Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/amd64/vmm/amd/svm.c
39536 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2013, Anish Gupta ([email protected])
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice unmodified, this list of conditions, and the following
12
* disclaimer.
13
* 2. Redistributions in binary form must reproduce the above copyright
14
* notice, this list of conditions and the following disclaimer in the
15
* documentation and/or other materials provided with the distribution.
16
*
17
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
*/
28
29
#include <sys/cdefs.h>
30
#include "opt_bhyve_snapshot.h"
31
32
#include <sys/param.h>
33
#include <sys/systm.h>
34
#include <sys/smp.h>
35
#include <sys/kernel.h>
36
#include <sys/malloc.h>
37
#include <sys/pcpu.h>
38
#include <sys/proc.h>
39
#include <sys/reg.h>
40
#include <sys/smr.h>
41
#include <sys/sysctl.h>
42
43
#include <vm/vm.h>
44
#include <vm/vm_extern.h>
45
#include <vm/pmap.h>
46
47
#include <machine/cpufunc.h>
48
#include <machine/psl.h>
49
#include <machine/md_var.h>
50
#include <machine/specialreg.h>
51
#include <machine/smp.h>
52
#include <machine/vmm.h>
53
#include <machine/vmm_dev.h>
54
#include <machine/vmm_instruction_emul.h>
55
#include <machine/vmm_snapshot.h>
56
57
#include <dev/vmm/vmm_ktr.h>
58
#include <dev/vmm/vmm_mem.h>
59
60
#include "vmm_lapic.h"
61
#include "vmm_stat.h"
62
#include "vmm_ioport.h"
63
#include "vatpic.h"
64
#include "vlapic.h"
65
#include "vlapic_priv.h"
66
67
#include "x86.h"
68
#include "vmcb.h"
69
#include "svm.h"
70
#include "svm_softc.h"
71
#include "svm_msr.h"
72
#include "npt.h"
73
#include "io/ppt.h"
74
75
SYSCTL_DECL(_hw_vmm);
76
SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
77
NULL);
78
79
/*
80
* SVM CPUID function 0x8000_000A, edx bit decoding.
81
*/
82
#define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */
83
#define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */
84
#define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */
85
#define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */
86
#define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */
87
#define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */
88
#define AMD_CPUID_SVM_FLUSH_BY_ASID BIT(6) /* Flush by ASID */
89
#define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */
90
#define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */
91
#define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */
92
#define AMD_CPUID_SVM_AVIC BIT(13) /* AVIC present */
93
94
#define VMCB_CACHE_DEFAULT (VMCB_CACHE_ASID | \
95
VMCB_CACHE_IOPM | \
96
VMCB_CACHE_I | \
97
VMCB_CACHE_TPR | \
98
VMCB_CACHE_CR2 | \
99
VMCB_CACHE_CR | \
100
VMCB_CACHE_DR | \
101
VMCB_CACHE_DT | \
102
VMCB_CACHE_SEG | \
103
VMCB_CACHE_NP)
104
105
static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
106
SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
107
0, NULL);
108
109
static MALLOC_DEFINE(M_SVM, "svm", "svm");
110
static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
111
112
static uint32_t svm_feature = ~0U; /* AMD SVM features. */
113
SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
114
"SVM features advertised by CPUID.8000000AH:EDX");
115
116
static int disable_npf_assist;
117
SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
118
&disable_npf_assist, 0, NULL);
119
120
/* Maximum ASIDs supported by the processor */
121
static uint32_t nasid;
122
SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
123
"Number of ASIDs supported by this processor");
124
125
/* Current ASID generation for each host cpu */
126
static struct asid asid[MAXCPU];
127
128
/* SVM host state saved area of size 4KB for each physical core. */
129
static uint8_t *hsave;
130
131
static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
132
static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
133
static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
134
135
static int svm_getdesc(void *vcpui, int reg, struct seg_desc *desc);
136
static int svm_setreg(void *vcpui, int ident, uint64_t val);
137
static int svm_getreg(void *vcpui, int ident, uint64_t *val);
138
static __inline int
139
flush_by_asid(void)
140
{
141
142
return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
143
}
144
145
static __inline int
146
decode_assist(void)
147
{
148
149
return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
150
}
151
152
static void
153
svm_disable(void *arg __unused)
154
{
155
uint64_t efer;
156
157
efer = rdmsr(MSR_EFER);
158
efer &= ~EFER_SVM;
159
wrmsr(MSR_EFER, efer);
160
}
161
162
/*
163
* Disable SVM on all CPUs.
164
*/
165
static int
166
svm_modcleanup(void)
167
{
168
169
smp_rendezvous(NULL, svm_disable, NULL, NULL);
170
171
if (hsave != NULL)
172
kmem_free(hsave, (mp_maxid + 1) * PAGE_SIZE);
173
174
return (0);
175
}
176
177
/*
178
* Verify that all the features required by bhyve are available.
179
*/
180
static int
181
check_svm_features(void)
182
{
183
u_int regs[4];
184
185
/* CPUID Fn8000_000A is for SVM */
186
do_cpuid(0x8000000A, regs);
187
svm_feature &= regs[3];
188
189
/*
190
* The number of ASIDs can be configured to be less than what is
191
* supported by the hardware but not more.
192
*/
193
if (nasid == 0 || nasid > regs[1])
194
nasid = regs[1];
195
KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
196
197
/* bhyve requires the Nested Paging feature */
198
if (!(svm_feature & AMD_CPUID_SVM_NP)) {
199
printf("SVM: Nested Paging feature not available.\n");
200
return (ENXIO);
201
}
202
203
/* bhyve requires the NRIP Save feature */
204
if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
205
printf("SVM: NRIP Save feature not available.\n");
206
return (ENXIO);
207
}
208
209
return (0);
210
}
211
212
static void
213
svm_enable(void *arg __unused)
214
{
215
uint64_t efer;
216
217
efer = rdmsr(MSR_EFER);
218
efer |= EFER_SVM;
219
wrmsr(MSR_EFER, efer);
220
221
wrmsr(MSR_VM_HSAVE_PA, vtophys(&hsave[curcpu * PAGE_SIZE]));
222
}
223
224
/*
225
* Return 1 if SVM is enabled on this processor and 0 otherwise.
226
*/
227
static int
228
svm_available(void)
229
{
230
uint64_t msr;
231
232
/* Section 15.4 Enabling SVM from APM2. */
233
if ((amd_feature2 & AMDID2_SVM) == 0) {
234
printf("SVM: not available.\n");
235
return (0);
236
}
237
238
msr = rdmsr(MSR_VM_CR);
239
if ((msr & VM_CR_SVMDIS) != 0) {
240
printf("SVM: disabled by BIOS.\n");
241
return (0);
242
}
243
244
return (1);
245
}
246
247
static int
248
svm_modinit(int ipinum)
249
{
250
int error, cpu;
251
252
if (!svm_available())
253
return (ENXIO);
254
255
error = check_svm_features();
256
if (error)
257
return (error);
258
259
vmcb_clean &= VMCB_CACHE_DEFAULT;
260
261
for (cpu = 0; cpu < MAXCPU; cpu++) {
262
/*
263
* Initialize the host ASIDs to their "highest" valid values.
264
*
265
* The next ASID allocation will rollover both 'gen' and 'num'
266
* and start off the sequence at {1,1}.
267
*/
268
asid[cpu].gen = ~0UL;
269
asid[cpu].num = nasid - 1;
270
}
271
272
svm_msr_init();
273
svm_npt_init(ipinum);
274
275
/* Enable SVM on all CPUs */
276
hsave = kmem_malloc((mp_maxid + 1) * PAGE_SIZE, M_WAITOK | M_ZERO);
277
smp_rendezvous(NULL, svm_enable, NULL, NULL);
278
279
return (0);
280
}
281
282
static void
283
svm_modsuspend(void)
284
{
285
}
286
287
static void
288
svm_modresume(void)
289
{
290
291
svm_enable(NULL);
292
}
293
294
#ifdef BHYVE_SNAPSHOT
295
void
296
svm_set_tsc_offset(struct svm_vcpu *vcpu, uint64_t offset)
297
{
298
struct vmcb_ctrl *ctrl;
299
300
ctrl = svm_get_vmcb_ctrl(vcpu);
301
ctrl->tsc_offset = offset;
302
303
svm_set_dirty(vcpu, VMCB_CACHE_I);
304
SVM_CTR1(vcpu, "tsc offset changed to %#lx", offset);
305
306
vm_set_tsc_offset(vcpu->vcpu, offset);
307
}
308
#endif
309
310
/* Pentium compatible MSRs */
311
#define MSR_PENTIUM_START 0
312
#define MSR_PENTIUM_END 0x1FFF
313
/* AMD 6th generation and Intel compatible MSRs */
314
#define MSR_AMD6TH_START 0xC0000000UL
315
#define MSR_AMD6TH_END 0xC0001FFFUL
316
/* AMD 7th and 8th generation compatible MSRs */
317
#define MSR_AMD7TH_START 0xC0010000UL
318
#define MSR_AMD7TH_END 0xC0011FFFUL
319
320
static void
321
svm_get_cs_info(struct vmcb *vmcb, struct vm_guest_paging *paging, int *cs_d,
322
uint64_t *base)
323
{
324
struct vmcb_segment seg;
325
int error __diagused;
326
327
error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
328
KASSERT(error == 0, ("%s: vmcb_seg error %d", __func__, error));
329
330
switch (paging->cpu_mode) {
331
case CPU_MODE_REAL:
332
*base = seg.base;
333
*cs_d = 0;
334
break;
335
case CPU_MODE_PROTECTED:
336
case CPU_MODE_COMPATIBILITY:
337
*cs_d = !!(seg.attrib & VMCB_CS_ATTRIB_D);
338
*base = seg.base;
339
break;
340
default:
341
*base = 0;
342
*cs_d = 0;
343
break;
344
}
345
}
346
347
/*
348
* Get the index and bit position for a MSR in permission bitmap.
349
* Two bits are used for each MSR: lower bit for read and higher bit for write.
350
*/
351
static int
352
svm_msr_index(uint64_t msr, int *index, int *bit)
353
{
354
uint32_t base, off;
355
356
*index = -1;
357
*bit = (msr % 4) * 2;
358
base = 0;
359
360
if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
361
*index = msr / 4;
362
return (0);
363
}
364
365
base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
366
if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
367
off = (msr - MSR_AMD6TH_START);
368
*index = (off + base) / 4;
369
return (0);
370
}
371
372
base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
373
if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
374
off = (msr - MSR_AMD7TH_START);
375
*index = (off + base) / 4;
376
return (0);
377
}
378
379
return (EINVAL);
380
}
381
382
/*
383
* Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
384
*/
385
static void
386
svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
387
{
388
int index, bit, error __diagused;
389
390
error = svm_msr_index(msr, &index, &bit);
391
KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
392
KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
393
("%s: invalid index %d for msr %#lx", __func__, index, msr));
394
KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
395
"msr %#lx", __func__, bit, msr));
396
397
if (read)
398
perm_bitmap[index] &= ~(1UL << bit);
399
400
if (write)
401
perm_bitmap[index] &= ~(2UL << bit);
402
}
403
404
static void
405
svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
406
{
407
408
svm_msr_perm(perm_bitmap, msr, true, true);
409
}
410
411
static void
412
svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
413
{
414
415
svm_msr_perm(perm_bitmap, msr, true, false);
416
}
417
418
static __inline int
419
svm_get_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask)
420
{
421
struct vmcb_ctrl *ctrl;
422
423
KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
424
425
ctrl = svm_get_vmcb_ctrl(vcpu);
426
return (ctrl->intercept[idx] & bitmask ? 1 : 0);
427
}
428
429
static __inline void
430
svm_set_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask, int enabled)
431
{
432
struct vmcb_ctrl *ctrl;
433
uint32_t oldval;
434
435
KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
436
437
ctrl = svm_get_vmcb_ctrl(vcpu);
438
oldval = ctrl->intercept[idx];
439
440
if (enabled)
441
ctrl->intercept[idx] |= bitmask;
442
else
443
ctrl->intercept[idx] &= ~bitmask;
444
445
if (ctrl->intercept[idx] != oldval) {
446
svm_set_dirty(vcpu, VMCB_CACHE_I);
447
SVM_CTR3(vcpu, "intercept[%d] modified from %#x to %#x", idx,
448
oldval, ctrl->intercept[idx]);
449
}
450
}
451
452
static __inline void
453
svm_disable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
454
{
455
456
svm_set_intercept(vcpu, off, bitmask, 0);
457
}
458
459
static __inline void
460
svm_enable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
461
{
462
463
svm_set_intercept(vcpu, off, bitmask, 1);
464
}
465
466
static void
467
vmcb_init(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t iopm_base_pa,
468
uint64_t msrpm_base_pa, uint64_t np_pml4)
469
{
470
struct vmcb_ctrl *ctrl;
471
struct vmcb_state *state;
472
uint32_t mask;
473
int n;
474
475
ctrl = svm_get_vmcb_ctrl(vcpu);
476
state = svm_get_vmcb_state(vcpu);
477
478
ctrl->iopm_base_pa = iopm_base_pa;
479
ctrl->msrpm_base_pa = msrpm_base_pa;
480
481
/* Enable nested paging */
482
ctrl->np_enable = 1;
483
ctrl->n_cr3 = np_pml4;
484
485
/*
486
* Intercept accesses to the control registers that are not shadowed
487
* in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
488
*/
489
for (n = 0; n < 16; n++) {
490
mask = (BIT(n) << 16) | BIT(n);
491
if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
492
svm_disable_intercept(vcpu, VMCB_CR_INTCPT, mask);
493
else
494
svm_enable_intercept(vcpu, VMCB_CR_INTCPT, mask);
495
}
496
497
/*
498
* Intercept everything when tracing guest exceptions otherwise
499
* just intercept machine check exception.
