#include <sys/param.h>
#include <stand.h>
#include <bootstrap.h>
#include <efi.h>
#include <efilib.h>
#include "loader_efi.h"
#if defined(__amd64__)
#include <machine/cpufunc.h>
#include <machine/specialreg.h>
#include <machine/vmparam.h>
#define CPUID_LEAF_HV_MAXLEAF 0x40000000
#define CPUID_LEAF_HV_INTERFACE 0x40000001
#define CPUID_LEAF_HV_FEATURES 0x40000003
#define CPUID_LEAF_HV_LIMITS 0x40000005
#define CPUID_HV_IFACE_HYPERV 0x31237648
#define CPUID_HV_MSR_TIME_REFCNT 0x0002
#define CPUID_HV_MSR_HYPERCALL 0x0020
static int
running_on_hyperv(void)
{
char hv_vendor[16];
uint32_t regs[4];
do_cpuid(1, regs);
if ((regs[2] & CPUID2_HV) == 0)
return (0);
do_cpuid(CPUID_LEAF_HV_MAXLEAF, regs);
if (regs[0] < CPUID_LEAF_HV_LIMITS)
return (0);
((uint32_t *)&hv_vendor)[0] = regs[1];
((uint32_t *)&hv_vendor)[1] = regs[2];
((uint32_t *)&hv_vendor)[2] = regs[3];
hv_vendor[12] = '\0';
if (strcmp(hv_vendor, "Microsoft Hv") != 0)
return (0);
do_cpuid(CPUID_LEAF_HV_INTERFACE, regs);
if (regs[0] != CPUID_HV_IFACE_HYPERV)
return (0);
do_cpuid(CPUID_LEAF_HV_FEATURES, regs);
if ((regs[0] & CPUID_HV_MSR_HYPERCALL) == 0)
return (0);
if ((regs[0] & CPUID_HV_MSR_TIME_REFCNT) == 0)
return (0);
return (1);
}
static void
efi_verify_staging_size(unsigned long *nr_pages)
{
UINTN sz;
EFI_MEMORY_DESCRIPTOR *map = NULL, *p;
EFI_PHYSICAL_ADDRESS start, end;
UINTN key, dsz;
UINT32 dver;
EFI_STATUS status;
int i, ndesc;
unsigned long available_pages = 0;
sz = 0;
for (;;) {
status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
if (!EFI_ERROR(status))
break;
if (status != EFI_BUFFER_TOO_SMALL) {
printf("Can't read memory map: %lu\n",
EFI_ERROR_CODE(status));
goto out;
}
free(map);
map = malloc(sz + (10 * dsz));
if (map == NULL) {
printf("Unable to allocate memory\n");
goto out;
}
}
ndesc = sz / dsz;
for (i = 0, p = map; i < ndesc;
i++, p = NextMemoryDescriptor(p, dsz)) {
start = p->PhysicalStart;
end = start + p->NumberOfPages * EFI_PAGE_SIZE;
if (KERNLOAD < start || KERNLOAD >= end)
continue;
available_pages = p->NumberOfPages -
((KERNLOAD - start) >> EFI_PAGE_SHIFT);
break;
}
if (available_pages == 0) {
printf("Can't find valid memory map for staging area!\n");
goto out;
}
i++;
p = NextMemoryDescriptor(p, dsz);
for ( ; i < ndesc;
i++, p = NextMemoryDescriptor(p, dsz)) {
if (p->Type != EfiConventionalMemory &&
p->Type != EfiLoaderData)
break;
if (p->PhysicalStart != end)
break;
end = p->PhysicalStart + p->NumberOfPages * EFI_PAGE_SIZE;
available_pages += p->NumberOfPages;
}
if (*nr_pages > available_pages) {
printf("Staging area's size is reduced: %ld -> %ld!\n",
*nr_pages, available_pages);
*nr_pages = available_pages;
}
out:
free(map);
}
#endif
#if defined(__arm__)
#define DEFAULT_EFI_STAGING_SIZE 32
#else
#define DEFAULT_EFI_STAGING_SIZE 64
#endif
#ifndef EFI_STAGING_SIZE
#define EFI_STAGING_SIZE DEFAULT_EFI_STAGING_SIZE
#endif
#define EFI_STAGING_2M_ALIGN 1
#if defined(__amd64__) || defined(__i386__)
#define EFI_STAGING_SLOP M(8)
#else
#define EFI_STAGING_SLOP 0
#endif
static u_long staging_slop = EFI_STAGING_SLOP;
EFI_PHYSICAL_ADDRESS staging, staging_end, staging_base;
