Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/stand/efi/loader/main.c
103835 views
1
/*-
2
* Copyright (c) 2008-2010 Rui Paulo
3
* Copyright (c) 2006 Marcel Moolenaar
4
* All rights reserved.
5
*
6
* Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
*
12
* 1. Redistributions of source code must retain the above copyright
13
* notice, this list of conditions and the following disclaimer.
14
* 2. Redistributions in binary form must reproduce the above copyright
15
* notice, this list of conditions and the following disclaimer in the
16
* documentation and/or other materials provided with the distribution.
17
*
18
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
*/
29
30
#include <stand.h>
31
32
#include <sys/disk.h>
33
#include <sys/param.h>
34
#include <sys/reboot.h>
35
#include <sys/boot.h>
36
#ifdef EFI_ZFS_BOOT
37
#include <sys/zfs_bootenv.h>
38
#endif
39
#include <paths.h>
40
#include <netinet/in.h>
41
#include <netinet/in_systm.h>
42
#include <stdint.h>
43
#include <string.h>
44
#include <setjmp.h>
45
#include <disk.h>
46
#include <dev_net.h>
47
#include <net.h>
48
#include <machine/_inttypes.h>
49
50
#include <efi.h>
51
#include <efilib.h>
52
#include <efichar.h>
53
54
#include <Guid/DebugImageInfoTable.h>
55
#include <Guid/DxeServices.h>
56
#include <Guid/Mps.h>
57
#include <Guid/SmBios.h>
58
#include <Protocol/Rng.h>
59
#include <Protocol/SimpleNetwork.h>
60
#include <Protocol/SimpleTextIn.h>
61
62
#include <uuid.h>
63
64
#include <bootstrap.h>
65
#include <smbios.h>
66
67
#include <dev/random/fortuna.h>
68
#include <geom/eli/pkcs5v2.h>
69
70
#include "efizfs.h"
71
#include "framebuffer.h"
72
73
#include "platform/acfreebsd.h"
74
#include "acconfig.h"
75
#define ACPI_SYSTEM_XFACE
76
#include "actypes.h"
77
#include "actbl.h"
78
79
#include <acpi_detect.h>
80
81
#include "loader_efi.h"
82
83
struct arch_switch archsw = { /* MI/MD interface boundary */
84
.arch_autoload = efi_autoload,
85
.arch_getdev = efi_getdev,
86
.arch_copyin = efi_copyin,
87
.arch_copyout = efi_copyout,
88
#if defined(__amd64__) || defined(__i386__)
89
.arch_hypervisor = x86_hypervisor,
90
#endif
91
.arch_readin = efi_readin,
92
.arch_zfs_probe = efi_zfs_probe,
93
};
94
95
// XXX These are from ???? Maybe ACPI which needs to define them?
96
// XXX EDK2 doesn't (or didn't as of Feb 2025)
97
#define HOB_LIST_TABLE_GUID \
98
{ 0x7739f24c, 0x93d7, 0x11d4, {0x9a, 0x3a, 0x0, 0x90, 0x27, 0x3f, 0xc1, 0x4d} }
99
#define LZMA_DECOMPRESSION_GUID \
100
{ 0xee4e5898, 0x3914, 0x4259, {0x9d, 0x6e, 0xdc, 0x7b, 0xd7, 0x94, 0x3, 0xcf} }
101
#define ARM_MP_CORE_INFO_TABLE_GUID \
102
{ 0xa4ee0728, 0xe5d7, 0x4ac5, {0xb2, 0x1e, 0x65, 0x8e, 0xd8, 0x57, 0xe8, 0x34} }
103
#define ESRT_TABLE_GUID \
104
{ 0xb122a263, 0x3661, 0x4f68, {0x99, 0x29, 0x78, 0xf8, 0xb0, 0xd6, 0x21, 0x80} }
105
#define MEMORY_TYPE_INFORMATION_TABLE_GUID \
106
{ 0x4c19049f, 0x4137, 0x4dd3, {0x9c, 0x10, 0x8b, 0x97, 0xa8, 0x3f, 0xfd, 0xfa} }
107
#define FDT_TABLE_GUID \
108
{ 0xb1b621d5, 0xf19c, 0x41a5, {0x83, 0x0b, 0xd9, 0x15, 0x2c, 0x69, 0xaa, 0xe0} }
109
110
EFI_GUID devid = DEVICE_PATH_PROTOCOL;
111
EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
112
EFI_GUID mps = MPS_TABLE_GUID;
113
EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL_GUID;
114
EFI_GUID smbios = SMBIOS_TABLE_GUID;
115
EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
116
EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
117
EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
118
EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
119
EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
120
EFI_GUID esrt = ESRT_TABLE_GUID;
121
EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
122
EFI_GUID debugimg = EFI_DEBUG_IMAGE_INFO_TABLE_GUID;
123
EFI_GUID fdtdtb = FDT_TABLE_GUID;
124
EFI_GUID inputid = EFI_SIMPLE_TEXT_INPUT_PROTOCOL_GUID;
125
EFI_GUID rng_guid = EFI_RNG_PROTOCOL_GUID;
126
127
/*
128
* Number of seconds to wait for a keystroke before exiting with failure
129
* in the event no currdev is found. -2 means always break, -1 means
130
* never break, 0 means poll once and then reboot, > 0 means wait for
131
* that many seconds. "fail_timeout" can be set in the environment as
132
* well.
133
*/
134
static int fail_timeout = 5;
135
136
/*
137
* Current boot variable
138
*/
139
UINT16 boot_current;
140
141
/*
142
* Image that we booted from.
143
*/
144
EFI_LOADED_IMAGE *boot_img;
145
146
static bool
147
has_keyboard(void)
148
{
149
EFI_STATUS status;
150
EFI_DEVICE_PATH *path;
151
EFI_HANDLE *hin, *hin_end, *walker;
152
UINTN sz;
153
bool retval = false;
154
155
/*
156
* Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
157
* do the typical dance to get the right sized buffer.
158
*/
159
sz = 0;
160
hin = NULL;
161
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
162
if (status == EFI_BUFFER_TOO_SMALL) {
163
hin = (EFI_HANDLE *)malloc(sz);
164
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
165
hin);
166
if (EFI_ERROR(status))
167
free(hin);
168
}
169
if (EFI_ERROR(status))
170
return retval;
171
172
/*
173
* Look at each of the handles. If it supports the device path protocol,
174
* use it to get the device path for this handle. Then see if that
175
* device path matches either the USB device path for keyboards or the
176
* legacy device path for keyboards.
177
*/
178
hin_end = &hin[sz / sizeof(*hin)];
179
for (walker = hin; walker < hin_end; walker++) {
180
status = OpenProtocolByHandle(*walker, &devid, (void **)&path);
181
if (EFI_ERROR(status))
182
continue;
183
184
while (!IsDevicePathEnd(path)) {
185
/*
186
* Check for the ACPI keyboard node. All PNP3xx nodes
187
* are keyboards of different flavors. Note: It is
188
* unclear of there's always a keyboard node when
189
* there's a keyboard controller, or if there's only one
190
* when a keyboard is detected at boot.
191
*/
192
if (DevicePathType(path) == ACPI_DEVICE_PATH &&
193
(DevicePathSubType(path) == ACPI_DP ||
194
DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
195
ACPI_HID_DEVICE_PATH *acpi;
196
197
acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
198
if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
199
(acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
200
retval = true;
201
goto out;
202
}
203
/*
204
* Check for USB keyboard node, if present. Unlike a
205
* PS/2 keyboard, these definitely only appear when
206
* connected to the system.
207
*/
208
} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
209
DevicePathSubType(path) == MSG_USB_CLASS_DP) {
210
USB_CLASS_DEVICE_PATH *usb;
211
212
usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
213
if (usb->DeviceClass == 3 && /* HID */
214
usb->DeviceSubClass == 1 && /* Boot devices */
215
usb->DeviceProtocol == 1) { /* Boot keyboards */
216
retval = true;
217
goto out;
218
}
219
}
220
path = NextDevicePathNode(path);
221
}
222
}
223
out:
224
free(hin);
225
return retval;
226
}
227
228
static void
229
set_currdev_devdesc(struct devdesc *currdev)
230
{
231
const char *devname;
232
233
devname = devformat(currdev);
234
printf("Setting currdev to %s\n", devname);
235
set_currdev(devname);
236
}
237
238
static void
239
set_currdev_devsw(struct devsw *dev, int unit)
240
{
241
struct devdesc currdev;
242
243
currdev.d_dev = dev;
244
currdev.d_unit = unit;
245
246
set_currdev_devdesc(&currdev);
247
}
248
249
static void
250
set_currdev_pdinfo(pdinfo_t *dp)
251
{
252
253
/*
254
* Disks are special: they have partitions. if the parent
255
* pointer is non-null, we're a partition not a full disk
256
* and we need to adjust currdev appropriately.