500
*/
501
if (vcpu_trace_exceptions(vcpu->vcpu)) {
502
for (n = 0; n < 32; n++) {
503
/*
504
* Skip unimplemented vectors in the exception bitmap.
505
*/
506
if (n == 2 || n == 9) {
507
continue;
508
}
509
svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(n));
510
}
511
} else {
512
svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
513
}
514
515
/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
516
svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
517
svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
518
svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
519
svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
520
svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
521
svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
522
svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
523
svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
524
svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_FERR_FREEZE);
525
svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVD);
526
svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVLPGA);
527
528
svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
529
svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
530
531
/*
532
* Intercept SVM instructions since AMD enables them in guests otherwise.
533
* Non-intercepted VMMCALL causes #UD, skip it.
534
*/
535
svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMLOAD);
536
svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMSAVE);
537
svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_STGI);
538
svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_CLGI);
539
svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_SKINIT);
540
svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_ICEBP);
541
if (vcpu_trap_wbinvd(vcpu->vcpu)) {
542
svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT,
543
VMCB_INTCPT_WBINVD);
544
}
545
546
/*
547
* From section "Canonicalization and Consistency Checks" in APMv2
548
* the VMRUN intercept bit must be set to pass the consistency check.
549
*/
550
svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
551
552
/*
553
* The ASID will be set to a non-zero value just before VMRUN.
554
*/
555
ctrl->asid = 0;
556
557
/*
558
* Section 15.21.1, Interrupt Masking in EFLAGS
559
* Section 15.21.2, Virtualizing APIC.TPR
560
*
561
* This must be set for %rflag and %cr8 isolation of guest and host.
562
*/
563
ctrl->v_intr_masking = 1;
564
565
/* Enable Last Branch Record aka LBR for debugging */
566
ctrl->lbr_virt_en = 1;
567
state->dbgctl = BIT(0);
568
569
/* EFER_SVM must always be set when the guest is executing */
570
state->efer = EFER_SVM;
571
572
/* Set up the PAT to power-on state */
573
state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK) |
574
PAT_VALUE(1, PAT_WRITE_THROUGH) |
575
PAT_VALUE(2, PAT_UNCACHED) |
576
PAT_VALUE(3, PAT_UNCACHEABLE) |
577
PAT_VALUE(4, PAT_WRITE_BACK) |
578
PAT_VALUE(5, PAT_WRITE_THROUGH) |
579
PAT_VALUE(6, PAT_UNCACHED) |
580
PAT_VALUE(7, PAT_UNCACHEABLE);
581
582
/* Set up DR6/7 to power-on state */
583
state->dr6 = DBREG_DR6_RESERVED1;
584
state->dr7 = DBREG_DR7_RESERVED1;
585
}
586
587
/*
588
* Initialize a virtual machine.
589
*/
590
static void *
591
svm_init(struct vm *vm, pmap_t pmap)
592
{
593
struct svm_softc *svm_sc;
594
595
svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO);
596
597
svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM,
598
M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
599
if (svm_sc->msr_bitmap == NULL)
600
panic("contigmalloc of SVM MSR bitmap failed");
601
svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM,
602
M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
603
if (svm_sc->iopm_bitmap == NULL)
604
panic("contigmalloc of SVM IO bitmap failed");
605
606
svm_sc->vm = vm;
607
svm_sc->nptp = vtophys(pmap->pm_pmltop);
608
609
/*
610
* Intercept read and write accesses to all MSRs.
611
*/
612
memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE);
613
614
/*
615
* Access to the following MSRs is redirected to the VMCB when the
616
* guest is executing. Therefore it is safe to allow the guest to
617
* read/write these MSRs directly without hypervisor involvement.
618
*/
619
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
620
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
621
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
622
623
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
624
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
625
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
626
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
627
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
628
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
629
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
630
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
631
632
svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
633
634
/*
635
* Intercept writes to make sure that the EFER_SVM bit is not cleared.
636
*/
637
svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
638
639
/* Intercept access to all I/O ports. */
640
memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE);
641
642
return (svm_sc);
643
}
644
645
static void *
646
svm_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
647
{
648
struct svm_softc *sc = vmi;
649
struct svm_vcpu *vcpu;
650
651
vcpu = malloc(sizeof(*vcpu), M_SVM, M_WAITOK | M_ZERO);
652
vcpu->sc = sc;
653
vcpu->vcpu = vcpu1;
654
vcpu->vcpuid = vcpuid;
655
vcpu->vmcb = malloc_aligned(sizeof(struct vmcb), PAGE_SIZE, M_SVM,
656
M_WAITOK | M_ZERO);
657
vcpu->nextrip = ~0;
658
vcpu->lastcpu = NOCPU;
659
vcpu->vmcb_pa = vtophys(vcpu->vmcb);
660
vmcb_init(sc, vcpu, vtophys(sc->iopm_bitmap), vtophys(sc->msr_bitmap),
661
sc->nptp);
662
svm_msr_guest_init(sc, vcpu);
663
return (vcpu);
664
}
665
666
/*
667
* Collateral for a generic SVM VM-exit.
668
*/
669
static void
670
vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
671
{
672
673
vme->exitcode = VM_EXITCODE_SVM;
674
vme->u.svm.exitcode = code;
675
vme->u.svm.exitinfo1 = info1;
676
vme->u.svm.exitinfo2 = info2;
677
}
678
679
static int
680
svm_cpl(struct vmcb_state *state)
681
{
682
683
/*
684
* From APMv2:
685
* "Retrieve the CPL from the CPL field in the VMCB, not
686
* from any segment DPL"
687
*/
688
return (state->cpl);
689
}
690
691
static enum vm_cpu_mode
692
svm_vcpu_mode(struct vmcb *vmcb)
693
{
694
struct vmcb_segment seg;
695
struct vmcb_state *state;
696
int error __diagused;
697
698
state = &vmcb->state;
699
700
if (state->efer & EFER_LMA) {
701
error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
702
KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
703
error));
704
705
/*
706
* Section 4.8.1 for APM2, check if Code Segment has
707
* Long attribute set in descriptor.
708
*/
709
if (seg.attrib & VMCB_CS_ATTRIB_L)
710
return (CPU_MODE_64BIT);
711
else
712
return (CPU_MODE_COMPATIBILITY);
713
} else if (state->cr0 & CR0_PE) {
714
return (CPU_MODE_PROTECTED);
715
} else {
716
return (CPU_MODE_REAL);
717
}
718
}
719
720
static enum vm_paging_mode
721
svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
722
{
723
724
if ((cr0 & CR0_PG) == 0)
725
return (PAGING_MODE_FLAT);
726
if ((cr4 & CR4_PAE) == 0)
727
return (PAGING_MODE_32);
728
if (efer & EFER_LME)
729
return (PAGING_MODE_64);
730
else
731
return (PAGING_MODE_PAE);
732
}
733
734
/*
735
* ins/outs utility routines
736
*/
737
static uint64_t
738
svm_inout_str_index(struct svm_regctx *regs, int in)
739
{
740
uint64_t val;
741
742
val = in ? regs->sctx_rdi : regs->sctx_rsi;
743
744
return (val);
745
}
746
747
static uint64_t
748
svm_inout_str_count(struct svm_regctx *regs, int rep)
749
{
750
uint64_t val;
751
752
val = rep ? regs->sctx_rcx : 1;
753
754
return (val);
755
}
756
757
static void
758
svm_inout_str_seginfo(struct svm_vcpu *vcpu, int64_t info1, int in,
759
struct vm_inout_str *vis)
760
{
761
int error __diagused, s;
762
763
if (in) {
764
vis->seg_name = VM_REG_GUEST_ES;
765
} else if (decode_assist()) {
766
/*
767
* The effective segment number in EXITINFO1[12:10] is populated
768
* only if the processor has the DecodeAssist capability.
769
*
770
* XXX this is not specified explicitly in APMv2 but can be
771
* verified empirically.
772
*/
773
s = (info1 >> 10) & 0x7;
774
775
/* The segment field has standard encoding */
776
vis->seg_name = vm_segment_name(s);
777
} else {
778
/*
779
* The segment register need to be manually decoded by fetching
780
* the instructions near ip. However, we are unable to fetch it
781
* while the interrupts are disabled. Therefore, we leave the
782
* value unset until the generic ins/outs handler runs.
783
*/
784
vis->seg_name = VM_REG_LAST;
785
svm_get_cs_info(vcpu->vmcb, &vis->paging, &vis->cs_d,
786
&vis->cs_base);
787
return;
788
}
789
790
error = svm_getdesc(vcpu, vis->seg_name, &vis->seg_desc);
791
KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
792
}
793
794
static int
795
svm_inout_str_addrsize(uint64_t info1)
796
{
797
uint32_t size;
798
799
size = (info1 >> 7) & 0x7;
800
switch (size) {
801
case 1:
802
return (2); /* 16 bit */
803
case 2:
804
return (4); /* 32 bit */
805
case 4:
806
return (8); /* 64 bit */
807
default:
808
panic("%s: invalid size encoding %d", __func__, size);
809
}
810
}
811
812
static void
813
svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
814
{
815
struct vmcb_state *state;
816
817
state = &vmcb->state;
818
paging->cr3 = state->cr3;
819
paging->cpl = svm_cpl(state);
820
paging->cpu_mode = svm_vcpu_mode(vmcb);
821
paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
822
state->efer);
823
}
824
825
#define UNHANDLED 0
826
827
/*
828
* Handle guest I/O intercept.
