t off;
5762
5763
if (tls_last_offset == 0)
5764
off = calculate_first_tls_offset(tlssize, tlsalign,
5765
tlspoffset);
5766
else
5767
off = calculate_tls_offset(tls_last_offset, tls_last_size,
5768
tlssize, tlsalign, tlspoffset);
5769
5770
*offp = off;
5771
#ifdef TLS_VARIANT_I
5772
off += tlssize;
5773
#endif
5774
5775
/*
5776
* If we have already fixed the size of the static TLS block, we
5777
* must stay within that size. When allocating the static TLS, we
5778
* leave a small amount of space spare to be used for dynamically
5779
* loading modules which use static TLS.
5780
*/
5781
if (tls_static_space != 0) {
5782
if (off > tls_static_space)
5783
return (false);
5784
} else if (tlsalign > tls_static_max_align) {
5785
tls_static_max_align = tlsalign;
5786
}
5787
5788
tls_last_offset = off;
5789
tls_last_size = tlssize;
5790
5791
return (true);
5792
}
5793
5794
bool
5795
allocate_tls_offset(Obj_Entry *obj)
5796
{
5797
if (obj->tls_dynamic)
5798
return (false);
5799
5800
if (obj->tls_static)
5801
return (true);
5802
5803
if (obj->tlssize == 0) {
5804
obj->tls_static = true;
5805
return (true);
5806
}
5807
5808
if (!allocate_tls_offset_common(&obj->tlsoffset, obj->tlssize,
5809
obj->tlsalign, obj->tlspoffset))
5810
return (false);
5811
5812
obj->tls_static = true;
5813
5814
return (true);
5815
}
5816
5817
void
5818
free_tls_offset(Obj_Entry *obj)
5819
{
5820
/*
5821
* If we were the last thing to allocate out of the static TLS
5822
* block, we give our space back to the 'allocator'. This is a
5823
* simplistic workaround to allow libGL.so.1 to be loaded and
5824
* unloaded multiple times.
5825
*/
5826
size_t off = obj->tlsoffset;
5827
5828
#ifdef TLS_VARIANT_I
5829
off += obj->tlssize;
5830
#endif
5831
if (off == tls_last_offset) {
5832
tls_last_offset -= obj->tlssize;
5833
tls_last_size = 0;
5834
}
5835
}
5836
5837
void *
5838
_rtld_allocate_tls(void *oldtcb, size_t tcbsize, size_t tcbalign)
5839
{
5840
void *ret;
5841
RtldLockState lockstate;
5842
5843
wlock_acquire(rtld_bind_lock, &lockstate);
5844
ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtcb,
5845
tcbsize, tcbalign);
5846
lock_release(rtld_bind_lock, &lockstate);
5847
return (ret);
5848
}
5849
5850
void
5851
_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5852
{
5853
RtldLockState lockstate;
5854
5855
wlock_acquire(rtld_bind_lock, &lockstate);
5856
free_tls(tcb, tcbsize, tcbalign);
5857
lock_release(rtld_bind_lock, &lockstate);
5858
}
5859
5860
static void
5861
object_add_name(Obj_Entry *obj, const char *name)
5862
{
5863
Name_Entry *entry;
5864
size_t len;
5865
5866
len = strlen(name);
5867
entry = malloc(sizeof(Name_Entry) + len);
5868
5869
if (entry != NULL) {
5870
strcpy(entry->name, name);
5871
STAILQ_INSERT_TAIL(&obj->names, entry, link);
5872
}
5873
}
5874
5875
static int
5876
object_match_name(const Obj_Entry *obj, const char *name)
5877
{
5878
Name_Entry *entry;
5879
5880
STAILQ_FOREACH(entry, &obj->names, link) {
5881
if (strcmp(name, entry->name) == 0)
5882
return (1);
5883
}
5884
return (0);
5885
}
5886
5887
static Obj_Entry *
5888
locate_dependency(const Obj_Entry *obj, const char *name)
5889
{
5890
const Objlist_Entry *entry;
5891
const Needed_Entry *needed;
5892
5893
STAILQ_FOREACH(entry, &list_main, link) {
5894
if (object_match_name(entry->obj, name))
5895
return (entry->obj);
5896
}
5897
5898
for (needed = obj->needed; needed != NULL; needed = needed->next) {
5899
if (strcmp(obj->strtab + needed->name, name) == 0 ||
5900
(needed->obj != NULL && object_match_name(needed->obj,
5901
name))) {
5902
/*
5903
* If there is DT_NEEDED for the name we are looking
5904
* for, we are all set. Note that object might not be
5905
* found if dependency was not loaded yet, so the
5906
* function can return NULL here. This is expected and
5907
* handled properly by the caller.
