Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/stand/i386/boot2/boot1.S
34691 views
1
/*
2
* Copyright (c) 1998 Robert Nordier
3
* All rights reserved.
4
*
5
* Redistribution and use in source and binary forms are freely
6
* permitted provided that the above copyright notice and this
7
* paragraph and the following disclaimer are duplicated in all
8
* such forms.
9
*
10
* This software is provided "AS IS" and without any express or
11
* implied warranties, including, without limitation, the implied
12
* warranties of merchantability and fitness for a particular
13
* purpose.
14
*/
15
16
/* Memory Locations */
17
.set MEM_REL,0x700 # Relocation address
18
.set MEM_ARG,0x900 # Arguments
19
.set MEM_ORG,0x7c00 # Origin
20
.set MEM_BUF,0x8c00 # Load area
21
.set MEM_BTX,0x9000 # BTX start
22
.set MEM_JMP,0x9010 # BTX entry point
23
.set MEM_USR,0xa000 # Client start
24
.set BDA_BOOT,0x472 # Boot howto flag
25
26
/* Partition Constants */
27
.set PRT_OFF,0x1be # Partition offset
28
.set PRT_NUM,0x4 # Partitions
29
.set PRT_BSD,0xa5 # Partition type
30
31
/* Flag Bits */
32
.set FL_PACKET,0x80 # Packet mode
33
34
/* Misc. Constants */
35
.set SIZ_PAG,0x1000 # Page size
36
.set SIZ_SEC,0x200 # Sector size
37
38
.set NSECT,0x10
39
.globl start
40
.globl xread
41
.code16
42
43
start: jmp main # Start recognizably
44
45
/*
46
* This is the start of a standard BIOS Parameter Block (BPB). Most bootable
47
* FAT disks have this at the start of their MBR. While normal BIOS's will
48
* work fine without this section, IBM's El Torito emulation "fixes" up the
49
* BPB by writing into the memory copy of the MBR. Rather than have data
50
* written into our xread routine, we'll define a BPB to work around it.
51
* The data marked with (T) indicates a field required for a ThinkPad to
52
* recognize the disk and (W) indicates fields written from IBM BIOS code.
53
* The use of the BPB is based on what OpenBSD and NetBSD implemented in
54
* their boot code but the required fields were determined by trial and error.
55
*
56
* Note: If additional space is needed in boot1, one solution would be to
57
* move the "prompt" message data (below) to replace the OEM ID.
58
*/
59
.org 0x03, 0x00
60
oemid: .space 0x08, 0x00 # OEM ID
61
62
.org 0x0b, 0x00
63
bpb: .word 512 # sector size (T)
64
.byte 0 # sectors/clustor
65
.word 0 # reserved sectors
66
.byte 0 # number of FATs
67
.word 0 # root entries
68
.word 0 # small sectors
69
.byte 0 # media type (W)
70
.word 0 # sectors/fat
71
.word 18 # sectors per track (T)
72
.word 2 # number of heads (T)
73
.long 0 # hidden sectors (W)
74
.long 0 # large sectors
75
76
.org 0x24, 0x00
77
ebpb: .byte 0 # BIOS physical drive number (W)
78
79
.org 0x25,0x90
80
/*
81
* Trampoline used by boot2 to call read to read data from the disk via
82
* the BIOS. Call with:
83
*
84
* %cx:%ax - long - LBA to read in
85
* %es:(%bx) - caddr_t - buffer to read data into
86
* %dl - byte - drive to read from
87
* %dh - byte - num sectors to read
88
*/
89
90
xread: push %ss # Address
91
pop %ds # data
92
/*
93
* Setup an EDD disk packet and pass it to read
94
*/
95
xread.1: # Starting
96
pushl $0x0 # absolute
97
push %cx # block
98
push %ax # number
99
push %es # Address of
100
push %bx # transfer buffer
101
xor %ax,%ax # Number of
102
movb %dh,%al # blocks to
103
push %ax # transfer
104
push $0x10 # Size of packet
105
mov %sp,%bp # Packet pointer
106
callw read # Read from disk
107
lea 0x10(%bp),%sp # Clear stack
108
lret # To far caller
109
/*
110
* Load the rest of boot2 and BTX up, copy the parts to the right locations,
111
* and start it all up.
112
*/
113
114
/*
115
* Setup the segment registers to flat addressing (segment 0) and setup the
116
* stack to end just below the start of our code.
117
*/
118
main: cld # String ops inc
119
xor %cx,%cx # Zero
120
mov %cx,%es # Address
121
mov %cx,%ds # data
122
mov %cx,%ss # Set up
123
mov $start,%sp # stack
124
/*
125
* Relocate ourself to MEM_REL. Since %cx == 0, the inc %ch sets
126
* %cx == 0x100. Note that boot1 does not use this relocated copy
127
* of itself while loading boot2; however, BTX reclaims the memory
128
* used by boot1 during its initialization. As a result, boot2 uses
129
* xread from the relocated copy.