257
*/
258
if (dp->pd_devsw->dv_type == DEVT_DISK) {
259
struct disk_devdesc currdev;
260
261
currdev.dd.d_dev = dp->pd_devsw;
262
if (dp->pd_parent == NULL) {
263
currdev.dd.d_unit = dp->pd_unit;
264
currdev.d_slice = D_SLICENONE;
265
currdev.d_partition = D_PARTNONE;
266
} else {
267
currdev.dd.d_unit = dp->pd_parent->pd_unit;
268
currdev.d_slice = dp->pd_unit;
269
currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */
270
}
271
set_currdev_devdesc((struct devdesc *)&currdev);
272
} else {
273
set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
274
}
275
}
276
277
static bool
278
sanity_check_currdev(void)
279
{
280
struct stat st;
281
282
return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 ||
283
#ifdef PATH_BOOTABLE_TOKEN
284
stat(PATH_BOOTABLE_TOKEN, &st) == 0 || /* non-standard layout */
285
#endif
286
stat(PATH_KERNEL, &st) == 0);
287
}
288
289
#ifdef EFI_ZFS_BOOT
290
static bool
291
probe_zfs_currdev(uint64_t guid)
292
{
293
char buf[VDEV_PAD_SIZE];
294
char *devname;
295
struct zfs_devdesc currdev;
296
297
currdev.dd.d_dev = &zfs_dev;
298
currdev.dd.d_unit = 0;
299
currdev.pool_guid = guid;
300
currdev.root_guid = 0;
301
devname = devformat(&currdev.dd);
302
set_currdev(devname);
303
printf("Setting currdev to %s\n", devname);
304
init_zfs_boot_options(devname);
305
306
if (zfs_get_bootonce(&currdev, OS_BOOTONCE, buf, sizeof(buf)) == 0) {
307
printf("zfs bootonce: %s\n", buf);
308
set_currdev(buf);
309
setenv("zfs-bootonce", buf, 1);
310
}
311
(void)zfs_attach_nvstore(&currdev);
312
313
return (sanity_check_currdev());
314
}
315
#endif
316
317
#ifdef MD_IMAGE_SIZE
318
extern struct devsw md_dev;
319
320
static bool
321
probe_md_currdev(void)
322
{
323
bool rv;
324
325
set_currdev_devsw(&md_dev, 0);
326
rv = sanity_check_currdev();
327
if (!rv)
328
printf("MD not present\n");
329
return (rv);
330
}
331
#endif
332
333
static bool
334
try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
335
{
336
#ifdef EFI_ZFS_BOOT
337
uint64_t guid;
338
339
/*
340
* If there's a zpool on this device, try it as a ZFS
341
* filesystem, which has somewhat different setup than all
342
* other types of fs due to imperfect loader integration.
343
* This all stems from ZFS being both a device (zpool) and
344
* a filesystem, plus the boot env feature.
345
*/
346
if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
347
return (probe_zfs_currdev(guid));
348
#endif
349
/*
350
* All other filesystems just need the pdinfo
351
* initialized in the standard way.
352
*/
353
set_currdev_pdinfo(pp);
354
return (sanity_check_currdev());
355
}
356
357
/*
358
* Sometimes we get filenames that are all upper case
359
* and/or have backslashes in them. Filter all this out
360
* if it looks like we need to do so.
361
*/
362
static void
363
fix_dosisms(char *p)
364
{
365
while (*p) {
366
if (isupper(*p))
367
*p = tolower(*p);
368
else if (*p == '\\')
369
*p = '/';
370
p++;
371
}
372
}
373
374
#define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
375
376
enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 };
377
static int
378
match_boot_info(char *boot_info, size_t bisz)
379
{
380
uint32_t attr;
381
uint16_t fplen;
382
size_t len;
383
char *walker, *ep;
384
EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
385
pdinfo_t *pp;
386
CHAR16 *descr;
387
char *kernel = NULL;
388
FILEPATH_DEVICE_PATH *fp;
389
struct stat st;
390
CHAR16 *text;
391
392
/*
393
* FreeBSD encodes its boot loading path into the boot loader
394
* BootXXXX variable. We look for the last one in the path
395
* and use that to load the kernel. However, if we only find
396
* one DEVICE_PATH, then there's nothing specific and we should
397
* fall back.
398
*
399
* In an ideal world, we'd look at the image handle we were
400
* passed, match up with the loader we are and then return the
401
* next one in the path. This would be most flexible and cover
402
* many chain booting scenarios where you need to use this
403
* boot loader to get to the next boot loader. However, that
404
* doesn't work. We rarely have the path to the image booted
405
* (just the device) so we can't count on that. So, we do the
406
* next best thing: we look through the device path(s) passed
407
* in the BootXXXX variable. If there's only one, we return
408
* NOT_SPECIFIC. Otherwise, we look at the last one and try to
409
* load that. If we can, we return BOOT_INFO_OK. Otherwise we
410
* return BAD_CHOICE for the caller to sort out.
411
*/
412
if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
413
return NOT_SPECIFIC;
414
walker = boot_info;
415
ep = walker + bisz;
416
memcpy(&attr, walker, sizeof(attr));
417
walker += sizeof(attr);
418
memcpy(&fplen, walker, sizeof(fplen));
419
walker += sizeof(fplen);
420
descr = (CHAR16 *)(intptr_t)walker;
421
len = ucs2len(descr);
422
walker += (len + 1) * sizeof(CHAR16);
423
last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
424
edp = (EFI_DEVICE_PATH *)(walker + fplen);
425
if ((char *)edp > ep)
426
return NOT_SPECIFIC;
427
while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
428
text = efi_devpath_name(dp);
429
if (text != NULL) {
430
printf(" BootInfo Path: %S\n", text);
431
efi_free_devpath_name(text);
432
}
433
last_dp = dp;
434
dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
435
}
436
437
/*
438
* If there's only one item in the list, then nothing was
439
* specified. Or if the last path doesn't have a media
440
* path in it. Those show up as various VenHw() nodes
441
* which are basically opaque to us. Don't count those
442
* as something specifc.
443
*/
444
if (last_dp == first_dp) {
445
printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
446
return NOT_SPECIFIC;
447
}
448
if (efi_devpath_to_media_path(last_dp) == NULL) {
449
printf("Ignoring Boot%04x: No Media Path\n", boot_current);
450
return NOT_SPECIFIC;
451
}
452
453
/*
454
* OK. At this point we either have a good path or a bad one.
455
* Let's check.
456
*/
457
pp = efiblk_get_pdinfo_by_device_path(last_dp);
458
if (pp == NULL) {
459
printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
460
return BAD_CHOICE;
461
}
462
set_currdev_pdinfo(pp);
463
if (!sanity_check_currdev()) {
464
printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
465
return BAD_CHOICE;
466
}
467
468
/*
469
* OK. We've found a device that matches, next we need to check the last
470
* component of the path. If it's a file, then we set the default kernel
471
* to that. Otherwise, just use this as the default root.
472
*
473
* Reminder: we're running very early, before we've parsed the defaults
474
* file, so we may need to have a hack override.
475
*/
476
dp = efi_devpath_last_node(last_dp);
477
if (DevicePathType(dp) != MEDIA_DEVICE_PATH ||
478
DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
479
printf("Using Boot%04x for root partition\n", boot_current);
480
return (BOOT_INFO_OK); /* use currdir, default kernel */
481
}
482
fp = (FILEPATH_DEVICE_PATH *)dp;
483
ucs2_to_utf8(fp->PathName, &kernel);
484
if (kernel == NULL) {
485
printf("Not using Boot%04x: can't decode kernel\n", boot_current);
486
return (BAD_CHOICE);
487
}
488
if (*kernel == '\\' || isupper(*kernel))
489
fix_dosisms(kernel);
490
if (stat(kernel, &st) != 0) {
491
free(kernel);
492
printf("Not using Boot%04x: can't find %s\n", boot_current,
493
kernel);
494
return (BAD_CHOICE);
495
}
496
setenv("kernel", kernel, 1);
497
free(kernel);
498
text = efi_devpath_name(last_dp);
499
if (text) {
500
printf("Using Boot%04x %S + %s\n", boot_current, text,
501
kernel);
502
efi_free_devpath_name(text);
503
}
504
505
return (BOOT_INFO_OK);
506
}
507
508
/*
509
* Look at the passed-in boot_info, if any. If we find it then we need
510
* to see if we can find ourselves in the boot chain. If we can, and
511
* there's another specified thing to boot next, assume that the file
512
* is loaded from / and use that for the root filesystem. If can't
513
* find the specified thing, we must fail the boot. If we're last on
514
* the list, then we fallback to looking for the first available /
515
* candidate (ZFS, if there's a bootable zpool, otherwise a UFS
516
* partition that has either /boot/defaults/loader.conf on it or
517
* /boot/kernel/kernel (the default kernel) that we can use.