829
*/
830
static int
831
svm_handle_io(struct svm_vcpu *vcpu, struct vm_exit *vmexit)
832
{
833
struct vmcb_ctrl *ctrl;
834
struct vmcb_state *state;
835
struct svm_regctx *regs;
836
struct vm_inout_str *vis;
837
uint64_t info1;
838
int inout_string;
839
840
state = svm_get_vmcb_state(vcpu);
841
ctrl = svm_get_vmcb_ctrl(vcpu);
842
regs = svm_get_guest_regctx(vcpu);
843
844
info1 = ctrl->exitinfo1;
845
inout_string = info1 & BIT(2) ? 1 : 0;
846
847
vmexit->exitcode = VM_EXITCODE_INOUT;
848
vmexit->u.inout.in = (info1 & BIT(0)) ? 1 : 0;
849
vmexit->u.inout.string = inout_string;
850
vmexit->u.inout.rep = (info1 & BIT(3)) ? 1 : 0;
851
vmexit->u.inout.bytes = (info1 >> 4) & 0x7;
852
vmexit->u.inout.port = (uint16_t)(info1 >> 16);
853
vmexit->u.inout.eax = (uint32_t)(state->rax);
854
855
if (inout_string) {
856
vmexit->exitcode = VM_EXITCODE_INOUT_STR;
857
vis = &vmexit->u.inout_str;
858
svm_paging_info(svm_get_vmcb(vcpu), &vis->paging);
859
vis->rflags = state->rflags;
860
vis->cr0 = state->cr0;
861
vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
862
vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
863
vis->addrsize = svm_inout_str_addrsize(info1);
864
vis->cs_d = 0;
865
vis->cs_base = 0;
866
svm_inout_str_seginfo(vcpu, info1, vmexit->u.inout.in, vis);
867
}
868
869
return (UNHANDLED);
870
}
871
872
static int
873
npf_fault_type(uint64_t exitinfo1)
874
{
875
876
if (exitinfo1 & VMCB_NPF_INFO1_W)
877
return (VM_PROT_WRITE);
878
else if (exitinfo1 & VMCB_NPF_INFO1_ID)
879
return (VM_PROT_EXECUTE);
880
else
881
return (VM_PROT_READ);
882
}
883
884
static bool
885
svm_npf_emul_fault(uint64_t exitinfo1)
886
{
887
888
if (exitinfo1 & VMCB_NPF_INFO1_ID) {
889
return (false);
890
}
891
892
if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
893
return (false);
894
}
895
896
if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
897
return (false);
898
}
899
900
return (true);
901
}
902
903
static void
904
svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
905
{
906
struct vm_guest_paging *paging;
907
struct vmcb_ctrl *ctrl;
908
char *inst_bytes;
909
int inst_len;
910
911
ctrl = &vmcb->ctrl;
912
paging = &vmexit->u.inst_emul.paging;
913
914
vmexit->exitcode = VM_EXITCODE_INST_EMUL;
915
vmexit->u.inst_emul.gpa = gpa;
916
vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
917
svm_paging_info(vmcb, paging);
918
919
svm_get_cs_info(vmcb, paging, &vmexit->u.inst_emul.cs_d,
920
&vmexit->u.inst_emul.cs_base);
921
922
/*
923
* Copy the instruction bytes into 'vie' if available.
924
*/
925
if (decode_assist() && !disable_npf_assist) {
926
inst_len = ctrl->inst_len;
927
inst_bytes = ctrl->inst_bytes;
928
} else {
929
inst_len = 0;
930
inst_bytes = NULL;
931
}
932
vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
933
}
934
935
#ifdef KTR
936
static const char *
937
intrtype_to_str(int intr_type)
938
{
939
switch (intr_type) {
940
case VMCB_EVENTINJ_TYPE_INTR:
941
return ("hwintr");
942
case VMCB_EVENTINJ_TYPE_NMI:
943
return ("nmi");
944
case VMCB_EVENTINJ_TYPE_INTn:
945
return ("swintr");
946
case VMCB_EVENTINJ_TYPE_EXCEPTION:
947
return ("exception");
948
default:
949
panic("%s: unknown intr_type %d", __func__, intr_type);
950
}
951
}
952
#endif
953
954
/*
955
* Inject an event to vcpu as described in section 15.20, "Event injection".
956
*/
957
static void
958
svm_eventinject(struct svm_vcpu *vcpu, int intr_type, int vector,
959
uint32_t error, bool ec_valid)
960
{
961
struct vmcb_ctrl *ctrl;
962
963
ctrl = svm_get_vmcb_ctrl(vcpu);
964
965
KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
966
("%s: event already pending %#lx", __func__, ctrl->eventinj));
967
968
KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
969
__func__, vector));
970
971
switch (intr_type) {
972
case VMCB_EVENTINJ_TYPE_INTR:
973
case VMCB_EVENTINJ_TYPE_NMI:
974
case VMCB_EVENTINJ_TYPE_INTn:
975
break;
976
case VMCB_EVENTINJ_TYPE_EXCEPTION:
977
if (vector >= 0 && vector <= 31 && vector != 2)
978
break;
979
/* FALLTHROUGH */
980
default:
981
panic("%s: invalid intr_type/vector: %d/%d", __func__,
982
intr_type, vector);
983
}
984
ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
985
if (ec_valid) {
986
ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
987
ctrl->eventinj |= (uint64_t)error << 32;
988
SVM_CTR3(vcpu, "Injecting %s at vector %d errcode %#x",
989
intrtype_to_str(intr_type), vector, error);
990
} else {
991
SVM_CTR2(vcpu, "Injecting %s at vector %d",
992
intrtype_to_str(intr_type), vector);
993
}
994
}
995
996
static void
997
svm_update_virqinfo(struct svm_vcpu *vcpu)
998
{
999
struct vlapic *vlapic;
1000
struct vmcb_ctrl *ctrl;
1001
1002
vlapic = vm_lapic(vcpu->vcpu);
1003
ctrl = svm_get_vmcb_ctrl(vcpu);
1004
1005
/* Update %cr8 in the emulated vlapic */
1006
vlapic_set_cr8(vlapic, ctrl->v_tpr);
1007
1008
/* Virtual interrupt injection is not used. */
1009
KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid "
1010
"v_intr_vector %d", __func__, ctrl->v_intr_vector));
1011
}
1012
1013
static void
1014
svm_save_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
1015
{
1016
struct vmcb_ctrl *ctrl;
1017
uint64_t intinfo;
1018
1019
ctrl = svm_get_vmcb_ctrl(vcpu);
1020
intinfo = ctrl->exitintinfo;
1021
if (!VMCB_EXITINTINFO_VALID(intinfo))
1022
return;
1023
1024
/*
1025
* From APMv2, Section "Intercepts during IDT interrupt delivery"
1026
*
1027
* If a #VMEXIT happened during event delivery then record the event
1028
* that was being delivered.
1029
*/
1030
SVM_CTR2(vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", intinfo,
1031
VMCB_EXITINTINFO_VECTOR(intinfo));
1032
vmm_stat_incr(vcpu->vcpu, VCPU_EXITINTINFO, 1);
1033
vm_exit_intinfo(vcpu->vcpu, intinfo);
1034
}
1035
1036
#ifdef INVARIANTS
1037
static __inline int
1038
vintr_intercept_enabled(struct svm_vcpu *vcpu)
1039
{
1040
1041
return (svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR));
1042
}
1043
#endif
1044
1045
static __inline void
1046
enable_intr_window_exiting(struct svm_vcpu *vcpu)
1047
{
1048
struct vmcb_ctrl *ctrl;
1049
1050
ctrl = svm_get_vmcb_ctrl(vcpu);
1051
1052
if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
1053
KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
1054
KASSERT(vintr_intercept_enabled(vcpu),
1055
("%s: vintr intercept should be enabled", __func__));
1056
return;
1057
}
1058
1059
SVM_CTR0(vcpu, "Enable intr window exiting");
1060
ctrl->v_irq = 1;
1061
ctrl->v_ign_tpr = 1;
1062
ctrl->v_intr_vector = 0;
1063
svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1064
svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1065
}
1066
1067
static __inline void
1068
disable_intr_window_exiting(struct svm_vcpu *vcpu)
1069
{
1070
struct vmcb_ctrl *ctrl;
1071
1072
ctrl = svm_get_vmcb_ctrl(vcpu);
1073
1074
if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1075
KASSERT(!vintr_intercept_enabled(vcpu),
1076
("%s: vintr intercept should be disabled", __func__));
1077
return;
1078
}
1079
1080
SVM_CTR0(vcpu, "Disable intr window exiting");
1081
ctrl->v_irq = 0;
1082
ctrl->v_intr_vector = 0;
1083
svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1084
svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1085
}
1086
1087
static int
1088
svm_modify_intr_shadow(struct svm_vcpu *vcpu, uint64_t val)
1089
{
1090
struct vmcb_ctrl *ctrl;
1091
int oldval, newval;
1092
1093
ctrl = svm_get_vmcb_ctrl(vcpu);
1094
oldval = ctrl->intr_shadow;
1095
newval = val ? 1 : 0;
1096
if (newval != oldval) {
1097
ctrl->intr_shadow = newval;
1098
SVM_CTR1(vcpu, "Setting intr_shadow to %d", newval);
1099
}
1100
return (0);
1101
}
1102
1103
static int
1104
svm_get_intr_shadow(struct svm_vcpu *vcpu, uint64_t *val)
1105
{
1106
struct vmcb_ctrl *ctrl;
1107
1108
ctrl = svm_get_vmcb_ctrl(vcpu);
1109
*val = ctrl->intr_shadow;
1110
return (0);
1111
}
1112
1113
/*
1114
* Once an NMI is injected it blocks delivery of further NMIs until the handler
1115
* executes an IRET. The IRET intercept is enabled when an NMI is injected to
1116
* to track when the vcpu is done handling the NMI.
1117
*/
1118
static int
1119
nmi_blocked(struct svm_vcpu *vcpu)
1120
{
1121
int blocked;
1122
1123
blocked = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1124
return (blocked);
1125
}
1126
1127
static void
1128
enable_nmi_blocking(struct svm_vcpu *vcpu)
1129
{
1130
1131
KASSERT(!nmi_blocked(vcpu), ("vNMI already blocked"));
1132
SVM_CTR0(vcpu, "vNMI blocking enabled");
1133
svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1134
}
1135
1136
static void
1137
clear_nmi_blocking(struct svm_vcpu *vcpu)
1138
{
1139
int error __diagused;
1140
1141
KASSERT(nmi_blocked(vcpu), ("vNMI already unblocked"));
1142
SVM_CTR0(vcpu, "vNMI blocking cleared");
1143
/*
1144
* When the IRET intercept is cleared the vcpu will attempt to execute
1145
* the "iret" when it runs next. However, it is possible to inject
1146
* another NMI into the vcpu before the "iret" has actually executed.
1147
*
1148
* For e.g. if the "iret" encounters a #NPF when accessing the stack
1149
* it will trap back into the hypervisor. If an NMI is pending for
1150
* the vcpu it will be injected into the guest.
1151
*
1152
* XXX this needs to be fixed
1153
*/
1154
svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1155
1156
/*
1157
* Set 'intr_shadow' to prevent an NMI from being injected on the
1158
* immediate VMRUN.
1159
*/
1160
error = svm_modify_intr_shadow(vcpu, 1);
1161
KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1162
}
1163
1164
#define EFER_MBZ_BITS 0xFFFFFFFFFFFF0200UL
1165
1166
static int
1167
svm_write_efer(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t newval,
1168
bool *retu)
1169
{
1170
struct vm_exit *vme;
1171
struct vmcb_state *state;
1172
uint64_t changed, lma, oldval;
1173
int error __diagused;
1174
1175
state = svm_get_vmcb_state(vcpu);
1176
1177
oldval = state->efer;
1178
SVM_CTR2(vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1179
1180
newval &= ~0xFE; /* clear the Read-As-Zero (RAZ) bits */
1181
changed = oldval ^ newval;
1182
1183
if (newval & EFER_MBZ_BITS)
1184
goto gpf;
1185
1186
/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1187
if (changed & EFER_LME) {
1188
if (state->cr0 & CR0_PG)
1189
goto gpf;
1190
}
1191
1192
/* EFER.LMA = EFER.LME & CR0.PG */
1193
if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1194
lma = EFER_LMA;
1195
else
1196
lma = 0;
1197
1198
if ((newval & EFER_LMA) != lma)
1199
goto gpf;
1200
1201
if (newval & EFER_NXE) {
1202
if (!vm_cpuid_capability(vcpu->vcpu, VCC_NO_EXECUTE))
1203
goto gpf;
1204
}
1205
1206
/*
1207
* XXX bhyve does not enforce segment limits in 64-bit mode. Until
1208
* this is fixed flag guest attempt to set EFER_LMSLE as an error.