5908
*/
5909
return (needed->obj);
5910
}
5911
}
5912
_rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5913
obj->path, name);
5914
rtld_die();
5915
}
5916
5917
static int
5918
check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5919
const Elf_Vernaux *vna)
5920
{
5921
const Elf_Verdef *vd;
5922
const char *vername;
5923
5924
vername = refobj->strtab + vna->vna_name;
5925
vd = depobj->verdef;
5926
if (vd == NULL) {
5927
_rtld_error("%s: version %s required by %s not defined",
5928
depobj->path, vername, refobj->path);
5929
return (-1);
5930
}
5931
for (;;) {
5932
if (vd->vd_version != VER_DEF_CURRENT) {
5933
_rtld_error(
5934
"%s: Unsupported version %d of Elf_Verdef entry",
5935
depobj->path, vd->vd_version);
5936
return (-1);
5937
}
5938
if (vna->vna_hash == vd->vd_hash) {
5939
const Elf_Verdaux *aux =
5940
(const Elf_Verdaux *)((const char *)vd +
5941
vd->vd_aux);
5942
if (strcmp(vername, depobj->strtab + aux->vda_name) ==
5943
0)
5944
return (0);
5945
}
5946
if (vd->vd_next == 0)
5947
break;
5948
vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5949
}
5950
if (vna->vna_flags & VER_FLG_WEAK)
5951
return (0);
5952
_rtld_error("%s: version %s required by %s not found", depobj->path,
5953
vername, refobj->path);
5954
return (-1);
5955
}
5956
5957
static int
5958
rtld_verify_object_versions(Obj_Entry *obj)
5959
{
5960
const Elf_Verneed *vn;
5961
const Elf_Verdef *vd;
5962
const Elf_Verdaux *vda;
5963
const Elf_Vernaux *vna;
5964
const Obj_Entry *depobj;
5965
int maxvernum, vernum;
5966
5967
if (obj->ver_checked)
5968
return (0);
5969
obj->ver_checked = true;
5970
5971
maxvernum = 0;
5972
/*
5973
* Walk over defined and required version records and figure out
5974
* max index used by any of them. Do very basic sanity checking
5975
* while there.
5976
*/
5977
vn = obj->verneed;
5978
while (vn != NULL) {
5979
if (vn->vn_version != VER_NEED_CURRENT) {
5980
_rtld_error(
5981
"%s: Unsupported version %d of Elf_Verneed entry",
5982
obj->path, vn->vn_version);
5983
return (-1);
5984
}
5985
vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5986
for (;;) {
5987
vernum = VER_NEED_IDX(vna->vna_other);
5988
if (vernum > maxvernum)
5989
maxvernum = vernum;
5990
if (vna->vna_next == 0)
5991
break;
5992
vna = (const Elf_Vernaux *)((const char *)vna +
5993
vna->vna_next);
5994
}
5995
if (vn->vn_next == 0)
5996
break;
5997
vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5998
}
5999
6000
vd = obj->verdef;
6001
while (vd != NULL) {
6002
if (vd->vd_version != VER_DEF_CURRENT) {
6003
_rtld_error(
6004
"%s: Unsupported version %d of Elf_Verdef entry",
6005
obj->path, vd->vd_version);
6006
return (-1);
6007
}
6008
vernum = VER_DEF_IDX(vd->vd_ndx);
6009
if (vernum > maxvernum)
6010
maxvernum = vernum;
6011
if (vd->vd_next == 0)
6012
break;
6013
vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
6014
}
6015
6016
if (maxvernum == 0)
6017
return (0);
6018
6019
/*
6020
* Store version information in array indexable by version index.