518
*
519
* We always fail if we can't find the right thing. However, as
520
* a concession to buggy UEFI implementations, like u-boot, if
521
* we have determined that the host is violating the UEFI boot
522
* manager protocol, we'll signal the rest of the program that
523
* a drop to the OK boot loader prompt is possible.
524
*/
525
static int
526
find_currdev(bool do_bootmgr, char *boot_info, size_t boot_info_sz)
527
{
528
pdinfo_t *dp, *pp;
529
EFI_DEVICE_PATH *devpath, *copy;
530
EFI_HANDLE h;
531
CHAR16 *text;
532
struct devsw *dev;
533
int unit;
534
uint64_t extra;
535
int rv;
536
char *rootdev;
537
538
/*
539
* First choice: if rootdev is already set, use that, even if
540
* it's wrong.
541
*/
542
rootdev = getenv("rootdev");
543
if (rootdev != NULL && *rootdev != '\0') {
544
printf(" Setting currdev to configured rootdev %s\n",
545
rootdev);
546
set_currdev(rootdev);
547
return (0);
548
}
549
550
/*
551
* Second choice: If uefi_rootdev is set, translate that UEFI device
552
* path to the loader's internal name and use that.
553
*/
554
do {
555
rootdev = getenv("uefi_rootdev");
556
if (rootdev == NULL)
557
break;
558
devpath = efi_name_to_devpath(rootdev);
559
if (devpath == NULL)
560
break;
561
dp = efiblk_get_pdinfo_by_device_path(devpath);
562
efi_devpath_free(devpath);
563
if (dp == NULL)
564
break;
565
printf(" Setting currdev to UEFI path %s\n",
566
rootdev);
567
set_currdev_pdinfo(dp);
568
return (0);
569
} while (0);
570
571
/*
572
* Third choice: If we can find out image boot_info, and there's
573
* a follow-on boot image in that boot_info, use that. In this
574
* case root will be the partition specified in that image and
575
* we'll load the kernel specified by the file path. Should there
576
* not be a filepath, we use the default. This filepath overrides
577
* loader.conf.
578
*/
579
if (do_bootmgr) {
580
rv = match_boot_info(boot_info, boot_info_sz);
581
switch (rv) {
582
case BOOT_INFO_OK: /* We found it */
583
return (0);
584
case BAD_CHOICE: /* specified file not found -> error */
585
/* XXX do we want to have an escape hatch for last in boot order? */
586
return (ENOENT);
587
} /* Nothing specified, try normal match */
588
}
589
590
#ifdef EFI_ZFS_BOOT
591
/*
592
* Did efi_zfs_probe() detect the boot pool? If so, use the zpool
593
* it found, if it's sane. ZFS is the only thing that looks for
594
* disks and pools to boot. This may change in the future, however,
595
* if we allow specifying which pool to boot from via UEFI variables
596
* rather than the bootenv stuff that FreeBSD uses today.
597
*/
598
if (pool_guid != 0) {
599
printf("Trying ZFS pool\n");
600
if (probe_zfs_currdev(pool_guid))
601
return (0);
602
}
603
#endif /* EFI_ZFS_BOOT */
604
605
#ifdef MD_IMAGE_SIZE
606
/*
607
* If there is an embedded MD, try to use that.
608
*/
609
printf("Trying MD\n");
610
if (probe_md_currdev())
611
return (0);
612
#endif /* MD_IMAGE_SIZE */
613
614
/*
615
* Try to find the block device by its handle based on the
616
* image we're booting. If we can't find a sane partition,
617
* search all the other partitions of the disk. We do not
618
* search other disks because it's a violation of the UEFI
619
* boot protocol to do so. We fail and let UEFI go on to
620
* the next candidate.
621
*/
622
dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle);
623
if (dp != NULL) {
624
text = efi_devpath_name(dp->pd_devpath);
625
if (text != NULL) {
626
printf("Trying ESP: %S\n", text);
627
efi_free_devpath_name(text);
628
}
629
set_currdev_pdinfo(dp);
630
if (sanity_check_currdev())
631
return (0);
632
if (dp->pd_parent != NULL) {
633
pdinfo_t *espdp = dp;
634
dp = dp->pd_parent;
635
STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
636
/* Already tried the ESP */
637
if (espdp == pp)
638
continue;
639
/*
640
* Roll up the ZFS special case
641
* for those partitions that have
642
* zpools on them.
643
*/
644
text = efi_devpath_name(pp->pd_devpath);
645
if (text != NULL) {
646
printf("Trying: %S\n", text);
647
efi_free_devpath_name(text);
648
}
649
if (try_as_currdev(dp, pp))
650
return (0);
651
}
652
}
653
}
654
655
/*
656
* Try the device handle from our loaded image first. If that
657
* fails, use the device path from the loaded image and see if
658
* any of the nodes in that path match one of the enumerated
659
* handles. Currently, this handle list is only for netboot.
660
*/
661
if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) {
662
set_currdev_devsw(dev, unit);
663
if (sanity_check_currdev())
664
return (0);
665
}
666
667
copy = NULL;
668
devpath = efi_lookup_image_devpath(IH);
669
while (devpath != NULL) {
670
h = efi_devpath_handle(devpath);
671
if (h == NULL)
672
break;
673
674
free(copy);
675
copy = NULL;
676
677
if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
678
set_currdev_devsw(dev, unit);
679
if (sanity_check_currdev())
680
return (0);
681
}
682
683
devpath = efi_lookup_devpath(h);
684
if (devpath != NULL) {
685
copy = efi_devpath_trim(devpath);
686
devpath = copy;
687
}
688
}
689
free(copy);
690
691
return (ENOENT);
692
}
693
694
static bool
695
interactive_interrupt(const char *msg)
696
{
697
time_t now, then, last;
698
699
last = 0;
700
now = then = getsecs();
701
printf("%s\n", msg);
702
if (fail_timeout == -2) /* Always break to OK */
703
return (true);
704
if (fail_timeout == -1) /* Never break to OK */
705
return (false);
706
do {
707
if (last != now) {
708
printf("press any key to interrupt reboot in %d seconds\r",
709
fail_timeout - (int)(now - then));
710
last = now;
711
}
712
713
/* XXX no pause or timeout wait for char */
714
if (ischar())
715
return (true);
716
now = getsecs();
717
} while (now - then < fail_timeout);
718
return (false);
719
}
720
721
static int
722
parse_args(int argc, CHAR16 *argv[])
723
{
724
int i, howto;
725
char var[128];
726
727
/*
728
* Parse the args to set the console settings, etc
729
* boot1.efi passes these in, if it can read /boot.config or /boot/config
730
* or iPXE may be setup to pass these in. Or the optional argument in the
731
* boot environment was used to pass these arguments in (in which case
732
* neither /boot.config nor /boot/config are consulted).
733
*
734
* Loop through the args, and for each one that contains an '=' that is
735
* not the first character, add it to the environment. This allows
736
* loader and kernel env vars to be passed on the command line. Convert
737
* args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
738
* method is flawed for non-ASCII characters).
739
*/
740
howto = 0;
741
for (i = 0; i < argc; i++) {
742
cpy16to8(argv[i], var, sizeof(var));
743
howto |= boot_parse_arg(var);
744
}
745
746
return (howto);
747
}
748
749
static void
750
setenv_int(const char *key, int val)
751
{
752
char buf[20];
753
754
snprintf(buf, sizeof(buf), "%d", val);
755
setenv(key, buf, 1);
756
}
757
758
static void *
759
acpi_map_sdt(vm_offset_t addr)
760
{
761
/* PA == VA */
762
return ((void *)addr);
763
}
764
765
static int
766
acpi_checksum(void *p, size_t length)
767
{
768
uint8_t *bp;
769
uint8_t sum;
770
771
bp = p;
772
sum = 0;
773
while (length--)
774
sum += *bp++;
775
776
return (sum);
777
}
778
779
static void *
780
acpi_find_table(uint8_t *sig)
781
{
782
int entries, i, addr_size;
783
ACPI_TABLE_HEADER *sdp;
784
ACPI_TABLE_RSDT *rsdt;
785
ACPI_TABLE_XSDT *xsdt;
786
vm_offset_t addr;
787
788
if (rsdp == NULL)
789
return (NULL);
790
791
rsdt = (ACPI_TABLE_RSDT *)(uintptr_t)rsdp->RsdtPhysicalAddress;
792
xsdt = (ACPI_TABLE_XSDT *)(uintptr_t)rsdp->XsdtPhysicalAddress;
793
if (rsdp->Revision < 2) {
794
sdp = (ACPI_TABLE_HEADER *)rsdt;
795
addr_size = sizeof(uint32_t);
796
} else {
797
sdp = (ACPI_TABLE_HEADER *)xsdt;
798
addr_size = sizeof(uint64_t);
799
}
800
entries = (sdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
801
for (i = 0; i < entries; i++) {
802
if (addr_size == 4)
803
addr = le32toh(rsdt->TableOffsetEntry[i]);
804
else
805
addr = le64toh(xsdt->TableOffsetEntry[i]);
806
if (addr == 0)
807
continue;
808
sdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr);
809
if (acpi_checksum(sdp, sdp->Length)) {
810
printf("RSDT entry %d (sig %.4s) is corrupt", i,
811
sdp->Signature);
812
continue;
813
}
814
if (memcmp(sig, sdp->Signature, 4) == 0)
815
return (sdp);
816
}
817
return (NULL);
818
}
819
820
/*
821
* Convert the InterfaceType in the SPCR. These are encoded the same for DBG2
822
* tables as well (though we don't parse those here).