130
*/
131
mov %sp,%si # Source
132
mov $MEM_REL,%di # Destination
133
incb %ch # Word count
134
rep # Copy
135
movsw # code
136
/*
137
* If we are on a hard drive, then load the MBR and look for the first
138
* FreeBSD slice. We use the fake partition entry below that points to
139
* the MBR when we call nread. The first pass looks for the first active
140
* FreeBSD slice. The second pass looks for the first non-active FreeBSD
141
* slice if the first one fails.
142
*/
143
mov $part4,%si # Partition
144
cmpb $0x80,%dl # Hard drive?
145
jb main.4 # No
146
movb $0x1,%dh # Block count
147
callw nread # Read MBR
148
mov $0x1,%cx # Two passes
149
main.1: mov $MEM_BUF+PRT_OFF,%si # Partition table
150
movb $0x1,%dh # Partition
151
main.2: cmpb $PRT_BSD,0x4(%si) # Our partition type?
152
jne main.3 # No
153
jcxz main.5 # If second pass
154
testb $0x80,(%si) # Active?
155
jnz main.5 # Yes
156
main.3: add $0x10,%si # Next entry
157
incb %dh # Partition
158
cmpb $0x1+PRT_NUM,%dh # In table?
159
jb main.2 # Yes
160
dec %cx # Do two
161
jcxz main.1 # passes
162
/*
163
* If we get here, we didn't find any FreeBSD slices at all, so print an
164
* error message and die.
165
*/
166
mov $msg_part,%si # Message
167
jmp error # Error
168
/*
169
* Floppies use partition 0 of drive 0.
170
*/
171
main.4: xor %dx,%dx # Partition:drive
172
/*
173
* Ok, we have a slice and drive in %dx now, so use that to locate and load
174
* boot2. %si references the start of the slice we are looking for, so go
175
* ahead and load up the first 16 sectors (boot1 + boot2) from that. When
176
* we read it in, we conveniently use 0x8c00 as our transfer buffer. Thus,
177
* boot1 ends up at 0x8c00, and boot2 starts at 0x8c00 + 0x200 = 0x8e00.
178
* The first part of boot2 is the disklabel, which is 0x200 bytes long.
179
* The second part is BTX, which is thus loaded into 0x9000, which is where
180
* it also runs from. The boot2.bin binary starts right after the end of
181
* BTX, so we have to figure out where the start of it is and then move the
182
* binary to 0xc000. Normally, BTX clients start at MEM_USR, or 0xa000, but
183
* when we use btxld to create boot2, we use an entry point of 0x2000. That
184
* entry point is relative to MEM_USR; thus boot2.bin starts at 0xc000.
185
*/
186
main.5: mov %dx,MEM_ARG # Save args
187
movb $NSECT,%dh # Sector count
188
callw nread # Read disk
189
mov $MEM_BTX,%bx # BTX
190
mov 0xa(%bx),%si # Get BTX length and set
191
add %bx,%si # %si to start of boot2.bin
192
mov $MEM_USR+SIZ_PAG*2,%di # Client page 2
193
mov $MEM_BTX+(NSECT-1)*SIZ_SEC,%cx # Byte
194
sub %si,%cx # count
195
rep # Relocate
196
movsb # client
197
198
/*
199
* Enable A20 so we can access memory above 1 meg.
200
* Use the zero-valued %cx as a timeout for embedded hardware which do not
201
* have a keyboard controller.
202
*/
203
seta20: cli # Disable interrupts
204
seta20.1: dec %cx # Timeout?
205
jz seta20.3 # Yes
206
inb $0x64,%al # Get status
207
testb $0x2,%al # Busy?
208
jnz seta20.1 # Yes
209
movb $0xd1,%al # Command: Write
210
outb %al,$0x64 # output port
211
seta20.2: inb $0x64,%al # Get status
212
testb $0x2,%al # Busy?
213
jnz seta20.2 # Yes
214
movb $0xdf,%al # Enable
215
outb %al,$0x60 # A20
216
seta20.3: sti # Enable interrupts
217
218
jmp start+MEM_JMP-MEM_ORG # Start BTX
219
220
221
/*
222
* Trampoline used to call read from within boot1.
223
*/
224
nread: mov $MEM_BUF,%bx # Transfer buffer
225
mov 0x8(%si),%ax # Get
226
mov 0xa(%si),%cx # LBA
227
push %cs # Read from
228
callw xread.1 # disk
229
jnc return # If success, return
230
mov $msg_read,%si # Otherwise, set the error
231
# message and fall through to
232
# the error routine
233
/*
234
* Print out the error message pointed to by %ds:(%si) followed
235
* by a prompt, wait for a keypress, and then reboot the machine.
236
*/
237
error: callw putstr # Display message
238
mov $prompt,%si # Display
239
callw putstr # prompt
240
xorb %ah,%ah # BIOS: Get
241
int $0x16 # keypress
242
movw $0x1234, BDA_BOOT # Do a warm boot
243
ljmp $0xf000,$0xfff0 # reboot the machine
244
/*
245
* Display a null-terminated string using the BIOS output.
