#include <stand.h>
#include <sys/disk.h>
#include <sys/param.h>
#include <sys/reboot.h>
#include <sys/boot.h>
#ifdef EFI_ZFS_BOOT
#include <sys/zfs_bootenv.h>
#endif
#include <paths.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <stdint.h>
#include <string.h>
#include <setjmp.h>
#include <disk.h>
#include <dev_net.h>
#include <net.h>
#include <machine/_inttypes.h>
#include <efi.h>
#include <efilib.h>
#include <efichar.h>
#include <efirng.h>
#include <uuid.h>
#include <bootstrap.h>
#include <smbios.h>
#include <dev/random/fortuna.h>
#include <geom/eli/pkcs5v2.h>
#include "efizfs.h"
#include "framebuffer.h"
#include "platform/acfreebsd.h"
#include "acconfig.h"
#define ACPI_SYSTEM_XFACE
#include "actypes.h"
#include "actbl.h"
#include "loader_efi.h"
struct arch_switch archsw = {
.arch_autoload = efi_autoload,
.arch_getdev = efi_getdev,
.arch_copyin = efi_copyin,
.arch_copyout = efi_copyout,
#if defined(__amd64__) || defined(__i386__)
.arch_hypervisor = x86_hypervisor,
#endif
.arch_readin = efi_readin,
.arch_zfs_probe = efi_zfs_probe,
};
EFI_GUID acpi = ACPI_TABLE_GUID;
EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
EFI_GUID devid = DEVICE_PATH_PROTOCOL;
EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
EFI_GUID mps = MPS_TABLE_GUID;
EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
EFI_GUID smbios = SMBIOS_TABLE_GUID;
EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
EFI_GUID esrt = ESRT_TABLE_GUID;
EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
EFI_GUID fdtdtb = FDT_TABLE_GUID;
EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
static int fail_timeout = 5;
UINT16 boot_current;
EFI_LOADED_IMAGE *boot_img;
ACPI_TABLE_RSDP *rsdp;
static bool
has_keyboard(void)
{
EFI_STATUS status;
EFI_DEVICE_PATH *path;
EFI_HANDLE *hin, *hin_end, *walker;
UINTN sz;
bool retval = false;
sz = 0;
hin = NULL;
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
if (status == EFI_BUFFER_TOO_SMALL) {
hin = (EFI_HANDLE *)malloc(sz);
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
hin);
if (EFI_ERROR(status))
free(hin);
}
if (EFI_ERROR(status))
return retval;
hin_end = &hin[sz / sizeof(*hin)];
for (walker = hin; walker < hin_end; walker++) {
status = OpenProtocolByHandle(*walker, &devid, (void **)&path);
if (EFI_ERROR(status))
continue;
while (!IsDevicePathEnd(path)) {
if (DevicePathType(path) == ACPI_DEVICE_PATH &&
(DevicePathSubType(path) == ACPI_DP ||
DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
ACPI_HID_DEVICE_PATH *acpi;
acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
(acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
retval = true;
goto out;
}
} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
DevicePathSubType(path) == MSG_USB_CLASS_DP) {
USB_CLASS_DEVICE_PATH *usb;
usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
if (usb->DeviceClass == 3 &&
usb->DeviceSubClass == 1 &&
usb->DeviceProtocol == 1) {
retval = true;
goto out;
}
}
path = NextDevicePathNode(path);
}
}
out:
free(hin);
return retval;
}
static void
set_currdev_devdesc(struct devdesc *currdev)
{
const char *devname;
devname = devformat(currdev);
printf("Setting currdev to %s\n", devname);
set_currdev(devname);
}
static void
set_currdev_devsw(struct devsw *dev, int unit)
{
struct devdesc currdev;
currdev.d_dev = dev;
currdev.d_unit = unit;
set_currdev_devdesc(&currdev);
}
static void
set_currdev_pdinfo(pdinfo_t *dp)
{
if (dp->pd_devsw->dv_type == DEVT_DISK) {
struct disk_devdesc currdev;
currdev.dd.d_dev = dp->pd_devsw;
if (dp->pd_parent == NULL) {
currdev.dd.d_unit = dp->pd_unit;
currdev.d_slice = D_SLICENONE;
currdev.d_partition = D_PARTNONE;
} else {
currdev.dd.d_unit = dp->pd_parent->pd_unit;
currdev.d_slice = dp->pd_unit;
currdev.d_partition = D_PARTISGPT;
}
set_currdev_devdesc((struct devdesc *)&currdev);
} else {
set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
}
}
static bool
sanity_check_currdev(void)
{
struct stat st;
return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 ||
#ifdef PATH_BOOTABLE_TOKEN
stat(PATH_BOOTABLE_TOKEN, &st) == 0 ||
#endif
stat(PATH_KERNEL, &st) == 0);
}
#ifdef EFI_ZFS_BOOT
static bool
probe_zfs_currdev(uint64_t guid)
{
char buf[VDEV_PAD_SIZE];
