#define __ELF_WORD_SIZE 64
#include <sys/param.h>
#include <sys/exec.h>
#include <sys/imgact.h>
#include <sys/imgact_elf.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/stddef.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <vm/pmap.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <machine/md_var.h>
#include <machine/trap.h>
#include <x86/linux/linux_x86.h>
#include <amd64/linux/linux.h>
#include <amd64/linux/linux_proto.h>
#include <compat/linux/linux_elf.h>
#include <compat/linux/linux_emul.h>
#include <compat/linux/linux_fork.h>
#include <compat/linux/linux_ioctl.h>
#include <compat/linux/linux_mib.h>
#include <compat/linux/linux_misc.h>
#include <compat/linux/linux_signal.h>
#include <compat/linux/linux_util.h>
#include <compat/linux/linux_vdso.h>
#include <x86/linux/linux_x86_sigframe.h>
_Static_assert(sizeof(struct l_fpstate) ==
sizeof(__typeof(((mcontext_t *)0)->mc_fpstate)),
"fxsave area size incorrect");
MODULE_VERSION(linux64, 1);
#define LINUX_VDSOPAGE_SIZE PAGE_SIZE * 2
#define LINUX_VDSOPAGE_LA48 (VM_MAXUSER_ADDRESS_LA48 - \
LINUX_VDSOPAGE_SIZE)
#define LINUX_SHAREDPAGE_LA48 (LINUX_VDSOPAGE_LA48 - PAGE_SIZE)
#define LINUX_USRSTACK_LA48 LINUX_SHAREDPAGE_LA48
#define LINUX_PS_STRINGS_LA48 (LINUX_USRSTACK_LA48 - \
sizeof(struct ps_strings))
static int linux_szsigcode;
static vm_object_t linux_vdso_obj;
static char *linux_vdso_mapping;
extern char _binary_linux_vdso_so_o_start;
extern char _binary_linux_vdso_so_o_end;
static vm_offset_t linux_vdso_base;
extern struct sysent linux_sysent[LINUX_SYS_MAXSYSCALL];
extern const char *linux_syscallnames[];
SET_DECLARE(linux_ioctl_handler_set, struct linux_ioctl_handler);
static void linux_vdso_install(const void *param);
static void linux_vdso_deinstall(const void *param);
static void linux_vdso_reloc(char *mapping, Elf_Addr offset);
static void linux_set_syscall_retval(struct thread *td, int error);
static int linux_fetch_syscall_args(struct thread *td);
static void linux_exec_setregs(struct thread *td, struct image_params *imgp,
uintptr_t stack);
static void linux_exec_sysvec_init(void *param);
static int linux_on_exec_vmspace(struct proc *p,
struct image_params *imgp);
static void linux_set_fork_retval(struct thread *td);
static int linux_vsyscall(struct thread *td);
LINUX_VDSO_SYM_INTPTR(linux_rt_sigcode);
LINUX_VDSO_SYM_CHAR(linux_platform);
LINUX_VDSO_SYM_INTPTR(kern_timekeep_base);
LINUX_VDSO_SYM_INTPTR(kern_tsc_selector);
LINUX_VDSO_SYM_INTPTR(kern_cpu_selector);
static int
linux_fetch_syscall_args(struct thread *td)
{
struct proc *p;
struct trapframe *frame;
struct syscall_args *sa;
p = td->td_proc;
frame = td->td_frame;
sa = &td->td_sa;
sa->args[0] = frame->tf_rdi;
sa->args[1] = frame->tf_rsi;