246
*/
247
putstr.0: mov $0x7,%bx # Page:attribute
248
movb $0xe,%ah # BIOS: Display
249
int $0x10 # character
250
putstr: lodsb # Get char
251
testb %al,%al # End of string?
252
jne putstr.0 # No
253
254
/*
255
* Overused return code. ereturn is used to return an error from the
256
* read function. Since we assume putstr succeeds, we (ab)use the
257
* same code when we return from putstr.
258
*/
259
ereturn: movb $0x1,%ah # Invalid
260
stc # argument
261
return: retw # To caller
262
/*
263
* Reads sectors from the disk. If EDD is enabled, then check if it is
264
* installed and use it if it is. If it is not installed or not enabled, then
265
* fall back to using CHS. Since we use a LBA, if we are using CHS, we have to
266
* fetch the drive parameters from the BIOS and divide it out ourselves.
267
* Call with:
268
*
269
* %dl - byte - drive number
270
* stack - 10 bytes - EDD Packet
271
*/
272
read: testb $FL_PACKET,%cs:MEM_REL+flags-start # LBA support enabled?
273
jz read.1 # No, use CHS
274
cmpb $0x80,%dl # Hard drive?
275
jb read.1 # No, use CHS
276
mov $0x55aa,%bx # Magic
277
push %dx # Save
278
movb $0x41,%ah # BIOS: Check
279
int $0x13 # extensions present
280
pop %dx # Restore
281
jc read.1 # If error, use CHS
282
cmp $0xaa55,%bx # Magic?
283
jne read.1 # No, so use CHS
284
testb $0x1,%cl # Packet interface?
285
jz read.1 # No, so use CHS
286
mov %bp,%si # Disk packet
287
movb $0x42,%ah # BIOS: Extended
288
int $0x13 # read
289
retw # To caller
290
read.1: push %dx # Save
291
movb $0x8,%ah # BIOS: Get drive
292
int $0x13 # parameters
293
movb %dh,%ch # Max head number
294
pop %dx # Restore
295
jc return # If error
296
andb $0x3f,%cl # Sectors per track
297
jz ereturn # If zero
298
cli # Disable interrupts
299
mov 0x8(%bp),%eax # Get LBA
300
push %dx # Save
301
movzbl %cl,%ebx # Divide by
302
xor %edx,%edx # sectors
303
div %ebx # per track
304
movb %ch,%bl # Max head number
305
movb %dl,%ch # Sector number
306
inc %bx # Divide by
307
xorb %dl,%dl # number
308
div %ebx # of heads
309
movb %dl,%bh # Head number
310
pop %dx # Restore
311
cmpl $0x3ff,%eax # Cylinder number supportable?
312
sti # Enable interrupts
313
ja ereturn # No, return an error
314
xchgb %al,%ah # Set up cylinder
315
rorb $0x2,%al # number
316
orb %ch,%al # Merge
317
inc %ax # sector
318
xchg %ax,%cx # number
319
movb %bh,%dh # Head number
320
subb %ah,%al # Sectors this track
321
mov 0x2(%bp),%ah # Blocks to read
322
cmpb %ah,%al # To read
323
jb read.2 # this
324
#ifdef TRACK_AT_A_TIME
325
movb %ah,%al # track
326
#else
327
movb $1,%al # one sector
328
#endif
329
read.2: mov $0x5,%di # Try count
330
read.3: les 0x4(%bp),%bx # Transfer buffer
331
push %ax # Save
332
movb $0x2,%ah # BIOS: Read
333
int $0x13 # from disk
334
pop %bx # Restore
335
jnc read.4 # If success
336
dec %di # Retry?
337
jz read.6 # No
338
xorb %ah,%ah # BIOS: Reset
339
int $0x13 # disk system
340
xchg %bx,%ax # Block count
341
jmp read.3 # Continue
342
read.4: movzbw %bl,%ax # Sectors read
343
add %ax,0x8(%bp) # Adjust
344
jnc read.5 # LBA,
345
incw 0xa(%bp) # transfer
346
read.5: shlb %bl # buffer
347
add %bl,0x5(%bp) # pointer,
348
sub %al,0x2(%bp) # block count
349
ja read.1 # If not done
350
read.6: retw # To caller
351
352
/* Messages */
353
354
msg_read: .asciz "Read"
355
msg_part: .asciz "Boot"
356
357
prompt: .asciz " error\r\n"
358
359
flags: .byte FLAGS # Flags
360
361
.org PRT_OFF,0x90
362
363
/* Partition table */
364
365
.fill 0x30,0x1,0x0
366
part4: .byte 0x80, 0x00, 0x01, 0x00
367
.byte 0xa5, 0xfe, 0xff, 0xff
368
.byte 0x00, 0x00, 0x00, 0x00
369
.byte 0x50, 0xc3, 0x00, 0x00 # 50000 sectors long, bleh
370
371
.word 0xaa55 # Magic number
372
373