bool stage_offset_set = false;
ssize_t stage_offset;
static void
efi_copy_free(void)
{
BS->FreePages(staging_base, (staging_end - staging_base) /
EFI_PAGE_SIZE);
stage_offset_set = false;
stage_offset = 0;
}
#if defined(__amd64__) || defined(__i386__)
int copy_staging = COPY_STAGING_AUTO;
static int
command_copy_staging(int argc, char *argv[])
{
static const char *const mode[3] = {
[COPY_STAGING_ENABLE] = "enable",
[COPY_STAGING_DISABLE] = "disable",
[COPY_STAGING_AUTO] = "auto",
};
int prev;
if (argc > 2) {
goto usage;
} else if (argc == 2) {
prev = copy_staging;
if (strcmp(argv[1], "enable") == 0)
copy_staging = COPY_STAGING_ENABLE;
else if (strcmp(argv[1], "disable") == 0)
copy_staging = COPY_STAGING_DISABLE;
else if (strcmp(argv[1], "auto") == 0)
copy_staging = COPY_STAGING_AUTO;
else
goto usage;
if (prev != copy_staging) {
printf("changed copy_staging, unloading kernel\n");
unload();
efi_copy_free();
efi_copy_init();
}
} else {
printf("copy staging: %s\n", mode[copy_staging]);
}
return (CMD_OK);
usage:
command_errmsg = "usage: copy_staging enable|disable|auto";
return (CMD_ERROR);
}
COMMAND_SET(copy_staging, "copy_staging", "copy staging", command_copy_staging);
#endif
static int
command_staging_slop(int argc, char *argv[])
{
char *endp;
u_long new, prev;
if (argc > 2) {
goto err;
} else if (argc == 2) {
new = strtoul(argv[1], &endp, 0);
if (*endp != '\0')
goto err;
if (staging_slop != new) {
staging_slop = new;
printf("changed slop, unloading kernel\n");
unload();
efi_copy_free();
efi_copy_init();
}
} else {
printf("staging slop %#lx\n", staging_slop);
}
return (CMD_OK);
err:
command_errmsg = "invalid slop value";
return (CMD_ERROR);
}
COMMAND_SET(staging_slop, "staging_slop", "set staging slop",
command_staging_slop);
#if defined(__amd64__) || defined(__i386__)
static EFI_PHYSICAL_ADDRESS
get_staging_max(void)
{
EFI_PHYSICAL_ADDRESS res;
res = copy_staging == COPY_STAGING_ENABLE ? G(1) : G(4);
return (res);
}
#define EFI_ALLOC_MAX_ADDR
#elif defined(__aarch64__)
#define get_staging_max() (1ul << 48)
#define EFI_ALLOC_MAX_ADDR
#endif
#ifdef EFI_ALLOC_MAX_ADDR
#define EFI_ALLOC_METHOD AllocateMaxAddress
#else
#define EFI_ALLOC_METHOD AllocateAnyPages
#endif
int
efi_copy_init(void)
{
EFI_STATUS status;
unsigned long nr_pages;
vm_offset_t ess;
ess = EFI_STAGING_SIZE;
if (ess < DEFAULT_EFI_STAGING_SIZE)
ess = DEFAULT_EFI_STAGING_SIZE;
nr_pages = EFI_SIZE_TO_PAGES(M(1) * ess);
#if defined(__amd64__)
if (running_on_hyperv())
efi_verify_staging_size(&nr_pages);
#endif
#ifdef EFI_ALLOC_MAX_ADDR
staging = get_staging_max();
#endif
status = BS->AllocatePages(EFI_ALLOC_METHOD, EfiLoaderCode,
nr_pages, &staging);
if (EFI_ERROR(status)) {
printf("failed to allocate staging area: %lu\n",
EFI_ERROR_CODE(status));
return (status);
}
staging_base = staging;
staging_end = staging + nr_pages * EFI_PAGE_SIZE;
#if EFI_STAGING_2M_ALIGN
staging = roundup2(staging, M(2));
#endif
return (0);
}
static bool
efi_check_space(vm_offset_t end)
{
EFI_PHYSICAL_ADDRESS addr, new_base, new_staging;
EFI_STATUS status;
unsigned long nr_pages;
end = roundup2(end, EFI_PAGE_SIZE);