char *devname;
struct zfs_devdesc currdev;
currdev.dd.d_dev = &zfs_dev;
currdev.dd.d_unit = 0;
currdev.pool_guid = guid;
currdev.root_guid = 0;
devname = devformat(&currdev.dd);
set_currdev(devname);
printf("Setting currdev to %s\n", devname);
init_zfs_boot_options(devname);
if (zfs_get_bootonce(&currdev, OS_BOOTONCE, buf, sizeof(buf)) == 0) {
printf("zfs bootonce: %s\n", buf);
set_currdev(buf);
setenv("zfs-bootonce", buf, 1);
}
(void)zfs_attach_nvstore(&currdev);
return (sanity_check_currdev());
}
#endif
#ifdef MD_IMAGE_SIZE
extern struct devsw md_dev;
static bool
probe_md_currdev(void)
{
bool rv;
set_currdev_devsw(&md_dev, 0);
rv = sanity_check_currdev();
if (!rv)
printf("MD not present\n");
return (rv);
}
#endif
static bool
try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
{
uint64_t guid;
#ifdef EFI_ZFS_BOOT
if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
return (probe_zfs_currdev(guid));
#endif
set_currdev_pdinfo(pp);
return (sanity_check_currdev());
}
static void
fix_dosisms(char *p)
{
while (*p) {
if (isupper(*p))
*p = tolower(*p);
else if (*p == '\\')
*p = '/';
p++;
}
}
#define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 };
static int
match_boot_info(char *boot_info, size_t bisz)
{
uint32_t attr;
uint16_t fplen;
size_t len;
char *walker, *ep;
EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
pdinfo_t *pp;
CHAR16 *descr;
char *kernel = NULL;
FILEPATH_DEVICE_PATH *fp;
struct stat st;
CHAR16 *text;
if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
return NOT_SPECIFIC;
walker = boot_info;
ep = walker + bisz;
memcpy(&attr, walker, sizeof(attr));
walker += sizeof(attr);
memcpy(&fplen, walker, sizeof(fplen));
walker += sizeof(fplen);
descr = (CHAR16 *)(intptr_t)walker;
len = ucs2len(descr);
walker += (len + 1) * sizeof(CHAR16);
last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
edp = (EFI_DEVICE_PATH *)(walker + fplen);
if ((char *)edp > ep)
return NOT_SPECIFIC;
while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
text = efi_devpath_name(dp);
if (text != NULL) {
printf(" BootInfo Path: %S\n", text);
efi_free_devpath_name(text);
}
last_dp = dp;
dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
}
if (last_dp == first_dp) {
printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
return NOT_SPECIFIC;
}
if (efi_devpath_to_media_path(last_dp) == NULL) {
printf("Ignoring Boot%04x: No Media Path\n", boot_current);
return NOT_SPECIFIC;
}
pp = efiblk_get_pdinfo_by_device_path(last_dp);
if (pp == NULL) {
printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
return BAD_CHOICE;
}
set_currdev_pdinfo(pp);
if (!sanity_check_currdev()) {
printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
return BAD_CHOICE;
}
dp = efi_devpath_last_node(last_dp);
if (DevicePathType(dp) != MEDIA_DEVICE_PATH ||
DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
printf("Using Boot%04x for root partition\n", boot_current);
return (BOOT_INFO_OK);
}
fp = (FILEPATH_DEVICE_PATH *)dp;
ucs2_to_utf8(fp->PathName, &kernel);
if (kernel == NULL) {
printf("Not using Boot%04x: can't decode kernel\n", boot_current);
return (BAD_CHOICE);
}
if (*kernel == '\\' || isupper(*kernel))
fix_dosisms(kernel);
if (stat(kernel, &st) != 0) {
free(kernel);
printf("Not using Boot%04x: can't find %s\n", boot_current,
kernel);
return (BAD_CHOICE);
}
setenv("kernel", kernel, 1);
free(kernel);
text = efi_devpath_name(last_dp);
if (text) {
printf("Using Boot%04x %S + %s\n", boot_current, text,
kernel);
efi_free_devpath_name(text);
}
return (BOOT_INFO_OK);
}
static int
find_currdev(bool do_bootmgr, bool is_last,
char *boot_info, size_t boot_info_sz)
{
pdinfo_t *dp, *pp;
EFI_DEVICE_PATH *devpath, *copy;
EFI_HANDLE h;
CHAR16 *text;
struct devsw *dev;
int unit;
uint64_t extra;
int rv;
char *rootdev;
rootdev = getenv("rootdev");
if (rootdev != NULL && *rootdev != '\0') {
printf(" Setting currdev to configured rootdev %s\n",
rootdev);
set_currdev(rootdev);
return (0);
}
do {
rootdev = getenv("uefi_rootdev");
if (rootdev == NULL)
break;
devpath = efi_name_to_devpath(rootdev);
if (devpath == NULL)
break;
dp = efiblk_get_pdinfo_by_device_path(devpath);
efi_devpath_free(devpath);
if (dp == NULL)