823
*/
824
static const char *
825
acpi_uart_type(UINT8 t)
826
{
827
static const char *types[] = {
828
[0x00] = "ns8250", /* Full 16550 */
829
[0x01] = "ns8250", /* DBGP Rev 1 16550 subset */
830
[0x03] = "pl011", /* Arm PL011 */
831
[0x05] = "ns8250", /* Nvidia 16550 */
832
[0x0d] = "pl011", /* Arm SBSA 32-bit width */
833
[0x0e] = "pl011", /* Arm SBSA generic */
834
[0x12] = "ns8250", /* 16550 defined in SerialPort */
835
};
836
837
if (t >= nitems(types))
838
return (NULL);
839
return (types[t]);
840
}
841
842
static int
843
acpi_uart_baud(UINT8 b)
844
{
845
static int baud[] = { 0, -1, -1, 9600, 19200, -1, 57600, 115200 };
846
847
if (b > 7)
848
return (-1);
849
return (baud[b]);
850
}
851
852
static int
853
acpi_uart_regionwidth(UINT8 rw)
854
{
855
if (rw == 0)
856
return (1);
857
if (rw > 4)
858
return (-1);
859
return (1 << (rw - 1));
860
}
861
862
static const char *
863
acpi_uart_parity(UINT8 p)
864
{
865
/* Some of these SPCR entires get this wrong, hard wire none */
866
return ("none");
867
}
868
869
/*
870
* See if we can find an enabled SPCR ACPI table in the static tables. If so,
871
* then it describes the serial console that's been redirected to, so we know
872
* that at least there's a serial console. This is most important for embedded
873
* systems that don't have traidtional PC serial ports.
874
*
875
* All the two letter variables in this function correspond to their usage in
876
* the uart(4) console string. We use io == -1 to select between I/O ports and
877
* memory mapped addresses. Set both hw.uart.console and hw.uart.consol.extra
878
* to communicate settings from SPCR to the kernel.
879
*/
880
static int
881
check_acpi_spcr(void)
882
{
883
ACPI_TABLE_SPCR *spcr;
884
int br, db, io, rs, rw, xo, pv, pd;
885
uintmax_t mm;
886
const char *dt, *pa;
887
char *val = NULL;
888
889
/*
890
* The SPCR is enabled when SerialPort is non-zero. Address being zero
891
* should suffice to see if it's disabled.
892
*/
893
spcr = acpi_find_table(ACPI_SIG_SPCR);
894
if (spcr == NULL || spcr->SerialPort.Address == 0)
895
return (0);
896
dt = acpi_uart_type(spcr->InterfaceType);
897
if (dt == NULL) { /* Kernel can't use unknown types */
898
printf("UART Type %d not known\n", spcr->InterfaceType);
899
return (0);
900
}
901
902
/* I/O vs Memory mapped vs PCI device */
903
io = -1;
904
pv = spcr->PciVendorId;
905
pd = spcr->PciDeviceId;
906
if (pv == 0xffff && pd == 0xffff) {
907
if (spcr->SerialPort.SpaceId == 1)
908
io = spcr->SerialPort.Address;
909
else {
910
mm = spcr->SerialPort.Address;
911
rs = ffs(spcr->SerialPort.BitWidth) - 4;
912
rw = acpi_uart_regionwidth(spcr->SerialPort.AccessWidth);
913
}
914
} else {
915
/* XXX todo: bus:device:function + flags and segment */
916
}
917
918
/* Uart settings */
919
pa = acpi_uart_parity(spcr->Parity);
920
db = 8;
921
922
/*
923
* UartClkFreq is 3 and newer. We always use it then (it's only valid if
924
* it isn't 0, but if it is 0, we want to use 0 to have the kernel
925
* guess).
926
*/
927
if (spcr->Header.Revision <= 2)
928
xo = 0;
929
else
930
xo = spcr->UartClkFreq;
931
932
/*
933
* PreciseBaudrate, when non-zero, is to be preferred. It's only valid,
934
* though, for rev 4 and newer. So when it's 0 or the version is too
935
* old, we do the old-style table lookup. Otherwise we believe it.
936
*/
937
if (spcr->Header.Revision <= 3 || spcr->PreciseBaudrate == 0)
938
br = acpi_uart_baud(spcr->BaudRate);
939
else
940
br = spcr->PreciseBaudrate;
941
942
if (io != -1) {
943
asprintf(&val, "db:%d,dt:%s,io:%#x,pa:%s,br:%d,xo=%d",
944
db, dt, io, pa, br, xo);
945
} else if (pv != 0xffff && pd != 0xffff) {
946
asprintf(&val, "db:%d,dt:%s,pv:%#x,pd:%#x,pa:%s,br:%d,xo=%d",
947
db, dt, pv, pd, pa, br, xo);
948
} else {
949
asprintf(&val, "db:%d,dt:%s,mm:%#jx,rs:%d,rw:%d,pa:%s,br:%d,xo=%d",
950
db, dt, mm, rs, rw, pa, br, xo);
951
}
952
env_setenv("hw.uart.console", EV_VOLATILE, val, NULL, NULL);
953
free(val);
954
955
return (RB_SERIAL);
956
}
957
958
959
/*
960
* Parse ConOut (the list of consoles active) and see if we can find a serial
961
* port and/or a video port. It would be nice to also walk the ACPI DSDT to map
962
* the UID for the serial port to a port since there's no standard mapping. Also
963
* check for ConIn as well. This will be enough to determine if we have serial,
964
* and if we don't, we default to video. If there's a dual-console situation
965
* with only ConIn defined, this will currently fail.
966
*/
967
int
968
parse_uefi_con_out(void)
969
{
970
int how, rv;
971
int vid_seen = 0, com_seen = 0, seen = 0;
972
size_t sz;
973
char buf[4096], *ep;
974
EFI_DEVICE_PATH *node;
975
ACPI_HID_DEVICE_PATH *acpi;
976
UART_DEVICE_PATH *uart;
977
bool pci_pending;
978
979
/*
980
* A SPCR in the ACPI fixed tables documents a serial port used for the
981
* console. It may mirror a video console, or may be stand alone. If it
982
* is present, we return RB_SERIAL and will use it for the kernel.
983
*/
984
how = check_acpi_spcr();
985
sz = sizeof(buf);
986
rv = efi_global_getenv("ConOut", buf, &sz);
987
if (rv != EFI_SUCCESS)
988
rv = efi_global_getenv("ConOutDev", buf, &sz);
989
if (rv != EFI_SUCCESS)
990
rv = efi_global_getenv("ConIn", buf, &sz);
991
if (rv != EFI_SUCCESS) {
992
/*
993
* If we don't have any Con* variable use both. If we have GOP
994
* make video primary, otherwise set serial primary. In either
995
* case, try to use both the 'efi' console which will use the
996
* GOP, if present and serial. If there's an EFI BIOS that omits
997
* this, but has a serial port redirect, we'll unavioidably get
998
* doubled characters, but we'll be right in all the other more
999
* common cases.