6021
* Verify that object version requirements are satisfied along the
6022
* way.
6023
*/
6024
obj->vernum = maxvernum + 1;
6025
obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
6026
6027
vd = obj->verdef;
6028
while (vd != NULL) {
6029
if ((vd->vd_flags & VER_FLG_BASE) == 0) {
6030
vernum = VER_DEF_IDX(vd->vd_ndx);
6031
assert(vernum <= maxvernum);
6032
vda = (const Elf_Verdaux *)((const char *)vd +
6033
vd->vd_aux);
6034
obj->vertab[vernum].hash = vd->vd_hash;
6035
obj->vertab[vernum].name = obj->strtab + vda->vda_name;
6036
obj->vertab[vernum].file = NULL;
6037
obj->vertab[vernum].flags = 0;
6038
}
6039
if (vd->vd_next == 0)
6040
break;
6041
vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
6042
}
6043
6044
vn = obj->verneed;
6045
while (vn != NULL) {
6046
depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
6047
if (depobj == NULL)
6048
return (-1);
6049
vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
6050
for (;;) {
6051
if (check_object_provided_version(obj, depobj, vna))
6052
return (-1);
6053
vernum = VER_NEED_IDX(vna->vna_other);
6054
assert(vernum <= maxvernum);
6055
obj->vertab[vernum].hash = vna->vna_hash;
6056
obj->vertab[vernum].name = obj->strtab + vna->vna_name;
6057
obj->vertab[vernum].file = obj->strtab + vn->vn_file;
6058
obj->vertab[vernum].flags = (vna->vna_other &
6059
VER_NEED_HIDDEN) != 0 ? VER_INFO_HIDDEN : 0;
6060
if (vna->vna_next == 0)
6061
break;
6062
vna = (const Elf_Vernaux *)((const char *)vna +
6063
vna->vna_next);
6064
}
6065
if (vn->vn_next == 0)
6066
break;
6067
vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
6068
}
6069
return (0);
6070
}
6071
6072
static int
6073
rtld_verify_versions(const Objlist *objlist)
6074
{
6075
Objlist_Entry *entry;
6076
int rc;
6077
6078
rc = 0;
6079
STAILQ_FOREACH(entry, objlist, link) {
6080
/*
6081
* Skip dummy objects or objects that have their version
6082
* requirements already checked.
6083
*/
6084
if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
6085
continue;
6086
if (rtld_verify_object_versions(entry->obj) == -1) {
6087
rc = -1;
6088
if (ld_tracing == NULL)
6089
break;
6090
}
6091
}
6092
if (rc == 0 || ld_tracing != NULL)
6093
rc = rtld_verify_object_versions(&obj_rtld);
6094
return (rc);
6095
}
6096
6097
const Ver_Entry *
6098
fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
6099
{
6100
Elf_Versym vernum;
6101
6102
if (obj->vertab) {
6103
vernum = VER_NDX(obj->versyms[symnum]);
6104
if (vernum >= obj->vernum) {
6105
_rtld_error("%s: symbol %s has wrong verneed value %d",
6106
obj->path, obj->strtab + symnum, vernum);
6107
} else if (obj->vertab[vernum].hash != 0) {
6108
return (&obj->vertab[vernum]);
6109
}
6110
}
6111
return (NULL);
6112
}
6113
6114
int
6115
_rtld_get_stack_prot(void)
6116
{
6117
return (stack_prot);
6118
}
6119
6120
int
6121
_rtld_is_dlopened(void *arg)
6122
{
6123
Obj_Entry *obj;
6124
RtldLockState lockstate;
6125
int res;
6126
6127
rlock_acquire(rtld_bind_lock, &lockstate);
6128
obj = dlcheck(arg);
6129
if (obj == NULL)
6130
obj = obj_from_addr(arg);
6131
if (obj == NULL) {
6132
_rtld_error("No shared object contains address");
6133