break;
printf(" Setting currdev to UEFI path %s\n",
rootdev);
set_currdev_pdinfo(dp);
return (0);
} while (0);
if (do_bootmgr) {
rv = match_boot_info(boot_info, boot_info_sz);
switch (rv) {
case BOOT_INFO_OK:
return (0);
case BAD_CHOICE:
return (ENOENT);
}
}
#ifdef EFI_ZFS_BOOT
if (pool_guid != 0) {
printf("Trying ZFS pool\n");
if (probe_zfs_currdev(pool_guid))
return (0);
}
#endif
#ifdef MD_IMAGE_SIZE
printf("Trying MD\n");
if (probe_md_currdev())
return (0);
#endif
dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle);
if (dp != NULL) {
text = efi_devpath_name(dp->pd_devpath);
if (text != NULL) {
printf("Trying ESP: %S\n", text);
efi_free_devpath_name(text);
}
set_currdev_pdinfo(dp);
if (sanity_check_currdev())
return (0);
if (dp->pd_parent != NULL) {
pdinfo_t *espdp = dp;
dp = dp->pd_parent;
STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
if (espdp == pp)
continue;
text = efi_devpath_name(pp->pd_devpath);
if (text != NULL) {
printf("Trying: %S\n", text);
efi_free_devpath_name(text);
}
if (try_as_currdev(dp, pp))
return (0);
}
}
}
if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) {
set_currdev_devsw(dev, unit);
if (sanity_check_currdev())
return (0);
}
copy = NULL;
devpath = efi_lookup_image_devpath(IH);
while (devpath != NULL) {
h = efi_devpath_handle(devpath);
if (h == NULL)
break;
free(copy);
copy = NULL;
if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
set_currdev_devsw(dev, unit);
if (sanity_check_currdev())
return (0);
}
devpath = efi_lookup_devpath(h);
if (devpath != NULL) {
copy = efi_devpath_trim(devpath);
devpath = copy;
}
}
free(copy);
return (ENOENT);
}
static bool
interactive_interrupt(const char *msg)
{
time_t now, then, last;
last = 0;
now = then = getsecs();
printf("%s\n", msg);
if (fail_timeout == -2)
return (true);
if (fail_timeout == -1)
return (false);
do {
if (last != now) {
printf("press any key to interrupt reboot in %d seconds\r",
fail_timeout - (int)(now - then));
last = now;
}
if (ischar())
return (true);
now = getsecs();
} while (now - then < fail_timeout);
return (false);
}
static int
parse_args(int argc, CHAR16 *argv[])
{
int i, howto;
char var[128];
howto = 0;
for (i = 0; i < argc; i++) {
cpy16to8(argv[i], var, sizeof(var));
howto |= boot_parse_arg(var);
}
return (howto);
}
static void
setenv_int(const char *key, int val)
{
char buf[20];
snprintf(buf, sizeof(buf), "%d", val);
setenv(key, buf, 1);
}
static void *
acpi_map_sdt(vm_offset_t addr)
{
return ((void *)addr);
}
static int
acpi_checksum(void *p, size_t length)
{
uint8_t *bp;
uint8_t sum;
bp = p;
sum = 0;
while (length--)
sum += *bp++;
return (sum);
}
static void *
acpi_find_table(uint8_t *sig)
{
int entries, i, addr_size;
ACPI_TABLE_HEADER *sdp;
ACPI_TABLE_RSDT *rsdt;
ACPI_TABLE_XSDT *xsdt;
vm_offset_t addr;
if (rsdp == NULL)
return (NULL);
rsdt = (ACPI_TABLE_RSDT *)(uintptr_t)rsdp->RsdtPhysicalAddress;
xsdt = (ACPI_TABLE_XSDT *)(uintptr_t)rsdp->XsdtPhysicalAddress;
if (rsdp->Revision < 2) {
sdp = (ACPI_TABLE_HEADER *)rsdt;
addr_size = sizeof(uint32_t);
} else {
sdp = (ACPI_TABLE_HEADER *)xsdt;
addr_size = sizeof(uint64_t);
}
entries = (sdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
for (i = 0; i < entries; i++) {
if (addr_size == 4)
addr = le32toh(rsdt->TableOffsetEntry[i]);
else
addr = le64toh(xsdt->TableOffsetEntry[i]);
if (addr == 0)
continue;
sdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr);
if (acpi_checksum(sdp, sdp->Length)) {
printf("RSDT entry %d (sig %.4s) is corrupt", i,
sdp->Signature);
continue;
}
if (memcmp(sig, sdp->Signature, 4) == 0)
return (sdp);
}
return (NULL);
}
static const char *
acpi_uart_type(UINT8 t)
{
static const char *types[] = {
[0x00] = "ns8250",
[0x01] = "ns8250",
[0x03] = "pl011",
[0x05] = "ns8250",
[0x0d] = "pl011",
[0x0e] = "pl011",
[0x12] = "ns8250",
};
if (t >= nitems(types))
return (NULL);
return (types[t]);
}
static int
acpi_uart_baud(UINT8 b)
{
static int baud[] = { 0, -1, -1, 9600, 19200, -1, 57600, 115200 };
if (b > 7)
return (-1);
return (baud[b]);
}
static int
acpi_uart_regionwidth(UINT8 rw)
{
if (rw == 0)
return (1);
if (rw > 4)
return (-1);
return (1 << (rw - 1));
}
static const char *
acpi_uart_parity(UINT8 p)
{