1209
*/
1210
if (newval & EFER_LMSLE) {
1211
vme = vm_exitinfo(vcpu->vcpu);
1212
vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1213
*retu = true;
1214
return (0);
1215
}
1216
1217
if (newval & EFER_FFXSR) {
1218
if (!vm_cpuid_capability(vcpu->vcpu, VCC_FFXSR))
1219
goto gpf;
1220
}
1221
1222
if (newval & EFER_TCE) {
1223
if (!vm_cpuid_capability(vcpu->vcpu, VCC_TCE))
1224
goto gpf;
1225
}
1226
1227
error = svm_setreg(vcpu, VM_REG_GUEST_EFER, newval);
1228
KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1229
return (0);
1230
gpf:
1231
vm_inject_gp(vcpu->vcpu);
1232
return (0);
1233
}
1234
1235
static int
1236
emulate_wrmsr(struct svm_softc *sc, struct svm_vcpu *vcpu, u_int num,
1237
uint64_t val, bool *retu)
1238
{
1239
int error;
1240
1241
if (lapic_msr(num))
1242
error = lapic_wrmsr(vcpu->vcpu, num, val, retu);
1243
else if (num == MSR_EFER)
1244
error = svm_write_efer(sc, vcpu, val, retu);
1245
else
1246
error = svm_wrmsr(vcpu, num, val, retu);
1247
1248
return (error);
1249
}
1250
1251
static int
1252
emulate_rdmsr(struct svm_vcpu *vcpu, u_int num, bool *retu)
1253
{
1254
struct vmcb_state *state;
1255
struct svm_regctx *ctx;
1256
uint64_t result;
1257
int error;
1258
1259
if (lapic_msr(num))
1260
error = lapic_rdmsr(vcpu->vcpu, num, &result, retu);
1261
else
1262
error = svm_rdmsr(vcpu, num, &result, retu);
1263
1264
if (error == 0) {
1265
state = svm_get_vmcb_state(vcpu);
1266
ctx = svm_get_guest_regctx(vcpu);
1267
state->rax = result & 0xffffffff;
1268
ctx->sctx_rdx = result >> 32;
1269
}
1270
1271
return (error);
1272
}
1273
1274
#ifdef KTR
1275
static const char *
1276
exit_reason_to_str(uint64_t reason)
1277
{
1278
int i;
1279
static char reasonbuf[32];
1280
static const struct {
1281
int reason;
1282
const char *str;
1283
} reasons[] = {
1284
{ .reason = VMCB_EXIT_INVALID, .str = "invalvmcb" },
1285
{ .reason = VMCB_EXIT_SHUTDOWN, .str = "shutdown" },
1286
{ .reason = VMCB_EXIT_NPF, .str = "nptfault" },
1287
{ .reason = VMCB_EXIT_PAUSE, .str = "pause" },
1288
{ .reason = VMCB_EXIT_HLT, .str = "hlt" },
1289
{ .reason = VMCB_EXIT_CPUID, .str = "cpuid" },
1290
{ .reason = VMCB_EXIT_IO, .str = "inout" },
1291
{ .reason = VMCB_EXIT_MC, .str = "mchk" },
1292
{ .reason = VMCB_EXIT_INTR, .str = "extintr" },
1293
{ .reason = VMCB_EXIT_NMI, .str = "nmi" },
1294
{ .reason = VMCB_EXIT_VINTR, .str = "vintr" },
1295
{ .reason = VMCB_EXIT_MSR, .str = "msr" },
1296
{ .reason = VMCB_EXIT_IRET, .str = "iret" },
1297
{ .reason = VMCB_EXIT_MONITOR, .str = "monitor" },
1298
{ .reason = VMCB_EXIT_MWAIT, .str = "mwait" },
1299
{ .reason = VMCB_EXIT_VMRUN, .str = "vmrun" },
1300
{ .reason = VMCB_EXIT_VMMCALL, .str = "vmmcall" },
1301
{ .reason = VMCB_EXIT_VMLOAD, .str = "vmload" },
1302
{ .reason = VMCB_EXIT_VMSAVE, .str = "vmsave" },
1303
{ .reason = VMCB_EXIT_STGI, .str = "stgi" },
1304
{ .reason = VMCB_EXIT_CLGI, .str = "clgi" },
1305
{ .reason = VMCB_EXIT_SKINIT, .str = "skinit" },
1306
{ .reason = VMCB_EXIT_ICEBP, .str = "icebp" },
1307
{ .reason = VMCB_EXIT_INVD, .str = "invd" },
1308
{ .reason = VMCB_EXIT_INVLPGA, .str = "invlpga" },
1309
{ .reason = VMCB_EXIT_POPF, .str = "popf" },
1310
{ .reason = VMCB_EXIT_PUSHF, .str = "pushf" },
1311
};
1312
1313
for (i = 0; i < nitems(reasons); i++) {
1314
if (reasons[i].reason == reason)
1315
return (reasons[i].str);
1316
}
1317
snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1318
return (reasonbuf);
1319
}
1320
#endif /* KTR */
1321
1322
/*
1323
* From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1324
* that are due to instruction intercepts as well as MSR and IOIO intercepts
1325
* and exceptions caused by INT3, INTO and BOUND instructions.
1326
*
1327
* Return 1 if the nRIP is valid and 0 otherwise.
1328
*/
1329
static int
1330
nrip_valid(uint64_t exitcode)
1331
{
1332
switch (exitcode) {
1333
case 0x00 ... 0x0F: /* read of CR0 through CR15 */
1334
case 0x10 ... 0x1F: /* write of CR0 through CR15 */
1335
case 0x20 ... 0x2F: /* read of DR0 through DR15 */
1336
case 0x30 ... 0x3F: /* write of DR0 through DR15 */
1337
case 0x43: /* INT3 */
1338
case 0x44: /* INTO */
1339
case 0x45: /* BOUND */
1340
case 0x65 ... 0x7C: /* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1341
case 0x80 ... 0x8D: /* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1342
return (1);
1343
default:
1344
return (0);
1345
}
1346
}
1347
1348
static int
1349
svm_vmexit(struct svm_softc *svm_sc, struct svm_vcpu *vcpu,
1350
struct vm_exit *vmexit)
1351
{
1352
struct vmcb *vmcb;
1353
struct vmcb_state *state;
1354
struct vmcb_ctrl *ctrl;
1355
struct svm_regctx *ctx;
1356
uint64_t code, info1, info2, val;
1357
uint32_t eax, ecx, edx;
1358
int error __diagused, errcode_valid, handled, idtvec, reflect;
1359
bool retu;
1360
1361
ctx = svm_get_guest_regctx(vcpu);
1362
vmcb = svm_get_vmcb(vcpu);
1363
state = &vmcb->state;
1364
ctrl = &vmcb->ctrl;
1365
1366
handled = 0;
1367
code = ctrl->exitcode;
1368
info1 = ctrl->exitinfo1;
1369
info2 = ctrl->exitinfo2;
1370
1371
vmexit->exitcode = VM_EXITCODE_BOGUS;
1372
vmexit->rip = state->rip;
1373
vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1374
1375
vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1);
1376
1377
/*
1378
* #VMEXIT(INVALID) needs to be handled early because the VMCB is
1379
* in an inconsistent state and can trigger assertions that would
1380
* never happen otherwise.
1381
*/
1382
if (code == VMCB_EXIT_INVALID) {
1383
vm_exit_svm(vmexit, code, info1, info2);
1384
return (0);
1385
}
1386
1387
KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1388
"injection valid bit is set %#lx", __func__, ctrl->eventinj));
1389
1390
KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1391
("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1392
vmexit->inst_length, code, info1, info2));
1393
1394
svm_update_virqinfo(vcpu);
1395
svm_save_intinfo(svm_sc, vcpu);
1396
1397
switch (code) {
1398
case VMCB_EXIT_IRET:
1399
/*
1400
* Restart execution at "iret" but with the intercept cleared.
1401
*/
1402
vmexit->inst_length = 0;
1403
clear_nmi_blocking(vcpu);
1404
handled = 1;
1405
break;
1406
case VMCB_EXIT_VINTR: /* interrupt window exiting */
1407
vmm_stat_incr(vcpu->vcpu, VMEXIT_VINTR, 1);
1408
handled = 1;
1409
break;
1410
case VMCB_EXIT_INTR: /* external interrupt */
1411
vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1);
1412
handled = 1;
1413
break;
1414
case VMCB_EXIT_NMI: /* external NMI */
1415
handled = 1;
1416
break;
1417
case 0x40 ... 0x5F:
1418
vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1);
1419
reflect = 1;
1420
idtvec = code - 0x40;
1421
switch (idtvec) {
1422
case IDT_MC:
1423
/*
1424
* Call the machine check handler by hand. Also don't
1425
* reflect the machine check back into the guest.
1426
*/
1427
reflect = 0;
1428
SVM_CTR0(vcpu, "Vectoring to MCE handler");
1429
__asm __volatile("int $18");
1430
break;
1431
case IDT_PF:
1432
error = svm_setreg(vcpu, VM_REG_GUEST_CR2, info2);
1433
KASSERT(error == 0, ("%s: error %d updating cr2",
1434
__func__, error));
1435
/* fallthru */
1436
case IDT_NP:
1437
case IDT_SS:
1438
case IDT_GP:
1439
case IDT_AC:
1440
case IDT_TS:
1441
errcode_valid = 1;
1442
break;
1443
1444
case IDT_DF:
1445
errcode_valid = 1;
1446
info1 = 0;
1447
break;
1448
case IDT_DB: {
1449
/*
1450
* Check if we are being stepped (RFLAGS.TF)
1451
* and bounce vmexit to userland.
1452
*/
1453
bool stepped = 0;
1454
uint64_t dr6 = 0;
1455
1456
svm_getreg(vcpu, VM_REG_GUEST_DR6, &dr6);
1457
stepped = !!(dr6 & DBREG_DR6_BS);
1458
if (stepped && (vcpu->caps & (1 << VM_CAP_RFLAGS_TF))) {
1459
vmexit->exitcode = VM_EXITCODE_DB;
1460
vmexit->u.dbg.trace_trap = 1;
1461
vmexit->u.dbg.pushf_intercept = 0;
1462
1463
if (vcpu->dbg.popf_sstep) {
1464
/*
1465
* DB# exit was caused by stepping over
1466
* popf.
1467
*/
1468
uint64_t rflags;
1469
1470
vcpu->dbg.popf_sstep = 0;
1471
1472
/*
1473
* Update shadowed TF bit so the next
1474
* setcap(..., RFLAGS_SSTEP, 0) restores
1475
* the correct value
1476
*/
1477
svm_getreg(vcpu, VM_REG_GUEST_RFLAGS,
1478
&rflags);
1479
vcpu->dbg.rflags_tf = rflags & PSL_T;
1480
} else if (vcpu->dbg.pushf_sstep) {
1481
/*
1482
* DB# exit was caused by stepping over
1483
* pushf.
1484
*/
1485
vcpu->dbg.pushf_sstep = 0;
1486
1487
/*
1488
* Adjusting the pushed rflags after a
1489
* restarted pushf instruction must be
1490
* handled outside of svm.c due to the
1491
* critical_enter() lock being held.
1492
*/
1493
vmexit->u.dbg.pushf_intercept = 1;
1494
vmexit->u.dbg.tf_shadow_val =
1495
vcpu->dbg.rflags_tf;
1496
svm_paging_info(svm_get_vmcb(vcpu),
1497
&vmexit->u.dbg.paging);
1498
}
1499
1500
/* Clear DR6 "single-step" bit. */
1501
dr6 &= ~DBREG_DR6_BS;
1502
error = svm_setreg(vcpu, VM_REG_GUEST_DR6, dr6);
1503
KASSERT(error == 0,
1504
("%s: error %d updating DR6\r\n", __func__,
1505
error));
1506
1507
reflect = 0;
1508
}
1509
break;
1510
}
1511
case IDT_BP:
1512
vmexit->exitcode = VM_EXITCODE_BPT;
1513
vmexit->u.bpt.inst_length = vmexit->inst_length;
1514
vmexit->inst_length = 0;
1515
1516
reflect = 0;
1517
break;
1518
case IDT_OF:
1519
case IDT_BR:
1520
/*
1521
* The 'nrip' field is populated for INT3, INTO and
1522
* BOUND exceptions and this also implies that
1523
* 'inst_length' is non-zero.