lock_release(rtld_bind_lock, &lockstate);
6134
return (-1);
6135
}
6136
res = obj->dlopened ? 1 : 0;
6137
lock_release(rtld_bind_lock, &lockstate);
6138
return (res);
6139
}
6140
6141
static int
6142
obj_remap_relro(Obj_Entry *obj, int prot)
6143
{
6144
const Elf_Phdr *ph;
6145
caddr_t relro_page;
6146
size_t relro_size;
6147
6148
for (ph = obj->phdr; ph < obj->phdr + obj->phnum; ph++) {
6149
if (ph->p_type != PT_GNU_RELRO)
6150
continue;
6151
relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
6152
relro_size = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
6153
rtld_trunc_page(ph->p_vaddr);
6154
if (mprotect(relro_page, relro_size, prot) == -1) {
6155
_rtld_error(
6156
"%s: Cannot set relro protection to %#x: %s",
6157
obj->path, prot, rtld_strerror(errno));
6158
return (-1);
6159
}
6160
break;
6161
}
6162
return (0);
6163
}
6164
6165
static int
6166
obj_disable_relro(Obj_Entry *obj)
6167
{
6168
return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
6169
}
6170
6171
static int
6172
obj_enforce_relro(Obj_Entry *obj)
6173
{
6174
return (obj_remap_relro(obj, PROT_READ));
6175
}
6176
6177
static void
6178
map_stacks_exec(RtldLockState *lockstate)
6179
{
6180
void (*thr_map_stacks_exec)(void);
6181
6182
if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
6183
return;
6184
thr_map_stacks_exec = (void (*)(void))(
6185
uintptr_t)get_program_var_addr("__pthread_map_stacks_exec",
6186
lockstate);
6187
if (thr_map_stacks_exec != NULL) {
6188
stack_prot |= PROT_EXEC;
6189
thr_map_stacks_exec();
6190
}
6191
}
6192
6193
static void
6194
distribute_static_tls(Objlist *list)
6195
{
6196
struct tcb_list_entry *tcbelm;
6197
Objlist_Entry *objelm;
6198
struct tcb *tcb;
6199
Obj_Entry *obj;
6200
char *tlsbase;
6201
6202
STAILQ_FOREACH(objelm, list, link) {
6203
obj = objelm->obj;
6204
if (obj->marker || !obj->tls_static || obj->static_tls_copied)
6205
continue;
6206
TAILQ_FOREACH(tcbelm, &tcb_list, next) {
6207
tcb = tcb_from_tcb_list_entry(tcbelm);
6208
#ifdef TLS_VARIANT_I
6209
tlsbase = (char *)tcb + obj->tlsoffset;
6210
#else
6211
tlsbase = (char *)tcb - obj->tlsoffset;
6212
#endif
6213
memcpy(tlsbase, obj->tlsinit, obj->tlsinitsize);
6214
memset(tlsbase + obj->tlsinitsize, 0,
6215
obj->tlssize - obj->tlsinitsize);
6216
}
6217
obj->static_tls_copied = true;
6218
}
6219
}
6220
6221
void
6222
symlook_init(SymLook *dst, const char *name)
6223
{
6224
bzero(dst, sizeof(*dst));
6225
dst->name = name;
6226
dst->hash = elf_hash(name);
6227
dst->hash_gnu = gnu_hash(name);
6228
}
6229
6230
static void
6231
symlook_init_from_req(SymLook *dst, const SymLook *src)
6232
{
6233
dst->name = src->name;
6234
dst->hash = src->hash;
6235
dst->hash_gnu = src->hash_gnu;
6236
dst->ventry = src->ventry;
6237
dst->flags = src->flags;
6238
dst->defobj_out = NULL;
6239
dst->sym_out = NULL;
6240
dst->lockstate = src->lockstate;
6241
}
6242
6243
static int
6244
open_binary_fd(const char *argv0, bool search_in_path, const char **binpath_res)
6245
{
6246
char *binpath, *pathenv, *pe, *res1;
6247
const char *res;
6248
int fd;
6249
6250
binpath = NULL;
6251
res = NULL;
6252