1000
*/
1001
if (efi_has_gop())
1002
how |= RB_MULTIPLE;
1003
else
1004
how |= RB_MULTIPLE | RB_SERIAL;
1005
setenv("console", "efi,comconsole", 1);
1006
goto out;
1007
}
1008
ep = buf + sz;
1009
node = (EFI_DEVICE_PATH *)buf;
1010
while ((char *)node < ep) {
1011
if (IsDevicePathEndType(node)) {
1012
if (pci_pending && vid_seen == 0)
1013
vid_seen = ++seen;
1014
}
1015
pci_pending = false;
1016
if (DevicePathType(node) == ACPI_DEVICE_PATH &&
1017
(DevicePathSubType(node) == ACPI_DP ||
1018
DevicePathSubType(node) == ACPI_EXTENDED_DP)) {
1019
/* Check for Serial node */
1020
acpi = (void *)node;
1021
if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
1022
setenv_int("efi_8250_uid", acpi->UID);
1023
com_seen = ++seen;
1024
}
1025
} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
1026
DevicePathSubType(node) == MSG_UART_DP) {
1027
com_seen = ++seen;
1028
uart = (void *)node;
1029
setenv_int("efi_com_speed", uart->BaudRate);
1030
} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
1031
DevicePathSubType(node) == ACPI_ADR_DP) {
1032
/* Check for AcpiAdr() Node for video */
1033
vid_seen = ++seen;
1034
} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
1035
DevicePathSubType(node) == HW_PCI_DP) {
1036
/*
1037
* Note, vmware fusion has a funky console device
1038
* PciRoot(0x0)/Pci(0xf,0x0)
1039
* which we can only detect at the end since we also
1040
* have to cope with:
1041
* PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
1042
* so only match it if it's last.
1043
*/
1044
pci_pending = true;
1045
}
1046
node = NextDevicePathNode(node);
1047
}
1048
1049
/*
1050
* Truth table for RB_MULTIPLE | RB_SERIAL
1051
* Value Result
1052
* 0 Use only video console
1053
* RB_SERIAL Use only serial console
1054
* RB_MULTIPLE Use both video and serial console
1055
* (but video is primary so gets rc messages)
1056
* both Use both video and serial console
1057
* (but serial is primary so gets rc messages)
1058
*
1059
* Try to honor this as best we can. If only one of serial / video
1060
* found, then use that. Otherwise, use the first one we found.
1061
* This also implies if we found nothing, default to video.
1062
*/
1063
how = 0;
1064
if (vid_seen && com_seen) {
1065
how |= RB_MULTIPLE;
1066
if (com_seen < vid_seen)
1067
how |= RB_SERIAL;
1068
} else if (com_seen)
1069
how |= RB_SERIAL;
1070
out:
1071
return (how);
1072
}
1073
1074
void
1075
parse_loader_efi_config(EFI_HANDLE h, const char *env_fn)
1076
{
1077
pdinfo_t *dp;
1078
struct stat st;
1079
int fd = -1;
1080
char *env = NULL;
1081
1082
dp = efiblk_get_pdinfo_by_handle(h);
1083
if (dp == NULL)
1084
return;
1085
set_currdev_pdinfo(dp);
1086
if (stat(env_fn, &st) != 0)
1087
return;
1088
fd = open(env_fn, O_RDONLY);
1089
if (fd == -1)
1090
return;
1091
env = malloc(st.st_size + 1);
1092
if (env == NULL)
1093
goto out;
1094
if (read(fd, env, st.st_size) != st.st_size)
1095
goto out;
1096
env[st.st_size] = '\0';
1097
boot_parse_cmdline(env);
1098
out:
1099
free(env);
1100
close(fd);
1101
}
1102
1103
static void
1104
read_loader_env(const char *name, char *def_fn, bool once)
1105
{
1106
UINTN len;
1107
char *fn, *freeme = NULL;
1108
1109
len = 0;
1110
fn = def_fn;
1111
if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) {
1112
freeme = fn = malloc(len + 1);
1113
if (fn != NULL) {
1114
if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) {
1115
free(fn);
1116
fn = NULL;
1117
printf(
1118
"Can't fetch FreeBSD::%s we know is there\n", name);
1119
} else {
1120
/*
1121
* if tagged as 'once' delete the env variable so we
1122
* only use it once.
1123
*/
1124
if (once)
1125
efi_freebsd_delenv(name);
1126
/*
1127
* We malloced 1 more than len above, then redid the call.
1128
* so now we have room at the end of the string to NUL terminate
1129
* it here, even if the typical idium would have '- 1' here to
1130
* not overflow. len should be the same on return both times.
1131
*/
1132
fn[len] = '\0';
1133
}
1134
} else {
1135
printf(
1136
"Can't allocate %d bytes to fetch FreeBSD::%s env var\n",
1137
len, name);
1138
}
1139
}
1140
if (fn) {
1141
printf(" Reading loader env vars from %s\n", fn);
1142
parse_loader_efi_config(boot_img->DeviceHandle, fn);
1143
}
1144
1145
free(freeme);
1146
}
1147
1148
caddr_t
1149
ptov(uintptr_t x)
1150
{
1151
return ((caddr_t)x);
1152
}
1153
1154
static void
1155
efi_smbios_detect(void)
1156
{
1157
VOID *smbios_v2_ptr = NULL;
1158
UINTN k;
1159
1160
for (k = 0; k < ST->NumberOfTableEntries; k++) {
1161
EFI_GUID *guid;
1162
VOID *const VT = ST->ConfigurationTable[k].VendorTable;
1163
char buf[40];
1164
bool is_smbios_v2, is_smbios_v3;
1165
1166
guid = &ST->ConfigurationTable[k].VendorGuid;
1167
is_smbios_v2 = memcmp(guid, &smbios, sizeof(*guid)) == 0;
1168
is_smbios_v3 = memcmp(guid, &smbios3, sizeof(*guid)) == 0;
1169
1170
if (!is_smbios_v2 && !is_smbios_v3)
1171
continue;
1172
1173
snprintf(buf, sizeof(buf), "%p", VT);
1174
setenv("hint.smbios.0.mem", buf, 1);
1175
if (is_smbios_v2)
1176
/*
1177
* We will parse a v2 table only if we don't find a v3
1178
* table. In the meantime, store the address.
1179
*/
1180
smbios_v2_ptr = VT;
1181
else if (smbios_detect(VT) != NULL)
1182
/* v3 parsing succeeded, we are done. */
1183
return;
1184
}
1185
if (smbios_v2_ptr != NULL)
1186
(void)smbios_detect(smbios_v2_ptr);
1187
}
1188
1189
EFI_STATUS
1190
main(int argc, CHAR16 *argv[])
1191
{
1192
int howto, i, uhowto;
1193
bool has_kbd;
1194
char *s;
1195
EFI_DEVICE_PATH *imgpath;
1196
CHAR16 *text;
1197
EFI_STATUS rv;
1198
size_t sz, bisz = 0;
1199
UINT16 boot_order[100];
1200
char boot_info[4096];
1201
char buf[32];
1202
bool uefi_boot_mgr;
1203
1204
#if !defined(__arm__)
1205
efi_smbios_detect();
1206
#endif
1207
1208
/* Get our loaded image protocol interface structure. */
1209
(void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img);
1210
1211
/* Report the RSDP early. */
1212
acpi_detect();
1213
1214
/*
1215
* Chicken-and-egg problem; we want to have console output early, but
1216
* some console attributes may depend on reading from eg. the boot
1217
* device, which we can't do yet. We can use printf() etc. once this is
1218
* done. So, we set it to the efi console, then call console init. This
1219
* gets us printf early, but also primes the pump for all future console
1220
* changes to take effect, regardless of where they come from.
1221
*/
1222
setenv("console", "efi", 1);
1223
uhowto = parse_uefi_con_out();
1224
#if defined(__riscv)
1225
/*
1226
* This workaround likely is papering over a real issue
1227
*/
1228
if ((uhowto & RB_SERIAL) != 0)
1229
setenv("console", "comconsole", 1);
1230
#endif
1231
cons_probe();
1232
1233
/* Set print_delay variable to have hooks in place. */
1234
env_setenv("print_delay", EV_VOLATILE, "", setprint_delay, env_nounset);
1235
1236
/* Set up currdev variable to have hooks in place. */
1237
env_setenv("currdev", EV_VOLATILE, "", gen_setcurrdev, env_nounset);
1238
1239
/* Init the time source */
1240
efi_time_init();
1241
1242
/*
1243
* Initialise the block cache. Set the upper limit.
1244
*/
1245
bcache_init(32768, 512);
1246
1247
/*
1248
* Scan the BLOCK IO MEDIA handles then
1249
* march through the device switch probing for things.
1250
*/
1251
i = efipart_inithandles();
1252
if (i != 0 && i != ENOENT) {
1253
printf("efipart_inithandles failed with ERRNO %d, expect "
1254
"failures\n", i);
1255
}
1256
1257
devinit();
1258
1259
/*
1260
* Detect console settings two different ways: one via the command
1261
* args (eg -h) or via the UEFI ConOut variable.