return ("none");
}
static int
check_acpi_spcr(void)
{
ACPI_TABLE_SPCR *spcr;
int br, db, io, rs, rw, sb, xo, pv, pd;
uintmax_t mm;
const char *dt, *pa;
char *val = NULL;
spcr = acpi_find_table(ACPI_SIG_SPCR);
if (spcr == NULL)
return (0);
dt = acpi_uart_type(spcr->InterfaceType);
if (dt == NULL) {
printf("UART Type %d not known\n", spcr->InterfaceType);
return (0);
}
io = -1;
pv = spcr->PciVendorId;
pd = spcr->PciDeviceId;
if (pv == 0xffff && pd == 0xffff) {
if (spcr->SerialPort.SpaceId == 1)
io = spcr->SerialPort.Address;
else {
mm = spcr->SerialPort.Address;
rs = ffs(spcr->SerialPort.BitWidth) - 4;
rw = acpi_uart_regionwidth(spcr->SerialPort.AccessWidth);
}
} else {
}
pa = acpi_uart_parity(spcr->Parity);
sb = spcr->StopBits;
db = 8;
if (spcr->Header.Revision <= 2)
xo = 0;
else
xo = spcr->UartClkFreq;
if (spcr->Header.Revision <= 3 || spcr->PreciseBaudrate == 0)
br = acpi_uart_baud(spcr->BaudRate);
else
br = spcr->PreciseBaudrate;
if (io != -1) {
asprintf(&val, "db:%d,dt:%s,io:%#x,pa:%s,br:%d,xo=%d",
db, dt, io, pa, br, xo);
} else if (pv != 0xffff && pd != 0xffff) {
asprintf(&val, "db:%d,dt:%s,pv:%#x,pd:%#x,pa:%s,br:%d,xo=%d",
db, dt, pv, pd, pa, br, xo);
} else {
asprintf(&val, "db:%d,dt:%s,mm:%#jx,rs:%d,rw:%d,pa:%s,br:%d,xo=%d",
db, dt, mm, rs, rw, pa, br, xo);
}
env_setenv("hw.uart.console", EV_VOLATILE, val, NULL, NULL);
free(val);
return (RB_SERIAL);
}
int
parse_uefi_con_out(void)
{
int how, rv;
int vid_seen = 0, com_seen = 0, seen = 0;
size_t sz;
char buf[4096], *ep;
EFI_DEVICE_PATH *node;
ACPI_HID_DEVICE_PATH *acpi;
UART_DEVICE_PATH *uart;
bool pci_pending;
how = check_acpi_spcr();
sz = sizeof(buf);
rv = efi_global_getenv("ConOut", buf, &sz);
if (rv != EFI_SUCCESS)
rv = efi_global_getenv("ConOutDev", buf, &sz);
if (rv != EFI_SUCCESS)
rv = efi_global_getenv("ConIn", buf, &sz);
if (rv != EFI_SUCCESS) {
if (efi_has_gop())
how |= RB_MULTIPLE;
else
how |= RB_MULTIPLE | RB_SERIAL;
setenv("console", "efi,comconsole", 1);
goto out;
}
ep = buf + sz;
node = (EFI_DEVICE_PATH *)buf;
while ((char *)node < ep) {
if (IsDevicePathEndType(node)) {
if (pci_pending && vid_seen == 0)
vid_seen = ++seen;
}
pci_pending = false;
if (DevicePathType(node) == ACPI_DEVICE_PATH &&
(DevicePathSubType(node) == ACPI_DP ||
DevicePathSubType(node) == ACPI_EXTENDED_DP)) {
acpi = (void *)node;
if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
setenv_int("efi_8250_uid", acpi->UID);
com_seen = ++seen;
}
} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
DevicePathSubType(node) == MSG_UART_DP) {
com_seen = ++seen;
uart = (void *)node;
setenv_int("efi_com_speed", uart->BaudRate);
} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
DevicePathSubType(node) == ACPI_ADR_DP) {
vid_seen = ++seen;
} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
DevicePathSubType(node) == HW_PCI_DP) {
pci_pending = true;
}
node = NextDevicePathNode(node);
}
how = 0;
if (vid_seen && com_seen) {
how |= RB_MULTIPLE;
if (com_seen < vid_seen)
how |= RB_SERIAL;
} else if (com_seen)
how |= RB_SERIAL;
out:
return (how);
}
void
parse_loader_efi_config(EFI_HANDLE h, const char *env_fn)
{
pdinfo_t *dp;
struct stat st;
int fd = -1;
char *env = NULL;
dp = efiblk_get_pdinfo_by_handle(h);
if (dp == NULL)
return;
set_currdev_pdinfo(dp);
if (stat(env_fn, &st) != 0)
return;
fd = open(env_fn, O_RDONLY);
if (fd == -1)
return;
env = malloc(st.st_size + 1);
if (env == NULL)
goto out;
if (read(fd, env, st.st_size) != st.st_size)
goto out;
env[st.st_size] = '\0';
boot_parse_cmdline(env);
out:
free(env);
close(fd);
}
static void
read_loader_env(const char *name, char *def_fn, bool once)
{
UINTN len;
char *fn, *freeme = NULL;
len = 0;
fn = def_fn;
if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) {
freeme = fn = malloc(len + 1);
if (fn != NULL) {
if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) {
free(fn);
fn = NULL;
printf(
"Can't fetch FreeBSD::%s we know is there\n", name);
} else {
if (once)
efi_freebsd_delenv(name);
fn[len] = '\0';
}
} else {
printf(
"Can't allocate %d bytes to fetch FreeBSD::%s env var\n",
len, name);
}
}
if (fn) {
printf(" Reading loader env vars from %s\n", fn);
parse_loader_efi_config(boot_img->DeviceHandle, fn);
}
}