sa->args[2] = frame->tf_rdx;
sa->args[3] = frame->tf_rcx;
sa->args[4] = frame->tf_r8;
sa->args[5] = frame->tf_r9;
sa->code = frame->tf_rax;
sa->original_code = sa->code;
if (sa->code >= p->p_sysent->sv_size)
sa->callp = &nosys_sysent;
else
sa->callp = &p->p_sysent->sv_table[sa->code];
frame->tf_r10 = frame->tf_rcx;
frame->tf_rcx = frame->tf_rip;
td->td_retval[0] = 0;
return (0);
}
static void
linux_set_syscall_retval(struct thread *td, int error)
{
struct trapframe *frame;
frame = td->td_frame;
switch (error) {
case 0:
frame->tf_rax = td->td_retval[0];
break;
case ERESTART:
frame->tf_rip -= frame->tf_err;
break;
case EJUSTRETURN:
break;
default:
frame->tf_rax = bsd_to_linux_errno(error);
break;
}
set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
}
static void
linux_set_fork_retval(struct thread *td)
{
struct trapframe *frame = td->td_frame;
frame->tf_rax = 0;
}
void
linux64_arch_copyout_auxargs(struct image_params *imgp, Elf_Auxinfo **pos)
{
AUXARGS_ENTRY((*pos), LINUX_AT_SYSINFO_EHDR, linux_vdso_base);
AUXARGS_ENTRY((*pos), LINUX_AT_HWCAP, cpu_feature);
AUXARGS_ENTRY((*pos), LINUX_AT_HWCAP2, linux_x86_elf_hwcap2());
AUXARGS_ENTRY((*pos), LINUX_AT_PLATFORM, PTROUT(linux_platform));
}
static void
linux_exec_setregs(struct thread *td, struct image_params *imgp,
uintptr_t stack)
{
struct trapframe *regs;
struct pcb *pcb;
register_t saved_rflags;
regs = td->td_frame;
pcb = td->td_pcb;
if (td->td_proc->p_md.md_ldt != NULL)
user_ldt_free(td);
pcb->pcb_fsbase = 0;
pcb->pcb_gsbase = 0;
clear_pcb_flags(pcb, PCB_32BIT | PCB_TLSBASE);
pcb->pcb_initial_fpucw = __LINUX_NPXCW__;
set_pcb_flags(pcb, PCB_FULL_IRET);
saved_rflags = regs->tf_rflags & PSL_T;
bzero((char *)regs, sizeof(struct trapframe));
regs->tf_rip = imgp->entry_addr;
regs->tf_rsp = stack;
regs->tf_rflags = PSL_USER | saved_rflags;
regs->tf_ss = _udatasel;
regs->tf_cs = _ucodesel;
regs->tf_ds = _udatasel;
regs->tf_es = _udatasel;
regs->tf_fs = _ufssel;
regs->tf_gs = _ugssel;
regs->tf_flags = TF_HASSEGS;
x86_clear_dbregs(pcb);
fpstate_drop(td);
}
static int
linux_fxrstor(struct thread *td, mcontext_t *mcp, struct l_sigcontext *sc)
{
struct savefpu *fp = (struct savefpu *)&mcp->mc_fpstate[0];
int error;
error = copyin(PTRIN(sc->sc_fpstate), fp, sizeof(mcp->mc_fpstate));
if (error != 0)
return (error);
bzero(&fp->sv_pad[0], sizeof(fp->sv_pad));
return (set_fpcontext(td, mcp, NULL, 0));
}
static int
linux_xrstor(struct thread *td, mcontext_t *mcp, struct l_sigcontext *sc)
{
struct savefpu *fp = (struct savefpu *)&mcp->mc_fpstate[0];
char *xfpustate;
struct proc *p;
uint32_t magic2;
int error;
p = td->td_proc;
mcp->mc_xfpustate_len = cpu_max_ext_state_size - sizeof(struct savefpu);
error = copyin(PTRIN(sc->sc_fpstate), fp, sizeof(mcp->mc_fpstate));