if (search_in_path && strchr(argv0, '/') == NULL) {
6253
binpath = xmalloc(PATH_MAX);
6254
pathenv = getenv("PATH");
6255
if (pathenv == NULL) {
6256
_rtld_error("-p and no PATH environment variable");
6257
rtld_die();
6258
}
6259
pathenv = strdup(pathenv);
6260
if (pathenv == NULL) {
6261
_rtld_error("Cannot allocate memory");
6262
rtld_die();
6263
}
6264
fd = -1;
6265
errno = ENOENT;
6266
while ((pe = strsep(&pathenv, ":")) != NULL) {
6267
if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
6268
continue;
6269
if (binpath[0] != '\0' &&
6270
strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6271
continue;
6272
if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6273
continue;
6274
fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6275
if (fd != -1 || errno != ENOENT) {
6276
res = binpath;
6277
break;
6278
}
6279
}
6280
free(pathenv);
6281
} else {
6282
fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6283
res = argv0;
6284
}
6285
6286
if (fd == -1) {
6287
_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6288
rtld_die();
6289
}
6290
if (res != NULL && res[0] != '/') {
6291
res1 = xmalloc(PATH_MAX);
6292
if (realpath(res, res1) != NULL) {
6293
if (res != argv0)
6294
free(__DECONST(char *, res));
6295
res = res1;
6296
} else {
6297
free(res1);
6298
}
6299
}
6300
*binpath_res = res;
6301
return (fd);
6302
}
6303
6304
/*
6305
* Parse a set of command-line arguments.
6306
*/
6307
static int
6308
parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
6309
const char **argv0, bool *dir_ignore)
6310
{
6311
const char *arg;
6312
char machine[64];
6313
size_t sz;
6314
int arglen, fd, i, j, mib[2];
6315
char opt;
6316
bool seen_b, seen_f;
6317
6318
dbg("Parsing command-line arguments");
6319
*use_pathp = false;
6320
*fdp = -1;
6321
*dir_ignore = false;
6322
seen_b = seen_f = false;
6323
6324
for (i = 1; i < argc; i++) {
6325
arg = argv[i];
6326
dbg("argv[%d]: '%s'", i, arg);
6327
6328
/*
6329
* rtld arguments end with an explicit "--" or with the first
6330
* non-prefixed argument.
6331
*/
6332
if (strcmp(arg, "--") == 0) {
6333
i++;
6334
break;
6335
}
6336
if (arg[0] != '-')
6337
break;
6338
6339
/*
6340
* All other arguments are single-character options that can
6341
* be combined, so we need to search through `arg` for them.
6342
*/
6343
arglen = strlen(arg);
6344
for (j = 1; j < arglen; j++) {
6345
opt = arg[j];
6346
if (opt == 'h') {
6347
print_usage(argv[0]);
6348
_exit(0);
6349
} else if (opt == 'b') {
6350
if (seen_f) {
6351
_rtld_error("Both -b and -f specified");
6352
rtld_die();
6353
}
6354
if (j != arglen - 1) {
6355
_rtld_error("Invalid options: %s", arg);
6356
rtld_die();
6357
}
6358
i++;
6359
*argv0 = argv[i];
6360
seen_b = true;
6361
break;
6362
} else if (opt == 'd') {
6363
*dir_ignore = true;
6364
} else if (opt == 'f') {
6365
if (seen_b) {
6366
_rtld_error("Both -b and -f specified");
6367
rtld_die();
6368
}
6369
6370
/*
6371
* -f XX can be used to specify a
6372
* descriptor for the binary named at
6373
* the command line (i.e., the later
6374
* argument will specify the process
6375
* name but the descriptor is what
6376
* will actually be executed).