caddr_t
ptov(uintptr_t x)
{
return ((caddr_t)x);
}
static void
acpi_detect(void)
{
char buf[24];
int revision;
feature_enable(FEATURE_EARLY_ACPI);
if ((rsdp = efi_get_table(&acpi20)) == NULL)
if ((rsdp = efi_get_table(&acpi)) == NULL)
return;
sprintf(buf, "0x%016"PRIxPTR, (uintptr_t)rsdp);
setenv("acpi.rsdp", buf, 1);
revision = rsdp->Revision;
if (revision == 0)
revision = 1;
sprintf(buf, "%d", revision);
setenv("acpi.revision", buf, 1);
strncpy(buf, rsdp->OemId, sizeof(rsdp->OemId));
buf[sizeof(rsdp->OemId)] = '\0';
setenv("acpi.oem", buf, 1);
sprintf(buf, "0x%016x", rsdp->RsdtPhysicalAddress);
setenv("acpi.rsdt", buf, 1);
if (revision >= 2) {
sprintf(buf, "0x%016llx",
(unsigned long long)rsdp->XsdtPhysicalAddress);
setenv("acpi.xsdt", buf, 1);
sprintf(buf, "%d", rsdp->Length);
setenv("acpi.xsdt_length", buf, 1);
}
}
static void
efi_smbios_detect(void)
{
VOID *smbios_v2_ptr = NULL;
UINTN k;
for (k = 0; k < ST->NumberOfTableEntries; k++) {
EFI_GUID *guid;
VOID *const VT = ST->ConfigurationTable[k].VendorTable;
char buf[40];
bool is_smbios_v2, is_smbios_v3;
guid = &ST->ConfigurationTable[k].VendorGuid;
is_smbios_v2 = memcmp(guid, &smbios, sizeof(*guid)) == 0;
is_smbios_v3 = memcmp(guid, &smbios3, sizeof(*guid)) == 0;
if (!is_smbios_v2 && !is_smbios_v3)
continue;
snprintf(buf, sizeof(buf), "%p", VT);
setenv("hint.smbios.0.mem", buf, 1);
if (is_smbios_v2)
smbios_v2_ptr = VT;
else if (smbios_detect(VT) != NULL)
return;
}
if (smbios_v2_ptr != NULL)
(void)smbios_detect(smbios_v2_ptr);
}
EFI_STATUS
main(int argc, CHAR16 *argv[])
{
int howto, i, uhowto;
bool has_kbd, is_last;
char *s;
EFI_DEVICE_PATH *imgpath;
CHAR16 *text;
EFI_STATUS rv;
size_t sz, bosz = 0, bisz = 0;
UINT16 boot_order[100];
char boot_info[4096];
char buf[32];
bool uefi_boot_mgr;
#if !defined(__arm__)
efi_smbios_detect();
#endif
(void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img);
acpi_detect();
setenv("console", "efi", 1);
uhowto = parse_uefi_con_out();
#if defined(__riscv)
if ((uhowto & RB_SERIAL) != 0)
setenv("console", "comconsole", 1);
#endif
cons_probe();
env_setenv("print_delay", EV_VOLATILE, "", setprint_delay, env_nounset);
env_setenv("currdev", EV_VOLATILE, "", gen_setcurrdev, env_nounset);
efi_time_init();
bcache_init(32768, 512);
i = efipart_inithandles();
if (i != 0 && i != ENOENT) {
printf("efipart_inithandles failed with ERRNO %d, expect "
"failures\n", i);
}
devinit();
has_kbd = has_keyboard();
howto = parse_args(argc, argv);
if (!has_kbd && (howto & RB_PROBE))
howto |= RB_SERIAL | RB_MULTIPLE;
howto &= ~RB_PROBE;
read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false);
read_loader_env("NextLoaderEnv", NULL, true);
#define VIDEO_ONLY 0
#define SERIAL_ONLY RB_SERIAL
#define VID_SER_BOTH RB_MULTIPLE
#define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE)
#define CON_MASK (RB_SERIAL | RB_MULTIPLE)
if (strcmp(getenv("console"), "efi") == 0) {
if ((howto & CON_MASK) == 0) {
howto = howto | (uhowto & CON_MASK);
} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
} else if ((uhowto & (CON_MASK)) != 0) {
} else {
switch (howto & CON_MASK) {
case SERIAL_ONLY:
setenv("console", "comconsole", 1);
break;
case VID_SER_BOTH:
setenv("console", "efi comconsole", 1);
break;
case SER_VID_BOTH:
setenv("console", "comconsole efi", 1);
break;
}
}
}
boot_howto_to_env(howto);
if (efi_copy_init())
return (EFI_BUFFER_TOO_SMALL);
if ((s = getenv("fail_timeout")) != NULL)
fail_timeout = strtol(s, NULL, 10);
printf("%s\n", bootprog_info);
printf(" Command line arguments:");
for (i = 0; i < argc; i++)
printf(" %S", argv[i]);
printf("\n");
printf(" Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase);
printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
ST->Hdr.Revision & 0xffff);
printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
printf(" Console: %s (%#x)\n", getenv("console"), howto);
text = efi_devpath_name(boot_img->FilePath);
if (text != NULL) {
printf(" Load Path: %S\n", text);
efi_setenv_freebsd_wcs("LoaderPath", text);
efi_free_devpath_name(text);
}
rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid,
(void **)&imgpath);
if (rv == EFI_SUCCESS) {
text = efi_devpath_name(imgpath);