1262
*/
1263
has_kbd = has_keyboard();
1264
howto = parse_args(argc, argv);
1265
if (!has_kbd && (howto & RB_PROBE))
1266
howto |= RB_SERIAL | RB_MULTIPLE;
1267
howto &= ~RB_PROBE;
1268
1269
/*
1270
* Read additional environment variables from the boot device's
1271
* "LoaderEnv" file. Any boot loader environment variable may be set
1272
* there, which are subtly different than loader.conf variables. Only
1273
* the 'simple' ones may be set so things like foo_load="YES" won't work
1274
* for two reasons. First, the parser is simplistic and doesn't grok
1275
* quotes. Second, because the variables that cause an action to happen
1276
* are parsed by the lua, 4th or whatever code that's not yet
1277
* loaded. This is relative to the root directory when loader.efi is
1278
* loaded off the UFS root drive (when chain booted), or from the ESP
1279
* when directly loaded by the BIOS.
1280
*
1281
* We also read in NextLoaderEnv if it was specified. This allows next boot
1282
* functionality to be implemented and to override anything in LoaderEnv.
1283
*/
1284
read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false);
1285
read_loader_env("NextLoaderEnv", NULL, true);
1286
1287
/*
1288
* We now have two notions of console. howto should be viewed as
1289
* overrides. If console is already set, don't set it again.
1290
*/
1291
#define VIDEO_ONLY 0
1292
#define SERIAL_ONLY RB_SERIAL
1293
#define VID_SER_BOTH RB_MULTIPLE
1294
#define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE)
1295
#define CON_MASK (RB_SERIAL | RB_MULTIPLE)
1296
if (strcmp(getenv("console"), "efi") == 0) {
1297
if ((howto & CON_MASK) == 0) {
1298
/* No override, uhowto is controlling and efi cons is perfect */
1299
howto = howto | (uhowto & CON_MASK);
1300
} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
1301
/* override matches what UEFI told us, efi console is perfect */
1302
} else if ((uhowto & (CON_MASK)) != 0) {
1303
/*
1304
* We detected a serial console on ConOut. All possible
1305
* overrides include serial. We can't really override what efi
1306
* gives us, so we use it knowing it's the best choice.
1307
*/
1308
/* Do nothing */
1309
} else {
1310
/*
1311
* We detected some kind of serial in the override, but ConOut
1312
* has no serial, so we have to sort out which case it really is.
1313
*/
1314
switch (howto & CON_MASK) {
1315
case SERIAL_ONLY:
1316
setenv("console", "comconsole", 1);
1317
break;
1318
case VID_SER_BOTH:
1319
setenv("console", "efi,comconsole", 1);
1320
break;
1321
case SER_VID_BOTH:
1322
setenv("console", "comconsole,efi", 1);
1323
break;
1324
/* case VIDEO_ONLY can't happen -- it's the first if above */
1325
}
1326
}
1327
}
1328
1329
/*
1330
* howto is set now how we want to export the flags to the kernel, so
1331
* set the env based on it.
1332
*/
1333
boot_howto_to_env(howto);
1334
1335
if (efi_copy_init())
1336
return (EFI_BUFFER_TOO_SMALL);
1337
1338
if ((s = getenv("fail_timeout")) != NULL)
1339
fail_timeout = strtol(s, NULL, 10);
1340
1341
printf("%s\n", bootprog_info);
1342
printf(" Command line arguments:");
1343
for (i = 0; i < argc; i++)
1344
printf(" %S", argv[i]);
1345
printf("\n");
1346
1347
printf(" Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase);
1348
printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
1349
ST->Hdr.Revision & 0xffff);
1350
printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
1351
ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
1352
printf(" Console: %s (%#x)\n", getenv("console"), howto);
1353
1354
/* Determine the devpath of our image so we can prefer it. */
1355
text = efi_devpath_name(boot_img->FilePath);
1356
if (text != NULL) {
1357
printf(" Load Path: %S\n", text);
1358
efi_setenv_freebsd_wcs("LoaderPath", text);
1359
efi_free_devpath_name(text);
1360
}
1361
1362
rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid,
1363
(void **)&imgpath);
1364
if (rv == EFI_SUCCESS) {
1365
text = efi_devpath_name(imgpath);
1366
if (text != NULL) {
1367
printf(" Load Device: %S\n", text);
1368
efi_setenv_freebsd_wcs("LoaderDev", text);
1369
efi_free_devpath_name(text);
1370
}
1371
}
1372
1373
if (getenv("uefi_ignore_boot_mgr") != NULL) {
1374
printf(" Ignoring UEFI boot manager\n");
1375
uefi_boot_mgr = false;
1376
} else {
1377
uefi_boot_mgr = true;
1378
boot_current = 0;
1379
sz = sizeof(boot_current);
1380
rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
1381
if (rv == EFI_SUCCESS)
1382
printf(" BootCurrent: %04x\n", boot_current);
1383
else {
1384
boot_current = 0xffff;
1385
uefi_boot_mgr = false;
1386
}
1387
1388
sz = sizeof(boot_order);
1389
rv = efi_global_getenv("BootOrder", &boot_order, &sz);
1390
if (rv == EFI_SUCCESS) {
1391
printf(" BootOrder:");
1392
for (i = 0; i < sz / sizeof(boot_order[0]); i++)
1393
printf(" %04x%s", boot_order[i],
1394
boot_order[i] == boot_current ? "[*]" : "");
1395
printf("\n");
1396
} else if (uefi_boot_mgr) {
1397
/*
1398
* u-boot doesn't set BootOrder, but otherwise participates in the
1399
* boot manager protocol. So we fake it here and don't consider it
1400
* a failure.
1401
*/
1402
boot_order[0] = boot_current;
1403
}
1404
}
1405
1406
/*
1407
* Next, find the boot info structure the UEFI boot manager is
1408
* supposed to setup. We need this so we can walk through it to
1409
* find where we are in the booting process and what to try to
1410
* boot next.
1411
*/
1412
if (uefi_boot_mgr) {
1413
snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
1414
sz = sizeof(boot_info);
1415
rv = efi_global_getenv(buf, &boot_info, &sz);
1416
if (rv == EFI_SUCCESS)
1417
bisz = sz;
1418
else
1419
uefi_boot_mgr = false;
1420
}
1421
1422
/*
1423
* Disable the watchdog timer. By default the boot manager sets
1424
* the timer to 5 minutes before invoking a boot option. If we
1425
* want to return to the boot manager, we have to disable the
1426
* watchdog timer and since we're an interactive program, we don't
1427
* want to wait until the user types "quit". The timer may have
1428
* fired by then. We don't care if this fails. It does not prevent
1429
* normal functioning in any way...
1430
*/
1431
BS->SetWatchdogTimer(0, 0, 0, NULL);
1432
1433
/*
1434
* Initialize the trusted/forbidden certificates from UEFI.
1435
* They will be later used to verify the manifest(s),
1436
* which should contain hashes of verified files.
1437
* This needs to be initialized before any configuration files
1438
* are loaded.
1439
*/
1440
#ifdef EFI_SECUREBOOT
1441
ve_efi_init();
1442
#endif
1443
1444
/*
1445
* Try and find a good currdev based on the image that was booted.
1446
* It might be desirable here to have a short pause to allow falling
1447
* through to the boot loader instead of returning instantly to follow
1448
* the boot protocol and also allow an escape hatch for users wishing
1449
* to try something different.
1450
*/
1451
if (find_currdev(uefi_boot_mgr, boot_info, bisz) != 0)
1452
if (uefi_boot_mgr &&
1453
!interactive_interrupt("Failed to find bootable partition"))
1454
return (EFI_NOT_FOUND);
1455
1456
autoload_font(false); /* Set up the font list for console. */
1457
efi_init_environment();
1458
1459
interact(); /* doesn't return */
1460
1461
return (EFI_SUCCESS); /* keep compiler happy */
1462
}
1463
1464
COMMAND_SET(efi_seed_entropy, "efi-seed-entropy", "try to get entropy from the EFI RNG", command_seed_entropy);
1465
1466
static int
1467
command_seed_entropy(int argc, char *argv[])
1468
{
1469
EFI_STATUS status;
1470
EFI_RNG_PROTOCOL *rng;
1471
unsigned int size_efi = RANDOM_FORTUNA_DEFPOOLSIZE * RANDOM_FORTUNA_NPOOLS;
1472
unsigned int size = RANDOM_FORTUNA_DEFPOOLSIZE * RANDOM_FORTUNA_NPOOLS;
1473
void *buf_efi;
1474
void *buf;
1475
1476
if (argc > 1) {
1477
size_efi = strtol(argv[1], NULL, 0);
1478
1479
/* Don't *compress* the entropy we get from EFI. */
1480
if (size_efi > size)
1481
size = size_efi;
1482
1483
/*
1484
* If the amount of entropy we get from EFI is less than the
1485
* size of a single Fortuna pool -- i.e. not enough to ensure
1486
* that Fortuna is safely seeded -- don't expand it since we
1487
* don't want to trick Fortuna into thinking that it has been
1488
* safely seeded when it has not.