6377
*
6378
* -f must be the last option in the
6379
* group, e.g., -abcf <fd>.
6380
*/
6381
if (j != arglen - 1) {
6382
_rtld_error("Invalid options: %s", arg);
6383
rtld_die();
6384
}
6385
i++;
6386
fd = parse_integer(argv[i]);
6387
if (fd == -1) {
6388
_rtld_error(
6389
"Invalid file descriptor: '%s'",
6390
argv[i]);
6391
rtld_die();
6392
}
6393
*fdp = fd;
6394
seen_f = true;
6395
break;
6396
} else if (opt == 'o') {
6397
struct ld_env_var_desc *l;
6398
char *n, *v;
6399
u_int ll;
6400
6401
if (j != arglen - 1) {
6402
_rtld_error("Invalid options: %s", arg);
6403
rtld_die();
6404
}
6405
i++;
6406
n = argv[i];
6407
v = strchr(n, '=');
6408
if (v == NULL) {
6409
_rtld_error("No '=' in -o parameter");
6410
rtld_die();
6411
}
6412
for (ll = 0; ll < nitems(ld_env_vars); ll++) {
6413
l = &ld_env_vars[ll];
6414
if (v - n == (ptrdiff_t)strlen(l->n) &&
6415
strncmp(n, l->n, v - n) == 0) {
6416
l->val = v + 1;
6417
break;
6418
}
6419
}
6420
if (ll == nitems(ld_env_vars)) {
6421
_rtld_error("Unknown LD_ option %s", n);
6422
rtld_die();
6423
}
6424
} else if (opt == 'p') {
6425
*use_pathp = true;
6426
} else if (opt == 'u') {
6427
u_int ll;
6428
6429
for (ll = 0; ll < nitems(ld_env_vars); ll++)
6430
ld_env_vars[ll].val = NULL;
6431
} else if (opt == 'v') {
6432
machine[0] = '\0';
6433
mib[0] = CTL_HW;
6434
mib[1] = HW_MACHINE;
6435
sz = sizeof(machine);
6436
sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6437
ld_elf_hints_path = ld_get_env_var(
6438
LD_ELF_HINTS_PATH);
6439
set_ld_elf_hints_path();
6440
rtld_printf(
6441
"FreeBSD ld-elf.so.1 %s\n"
6442
"FreeBSD_version %d\n"
6443
"Default lib path %s\n"
6444
"Hints lib path %s\n"
6445
"Env prefix %s\n"
6446
"Default hint file %s\n"
6447
"Hint file %s\n"
6448
"libmap file %s\n"
6449
"Optional static TLS size %zd bytes\n",
6450
machine, __FreeBSD_version,
6451
ld_standard_library_path, gethints(false),
6452
ld_env_prefix, ld_elf_hints_default,
6453
ld_elf_hints_path, ld_path_libmap_conf,
6454
ld_static_tls_extra);
6455
_exit(0);
6456
} else {
6457
_rtld_error("Invalid argument: '%s'", arg);
6458
print_usage(argv[0]);
6459
rtld_die();
6460
}
6461
}
6462
}
6463
6464
if (!seen_b)
6465
*argv0 = argv[i];
6466
return (i);
6467
}
6468
6469
/*
6470
* Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6471
*/
6472
static int
6473
parse_integer(const char *str)
6474
{
6475
static const int RADIX = 10; /* XXXJA: possibly support hex? */
6476
const char *orig;
6477
int n;
6478
char c;
6479
6480
orig = str;
6481
n = 0;
6482
for (c = *str; c != '\0'; c = *++str) {
6483
if (c < '0' || c > '9')
6484
return (-1);
6485
6486
n *= RADIX;
6487
n += c - '0';
6488
}
6489
6490
/* Make sure we actually parsed something. */
6491
if (str == orig)
6492
return (-1);
6493
return (n);