if (text != NULL) {
printf(" Load Device: %S\n", text);
efi_setenv_freebsd_wcs("LoaderDev", text);
efi_free_devpath_name(text);
}
}
if (getenv("uefi_ignore_boot_mgr") != NULL) {
printf(" Ignoring UEFI boot manager\n");
uefi_boot_mgr = false;
} else {
uefi_boot_mgr = true;
boot_current = 0;
sz = sizeof(boot_current);
rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
if (rv == EFI_SUCCESS)
printf(" BootCurrent: %04x\n", boot_current);
else {
boot_current = 0xffff;
uefi_boot_mgr = false;
}
sz = sizeof(boot_order);
rv = efi_global_getenv("BootOrder", &boot_order, &sz);
if (rv == EFI_SUCCESS) {
printf(" BootOrder:");
for (i = 0; i < sz / sizeof(boot_order[0]); i++)
printf(" %04x%s", boot_order[i],
boot_order[i] == boot_current ? "[*]" : "");
printf("\n");
is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
bosz = sz;
} else if (uefi_boot_mgr) {
bosz = sizeof(boot_order[0]);
boot_order[0] = boot_current;
is_last = true;
}
}
if (uefi_boot_mgr) {
snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
sz = sizeof(boot_info);
rv = efi_global_getenv(buf, &boot_info, &sz);
if (rv == EFI_SUCCESS)
bisz = sz;
else
uefi_boot_mgr = false;
}
BS->SetWatchdogTimer(0, 0, 0, NULL);
#ifdef EFI_SECUREBOOT
ve_efi_init();
#endif
if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0)
if (uefi_boot_mgr &&
!interactive_interrupt("Failed to find bootable partition"))
return (EFI_NOT_FOUND);
autoload_font(false);
efi_init_environment();
interact();
return (EFI_SUCCESS);
}
COMMAND_SET(efi_seed_entropy, "efi-seed-entropy", "try to get entropy from the EFI RNG", command_seed_entropy);
static int
command_seed_entropy(int argc, char *argv[])
{
EFI_STATUS status;
EFI_RNG_PROTOCOL *rng;
unsigned int size_efi = RANDOM_FORTUNA_DEFPOOLSIZE * RANDOM_FORTUNA_NPOOLS;
unsigned int size = RANDOM_FORTUNA_DEFPOOLSIZE * RANDOM_FORTUNA_NPOOLS;
void *buf_efi;
void *buf;
if (argc > 1) {
size_efi = strtol(argv[1], NULL, 0);
if (size_efi > size)
size = size_efi;
if (size_efi < RANDOM_FORTUNA_DEFPOOLSIZE)
size = size_efi;
}
status = BS->LocateProtocol(&rng_guid, NULL, (VOID **)&rng);
if (status != EFI_SUCCESS) {
command_errmsg = "RNG protocol not found";
return (CMD_ERROR);
}
if ((buf = malloc(size)) == NULL) {
command_errmsg = "out of memory";
return (CMD_ERROR);
}
if ((buf_efi = malloc(size_efi)) == NULL) {
free(buf);
command_errmsg = "out of memory";
return (CMD_ERROR);
}
TSENTER2("rng->GetRNG");
status = rng->GetRNG(rng, NULL, size_efi, (UINT8 *)buf_efi);
TSEXIT();
if (status != EFI_SUCCESS) {
free(buf_efi);
free(buf);
command_errmsg = "GetRNG failed";
return (CMD_ERROR);
}
if (size_efi < size)
pkcs5v2_genkey_raw(buf, size, "", 0, buf_efi, size_efi, 1);
else
memcpy(buf, buf_efi, size);
if (file_addbuf("efi_rng_seed", "boot_entropy_platform", size, buf) != 0) {
free(buf_efi);
free(buf);
return (CMD_ERROR);
}
explicit_bzero(buf_efi, size_efi);
free(buf_efi);
free(buf);
return (CMD_OK);
}
COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
COMMAND_SET(halt, "halt", "power off the system", command_poweroff);
static int
command_poweroff(int argc __unused, char *argv[] __unused)
{
int i;
for (i = 0; devsw[i] != NULL; ++i)
if (devsw[i]->dv_cleanup != NULL)
(devsw[i]->dv_cleanup)();
RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
return (CMD_ERROR);
}
COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
static int
command_reboot(int argc, char *argv[])
{
int i;
for (i = 0; devsw[i] != NULL; ++i)
if (devsw[i]->dv_cleanup != NULL)
(devsw[i]->dv_cleanup)();
RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
return (CMD_ERROR);
}
COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
static int
command_memmap(int argc __unused, char *argv[] __unused)
{
UINTN sz;
EFI_MEMORY_DESCRIPTOR *map, *p;
UINTN key, dsz;
UINT32 dver;
EFI_STATUS status;
int i, ndesc;
char line[80];
sz = 0;
status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
if (status != EFI_BUFFER_TOO_SMALL) {
printf("Can't determine memory map size\n");
return (CMD_ERROR);
}
map = malloc(sz);
status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
if (EFI_ERROR(status)) {
printf("Can't read memory map\n");
return (CMD_ERROR);
}
ndesc = sz / dsz;
snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
"Type", "Physical", "Virtual", "#Pages", "Attr");
pager_open();
if (pager_output(line)) {
pager_close();
return (CMD_OK);
}
for (i = 0, p = map; i < ndesc;
i++, p = NextMemoryDescriptor(p, dsz)) {
snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
(uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
if (pager_output(line))
break;
if (p->Attribute & EFI_MEMORY_UC)
printf("UC ");
if (p->Attribute & EFI_MEMORY_WC)
printf("WC ");
if (p->Attribute & EFI_MEMORY_WT)
printf("WT ");
if (p->Attribute & EFI_MEMORY_WB)
printf("WB ");
if (p->Attribute & EFI_MEMORY_UCE)
printf("UCE ");
if (p->Attribute & EFI_MEMORY_WP)
printf("WP ");
if (p->Attribute & EFI_MEMORY_RP)
printf("RP ");
if (p->Attribute & EFI_MEMORY_XP)
printf("XP ");
if (p->Attribute & EFI_MEMORY_NV)
printf("NV ");
if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
printf("MR ");
if (p->Attribute & EFI_MEMORY_RO)
printf("RO ");
if (pager_output("\n"))
break;
}
pager_close();
return (CMD_OK);
}
COMMAND_SET(configuration, "configuration", "print configuration tables",
command_configuration);
static int
command_configuration(int argc, char *argv[])
{
UINTN i;
char *name;
printf("NumberOfTableEntries=%lu\n",
(unsigned long)ST->NumberOfTableEntries);
for (i = 0; i < ST->NumberOfTableEntries; i++) {
EFI_GUID *guid;
printf(" ");
guid = &ST->ConfigurationTable[i].VendorGuid;
if (efi_guid_to_name(guid, &name) == true) {
printf(name);
free(name);
} else {
printf("Error while translating UUID to name");
}
printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
}
return (CMD_OK);
}
COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
static int
command_mode(int argc, char *argv[])
{
UINTN cols, rows;
unsigned int mode;
int i;
char *cp;
EFI_STATUS status;
SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
conout = ST->ConOut;
if (argc > 1) {
mode = strtol(argv[1], &cp, 0);
if (cp[0] != '\0') {
printf("Invalid mode\n");
return (CMD_ERROR);
}
status = conout->QueryMode(conout, mode, &cols, &rows);
if (EFI_ERROR(status)) {
printf("invalid mode %d\n", mode);
return (CMD_ERROR);
}
status = conout->SetMode(conout, mode);
if (EFI_ERROR(status)) {
printf("couldn't set mode %d\n", mode);
return (CMD_ERROR);
}
(void) cons_update_mode(true);
return (CMD_OK);
}
printf("Current mode: %d\n", conout->Mode->Mode);
for (i = 0; i <= conout->Mode->MaxMode; i++) {
status = conout->QueryMode(conout, i, &cols, &rows);
if (EFI_ERROR(status))
continue;
printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
(unsigned)rows);
}
if (i != 0)
printf("Select a mode with the command \"mode <number>\"\n");
return (CMD_OK);
}
COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
static void
lsefi_print_handle_info(EFI_HANDLE handle)
{
EFI_DEVICE_PATH *devpath;
EFI_DEVICE_PATH *imagepath;
CHAR16 *dp_name;
imagepath = efi_lookup_image_devpath(handle);
if (imagepath != NULL) {
dp_name = efi_devpath_name(imagepath);
printf("Handle for image %S", dp_name);
efi_free_devpath_name(dp_name);
return;
}
devpath = efi_lookup_devpath(handle);
if (devpath != NULL) {
dp_name = efi_devpath_name(devpath);
printf("Handle for device %S", dp_name);
efi_free_devpath_name(dp_name);
return;
}
printf("Handle %p", handle);
}
static int
command_lsefi(int argc __unused, char *argv[] __unused)
{
char *name;
EFI_HANDLE *buffer = NULL;
EFI_HANDLE handle;
UINTN bufsz = 0, i, j;
EFI_STATUS status;
int ret = 0;
status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
if (status != EFI_BUFFER_TOO_SMALL) {
snprintf(command_errbuf, sizeof (command_errbuf),
"unexpected error: %lld", (long long)status);
return (CMD_ERROR);
}
if ((buffer = malloc(bufsz)) == NULL) {
sprintf(command_errbuf, "out of memory");
return (CMD_ERROR);
}
status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
if (EFI_ERROR(status)) {
free(buffer);
snprintf(command_errbuf, sizeof (command_errbuf),
"LocateHandle() error: %lld", (long long)status);
return (CMD_ERROR);
}
pager_open();
for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
UINTN nproto = 0;
EFI_GUID **protocols = NULL;
handle = buffer[i];
lsefi_print_handle_info(handle);
if (pager_output("\n"))
break;