if (error != 0)
return (error);
bzero(&fp->sv_pad[0], sizeof(fp->sv_pad));
sc->sc_fpstate += sizeof(mcp->mc_fpstate);
xfpustate = (char *)fpu_save_area_alloc();
error = copyin(PTRIN(sc->sc_fpstate), xfpustate, mcp->mc_xfpustate_len);
if (error != 0) {
fpu_save_area_free((struct savefpu *)xfpustate);
uprintf("pid %d (%s): linux xrstor failed\n", p->p_pid,
td->td_name);
return (error);
}
sc->sc_fpstate += mcp->mc_xfpustate_len;
error = copyin(PTRIN(sc->sc_fpstate), &magic2, LINUX_FP_XSTATE_MAGIC2_SIZE);
if (error != 0 || magic2 != LINUX_FP_XSTATE_MAGIC2) {
fpu_save_area_free((struct savefpu *)xfpustate);
uprintf("pid %d (%s): sigreturn magic2 0x%x error %d\n",
p->p_pid, td->td_name, magic2, error);
return (error);
}
error = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
fpu_save_area_free((struct savefpu *)xfpustate);
if (error != 0) {
uprintf("pid %d (%s): sigreturn set_fpcontext error %d\n",
p->p_pid, td->td_name, error);
}
return (error);
}
static int
linux_copyin_fpstate(struct thread *td, struct l_ucontext *uc)
{
mcontext_t mc;
bzero(&mc, sizeof(mc));
mc.mc_ownedfp = _MC_FPOWNED_FPU;
mc.mc_fpformat = _MC_FPFMT_XMM;
if ((uc->uc_flags & LINUX_UC_FP_XSTATE) != 0)
return (linux_xrstor(td, &mc, &uc->uc_mcontext));
else
return (linux_fxrstor(td, &mc, &uc->uc_mcontext));
}
int
linux_rt_sigreturn(struct thread *td, struct linux_rt_sigreturn_args *args)
{
struct proc *p;
struct l_rt_sigframe sf;
struct l_sigcontext *context;
struct trapframe *regs;
unsigned long rflags;
sigset_t bmask;
int error;
ksiginfo_t ksi;
regs = td->td_frame;
error = copyin((void *)regs->tf_rbx, &sf, sizeof(sf));
if (error != 0)
return (error);
p = td->td_proc;
context = &sf.sf_uc.uc_mcontext;
rflags = context->sc_rflags;
if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
uprintf("pid %d comm %s linux mangled rflags %#lx\n",
p->p_pid, p->p_comm, rflags);
return (EINVAL);
}
if (!CS_SECURE(context->sc_cs)) {
uprintf("pid %d comm %s linux mangled cs %#x\n",
p->p_pid, p->p_comm, context->sc_cs);
ksiginfo_init_trap(&ksi);
ksi.ksi_signo = SIGBUS;
ksi.ksi_code = BUS_OBJERR;
ksi.ksi_trapno = T_PROTFLT;
ksi.ksi_addr = (void *)regs->tf_rip;
trapsignal(td, &ksi);
return (EINVAL);
}
linux_to_bsd_sigset(&sf.sf_uc.uc_sigmask, &bmask);
kern_sigprocmask(td, SIG_SETMASK, &bmask, NULL, 0);
regs->tf_rdi = context->sc_rdi;
regs->tf_rsi = context->sc_rsi;
regs->tf_rdx = context->sc_rdx;
regs->tf_rbp = context->sc_rbp;
regs->tf_rbx = context->sc_rbx;
regs->tf_rcx = context->sc_rcx;
regs->tf_rax = context->sc_rax;
regs->tf_rip = context->sc_rip;
regs->tf_rsp = context->sc_rsp;
regs->tf_r8 = context->sc_r8;
regs->tf_r9 = context->sc_r9;
regs->tf_r10 = context->sc_r10;
regs->tf_r11 = context->sc_r11;