1524
*
1525
* Reset 'inst_length' to zero so the guest %rip at
1526
* event injection is identical to what it was when
1527
* the exception originally happened.
1528
*/
1529
SVM_CTR2(vcpu, "Reset inst_length from %d "
1530
"to zero before injecting exception %d",
1531
vmexit->inst_length, idtvec);
1532
vmexit->inst_length = 0;
1533
/* fallthru */
1534
default:
1535
errcode_valid = 0;
1536
info1 = 0;
1537
break;
1538
}
1539
1540
if (reflect) {
1541
KASSERT(vmexit->inst_length == 0,
1542
("invalid inst_length (%d) "
1543
"when reflecting exception %d into guest",
1544
vmexit->inst_length, idtvec));
1545
/* Reflect the exception back into the guest */
1546
SVM_CTR2(vcpu, "Reflecting exception "
1547
"%d/%#x into the guest", idtvec, (int)info1);
1548
error = vm_inject_exception(vcpu->vcpu, idtvec,
1549
errcode_valid, info1, 0);
1550
KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1551
__func__, error));
1552
handled = 1;
1553
}
1554
break;
1555
case VMCB_EXIT_MSR: /* MSR access. */
1556
eax = state->rax;
1557
ecx = ctx->sctx_rcx;
1558
edx = ctx->sctx_rdx;
1559
retu = false;
1560
1561
if (info1) {
1562
vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1);
1563
val = (uint64_t)edx << 32 | eax;
1564
SVM_CTR2(vcpu, "wrmsr %#x val %#lx", ecx, val);
1565
if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1566
vmexit->exitcode = VM_EXITCODE_WRMSR;
1567
vmexit->u.msr.code = ecx;
1568
vmexit->u.msr.wval = val;
1569
} else if (!retu) {
1570
handled = 1;
1571
} else {
1572
KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1573
("emulate_wrmsr retu with bogus exitcode"));
1574
}
1575
} else {
1576
SVM_CTR1(vcpu, "rdmsr %#x", ecx);
1577
vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1);
1578
if (emulate_rdmsr(vcpu, ecx, &retu)) {
1579
vmexit->exitcode = VM_EXITCODE_RDMSR;
1580
vmexit->u.msr.code = ecx;
1581
} else if (!retu) {
1582
handled = 1;
1583
} else {
1584
KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1585
("emulate_rdmsr retu with bogus exitcode"));
1586
}
1587
}
1588
break;
1589
case VMCB_EXIT_IO:
1590
handled = svm_handle_io(vcpu, vmexit);
1591
vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1);
1592
break;
1593
case VMCB_EXIT_CPUID:
1594
vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1);
1595
handled = x86_emulate_cpuid(vcpu->vcpu,
1596
&state->rax, &ctx->sctx_rbx, &ctx->sctx_rcx,
1597
&ctx->sctx_rdx);
1598
break;
1599
case VMCB_EXIT_HLT:
1600
vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1);
1601
vmexit->exitcode = VM_EXITCODE_HLT;
1602
vmexit->u.hlt.rflags = state->rflags;
1603
break;
1604
case VMCB_EXIT_PAUSE:
1605
vmexit->exitcode = VM_EXITCODE_PAUSE;
1606
vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1);
1607
break;
1608
case VMCB_EXIT_NPF:
1609
/* EXITINFO2 contains the faulting guest physical address */
1610
if (info1 & VMCB_NPF_INFO1_RSV) {
1611
SVM_CTR2(vcpu, "nested page fault with "
1612
"reserved bits set: info1(%#lx) info2(%#lx)",
1613
info1, info2);
1614
} else if (vm_mem_allocated(vcpu->vcpu, info2) ||
1615
ppt_is_mmio(svm_sc->vm, info2)) {
1616
vmexit->exitcode = VM_EXITCODE_PAGING;
1617
vmexit->u.paging.gpa = info2;
1618
vmexit->u.paging.fault_type = npf_fault_type(info1);
1619
vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1);
1620
SVM_CTR3(vcpu, "nested page fault "
1621
"on gpa %#lx/%#lx at rip %#lx",
1622
info2, info1, state->rip);
1623
} else if (svm_npf_emul_fault(info1)) {
1624
svm_handle_inst_emul(vmcb, info2, vmexit);
1625
vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1);
1626
SVM_CTR3(vcpu, "inst_emul fault "
1627
"for gpa %#lx/%#lx at rip %#lx",
1628
info2, info1, state->rip);
1629
}
1630
break;
1631
case VMCB_EXIT_MONITOR:
1632
vmexit->exitcode = VM_EXITCODE_MONITOR;
1633
break;
1634
case VMCB_EXIT_MWAIT:
1635
vmexit->exitcode = VM_EXITCODE_MWAIT;
1636
break;
1637
case VMCB_EXIT_PUSHF: {
1638
if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
1639
uint64_t rflags;
1640
1641
svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
1642
/* Restart this instruction. */
1643
vmexit->inst_length = 0;
1644
/* Disable PUSHF intercepts - avoid a loop. */
1645
svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
1646
VMCB_INTCPT_PUSHF, 0);
1647
/* Trace restarted instruction. */
1648
svm_setreg(vcpu, VM_REG_GUEST_RFLAGS, (rflags | PSL_T));
1649
/* Let the IDT_DB handler know that pushf was stepped.
1650
*/
1651
vcpu->dbg.pushf_sstep = 1;
1652
handled = 1;
1653
}
1654
break;
1655
}
1656
case VMCB_EXIT_POPF: {
1657
if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
1658
uint64_t rflags;
1659
1660
svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
1661
/* Restart this instruction */
1662
vmexit->inst_length = 0;
1663
/* Disable POPF intercepts - avoid a loop*/
1664
svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
1665
VMCB_INTCPT_POPF, 0);
1666
/* Trace restarted instruction */
1667
svm_setreg(vcpu, VM_REG_GUEST_RFLAGS, (rflags | PSL_T));
1668
vcpu->dbg.popf_sstep = 1;
1669
handled = 1;
1670
}
1671
break;
1672
}
1673
case VMCB_EXIT_SHUTDOWN:
1674
case VMCB_EXIT_VMRUN:
1675
case VMCB_EXIT_VMMCALL:
1676
case VMCB_EXIT_VMLOAD:
1677
case VMCB_EXIT_VMSAVE:
1678
case VMCB_EXIT_STGI:
1679
case VMCB_EXIT_CLGI:
1680
case VMCB_EXIT_SKINIT:
1681
case VMCB_EXIT_ICEBP:
1682
case VMCB_EXIT_INVLPGA:
1683
vm_inject_ud(vcpu->vcpu);
1684
handled = 1;
1685
break;
1686
case VMCB_EXIT_INVD:
1687
case VMCB_EXIT_WBINVD:
1688
/* ignore exit */
1689
handled = 1;
1690
break;
1691
default:
1692
vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1);
1693
break;
1694
}
1695
1696
SVM_CTR4(vcpu, "%s %s vmexit at %#lx/%d",
1697
handled ? "handled" : "unhandled", exit_reason_to_str(code),
1698
vmexit->rip, vmexit->inst_length);
1699
1700
if (handled) {
1701
vmexit->rip += vmexit->inst_length;
1702
vmexit->inst_length = 0;
1703
state->rip = vmexit->rip;
1704
} else {
1705
if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1706
/*
1707
* If this VM exit was not claimed by anybody then
1708
* treat it as a generic SVM exit.
1709
*/
1710
vm_exit_svm(vmexit, code, info1, info2);
1711
} else {
1712
/*
1713
* The exitcode and collateral have been populated.
1714
* The VM exit will be processed further in userland.
1715
*/
1716
}
1717
}
1718
return (handled);
1719
}
1720
1721
static void
1722
svm_inj_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
1723
{
1724
uint64_t intinfo;
1725
1726
if (!vm_entry_intinfo(vcpu->vcpu, &intinfo))
1727
return;
1728
1729
KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1730
"valid: %#lx", __func__, intinfo));
1731
1732
svm_eventinject(vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1733
VMCB_EXITINTINFO_VECTOR(intinfo),
1734
VMCB_EXITINTINFO_EC(intinfo),
1735
VMCB_EXITINTINFO_EC_VALID(intinfo));
1736
vmm_stat_incr(vcpu->vcpu, VCPU_INTINFO_INJECTED, 1);
1737
SVM_CTR1(vcpu, "Injected entry intinfo: %#lx", intinfo);
1738
}
1739
1740
/*
1741
* Inject event to virtual cpu.
1742
*/
1743
static void
1744
svm_inj_interrupts(struct svm_softc *sc, struct svm_vcpu *vcpu,
1745
struct vlapic *vlapic)
1746
{
1747
struct vmcb_ctrl *ctrl;
1748
struct vmcb_state *state;
1749
uint8_t v_tpr;
1750
int vector, need_intr_window;
1751
int extint_pending;
1752
1753
if (vcpu->caps & (1 << VM_CAP_MASK_HWINTR)) {
1754
return;
1755
}
1756
1757
state = svm_get_vmcb_state(vcpu);
1758
ctrl = svm_get_vmcb_ctrl(vcpu);
1759
1760
need_intr_window = 0;
1761
1762
if (vcpu->nextrip != state->rip) {
1763
ctrl->intr_shadow = 0;
1764
SVM_CTR2(vcpu, "Guest interrupt blocking "
1765
"cleared due to rip change: %#lx/%#lx",
1766
vcpu->nextrip, state->rip);
1767
}
1768
1769
/*
1770
* Inject pending events or exceptions for this vcpu.
1771
*
1772
* An event might be pending because the previous #VMEXIT happened
1773
* during event delivery (i.e. ctrl->exitintinfo).
1774
*
1775
* An event might also be pending because an exception was injected
1776
* by the hypervisor (e.g. #PF during instruction emulation).
1777
*/
1778
svm_inj_intinfo(sc, vcpu);
1779
1780
/* NMI event has priority over interrupts. */
1781
if (vm_nmi_pending(vcpu->vcpu)) {
1782
if (nmi_blocked(vcpu)) {
1783
/*
1784
* Can't inject another NMI if the guest has not
1785
* yet executed an "iret" after the last NMI.
1786
*/
1787
SVM_CTR0(vcpu, "Cannot inject NMI due "
1788
"to NMI-blocking");
1789
} else if (ctrl->intr_shadow) {
1790
/*
1791
* Can't inject an NMI if the vcpu is in an intr_shadow.
1792
*/
1793
SVM_CTR0(vcpu, "Cannot inject NMI due to "
1794
"interrupt shadow");
1795
need_intr_window = 1;
1796
goto done;
1797
} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1798
/*
1799
* If there is already an exception/interrupt pending
1800
* then defer the NMI until after that.
1801
*/
1802
SVM_CTR1(vcpu, "Cannot inject NMI due to "
1803
"eventinj %#lx", ctrl->eventinj);
1804
1805
/*
1806
* Use self-IPI to trigger a VM-exit as soon as
1807
* possible after the event injection is completed.
1808
*
1809
* This works only if the external interrupt exiting
1810
* is at a lower priority than the event injection.
1811
*
1812
* Although not explicitly specified in APMv2 the
1813
* relative priorities were verified empirically.