6494
}
6495
6496
static void
6497
print_usage(const char *argv0)
6498
{
6499
rtld_printf(
6500
"Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6501
"\n"
6502
"Options:\n"
6503
" -h Display this help message\n"
6504
" -b <exe> Execute <exe> instead of <binary>, arg0 is <binary>\n"
6505
" -d Ignore lack of exec permissions for the binary\n"
6506
" -f <FD> Execute <FD> instead of searching for <binary>\n"
6507
" -o <OPT>=<VAL> Set LD_<OPT> to <VAL>, without polluting env\n"
6508
" -p Search in PATH for named binary\n"
6509
" -u Ignore LD_ environment variables\n"
6510
" -v Display identification information\n"
6511
" -- End of RTLD options\n"
6512
" <binary> Name of process to execute\n"
6513
" <args> Arguments to the executed process\n",
6514
argv0);
6515
}
6516
6517
#define AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6518
static const struct auxfmt {
6519
const char *name;
6520
const char *fmt;
6521
} auxfmts[] = {
6522
AUXFMT(AT_NULL, NULL),
6523
AUXFMT(AT_IGNORE, NULL),
6524
AUXFMT(AT_EXECFD, "%ld"),
6525
AUXFMT(AT_PHDR, "%p"),
6526
AUXFMT(AT_PHENT, "%lu"),
6527
AUXFMT(AT_PHNUM, "%lu"),
6528
AUXFMT(AT_PAGESZ, "%lu"),
6529
AUXFMT(AT_BASE, "%#lx"),
6530
AUXFMT(AT_FLAGS, "%#lx"),
6531
AUXFMT(AT_ENTRY, "%p"),
6532
AUXFMT(AT_NOTELF, NULL),
6533
AUXFMT(AT_UID, "%ld"),
6534
AUXFMT(AT_EUID, "%ld"),
6535
AUXFMT(AT_GID, "%ld"),
6536
AUXFMT(AT_EGID, "%ld"),
6537
AUXFMT(AT_EXECPATH, "%s"),
6538
AUXFMT(AT_CANARY, "%p"),
6539
AUXFMT(AT_CANARYLEN, "%lu"),
6540
AUXFMT(AT_OSRELDATE, "%lu"),
6541
AUXFMT(AT_NCPUS, "%lu"),
6542
AUXFMT(AT_PAGESIZES, "%p"),
6543
AUXFMT(AT_PAGESIZESLEN, "%lu"),
6544
AUXFMT(AT_TIMEKEEP, "%p"),
6545
AUXFMT(AT_STACKPROT, "%#lx"),
6546
AUXFMT(AT_EHDRFLAGS, "%#lx"),
6547
AUXFMT(AT_HWCAP, "%#lx"),
6548
AUXFMT(AT_HWCAP2, "%#lx"),
6549
AUXFMT(AT_BSDFLAGS, "%#lx"),
6550
AUXFMT(AT_ARGC, "%lu"),
6551
AUXFMT(AT_ARGV, "%p"),
6552
AUXFMT(AT_ENVC, "%p"),
6553
AUXFMT(AT_ENVV, "%p"),
6554
AUXFMT(AT_PS_STRINGS, "%p"),
6555
AUXFMT(AT_FXRNG, "%p"),
6556
AUXFMT(AT_KPRELOAD, "%p"),
6557
AUXFMT(AT_USRSTACKBASE, "%#lx"),
6558
AUXFMT(AT_USRSTACKLIM, "%#lx"),
6559
/* AT_CHERI_STATS */
6560
AUXFMT(AT_HWCAP3, "%#lx"),
6561
AUXFMT(AT_HWCAP4, "%#lx"),
6562
6563
};
6564
6565
static bool
6566
is_ptr_fmt(const char *fmt)
6567
{
6568
char last;
6569
6570
last = fmt[strlen(fmt) - 1];
6571
return (last == 'p' || last == 's');
6572
}
6573
6574
static void
6575
dump_auxv(Elf_Auxinfo **aux_info)
6576
{
6577
Elf_Auxinfo *auxp;
6578
const struct auxfmt *fmt;
6579
int i;
6580
6581
for (i = 0; i < AT_COUNT; i++) {
6582
auxp = aux_info[i];
6583
if (auxp == NULL)
6584
continue;
6585
fmt = &auxfmts[i];
6586
if (fmt->fmt == NULL)
6587
continue;
6588
rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6589