regs->tf_r12 = context->sc_r12;
regs->tf_r13 = context->sc_r13;
regs->tf_r14 = context->sc_r14;
regs->tf_r15 = context->sc_r15;
regs->tf_cs = context->sc_cs;
regs->tf_err = context->sc_err;
regs->tf_rflags = rflags;
error = linux_copyin_fpstate(td, &sf.sf_uc);
if (error != 0) {
uprintf("pid %d comm %s linux can't restore fpu state %d\n",
p->p_pid, p->p_comm, error);
return (error);
}
set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
return (EJUSTRETURN);
}
static int
linux_fxsave(mcontext_t *mcp, void *ufp)
{
struct l_fpstate *fx = (struct l_fpstate *)&mcp->mc_fpstate[0];
bzero(&fx->reserved2[0], sizeof(fx->reserved2));
return (copyout(fx, ufp, sizeof(*fx)));
}
static int
linux_xsave(mcontext_t *mcp, char *xfpusave, char *ufp)
{
struct l_fpstate *fx = (struct l_fpstate *)&mcp->mc_fpstate[0];
uint32_t magic2;
int error;
fx->sw_reserved.magic1 = LINUX_FP_XSTATE_MAGIC1;
fx->sw_reserved.xstate_size = mcp->mc_xfpustate_len + sizeof(*fx);
fx->sw_reserved.extended_size = fx->sw_reserved.xstate_size +
LINUX_FP_XSTATE_MAGIC2_SIZE;
fx->sw_reserved.xfeatures = xsave_mask;
error = copyout(fx, ufp, sizeof(*fx));
if (error != 0)
return (error);
ufp += sizeof(*fx);
error = copyout(xfpusave, ufp, mcp->mc_xfpustate_len);
if (error != 0)
return (error);
ufp += mcp->mc_xfpustate_len;
magic2 = LINUX_FP_XSTATE_MAGIC2;
return (copyout(&magic2, ufp, LINUX_FP_XSTATE_MAGIC2_SIZE));
}
static int
linux_copyout_fpstate(struct thread *td, struct l_ucontext *uc, char **sp)
{
size_t xfpusave_len;
char *xfpusave;
mcontext_t mc;
char *ufp = *sp;
get_fpcontext(td, &mc, &xfpusave, &xfpusave_len);
KASSERT(mc.mc_fpformat != _MC_FPFMT_NODEV, ("fpu not present"));
ufp -= sizeof(struct l_fpstate);
if (xfpusave != NULL) {
ufp -= (xfpusave_len + LINUX_FP_XSTATE_MAGIC2_SIZE);
uc->uc_flags |= LINUX_UC_FP_XSTATE;
}
*sp = ufp = (char *)((unsigned long)ufp & ~0x3Ful);
if (xfpusave != NULL)
return (linux_xsave(&mc, xfpusave, ufp));
else
return (linux_fxsave(&mc, ufp));
}
static void
linux_rt_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
struct l_rt_sigframe sf, *sfp;
struct proc *p;
struct thread *td;
struct sigacts *psp;
char *sp;
struct trapframe *regs;
int sig, code;
int oonstack, issiginfo;
td = curthread;
p = td->td_proc;
PROC_LOCK_ASSERT(p, MA_OWNED);
sig = linux_translate_traps(ksi->ksi_signo, ksi->ksi_trapno);
psp = p->p_sigacts;
issiginfo = SIGISMEMBER(psp->ps_siginfo, sig);
code = ksi->ksi_code;
mtx_assert(&psp->ps_mtx, MA_OWNED);
regs = td->td_frame;
oonstack = sigonstack(regs->tf_rsp);
LINUX_CTR4(rt_sendsig, "%p, %d, %p, %u",
catcher, sig, mask, code);
bzero(&sf, sizeof(sf));
sf.sf_uc.uc_stack.ss_sp = PTROUT(td->td_sigstk.ss_sp);
sf.sf_uc.uc_stack.ss_size = td->td_sigstk.ss_size;
sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
? ((oonstack) ? LINUX_SS_ONSTACK : 0) : LINUX_SS_DISABLE;
if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
SIGISMEMBER(psp->ps_sigonstack, sig)) {
sp = (char *)td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
} else
sp = (char *)regs->tf_rsp - 128;
mtx_unlock(&psp->ps_mtx);
PROC_UNLOCK(p);
if (linux_copyout_fpstate(td, &sf.sf_uc, &sp) != 0) {
uprintf("pid %d comm %s linux can't save fpu state, killing\n",
p->p_pid, p->p_comm);
PROC_LOCK(p);
sigexit(td, SIGILL);
}
sf.sf_uc.uc_mcontext.sc_fpstate = (register_t)sp;
sp -= sizeof(struct l_rt_sigframe);
sfp = (struct l_rt_sigframe *)((unsigned long)sp & ~0xFul);
bsd_to_linux_sigset(mask, &sf.sf_uc.uc_sigmask);
sf.sf_uc.uc_mcontext.sc_mask = sf.sf_uc.uc_sigmask;
sf.sf_uc.uc_mcontext.sc_rdi = regs->tf_rdi;
sf.sf_uc.uc_mcontext.sc_rsi = regs->tf_rsi;
sf.sf_uc.uc_mcontext.sc_rdx = regs->tf_rdx;
sf.sf_uc.uc_mcontext.sc_rbp = regs->tf_rbp;
sf.sf_uc.uc_mcontext.sc_rbx = regs->tf_rbx;
sf.sf_uc.uc_mcontext.sc_rcx = regs->tf_rcx;
sf.sf_uc.uc_mcontext.sc_rax = regs->tf_rax;
sf.sf_uc.uc_mcontext.sc_rip = regs->tf_rip;
sf.sf_uc.uc_mcontext.sc_rsp = regs->tf_rsp;
sf.sf_uc.uc_mcontext.sc_r8 = regs->tf_r8;
sf.sf_uc.uc_mcontext.sc_r9 = regs->tf_r9;
sf.sf_uc.uc_mcontext.sc_r10 = regs->tf_r10;
sf.sf_uc.uc_mcontext.sc_r11 = regs->tf_r11;
sf.sf_uc.uc_mcontext.sc_r12 = regs->tf_r12;
sf.sf_uc.uc_mcontext.sc_r13 = regs->tf_r13;
sf.sf_uc.uc_mcontext.sc_r14 = regs->tf_r14;
sf.sf_uc.uc_mcontext.sc_r15 = regs->tf_r15;
sf.sf_uc.uc_mcontext.sc_cs = regs->tf_cs;
sf.sf_uc.uc_mcontext.sc_rflags = regs->tf_rflags;
sf.sf_uc.uc_mcontext.sc_err = regs->tf_err;
sf.sf_uc.uc_mcontext.sc_trapno = bsd_to_linux_trapcode(code);
sf.sf_uc.uc_mcontext.sc_cr2 = (register_t)ksi->ksi_addr;
sig = bsd_to_linux_signal(sig);
siginfo_to_lsiginfo(&ksi->ksi_info, &sf.sf_si, sig);
if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
uprintf("pid %d comm %s has trashed its stack, killing\n",
p->p_pid, p->p_comm);
PROC_LOCK(p);
sigexit(td, SIGILL);
}
fpstate_drop(td);
regs->tf_rdi = sig;
regs->tf_rax = 0;
if (issiginfo) {
regs->tf_rsi = (register_t)&sfp->sf_si;
regs->tf_rdx = (register_t)&sfp->sf_uc;
} else {
regs->tf_rsi = 0;
regs->tf_rdx = 0;
}
regs->tf_rcx = (register_t)catcher;
regs->tf_rsp = (long)sfp;
regs->tf_rip = linux_rt_sigcode;
regs->tf_rflags &= ~(PSL_T | PSL_D);
regs->tf_cs = _ucodesel;
set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
PROC_LOCK(p);
mtx_lock(&psp->ps_mtx);
}
#define LINUX_VSYSCALL_START (-10UL << 20)
#define LINUX_VSYSCALL_SZ 1024
const unsigned long linux_vsyscall_vector[] = {
LINUX_SYS_gettimeofday,
LINUX_SYS_linux_time,
LINUX_SYS_linux_getcpu,
};
static int
linux_vsyscall(struct thread *td)
{
struct trapframe *frame;