1814
*/
1815
ipi_cpu(curcpu, IPI_AST); /* XXX vmm_ipinum? */
1816
} else {
1817
vm_nmi_clear(vcpu->vcpu);
1818
1819
/* Inject NMI, vector number is not used */
1820
svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_NMI,
1821
IDT_NMI, 0, false);
1822
1823
/* virtual NMI blocking is now in effect */
1824
enable_nmi_blocking(vcpu);
1825
1826
SVM_CTR0(vcpu, "Injecting vNMI");
1827
}
1828
}
1829
1830
extint_pending = vm_extint_pending(vcpu->vcpu);
1831
if (!extint_pending) {
1832
if (!vlapic_pending_intr(vlapic, &vector))
1833
goto done;
1834
KASSERT(vector >= 16 && vector <= 255,
1835
("invalid vector %d from local APIC", vector));
1836
} else {
1837
/* Ask the legacy pic for a vector to inject */
1838
vatpic_pending_intr(sc->vm, &vector);
1839
KASSERT(vector >= 0 && vector <= 255,
1840
("invalid vector %d from INTR", vector));
1841
}
1842
1843
/*
1844
* If the guest has disabled interrupts or is in an interrupt shadow
1845
* then we cannot inject the pending interrupt.
1846
*/
1847
if ((state->rflags & PSL_I) == 0) {
1848
SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1849
"rflags %#lx", vector, state->rflags);
1850
need_intr_window = 1;
1851
goto done;
1852
}
1853
1854
if (ctrl->intr_shadow) {
1855
SVM_CTR1(vcpu, "Cannot inject vector %d due to "
1856
"interrupt shadow", vector);
1857
need_intr_window = 1;
1858
goto done;
1859
}
1860
1861
if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1862
SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1863
"eventinj %#lx", vector, ctrl->eventinj);
1864
need_intr_window = 1;
1865
goto done;
1866
}
1867
1868
svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1869
1870
if (!extint_pending) {
1871
vlapic_intr_accepted(vlapic, vector);
1872
} else {
1873
vm_extint_clear(vcpu->vcpu);
1874
vatpic_intr_accepted(sc->vm, vector);
1875
}
1876
1877
/*
1878
* Force a VM-exit as soon as the vcpu is ready to accept another
1879
* interrupt. This is done because the PIC might have another vector
1880
* that it wants to inject. Also, if the APIC has a pending interrupt
1881
* that was preempted by the ExtInt then it allows us to inject the
1882
* APIC vector as soon as possible.
1883
*/
1884
need_intr_window = 1;
1885
done:
1886
/*
1887
* The guest can modify the TPR by writing to %CR8. In guest mode
1888
* the processor reflects this write to V_TPR without hypervisor
1889
* intervention.
1890
*
1891
* The guest can also modify the TPR by writing to it via the memory
1892
* mapped APIC page. In this case, the write will be emulated by the
1893
* hypervisor. For this reason V_TPR must be updated before every
1894
* VMRUN.
1895
*/
1896
v_tpr = vlapic_get_cr8(vlapic);
1897
KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1898
if (ctrl->v_tpr != v_tpr) {
1899
SVM_CTR2(vcpu, "VMCB V_TPR changed from %#x to %#x",
1900
ctrl->v_tpr, v_tpr);
1901
ctrl->v_tpr = v_tpr;
1902
svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1903
}
1904
1905
if (need_intr_window) {
1906
/*
1907
* We use V_IRQ in conjunction with the VINTR intercept to
1908
* trap into the hypervisor as soon as a virtual interrupt
1909
* can be delivered.
1910
*
1911
* Since injected events are not subject to intercept checks
1912
* we need to ensure that the V_IRQ is not actually going to
1913
* be delivered on VM entry. The KASSERT below enforces this.
1914
*/
1915
KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1916
(state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1917
("Bogus intr_window_exiting: eventinj (%#lx), "
1918
"intr_shadow (%u), rflags (%#lx)",
1919
ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1920
enable_intr_window_exiting(vcpu);
1921
} else {
1922
disable_intr_window_exiting(vcpu);
1923
}
1924
}
1925
1926
static __inline void
1927
restore_host_tss(void)
1928
{
1929
struct system_segment_descriptor *tss_sd;
1930
1931
/*
1932
* The TSS descriptor was in use prior to launching the guest so it
1933
* has been marked busy.
1934
*
1935
* 'ltr' requires the descriptor to be marked available so change the
1936
* type to "64-bit available TSS".
1937
*/
1938
tss_sd = PCPU_GET(tss);
1939
tss_sd->sd_type = SDT_SYSTSS;
1940
ltr(GSEL(GPROC0_SEL, SEL_KPL));
1941
}
1942
1943
static void
1944
svm_pmap_activate(struct svm_vcpu *vcpu, pmap_t pmap)
1945
{
1946
struct vmcb_ctrl *ctrl;
1947
long eptgen;
1948
int cpu;
1949
bool alloc_asid;
1950
1951
cpu = curcpu;
1952
CPU_SET_ATOMIC(cpu, &pmap->pm_active);
1953
smr_enter(pmap->pm_eptsmr);
1954
1955
ctrl = svm_get_vmcb_ctrl(vcpu);
1956
1957
/*
1958
* The TLB entries associated with the vcpu's ASID are not valid
1959
* if either of the following conditions is true:
1960
*
1961
* 1. The vcpu's ASID generation is different than the host cpu's
1962
* ASID generation. This happens when the vcpu migrates to a new
1963
* host cpu. It can also happen when the number of vcpus executing
1964
* on a host cpu is greater than the number of ASIDs available.
1965
*
1966
* 2. The pmap generation number is different than the value cached in
1967
* the 'vcpustate'. This happens when the host invalidates pages
1968
* belonging to the guest.
1969
*
1970
* asidgen eptgen Action
1971
* mismatch mismatch
1972
* 0 0 (a)
1973
* 0 1 (b1) or (b2)
1974
* 1 0 (c)
1975
* 1 1 (d)
1976
*
1977
* (a) There is no mismatch in eptgen or ASID generation and therefore
1978
* no further action is needed.
1979
*
1980
* (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1981
* retained and the TLB entries associated with this ASID
1982
* are flushed by VMRUN.
1983
*
1984
* (b2) If the cpu does not support FlushByAsid then a new ASID is
1985
* allocated.
1986
*
1987
* (c) A new ASID is allocated.
1988
*
1989
* (d) A new ASID is allocated.
1990
*/
1991
1992
alloc_asid = false;
1993
eptgen = atomic_load_long(&pmap->pm_eptgen);
1994
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1995
1996
if (vcpu->asid.gen != asid[cpu].gen) {
1997
alloc_asid = true; /* (c) and (d) */
1998
} else if (vcpu->eptgen != eptgen) {
1999
if (flush_by_asid())
2000
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; /* (b1) */
2001
else
2002
alloc_asid = true; /* (b2) */
2003
} else {
2004
/*
2005
* This is the common case (a).
2006
*/
2007
KASSERT(!alloc_asid, ("ASID allocation not necessary"));
2008
KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
2009
("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
2010
}
2011
2012
if (alloc_asid) {
2013
if (++asid[cpu].num >= nasid) {
2014
asid[cpu].num = 1;
2015
if (++asid[cpu].gen == 0)
2016
asid[cpu].gen = 1;
2017
/*
2018
* If this cpu does not support "flush-by-asid"
2019
* then flush the entire TLB on a generation
2020
* bump. Subsequent ASID allocation in this
2021
* generation can be done without a TLB flush.
2022
*/
2023
if (!flush_by_asid())
2024
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
2025
}
2026
vcpu->asid.gen = asid[cpu].gen;
2027
vcpu->asid.num = asid[cpu].num;
2028
2029
ctrl->asid = vcpu->asid.num;
2030
svm_set_dirty(vcpu, VMCB_CACHE_ASID);
2031
/*
2032
* If this cpu supports "flush-by-asid" then the TLB
2033
* was not flushed after the generation bump. The TLB
2034
* is flushed selectively after every new ASID allocation.
2035
*/
2036
if (flush_by_asid())
2037
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
2038
}
2039
vcpu->eptgen = eptgen;
2040
2041
KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
2042
KASSERT(ctrl->asid == vcpu->asid.num,
2043
("ASID mismatch: %u/%u", ctrl->asid, vcpu->asid.num));
2044
}
2045
2046
static void
2047
svm_pmap_deactivate(pmap_t pmap)
2048
{
2049
smr_exit(pmap->pm_eptsmr);
2050
CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
2051
}
2052
2053
static __inline void
2054
disable_gintr(void)
2055
{
2056
2057
__asm __volatile("clgi");
2058
}
2059
2060
static __inline void
2061
enable_gintr(void)
2062
{
2063
2064
__asm __volatile("stgi");
2065
}
2066
2067
static __inline void
2068
svm_dr_enter_guest(struct svm_regctx *gctx)
2069
{
2070
2071
/* Save host control debug registers. */
2072
gctx->host_dr7 = rdr7();
2073
gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2074
2075
/*
2076
* Disable debugging in DR7 and DEBUGCTL to avoid triggering
2077
* exceptions in the host based on the guest DRx values. The
2078
* guest DR6, DR7, and DEBUGCTL are saved/restored in the
2079
* VMCB.
2080
*/
2081
load_dr7(0);
2082
wrmsr(MSR_DEBUGCTLMSR, 0);
2083
2084
/* Save host debug registers. */
2085
gctx->host_dr0 = rdr0();
2086
gctx->host_dr1 = rdr1();
2087
gctx->host_dr2 = rdr2();
2088
gctx->host_dr3 = rdr3();
2089
gctx->host_dr6 = rdr6();
2090
2091
/* Restore guest debug registers. */
2092
load_dr0(gctx->sctx_dr0);
2093
load_dr1(gctx->sctx_dr1);
2094
load_dr2(gctx->sctx_dr2);
2095
load_dr3(gctx->sctx_dr3);
2096
}
2097
2098
static __inline void
2099
svm_dr_leave_guest(struct svm_regctx *gctx)
2100
{
2101
2102
/* Save guest debug registers. */
2103
gctx->sctx_dr0 = rdr0();
2104
gctx->sctx_dr1 = rdr1();
2105
gctx->sctx_dr2 = rdr2();
2106
gctx->sctx_dr3 = rdr3();
2107
2108
/*
2109
* Restore host debug registers. Restore DR7 and DEBUGCTL
2110
* last.
2111
*/
2112
load_dr0(gctx->host_dr0);
2113
load_dr1(gctx->host_dr1);
2114
load_dr2(gctx->host_dr2);
2115
load_dr3(gctx->host_dr3);
2116
load_dr6(gctx->host_dr6);
2117
wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl);
2118
load_dr7(gctx->host_dr7);
2119
}
2120
2121
/*
2122
* Start vcpu with specified RIP.
2123
*/
2124
static int
2125
svm_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo)
2126
{
2127
struct svm_regctx *gctx;
2128
struct svm_softc *svm_sc;
2129
struct svm_vcpu *vcpu;
2130
struct vmcb_state *state;
2131
struct vmcb_ctrl *ctrl;
2132
struct vm_exit *vmexit;
2133
struct vlapic *vlapic;
2134
uint64_t vmcb_pa;
2135
int handled;
2136
uint16_t ldt_sel;
2137
2138
vcpu = vcpui;
2139
svm_sc = vcpu->sc;
2140
state = svm_get_vmcb_state(vcpu);
2141
ctrl = svm_get_vmcb_ctrl(vcpu);
2142
vmexit = vm_exitinfo(vcpu->vcpu);
2143
vlapic = vm_lapic(vcpu->vcpu);
2144
2145
gctx = svm_get_guest_regctx(vcpu);
2146
vmcb_pa = vcpu->vmcb_pa;
2147
2148
if (vcpu->lastcpu != curcpu) {
2149
/*
2150
* Force new ASID allocation by invalidating the generation.
2151
*/
2152
vcpu->asid.gen = 0;
2153
2154
/*
2155
* Invalidate the VMCB state cache by marking all fields dirty.
2156
*/
2157
svm_set_dirty(vcpu, 0xffffffff);
2158
2159
/*
2160
* XXX
2161
* Setting 'vcpu->lastcpu' here is bit premature because
2162
* we may return from this function without actually executing
2163
* the VMRUN instruction. This could happen if a rendezvous
2164
* or an AST is pending on the first time through the loop.
2165
*
2166
* This works for now but any new side-effects of vcpu
2167
* migration should take this case into account.