if (is_ptr_fmt(fmt->fmt)) {
6590
rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6591
auxp->a_un.a_ptr);
6592
} else {
6593
rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6594
auxp->a_un.a_val);
6595
}
6596
rtld_fdprintf(STDOUT_FILENO, "\n");
6597
}
6598
}
6599
6600
const char *
6601
rtld_get_var(const char *name)
6602
{
6603
const struct ld_env_var_desc *lvd;
6604
u_int i;
6605
6606
for (i = 0; i < nitems(ld_env_vars); i++) {
6607
lvd = &ld_env_vars[i];
6608
if (strcmp(lvd->n, name) == 0)
6609
return (lvd->val);
6610
}
6611
return (NULL);
6612
}
6613
6614
int
6615
rtld_set_var(const char *name, const char *val)
6616
{
6617
struct ld_env_var_desc *lvd;
6618
u_int i;
6619
6620
for (i = 0; i < nitems(ld_env_vars); i++) {
6621
lvd = &ld_env_vars[i];
6622
if (strcmp(lvd->n, name) != 0)
6623
continue;
6624
if (!lvd->can_update || (lvd->unsecure && !trust))
6625
return (EPERM);
6626
if (lvd->owned)
6627
free(__DECONST(char *, lvd->val));
6628
if (val != NULL)
6629
lvd->val = xstrdup(val);
6630
else
6631
lvd->val = NULL;
6632
lvd->owned = true;
6633
if (lvd->debug)
6634
debug = lvd->val != NULL && *lvd->val != '\0';
6635
return (0);
6636
}
6637
return (ENOENT);
6638
}
6639
6640
/*
6641
* Overrides for libc_pic-provided functions.
6642
*/
6643
6644
int
6645
__getosreldate(void)
6646
{
6647
size_t len;
6648
int oid[2];
6649
int error, osrel;
6650
6651
if (osreldate != 0)
6652
return (osreldate);
6653
6654
oid[0] = CTL_KERN;
6655
oid[1] = KERN_OSRELDATE;
6656
osrel = 0;
6657
len = sizeof(osrel);
6658
error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6659
if (error == 0 && osrel > 0 && len == sizeof(osrel))
6660
osreldate = osrel;
6661
return (osreldate);
6662
}
6663
const char *
6664
rtld_strerror(int errnum)
6665
{
6666
if (errnum < 0 || errnum >= sys_nerr)
6667
return ("Unknown error");
6668
return (sys_errlist[errnum]);
6669
}
6670
6671
char *
6672
getenv(const char *name)
6673
{
6674
return (__DECONST(char *, rtld_get_env_val(environ, name,
6675
strlen(name))));
6676
}
6677
6678
/* malloc */
6679
void *
6680
malloc(size_t nbytes)
6681
{
6682
return (__crt_malloc(nbytes));
6683
}
6684
6685
void *
6686
calloc(size_t num, size_t size)
6687
{
6688
return (__crt_calloc(num, size));
6689
}
6690
6691
void
6692
free(void *cp)
6693
{
6694
__crt_free(cp);
6695
}
6696
6697
void *
6698
realloc(void *cp, size_t nbytes)
6699
{
6700
return (__crt_realloc(cp, nbytes));
6701
}
6702
6703
extern int _rtld_version__FreeBSD_version __exported;
6704
int _rtld_version__FreeBSD_version = __FreeBSD_version;
6705
6706
extern char _rtld_version_laddr_offset __exported;
6707
char _rtld_version_laddr_offset;
6708
6709
extern char _rtld_version_dlpi_tls_data __exported;
6710
char _rtld_version_dlpi_tls_data;
6711
6712