uint64_t retqaddr;
int code, traced;
int error;
frame = td->td_frame;
if (__predict_true(frame->tf_rip < LINUX_VSYSCALL_START))
return (EINVAL);
if ((frame->tf_rip & (LINUX_VSYSCALL_SZ - 1)) != 0)
return (EINVAL);
code = (frame->tf_rip - LINUX_VSYSCALL_START) / LINUX_VSYSCALL_SZ;
if (code >= nitems(linux_vsyscall_vector))
return (EINVAL);
error = copyin((void *)frame->tf_rsp, &retqaddr, sizeof(retqaddr));
if (error)
return (error);
frame->tf_rip = retqaddr;
frame->tf_rax = linux_vsyscall_vector[code];
frame->tf_rsp += 8;
traced = (frame->tf_flags & PSL_T);
amd64_syscall(td, traced);
return (0);
}
struct sysentvec elf_linux_sysvec = {
.sv_size = LINUX_SYS_MAXSYSCALL,
.sv_table = linux_sysent,
.sv_fixup = __elfN(freebsd_fixup),
.sv_sendsig = linux_rt_sendsig,
.sv_sigcode = &_binary_linux_vdso_so_o_start,
.sv_szsigcode = &linux_szsigcode,
.sv_name = "Linux ELF64",
.sv_coredump = elf64_coredump,
.sv_elf_core_osabi = ELFOSABI_NONE,
.sv_elf_core_abi_vendor = LINUX_ABI_VENDOR,
.sv_elf_core_prepare_notes = linux64_prepare_notes,
.sv_minsigstksz = LINUX_MINSIGSTKSZ,
.sv_minuser = VM_MIN_ADDRESS,
.sv_maxuser = VM_MAXUSER_ADDRESS_LA48,
.sv_usrstack = LINUX_USRSTACK_LA48,
.sv_psstrings = LINUX_PS_STRINGS_LA48,
.sv_psstringssz = sizeof(struct ps_strings),
.sv_stackprot = VM_PROT_ALL,
.sv_copyout_auxargs = __linuxN(copyout_auxargs),
.sv_copyout_strings = __linuxN(copyout_strings),
.sv_setregs = linux_exec_setregs,
.sv_fixlimit = NULL,
.sv_maxssiz = NULL,
.sv_flags = SV_ABI_LINUX | SV_LP64 | SV_SHP | SV_SIG_DISCIGN |
SV_SIG_WAITNDQ | SV_TIMEKEEP,
.sv_set_syscall_retval = linux_set_syscall_retval,
.sv_fetch_syscall_args = linux_fetch_syscall_args,
.sv_syscallnames = linux_syscallnames,
.sv_shared_page_base = LINUX_SHAREDPAGE_LA48,
.sv_shared_page_len = PAGE_SIZE,
.sv_schedtail = linux_schedtail,
.sv_thread_detach = linux_thread_detach,
.sv_trap = linux_vsyscall,
.sv_hwcap = NULL,
.sv_hwcap2 = NULL,
.sv_hwcap3 = NULL,
.sv_hwcap4 = NULL,
.sv_onexec = linux_on_exec_vmspace,
.sv_onexit = linux_on_exit,
.sv_ontdexit = linux_thread_dtor,
.sv_setid_allowed = &linux_setid_allowed_query,
.sv_set_fork_retval = linux_set_fork_retval,
};
static int
linux_on_exec_vmspace(struct proc *p, struct image_params *imgp)
{
int error;
error = linux_map_vdso(p, linux_vdso_obj, linux_vdso_base,
LINUX_VDSOPAGE_SIZE, imgp);
if (error == 0)
error = linux_on_exec(p, imgp);
return (error);
}
static void
linux_exec_sysvec_init(void *param)
{
l_uintptr_t *ktimekeep_base, *ktsc_selector;
struct sysentvec *sv;
ptrdiff_t tkoff;
sv = param;
amd64_lower_shared_page(sv);
exec_sysvec_init(sv);
tkoff = kern_timekeep_base - linux_vdso_base;
ktimekeep_base = (l_uintptr_t *)(linux_vdso_mapping + tkoff);