2168
*/
2169
vcpu->lastcpu = curcpu;
2170
vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1);
2171
}
2172
2173
svm_msr_guest_enter(vcpu);
2174
2175
/* Update Guest RIP */
2176
state->rip = rip;
2177
2178
do {
2179
/*
2180
* Disable global interrupts to guarantee atomicity during
2181
* loading of guest state. This includes not only the state
2182
* loaded by the "vmrun" instruction but also software state
2183
* maintained by the hypervisor: suspended and rendezvous
2184
* state, NPT generation number, vlapic interrupts etc.
2185
*/
2186
disable_gintr();
2187
2188
if (vcpu_suspended(evinfo)) {
2189
enable_gintr();
2190
vm_exit_suspended(vcpu->vcpu, state->rip);
2191
break;
2192
}
2193
2194
if (vcpu_rendezvous_pending(vcpu->vcpu, evinfo)) {
2195
enable_gintr();
2196
vm_exit_rendezvous(vcpu->vcpu, state->rip);
2197
break;
2198
}
2199
2200
if (vcpu_reqidle(evinfo)) {
2201
enable_gintr();
2202
vm_exit_reqidle(vcpu->vcpu, state->rip);
2203
break;
2204
}
2205
2206
/* We are asked to give the cpu by scheduler. */
2207
if (vcpu_should_yield(vcpu->vcpu)) {
2208
enable_gintr();
2209
vm_exit_astpending(vcpu->vcpu, state->rip);
2210
break;
2211
}
2212
2213
if (vcpu_debugged(vcpu->vcpu)) {
2214
enable_gintr();
2215
vm_exit_debug(vcpu->vcpu, state->rip);
2216
break;
2217
}
2218
2219
/*
2220
* #VMEXIT resumes the host with the guest LDTR, so
2221
* save the current LDT selector so it can be restored
2222
* after an exit. The userspace hypervisor probably
2223
* doesn't use a LDT, but save and restore it to be
2224
* safe.
2225
*/
2226
ldt_sel = sldt();
2227
2228
svm_inj_interrupts(svm_sc, vcpu, vlapic);
2229
2230
/*
2231
* Check the pmap generation and the ASID generation to
2232
* ensure that the vcpu does not use stale TLB mappings.
2233
*/
2234
svm_pmap_activate(vcpu, pmap);
2235
2236
ctrl->vmcb_clean = vmcb_clean & ~vcpu->dirty;
2237
vcpu->dirty = 0;
2238
SVM_CTR1(vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2239
2240
/* Launch Virtual Machine. */
2241
SVM_CTR1(vcpu, "Resume execution at %#lx", state->rip);
2242
svm_dr_enter_guest(gctx);
2243
svm_launch(vmcb_pa, gctx, get_pcpu());
2244
svm_dr_leave_guest(gctx);
2245
2246
svm_pmap_deactivate(pmap);
2247
2248
/*
2249
* The host GDTR and IDTR is saved by VMRUN and restored
2250
* automatically on #VMEXIT. However, the host TSS needs
2251
* to be restored explicitly.
2252
*/
2253
restore_host_tss();
2254
2255
/* Restore host LDTR. */
2256
lldt(ldt_sel);
2257
2258
/* #VMEXIT disables interrupts so re-enable them here. */
2259
enable_gintr();
2260
2261
/* Update 'nextrip' */
2262
vcpu->nextrip = state->rip;
2263
2264
/* Handle #VMEXIT and if required return to user space. */
2265
handled = svm_vmexit(svm_sc, vcpu, vmexit);
2266
} while (handled);
2267
2268
svm_msr_guest_exit(vcpu);
2269
2270
return (0);
2271
}
2272
2273
static void
2274
svm_vcpu_cleanup(void *vcpui)
2275
{
2276
struct svm_vcpu *vcpu = vcpui;
2277
2278
free(vcpu->vmcb, M_SVM);
2279
free(vcpu, M_SVM);
2280
}
2281
2282
static void
2283
svm_cleanup(void *vmi)
2284
{
2285
struct svm_softc *sc = vmi;
2286
2287
free(sc->iopm_bitmap, M_SVM);
2288
free(sc->msr_bitmap, M_SVM);
2289
free(sc, M_SVM);
2290
}
2291
2292
static register_t *
2293
swctx_regptr(struct svm_regctx *regctx, int reg)
2294
{
2295
2296
switch (reg) {
2297
case VM_REG_GUEST_RBX:
2298
return (&regctx->sctx_rbx);
2299
case VM_REG_GUEST_RCX:
2300
return (&regctx->sctx_rcx);
2301
case VM_REG_GUEST_RDX:
2302
return (&regctx->sctx_rdx);
2303
case VM_REG_GUEST_RDI:
2304
return (&regctx->sctx_rdi);
2305
case VM_REG_GUEST_RSI:
2306
return (&regctx->sctx_rsi);
2307
case VM_REG_GUEST_RBP:
2308
return (&regctx->sctx_rbp);
2309
case VM_REG_GUEST_R8:
2310
return (&regctx->sctx_r8);
2311
case VM_REG_GUEST_R9:
2312
return (&regctx->sctx_r9);
2313
case VM_REG_GUEST_R10:
2314
return (&regctx->sctx_r10);
2315
case VM_REG_GUEST_R11:
2316
return (&regctx->sctx_r11);
2317
case VM_REG_GUEST_R12:
2318
return (&regctx->sctx_r12);
2319
case VM_REG_GUEST_R13:
2320
return (&regctx->sctx_r13);
2321
case VM_REG_GUEST_R14:
2322
return (&regctx->sctx_r14);
2323
case VM_REG_GUEST_R15:
2324
return (&regctx->sctx_r15);
2325
case VM_REG_GUEST_DR0:
2326
return (&regctx->sctx_dr0);
2327
case VM_REG_GUEST_DR1:
2328
return (&regctx->sctx_dr1);
2329
case VM_REG_GUEST_DR2:
2330
return (&regctx->sctx_dr2);
2331
case VM_REG_GUEST_DR3:
2332
return (&regctx->sctx_dr3);
2333
default:
2334
return (NULL);
2335
}
2336
}
2337
2338
static int
2339
svm_getreg(void *vcpui, int ident, uint64_t *val)
2340
{
2341
struct svm_vcpu *vcpu;
2342
register_t *reg;
2343
2344
vcpu = vcpui;
2345
2346
if (ident == VM_REG_GUEST_INTR_SHADOW) {
2347
return (svm_get_intr_shadow(vcpu, val));
2348
}
2349
2350
if (vmcb_read(vcpu, ident, val) == 0) {
2351
return (0);
2352
}
2353
2354
reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2355
2356
if (reg != NULL) {
2357
*val = *reg;
2358
return (0);
2359
}
2360
2361
SVM_CTR1(vcpu, "svm_getreg: unknown register %#x", ident);
2362
return (EINVAL);
2363
}
2364
2365
static int
2366
svm_setreg(void *vcpui, int ident, uint64_t val)
2367
{
2368
struct svm_vcpu *vcpu;
2369
register_t *reg;
2370
2371
vcpu = vcpui;
2372
2373
if (ident == VM_REG_GUEST_INTR_SHADOW) {
2374
return (svm_modify_intr_shadow(vcpu, val));
2375
}
2376
2377
/* Do not permit user write access to VMCB fields by offset. */
2378
if (!VMCB_ACCESS_OK(ident)) {
2379
if (vmcb_write(vcpu, ident, val) == 0) {
2380
return (0);
2381
}
2382
}
2383
2384
reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2385
2386
if (reg != NULL) {
2387
*reg = val;
2388
return (0);
2389
}
2390
2391
if (ident == VM_REG_GUEST_ENTRY_INST_LENGTH) {
2392
/* Ignore. */
2393
return (0);
2394
}
2395
2396
/*
2397
* XXX deal with CR3 and invalidate TLB entries tagged with the
2398
* vcpu's ASID. This needs to be treated differently depending on
2399
* whether 'running' is true/false.
2400
*/
2401
2402
SVM_CTR1(vcpu, "svm_setreg: unknown register %#x", ident);
2403
return (EINVAL);
2404
}
2405
2406
static int
2407
svm_getdesc(void *vcpui, int reg, struct seg_desc *desc)
2408
{
2409
return (vmcb_getdesc(vcpui, reg, desc));
2410
}
2411
2412
static int
2413
svm_setdesc(void *vcpui, int reg, struct seg_desc *desc)
2414
{
2415
return (vmcb_setdesc(vcpui, reg, desc));
2416
}
2417
2418
#ifdef BHYVE_SNAPSHOT
2419
static int
2420
svm_snapshot_reg(void *vcpui, int ident, struct vm_snapshot_meta *meta)
2421
{
2422
int ret;
2423
uint64_t val;
2424
2425
if (meta->op == VM_SNAPSHOT_SAVE) {
2426
ret = svm_getreg(vcpui, ident, &val);
2427
if (ret != 0)
2428
goto done;
2429
2430
SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2431
} else if (meta->op == VM_SNAPSHOT_RESTORE) {
2432
SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2433
2434
ret = svm_setreg(vcpui, ident, val);
2435
if (ret != 0)
2436
goto done;
2437
} else {
2438
ret = EINVAL;
2439
goto done;
2440
}
2441
2442
done:
2443
return (ret);
2444
}
2445
#endif
2446
2447
static int
2448
svm_setcap(void *vcpui, int type, int val)
2449
{
2450
struct svm_vcpu *vcpu;
2451
struct vlapic *vlapic;
2452
int error;
2453
2454
vcpu = vcpui;
2455
error = 0;
2456
2457
switch (type) {
2458
case VM_CAP_HALT_EXIT:
2459
svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2460
VMCB_INTCPT_HLT, val);
2461
break;
2462
case VM_CAP_PAUSE_EXIT:
2463
svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2464
VMCB_INTCPT_PAUSE, val);
2465
break;
2466
case VM_CAP_UNRESTRICTED_GUEST:
2467
/* Unrestricted guest execution cannot be disabled in SVM */
2468
if (val == 0)
2469
error = EINVAL;
2470
break;
2471
case VM_CAP_BPT_EXIT:
2472
svm_set_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_BP), val);
2473
break;
2474
case VM_CAP_IPI_EXIT:
2475
vlapic = vm_lapic(vcpu->vcpu);
2476
vlapic->ipi_exit = val;
2477
break;
2478
case VM_CAP_MASK_HWINTR:
2479
vcpu->caps &= ~(1 << VM_CAP_MASK_HWINTR);
2480
vcpu->caps |= (val << VM_CAP_MASK_HWINTR);
2481
break;
2482
case VM_CAP_RFLAGS_TF: {
2483
uint64_t rflags;
2484
2485
/* Fetch RFLAGS. */
2486
if (svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags)) {
2487
error = (EINVAL);
2488
break;
2489
}
2490
if (val) {
2491
/* Save current TF bit. */
2492
vcpu->dbg.rflags_tf = rflags & PSL_T;
2493
/* Trace next instruction. */
2494
if (svm_setreg(vcpu, VM_REG_GUEST_RFLAGS,
2495
(rflags | PSL_T))) {
2496
error = (EINVAL);
2497
break;
2498
}
2499
vcpu->caps |= (1 << VM_CAP_RFLAGS_TF);
2500
} else {
2501
/*
2502
* Restore shadowed RFLAGS.TF only if vCPU was
2503
* previously stepped
2504
*/
2505
if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
2506
rflags &= ~PSL_T;
2507
rflags |= vcpu->dbg.rflags_tf;
2508
vcpu->dbg.rflags_tf = 0;
2509
2510
if (svm_setreg(vcpu, VM_REG_GUEST_RFLAGS,
2511
rflags)) {
2512
error = (EINVAL);
2513
break;
2514
}
2515
vcpu->caps &= ~(1 << VM_CAP_RFLAGS_TF);
2516
}
2517
}
2518
2519
svm_set_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_DB), val);
2520
svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_POPF,
2521
val);
2522
svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_PUSHF,
2523
val);
2524
break;
2525
}
2526
default:
2527
error = ENOENT;
2528
break;
2529
}
2530
return (error);
2531
}
2532
2533
static int
2534
svm_getcap(void *vcpui, int type, int *retval)
2535
{
2536
struct svm_vcpu *vcpu;
2537
struct vlapic *vlapic;
2538
int error;
2539
2540
vcpu = vcpui;
2541
error = 0;
2542
2543
switch (type) {
2544
case VM_CAP_HALT_EXIT:
2545
*retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2546
VMCB_INTCPT_HLT);
2547
break;
2548
case VM_CAP_PAUSE_EXIT:
2549
*retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2550
VMCB_INTCPT_PAUSE);
2551
break;
2552
case VM_CAP_UNRESTRICTED_GUEST:
2553
*retval = 1; /* unrestricted guest is always enabled */
2554
break;
2555
case VM_CAP_BPT_EXIT:
2556