status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
if (EFI_ERROR(status)) {
snprintf(command_errbuf, sizeof (command_errbuf),
"ProtocolsPerHandle() error: %lld",
(long long)status);
continue;
}
for (j = 0; j < nproto; j++) {
if (efi_guid_to_name(protocols[j], &name) == true) {
printf(" %s", name);
free(name);
} else {
printf("Error while translating UUID to name");
}
if ((ret = pager_output("\n")) != 0)
break;
}
BS->FreePool(protocols);
if (ret != 0)
break;
}
pager_close();
free(buffer);
return (CMD_OK);
}
#ifdef LOADER_FDT_SUPPORT
extern int command_fdt_internal(int argc, char *argv[]);
static int
command_fdt(int argc, char *argv[])
{
return (command_fdt_internal(argc, argv));
}
COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
#endif
static int
command_chain(int argc, char *argv[])
{
EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
EFI_HANDLE loaderhandle;
EFI_LOADED_IMAGE *loaded_image;
EFI_STATUS status;
struct stat st;
struct devdesc *dev;
char *name, *path;
void *buf;
int fd;
if (argc < 2) {
command_errmsg = "wrong number of arguments";
return (CMD_ERROR);
}
name = argv[1];
if ((fd = open(name, O_RDONLY)) < 0) {
command_errmsg = "no such file";
return (CMD_ERROR);
}
#ifdef LOADER_VERIEXEC
if (verify_file(fd, name, 0, VE_MUST, __func__) < 0) {
sprintf(command_errbuf, "can't verify: %s", name);
close(fd);
return (CMD_ERROR);
}
#endif
if (fstat(fd, &st) < -1) {
command_errmsg = "stat failed";
close(fd);
return (CMD_ERROR);
}
status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
if (status != EFI_SUCCESS) {
command_errmsg = "failed to allocate buffer";
close(fd);
return (CMD_ERROR);
}
if (read(fd, buf, st.st_size) != st.st_size) {
command_errmsg = "error while reading the file";
(void)BS->FreePool(buf);
close(fd);
return (CMD_ERROR);
}
close(fd);
status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
(void)BS->FreePool(buf);
if (status != EFI_SUCCESS) {
command_errmsg = "LoadImage failed";
return (CMD_ERROR);
}
status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID,
(void **)&loaded_image);
if (argc > 2) {
int i, len = 0;
CHAR16 *argp;
for (i = 2; i < argc; i++)
len += strlen(argv[i]) + 1;
len *= sizeof (*argp);
loaded_image->LoadOptions = argp = malloc (len);
loaded_image->LoadOptionsSize = len;
for (i = 2; i < argc; i++) {
char *ptr = argv[i];
while (*ptr)
*(argp++) = *(ptr++);
*(argp++) = ' ';
}
*(--argv) = 0;
}
if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
#ifdef EFI_ZFS_BOOT
struct zfs_devdesc *z_dev;
#endif
struct disk_devdesc *d_dev;
pdinfo_t *hd, *pd;
switch (dev->d_dev->dv_type) {
#ifdef EFI_ZFS_BOOT
case DEVT_ZFS:
z_dev = (struct zfs_devdesc *)dev;
loaded_image->DeviceHandle =
efizfs_get_handle_by_guid(z_dev->pool_guid);
break;
#endif
case DEVT_NET:
loaded_image->DeviceHandle =
efi_find_handle(dev->d_dev, dev->d_unit);
break;
default:
hd = efiblk_get_pdinfo(dev);
if (STAILQ_EMPTY(&hd->pd_part)) {
loaded_image->DeviceHandle = hd->pd_handle;
break;
}
d_dev = (struct disk_devdesc *)dev;
STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
loaded_image->DeviceHandle =
pd->pd_handle;
break;
}
}
break;
}
}
dev_cleanup();
status = BS->StartImage(loaderhandle, NULL, NULL);
if (status != EFI_SUCCESS) {
command_errmsg = "StartImage failed";
free(loaded_image->LoadOptions);
loaded_image->LoadOptions = NULL;
status = BS->UnloadImage(loaded_image);
return (CMD_ERROR);
}
return (CMD_ERROR);
}
COMMAND_SET(chain, "chain", "chain load file", command_chain);
#if defined(LOADER_NET_SUPPORT)
extern struct in_addr servip;
static int
command_netserver(int argc, char *argv[])
{
char *proto;
n_long rootaddr;
if (argc > 2) {
command_errmsg = "wrong number of arguments";
return (CMD_ERROR);
}
if (argc < 2) {
proto = netproto == NET_TFTP ? "tftp://" : "nfs://";
printf("Netserver URI: %s%s%s\n", proto, intoa(rootip.s_addr),
rootpath);
return (CMD_OK);
}
if (argc == 2) {
strncpy(rootpath, argv[1], sizeof(rootpath));
rootpath[sizeof(rootpath) -1] = '\0';
if ((rootaddr = net_parse_rootpath()) != INADDR_NONE)
servip.s_addr = rootip.s_addr = rootaddr;
return (CMD_OK);
}
return (CMD_ERROR);
}
COMMAND_SET(netserver, "netserver", "change or display netserver URI",
command_netserver);
#endif