*ktimekeep_base = sv->sv_shared_page_base + sv->sv_timekeep_offset;
tkoff = kern_tsc_selector - linux_vdso_base;
ktsc_selector = (l_uintptr_t *)(linux_vdso_mapping + tkoff);
*ktsc_selector = linux_vdso_tsc_selector_idx();
if (bootverbose)
printf("Linux x86-64 vDSO tsc_selector: %lu\n", *ktsc_selector);
tkoff = kern_cpu_selector - linux_vdso_base;
ktsc_selector = (l_uintptr_t *)(linux_vdso_mapping + tkoff);
*ktsc_selector = linux_vdso_cpu_selector_idx();
if (bootverbose)
printf("Linux x86-64 vDSO cpu_selector: %lu\n", *ktsc_selector);
}
SYSINIT(elf_linux_exec_sysvec_init, SI_SUB_EXEC + 1, SI_ORDER_ANY,
linux_exec_sysvec_init, &elf_linux_sysvec);
static void
linux_vdso_install(const void *param)
{
char *vdso_start = &_binary_linux_vdso_so_o_start;
char *vdso_end = &_binary_linux_vdso_so_o_end;
linux_szsigcode = vdso_end - vdso_start;
MPASS(linux_szsigcode <= LINUX_VDSOPAGE_SIZE);
linux_vdso_base = LINUX_VDSOPAGE_LA48;
if (hw_lower_amd64_sharedpage != 0)
linux_vdso_base -= PAGE_SIZE;
__elfN(linux_vdso_fixup)(vdso_start, linux_vdso_base);
linux_vdso_obj = __elfN(linux_shared_page_init)
(&linux_vdso_mapping, LINUX_VDSOPAGE_SIZE);
bcopy(vdso_start, linux_vdso_mapping, linux_szsigcode);
linux_vdso_reloc(linux_vdso_mapping, linux_vdso_base);
}
SYSINIT(elf_linux_vdso_init, SI_SUB_EXEC + 1, SI_ORDER_FIRST,
linux_vdso_install, NULL);
static void
linux_vdso_deinstall(const void *param)
{
__elfN(linux_shared_page_fini)(linux_vdso_obj,
linux_vdso_mapping, LINUX_VDSOPAGE_SIZE);
}
SYSUNINIT(elf_linux_vdso_uninit, SI_SUB_EXEC, SI_ORDER_FIRST,
linux_vdso_deinstall, NULL);
static void
linux_vdso_reloc(char *mapping, Elf_Addr offset)
{
const Elf_Ehdr *ehdr;
const Elf_Shdr *shdr;
Elf64_Addr *where, val;
Elf_Size rtype, symidx;
const Elf_Rela *rela;
Elf_Addr addr, addend;
int relacnt;
int i, j;
MPASS(offset != 0);
relacnt = 0;
ehdr = (const Elf_Ehdr *)mapping;
shdr = (const Elf_Shdr *)(mapping + ehdr->e_shoff);
for (i = 0; i < ehdr->e_shnum; i++)
{
switch (shdr[i].sh_type) {
case SHT_REL:
printf("Linux x86_64 vDSO: unexpected Rel section\n");
break;
case SHT_RELA:
rela = (const Elf_Rela *)(mapping + shdr[i].sh_offset);
relacnt = shdr[i].sh_size / sizeof(*rela);
}
}
for (j = 0; j < relacnt; j++, rela++) {
where = (Elf_Addr *)(mapping + rela->r_offset);
addend = rela->r_addend;
rtype = ELF_R_TYPE(rela->r_info);
symidx = ELF_R_SYM(rela->r_info);
switch (rtype) {
case R_X86_64_NONE:
break;
case R_X86_64_RELATIVE:
addr = (Elf_Addr)(offset + addend);
val = addr;
if (*where != val)
*where = val;
break;
case R_X86_64_IRELATIVE:
printf("Linux x86_64 vDSO: unexpected ifunc relocation, "
"symbol index %ld\n", symidx);
break;
default:
printf("Linux x86_64 vDSO: unexpected relocation type %ld, "
"symbol index %ld\n", rtype, symidx);