if (end + staging_slop <= staging_end)
return (true);
if (!boot_services_active) {
if (end <= staging_end)
return (true);
panic("efi_check_space: cannot expand staging area "
"after boot services were exited\n");
}
end += staging_slop;
nr_pages = EFI_SIZE_TO_PAGES(end - staging_end);
#if defined(__amd64__) || defined(__i386__)
if (end > get_staging_max())
goto before_staging;
#endif
addr = staging_end;
status = BS->AllocatePages(AllocateAddress, EfiLoaderCode, nr_pages,
&addr);
if (!EFI_ERROR(status)) {
staging_end = staging_end + nr_pages * EFI_PAGE_SIZE;
return (true);
}
before_staging:
if (staging < nr_pages * EFI_PAGE_SIZE)
goto expand;
addr = staging - nr_pages * EFI_PAGE_SIZE;
#if EFI_STAGING_2M_ALIGN
addr = rounddown2(addr, M(2));
#endif
nr_pages = EFI_SIZE_TO_PAGES(staging_base - addr);
status = BS->AllocatePages(AllocateAddress, EfiLoaderCode, nr_pages,
&addr);
if (!EFI_ERROR(status)) {
staging_base = addr;
memmove((void *)(uintptr_t)staging_base,
(void *)(uintptr_t)staging, staging_end - staging);
stage_offset -= staging - staging_base;
staging = staging_base;
return (true);
}
expand:
nr_pages = EFI_SIZE_TO_PAGES(end - (vm_offset_t)staging);
#if EFI_STAGING_2M_ALIGN
nr_pages += M(2) / EFI_PAGE_SIZE;
#endif
#ifdef EFI_ALLOC_MAX_ADDR
new_base = get_staging_max();
#endif
status = BS->AllocatePages(EFI_ALLOC_METHOD, EfiLoaderCode,
nr_pages, &new_base);
if (!EFI_ERROR(status)) {
#if EFI_STAGING_2M_ALIGN
new_staging = roundup2(new_base, M(2));
#else
new_staging = new_base;
#endif
memcpy((void *)(uintptr_t)new_staging,
(void *)(uintptr_t)staging, staging_end - staging);
BS->FreePages(staging_base, (staging_end - staging_base) /
EFI_PAGE_SIZE);
stage_offset -= staging - new_staging;
staging = new_staging;
staging_end = new_base + nr_pages * EFI_PAGE_SIZE;
staging_base = new_base;
return (true);
}
printf("efi_check_space: Unable to expand staging area\n");
return (false);
}
void *
efi_translate(vm_offset_t ptr)
{
return ((void *)(ptr + stage_offset));
}
ssize_t
efi_copyin(const void *src, vm_offset_t dest, const size_t len)
{
if (!stage_offset_set) {
stage_offset = (vm_offset_t)staging - dest;
stage_offset_set = true;
}
if (!efi_check_space(dest + stage_offset + len)) {
errno = ENOMEM;
return (-1);
}
bcopy(src, (void *)(dest + stage_offset), len);
return (len);
}
ssize_t
efi_copyout(const vm_offset_t src, void *dest, const size_t len)
{
if (src + stage_offset + len > staging_end) {
errno = ENOMEM;
return (-1);
}
bcopy((void *)(src + stage_offset), dest, len);
return (len);
}
ssize_t
efi_readin(readin_handle_t fd, vm_offset_t dest, const size_t len)
{
if (!stage_offset_set) {
stage_offset = (vm_offset_t)staging - dest;
stage_offset_set = true;
}
if (!efi_check_space(dest + stage_offset + len)) {
errno = ENOMEM;
return (-1);
}
return (VECTX_READ(fd, (void *)(dest + stage_offset), len));
}
void
efi_copy_finish(void)
{
uint64_t *src, *dst, *last;
src = (uint64_t *)(uintptr_t)staging;
dst = (uint64_t *)(uintptr_t)(staging - stage_offset);
last = (uint64_t *)(uintptr_t)staging_end;
while (src < last)
*dst++ = *src++;
}
void
efi_copy_finish_nop(void)
{
}