1489
*/
1490
if (size_efi < RANDOM_FORTUNA_DEFPOOLSIZE)
1491
size = size_efi;
1492
}
1493
1494
status = BS->LocateProtocol(&rng_guid, NULL, (VOID **)&rng);
1495
if (status != EFI_SUCCESS) {
1496
command_errmsg = "RNG protocol not found";
1497
return (CMD_ERROR);
1498
}
1499
1500
if ((buf = malloc(size)) == NULL) {
1501
command_errmsg = "out of memory";
1502
return (CMD_ERROR);
1503
}
1504
1505
if ((buf_efi = malloc(size_efi)) == NULL) {
1506
free(buf);
1507
command_errmsg = "out of memory";
1508
return (CMD_ERROR);
1509
}
1510
1511
TSENTER2("rng->GetRNG");
1512
status = rng->GetRNG(rng, NULL, size_efi, (UINT8 *)buf_efi);
1513
TSEXIT();
1514
if (status != EFI_SUCCESS) {
1515
free(buf_efi);
1516
free(buf);
1517
command_errmsg = "GetRNG failed";
1518
return (CMD_ERROR);
1519
}
1520
if (size_efi < size)
1521
pkcs5v2_genkey_raw(buf, size, "", 0, buf_efi, size_efi, 1);
1522
else
1523
memcpy(buf, buf_efi, size);
1524
1525
if (file_addbuf("efi_rng_seed", "boot_entropy_platform", size, buf) != 0) {
1526
free(buf_efi);
1527
free(buf);
1528
return (CMD_ERROR);
1529
}
1530
1531
explicit_bzero(buf_efi, size_efi);
1532
free(buf_efi);
1533
free(buf);
1534
return (CMD_OK);
1535
}
1536
1537
COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
1538
COMMAND_SET(halt, "halt", "power off the system", command_poweroff);
1539
1540
static int
1541
command_poweroff(int argc __unused, char *argv[] __unused)
1542
{
1543
int i;
1544
1545
for (i = 0; devsw[i] != NULL; ++i)
1546
if (devsw[i]->dv_cleanup != NULL)
1547
(devsw[i]->dv_cleanup)();
1548
1549
RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
1550
1551
/* NOTREACHED */
1552
return (CMD_ERROR);
1553
}
1554
1555
COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
1556
1557
static int
1558
command_reboot(int argc, char *argv[])
1559
{
1560
int i;
1561
1562
for (i = 0; devsw[i] != NULL; ++i)
1563
if (devsw[i]->dv_cleanup != NULL)
1564
(devsw[i]->dv_cleanup)();
1565
1566
RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
1567
1568
/* NOTREACHED */
1569
return (CMD_ERROR);
1570
}
1571
1572
COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
1573
1574
static int
1575
command_memmap(int argc __unused, char *argv[] __unused)
1576
{
1577
UINTN sz;
1578
EFI_MEMORY_DESCRIPTOR *map, *p;
1579
UINTN key, dsz;
1580
UINT32 dver;
1581
EFI_STATUS status;
1582
int i, ndesc;
1583
char line[80];
1584
1585
sz = 0;
1586
status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1587
if (status != EFI_BUFFER_TOO_SMALL) {
1588
printf("Can't determine memory map size\n");
1589
return (CMD_ERROR);
1590
}
1591
map = malloc(sz);
1592
status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1593
if (EFI_ERROR(status)) {
1594
printf("Can't read memory map\n");
1595
return (CMD_ERROR);
1596
}
1597
1598
ndesc = sz / dsz;
1599
snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1600
"Type", "Physical", "Virtual", "#Pages", "Attr");
1601
pager_open();
1602
if (pager_output(line)) {
1603
pager_close();
1604
return (CMD_OK);
1605
}
1606
1607
for (i = 0, p = map; i < ndesc;
1608
i++, p = NextMemoryDescriptor(p, dsz)) {
1609
snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
1610
efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
1611
(uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
1612
if (pager_output(line))
1613
break;
1614
1615
if (p->Attribute & EFI_MEMORY_UC)
1616
printf("UC ");
1617
if (p->Attribute & EFI_MEMORY_WC)
1618
printf("WC ");
1619
if (p->Attribute & EFI_MEMORY_WT)
1620
printf("WT ");
1621
if (p->Attribute & EFI_MEMORY_WB)
1622
printf("WB ");
1623
if (p->Attribute & EFI_MEMORY_UCE)
1624
printf("UCE ");
1625
if (p->Attribute & EFI_MEMORY_WP)
1626
printf("WP ");
1627
if (p->Attribute & EFI_MEMORY_RP)
1628
printf("RP ");
1629
if (p->Attribute & EFI_MEMORY_XP)
1630
printf("XP ");
1631
if (p->Attribute & EFI_MEMORY_NV)
1632
printf("NV ");
1633
if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
1634
printf("MR ");
1635
if (p->Attribute & EFI_MEMORY_RO)
1636
printf("RO ");
1637
if (pager_output("\n"))
1638
break;
1639
}
1640
1641
pager_close();
1642
return (CMD_OK);
1643
}
1644
1645
COMMAND_SET(configuration, "configuration", "print configuration tables",
1646
command_configuration);
1647
1648
static int
1649
command_configuration(int argc, char *argv[])
1650
{
1651
UINTN i;
1652
char *name;
1653
1654
printf("NumberOfTableEntries=%lu\n",
1655
(unsigned long)ST->NumberOfTableEntries);
1656
1657
for (i = 0; i < ST->NumberOfTableEntries; i++) {
1658
EFI_GUID *guid;
1659
1660
printf(" ");
1661
guid = &ST->ConfigurationTable[i].VendorGuid;
1662
1663
if (efi_guid_to_name(guid, &name) == true) {
1664
printf(name);
1665
free(name);
1666
} else {
1667
printf("Error while translating UUID to name");
1668
}
1669
printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
1670
}
1671
1672
return (CMD_OK);
1673
}
1674
1675
1676
COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1677
1678
static int
1679
command_mode(int argc, char *argv[])
1680
{
1681
UINTN cols, rows;
1682
unsigned int mode;
1683
int i;
1684
char *cp;
1685
EFI_STATUS status;
1686
SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1687
1688
conout = ST->ConOut;
1689
1690
if (argc > 1) {
1691
mode = strtol(argv[1], &cp, 0);
1692
if (cp[0] != '\0') {
1693
printf("Invalid mode\n");
1694
return (CMD_ERROR);
1695
}
1696
status = conout->QueryMode(conout, mode, &cols, &rows);
1697
if (EFI_ERROR(status)) {
1698
printf("invalid mode %d\n", mode);
1699
return (CMD_ERROR);
1700
}
1701
status = conout->SetMode(conout, mode);
1702
if (EFI_ERROR(status)) {
1703
printf("couldn't set mode %d\n", mode);
1704
return (CMD_ERROR);
1705
}
1706
(void) cons_update_mode(true);
1707
return (CMD_OK);
1708
}
1709
1710
printf("Current mode: %d\n", conout->Mode->Mode);
1711
for (i = 0; i <= conout->Mode->MaxMode; i++) {
1712
status = conout->QueryMode(conout, i, &cols, &rows);
1713
if (EFI_ERROR(status))
1714
continue;
1715
printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1716
(unsigned)rows);
1717
}
1718
1719
if (i != 0)
1720
printf("Select a mode with the command \"mode <number>\"\n");
1721
1722
return (CMD_OK);
1723
}
1724
1725
COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
1726
1727
static void
1728
lsefi_print_handle_info(EFI_HANDLE handle)
1729
{
1730
EFI_DEVICE_PATH *devpath;
1731
EFI_DEVICE_PATH *imagepath;
1732
CHAR16 *dp_name;
1733
1734
imagepath = efi_lookup_image_devpath(handle);
1735
if (imagepath != NULL) {
1736
dp_name = efi_devpath_name(imagepath);
1737
printf("Handle for image %S", dp_name);
1738
efi_free_devpath_name(dp_name);
1739
return;
1740
}
1741
devpath = efi_lookup_devpath(handle);
1742
if (devpath != NULL) {
1743
dp_name = efi_devpath_name(devpath);
1744
printf("Handle for device %S", dp_name);
1745
efi_free_devpath_name(dp_name);
1746
return;
1747
}
1748
printf("Handle %p", handle);
1749
}
1750
1751
static int
1752
command_lsefi(int argc __unused, char *argv[] __unused)
1753
{
1754
char *name;
1755
EFI_HANDLE *buffer = NULL;
1756
EFI_HANDLE handle;
1757
UINTN bufsz = 0, i, j;
1758
EFI_STATUS status;
1759
int ret = 0;
1760
1761
status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1762
if (status != EFI_BUFFER_TOO_SMALL) {
1763
snprintf(command_errbuf, sizeof (command_errbuf),
1764
"unexpected error: %lld", (long long)status);
1765
return (CMD_ERROR);
1766
}
1767
if ((buffer = malloc(bufsz)) == NULL) {
1768
sprintf(command_errbuf, "out of memory");
1769
return (CMD_ERROR);
1770
}
1771
1772
status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1773
if (EFI_ERROR(status)) {
1774
free(buffer);
1775
snprintf(command_errbuf, sizeof (command_errbuf),
1776
"LocateHandle() error: %lld", (long long)status);
1777
return (CMD_ERROR);
1778
}
1779
1780
pager_open();
1781
for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
1782
UINTN nproto = 0;
1783
EFI_GUID **protocols = NULL;
1784
1785
handle = buffer[i];
1786
lsefi_print_handle_info(handle);
1787
if (pager_output("\n"))
1788
break;
1789
/* device path */
1790
1791
status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
1792
if (EFI_ERROR(status)) {
1793
snprintf(command_errbuf, sizeof (command_errbuf),
1794
"ProtocolsPerHandle() error: %lld",
1795
(long long)status);
1796
continue;
1797
}
1798
1799
for (j = 0; j < nproto; j++) {
1800
if (efi_guid_to_name(protocols[j], &name) == true) {
1801
printf(" %s", name);
1802
free(name);
1803
} else {
1804
printf("Error while translating UUID to name");
1805
}
1806
if ((ret = pager_output("\n")) != 0)
1807
break;
1808
}
1809
BS->FreePool(protocols);
1810
if (ret != 0)
1811
break;
1812
}
1813
pager_close();
1814
free(buffer);
1815
return (CMD_OK);
1816
}
1817
1818
#ifdef LOADER_FDT_SUPPORT
1819
extern int command_fdt_internal(int argc, char *argv[]);
1820
1821
/*
1822
* Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1823
* and declaring it as extern is in contradiction with COMMAND_SET() macro
1824
* (which uses static pointer), we're defining wrapper function, which
1825
* calls the proper fdt handling routine.