}
}
}
static Elf_Brandnote linux64_brandnote = {
.hdr.n_namesz = sizeof(GNU_ABI_VENDOR),
.hdr.n_descsz = 16,
.hdr.n_type = 1,
.vendor = GNU_ABI_VENDOR,
.flags = BN_TRANSLATE_OSREL,
.trans_osrel = linux_trans_osrel
};
static Elf64_Brandinfo linux_glibc2brand = {
.brand = ELFOSABI_LINUX,
.machine = EM_X86_64,
.compat_3_brand = "Linux",
.interp_path = "/lib64/ld-linux-x86-64.so.2",
.sysvec = &elf_linux_sysvec,
.interp_newpath = NULL,
.brand_note = &linux64_brandnote,
.flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE
};
static Elf64_Brandinfo linux_glibc2brandshort = {
.brand = ELFOSABI_LINUX,
.machine = EM_X86_64,
.compat_3_brand = "Linux",
.interp_path = "/lib64/ld-linux.so.2",
.sysvec = &elf_linux_sysvec,
.interp_newpath = NULL,
.brand_note = &linux64_brandnote,
.flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE
};
static Elf64_Brandinfo linux_muslbrand = {
.brand = ELFOSABI_LINUX,
.machine = EM_X86_64,
.compat_3_brand = "Linux",
.interp_path = "/lib/ld-musl-x86_64.so.1",
.sysvec = &elf_linux_sysvec,
.interp_newpath = NULL,
.brand_note = &linux64_brandnote,
.flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE |
LINUX_BI_FUTEX_REQUEUE
};
static Elf64_Brandinfo *linux_brandlist[] = {
&linux_glibc2brand,
&linux_glibc2brandshort,
&linux_muslbrand,
NULL
};
static int
linux64_elf_modevent(module_t mod, int type, void *data)
{
Elf64_Brandinfo **brandinfo;
int error;
struct linux_ioctl_handler **lihp;
error = 0;
switch(type) {
case MOD_LOAD:
for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL;
++brandinfo)
if (elf64_insert_brand_entry(*brandinfo) < 0)
error = EINVAL;
if (error == 0) {
SET_FOREACH(lihp, linux_ioctl_handler_set)
linux_ioctl_register_handler(*lihp);
stclohz = (stathz ? stathz : hz);
if (bootverbose)
printf("Linux x86-64 ELF exec handler installed\n");
} else
printf("cannot insert Linux x86-64 ELF brand handler\n");
break;
case MOD_UNLOAD:
for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL;
++brandinfo)
if (elf64_brand_inuse(*brandinfo))
error = EBUSY;
if (error == 0) {
for (brandinfo = &linux_brandlist[0];
*brandinfo != NULL; ++brandinfo)
if (elf64_remove_brand_entry(*brandinfo) < 0)
error = EINVAL;
}
if (error == 0) {
SET_FOREACH(lihp, linux_ioctl_handler_set)
linux_ioctl_unregister_handler(*lihp);
if (bootverbose)
printf("Linux x86_64 ELF exec handler removed\n");
} else
printf("Could not deinstall Linux x86_64 ELF interpreter entry\n");
break;
default:
return (EOPNOTSUPP);
}
return (error);
}
static moduledata_t linux64_elf_mod = {
"linux64elf",
linux64_elf_modevent,
0
};
DECLARE_MODULE_TIED(linux64elf, linux64_elf_mod, SI_SUB_EXEC, SI_ORDER_ANY);
MODULE_DEPEND(linux64elf, linux_common, 1, 1, 1);
FEATURE(linux64, "Linux 64bit support");