1826
*/
1827
static int
1828
command_fdt(int argc, char *argv[])
1829
{
1830
1831
return (command_fdt_internal(argc, argv));
1832
}
1833
1834
COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1835
#endif
1836
1837
/*
1838
* Chain load another efi loader.
1839
*/
1840
static int
1841
command_chain(int argc, char *argv[])
1842
{
1843
EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1844
EFI_HANDLE loaderhandle;
1845
EFI_LOADED_IMAGE *loaded_image;
1846
UINTN ExitDataSize;
1847
CHAR16 *ExitData = NULL;
1848
EFI_STATUS status;
1849
struct stat st;
1850
struct devdesc *dev;
1851
char *name, *path;
1852
void *buf;
1853
int fd;
1854
1855
if (argc < 2) {
1856
command_errmsg = "wrong number of arguments";
1857
return (CMD_ERROR);
1858
}
1859
1860
name = argv[1];
1861
1862
if ((fd = open(name, O_RDONLY)) < 0) {
1863
command_errmsg = "no such file";
1864
return (CMD_ERROR);
1865
}
1866
1867
#ifdef LOADER_VERIEXEC
1868
if (verify_file(fd, name, 0, VE_MUST, __func__) < 0) {
1869
sprintf(command_errbuf, "can't verify: %s", name);
1870
close(fd);
1871
return (CMD_ERROR);
1872
}
1873
#endif
1874
1875
if (fstat(fd, &st) < -1) {
1876
command_errmsg = "stat failed";
1877
close(fd);
1878
return (CMD_ERROR);
1879
}
1880
1881
status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1882
if (status != EFI_SUCCESS) {
1883
command_errmsg = "failed to allocate buffer";
1884
close(fd);
1885
return (CMD_ERROR);
1886
}
1887
if (read(fd, buf, st.st_size) != st.st_size) {
1888
command_errmsg = "error while reading the file";
1889
(void)BS->FreePool(buf);
1890
close(fd);
1891
return (CMD_ERROR);
1892
}
1893
close(fd);
1894
status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1895
(void)BS->FreePool(buf);
1896
if (status != EFI_SUCCESS) {
1897
command_errmsg = "LoadImage failed";
1898
return (CMD_ERROR);
1899
}
1900
status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID,
1901
(void **)&loaded_image);
1902
1903
if (argc > 2) {
1904
int i, len = 0;
1905
CHAR16 *argp;
1906
1907
for (i = 2; i < argc; i++)
1908
len += strlen(argv[i]) + 1;
1909
1910
len *= sizeof (*argp);
1911
loaded_image->LoadOptions = argp = malloc (len);
1912
loaded_image->LoadOptionsSize = len;
1913
for (i = 2; i < argc; i++) {
1914
char *ptr = argv[i];
1915
while (*ptr)
1916
*(argp++) = *(ptr++);
1917
*(argp++) = ' ';
1918
}
1919
*(--argv) = 0;
1920
}
1921
1922
if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1923
#ifdef EFI_ZFS_BOOT
1924
struct zfs_devdesc *z_dev;
1925
#endif
1926
struct disk_devdesc *d_dev;
1927
pdinfo_t *hd, *pd;
1928
1929
switch (dev->d_dev->dv_type) {
1930
#ifdef EFI_ZFS_BOOT
1931
case DEVT_ZFS:
1932
z_dev = (struct zfs_devdesc *)dev;
1933
loaded_image->DeviceHandle =
1934
efizfs_get_handle_by_guid(z_dev->pool_guid);
1935
break;
1936
#endif
1937
case DEVT_NET:
1938
loaded_image->DeviceHandle =
1939
efi_find_handle(dev->d_dev, dev->d_unit);
1940
break;
1941
default:
1942
hd = efiblk_get_pdinfo(dev);
1943
if (STAILQ_EMPTY(&hd->pd_part)) {
1944
loaded_image->DeviceHandle = hd->pd_handle;
1945
break;
1946
}
1947
d_dev = (struct disk_devdesc *)dev;
1948
STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1949
/*
1950
* d_partition should be 255
1951
*/
1952
if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1953
loaded_image->DeviceHandle =
1954
pd->pd_handle;
1955
break;
1956
}
1957
}
1958
break;
1959
}
1960
}
1961
1962
dev_cleanup();
1963
1964
status = BS->StartImage(loaderhandle, &ExitDataSize, &ExitData);
1965
if (status != EFI_SUCCESS) {
1966
printf("StartImage failed (%lu)", DECODE_ERROR(status));
1967
if (ExitData != NULL) {
1968
printf(": %S", ExitData);
1969
BS->FreePool(ExitData);
1970
}
1971
putchar('\n');
1972
command_errmsg = "";
1973
free(loaded_image->LoadOptions);
1974
loaded_image->LoadOptions = NULL;
1975
status = BS->UnloadImage(loaded_image);
1976
return (CMD_ERROR);
1977
}
1978
1979
return (CMD_ERROR); /* not reached */
1980
}
1981
1982
COMMAND_SET(chain, "chain", "chain load file", command_chain);
1983
1984
#if defined(LOADER_NET_SUPPORT)
1985
extern struct in_addr servip;
1986
static int
1987
command_netserver(int argc, char *argv[])
1988
{
1989
char *proto;
1990
n_long rootaddr;
1991
1992
if (argc > 2) {
1993
command_errmsg = "wrong number of arguments";
1994
return (CMD_ERROR);
1995
}
1996
if (argc < 2) {
1997
proto = netproto == NET_TFTP ? "tftp://" : "nfs://";
1998
printf("Netserver URI: %s%s%s\n", proto, intoa(rootip.s_addr),
1999
rootpath);
2000
return (CMD_OK);
2001
}
2002
if (argc == 2) {
2003
strncpy(rootpath, argv[1], sizeof(rootpath));
2004
rootpath[sizeof(rootpath) -1] = '\0';
2005
if ((rootaddr = net_parse_rootpath()) != INADDR_NONE)
2006
servip.s_addr = rootip.s_addr = rootaddr;
2007
return (CMD_OK);
2008
}
2009
return (CMD_ERROR); /* not reached */
2010
2011
}
2012
2013
COMMAND_SET(netserver, "netserver", "change or display netserver URI",
2014
command_netserver);
2015
#endif
2016
2017