*retval = svm_get_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_BP));
2557
break;
2558
case VM_CAP_IPI_EXIT:
2559
vlapic = vm_lapic(vcpu->vcpu);
2560
*retval = vlapic->ipi_exit;
2561
break;
2562
case VM_CAP_RFLAGS_TF:
2563
*retval = !!(vcpu->caps & (1 << VM_CAP_RFLAGS_TF));
2564
break;
2565
case VM_CAP_MASK_HWINTR:
2566
*retval = !!(vcpu->caps & (1 << VM_CAP_MASK_HWINTR));
2567
break;
2568
default:
2569
error = ENOENT;
2570
break;
2571
}
2572
return (error);
2573
}
2574
2575
static struct vmspace *
2576
svm_vmspace_alloc(vm_offset_t min, vm_offset_t max)
2577
{
2578
return (svm_npt_alloc(min, max));
2579
}
2580
2581
static void
2582
svm_vmspace_free(struct vmspace *vmspace)
2583
{
2584
svm_npt_free(vmspace);
2585
}
2586
2587
static struct vlapic *
2588
svm_vlapic_init(void *vcpui)
2589
{
2590
struct svm_vcpu *vcpu;
2591
struct vlapic *vlapic;
2592
2593
vcpu = vcpui;
2594
vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2595
vlapic->vm = vcpu->sc->vm;
2596
vlapic->vcpu = vcpu->vcpu;
2597
vlapic->vcpuid = vcpu->vcpuid;
2598
vlapic->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_SVM_VLAPIC,
2599
M_WAITOK | M_ZERO);
2600
2601
vlapic_init(vlapic);
2602
2603
return (vlapic);
2604
}
2605
2606
static void
2607
svm_vlapic_cleanup(struct vlapic *vlapic)
2608
{
2609
2610
vlapic_cleanup(vlapic);
2611
free(vlapic->apic_page, M_SVM_VLAPIC);
2612
free(vlapic, M_SVM_VLAPIC);
2613
}
2614
2615
#ifdef BHYVE_SNAPSHOT
2616
static int
2617
svm_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta)
2618
{
2619
struct svm_vcpu *vcpu;
2620
int err, running, hostcpu;
2621
2622
vcpu = vcpui;
2623
err = 0;
2624
2625
running = vcpu_is_running(vcpu->vcpu, &hostcpu);
2626
if (running && hostcpu != curcpu) {
2627
printf("%s: %s%d is running", __func__, vm_name(vcpu->sc->vm),
2628
vcpu->vcpuid);
2629
return (EINVAL);
2630
}
2631
2632
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR0, meta);
2633
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR2, meta);
2634
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR3, meta);
2635
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR4, meta);
2636
2637
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR6, meta);
2638
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR7, meta);
2639
2640
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RAX, meta);
2641
2642
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RSP, meta);
2643
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RIP, meta);
2644
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RFLAGS, meta);
2645
2646
/* Guest segments */
2647
/* ES */
2648
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_ES, meta);
2649
err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_ES, meta);
2650
2651
/* CS */
2652
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CS, meta);
2653
err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_CS, meta);
2654
2655
/* SS */
2656
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_SS, meta);
2657
err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_SS, meta);
2658
2659
/* DS */
2660
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DS, meta);
2661
err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_DS, meta);
2662
2663
/* FS */
2664
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_FS, meta);
2665
err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_FS, meta);
2666
2667
/* GS */
2668
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_GS, meta);
2669
err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GS, meta);
2670
2671
/* TR */
2672
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_TR, meta);
2673
err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_TR, meta);
2674
2675
/* LDTR */
2676
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_LDTR, meta);
2677
err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_LDTR, meta);
2678
2679
/* EFER */
2680
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_EFER, meta);
2681
2682
/* IDTR and GDTR */
2683
err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_IDTR, meta);
2684
err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GDTR, meta);
2685
2686
/* Specific AMD registers */
2687
err += svm_snapshot_reg(vcpu, VM_REG_GUEST_INTR_SHADOW, meta);
2688
2689
err += vmcb_snapshot_any(vcpu,
2690
VMCB_ACCESS(VMCB_OFF_CR_INTERCEPT, 4), meta);
2691
err += vmcb_snapshot_any(vcpu,
2692
VMCB_ACCESS(VMCB_OFF_DR_INTERCEPT, 4), meta);
2693
err += vmcb_snapshot_any(vcpu,
2694
VMCB_ACCESS(VMCB_OFF_EXC_INTERCEPT, 4), meta);
2695
err += vmcb_snapshot_any(vcpu,
2696
VMCB_ACCESS(VMCB_OFF_INST1_INTERCEPT, 4), meta);
2697
err += vmcb_snapshot_any(vcpu,
2698
VMCB_ACCESS(VMCB_OFF_INST2_INTERCEPT, 4), meta);
2699
2700
err += vmcb_snapshot_any(vcpu,
2701
VMCB_ACCESS(VMCB_OFF_PAUSE_FILTHRESH, 2), meta);
2702
err += vmcb_snapshot_any(vcpu,
2703
VMCB_ACCESS(VMCB_OFF_PAUSE_FILCNT, 2), meta);
2704
2705
err += vmcb_snapshot_any(vcpu,
2706
VMCB_ACCESS(VMCB_OFF_ASID, 4), meta);
2707
2708
err += vmcb_snapshot_any(vcpu,
2709
VMCB_ACCESS(VMCB_OFF_TLB_CTRL, 4), meta);
2710
2711
err += vmcb_snapshot_any(vcpu,
2712
VMCB_ACCESS(VMCB_OFF_VIRQ, 8), meta);
2713
2714
err += vmcb_snapshot_any(vcpu,
2715
VMCB_ACCESS(VMCB_OFF_EXIT_REASON, 8), meta);
2716
err += vmcb_snapshot_any(vcpu,
2717
VMCB_ACCESS(VMCB_OFF_EXITINFO1, 8), meta);
2718
err += vmcb_snapshot_any(vcpu,
2719
VMCB_ACCESS(VMCB_OFF_EXITINFO2, 8), meta);
2720
err += vmcb_snapshot_any(vcpu,
2721
VMCB_ACCESS(VMCB_OFF_EXITINTINFO, 8), meta);
2722
2723
err += vmcb_snapshot_any(vcpu,
2724
VMCB_ACCESS(VMCB_OFF_NP_ENABLE, 1), meta);
2725
2726
err += vmcb_snapshot_any(vcpu,
2727
VMCB_ACCESS(VMCB_OFF_AVIC_BAR, 8), meta);
2728
err += vmcb_snapshot_any(vcpu,
2729
VMCB_ACCESS(VMCB_OFF_AVIC_PAGE, 8), meta);
2730
err += vmcb_snapshot_any(vcpu,
2731
VMCB_ACCESS(VMCB_OFF_AVIC_LT, 8), meta);
2732
err += vmcb_snapshot_any(vcpu,
2733
VMCB_ACCESS(VMCB_OFF_AVIC_PT, 8), meta);
2734
2735
err += vmcb_snapshot_any(vcpu,
2736
VMCB_ACCESS(VMCB_OFF_CPL, 1), meta);
2737
2738
err += vmcb_snapshot_any(vcpu,
2739
VMCB_ACCESS(VMCB_OFF_STAR, 8), meta);
2740
err += vmcb_snapshot_any(vcpu,
2741
VMCB_ACCESS(VMCB_OFF_LSTAR, 8), meta);
2742
err += vmcb_snapshot_any(vcpu,
2743
VMCB_ACCESS(VMCB_OFF_CSTAR, 8), meta);
2744
2745
err += vmcb_snapshot_any(vcpu,
2746
VMCB_ACCESS(VMCB_OFF_SFMASK, 8), meta);
2747
2748
err += vmcb_snapshot_any(vcpu,
2749
VMCB_ACCESS(VMCB_OFF_KERNELGBASE, 8), meta);
2750
2751
err += vmcb_snapshot_any(vcpu,
2752
VMCB_ACCESS(VMCB_OFF_SYSENTER_CS, 8), meta);
2753
err += vmcb_snapshot_any(vcpu,
2754
VMCB_ACCESS(VMCB_OFF_SYSENTER_ESP, 8), meta);
2755
err += vmcb_snapshot_any(vcpu,
2756
VMCB_ACCESS(VMCB_OFF_SYSENTER_EIP, 8), meta);
2757
2758
err += vmcb_snapshot_any(vcpu,
2759
VMCB_ACCESS(VMCB_OFF_GUEST_PAT, 8), meta);
2760
2761
err += vmcb_snapshot_any(vcpu,
2762
VMCB_ACCESS(VMCB_OFF_DBGCTL, 8), meta);
2763
err += vmcb_snapshot_any(vcpu,
2764
VMCB_ACCESS(VMCB_OFF_BR_FROM, 8), meta);
2765
err += vmcb_snapshot_any(vcpu,
2766
VMCB_ACCESS(VMCB_OFF_BR_TO, 8), meta);
2767
err += vmcb_snapshot_any(vcpu,
2768
VMCB_ACCESS(VMCB_OFF_INT_FROM, 8), meta);
2769
err += vmcb_snapshot_any(vcpu,
2770
VMCB_ACCESS(VMCB_OFF_INT_TO, 8), meta);
2771
if (err != 0)
2772
goto done;
2773
2774
/* Snapshot swctx for virtual cpu */
2775
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbp, meta, err, done);
2776
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbx, meta, err, done);
2777
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rcx, meta, err, done);
2778
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdx, meta, err, done);
2779
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdi, meta, err, done);
2780
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rsi, meta, err, done);
2781
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r8, meta, err, done);
2782
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r9, meta, err, done);
2783
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r10, meta, err, done);
2784
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r11, meta, err, done);
2785
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r12, meta, err, done);
2786
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r13, meta, err, done);
2787
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r14, meta, err, done);
2788
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r15, meta, err, done);
2789
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr0, meta, err, done);
2790
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr1, meta, err, done);
2791
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr2, meta, err, done);
2792
SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr3, meta, err, done);
2793
2794
/* Restore other svm_vcpu struct fields */
2795
2796
/* Restore NEXTRIP field */
2797
SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, err, done);
2798
2799
/* Restore lastcpu field */
2800
SNAPSHOT_VAR_OR_LEAVE(vcpu->lastcpu, meta, err, done);
2801
SNAPSHOT_VAR_OR_LEAVE(vcpu->dirty, meta, err, done);
2802
2803
/* Restore EPTGEN field - EPT is Extended Page Table */
2804
SNAPSHOT_VAR_OR_LEAVE(vcpu->eptgen, meta, err, done);
2805
2806
SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.gen, meta, err, done);
2807
SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.num, meta, err, done);
2808
2809
SNAPSHOT_BUF_OR_LEAVE(&vcpu->mtrr, sizeof(vcpu->mtrr), meta, err, done);
2810
2811
/* Set all caches dirty */
2812
if (meta->op == VM_SNAPSHOT_RESTORE)
2813
svm_set_dirty(vcpu, 0xffffffff);
2814
2815
done:
2816
return (err);
2817
}
2818
2819
static int
2820
svm_restore_tsc(void *vcpui, uint64_t offset)
2821
{
2822
struct svm_vcpu *vcpu = vcpui;
2823
2824
svm_set_tsc_offset(vcpu, offset);
2825
2826
return (0);
2827
}
2828
#endif
2829
2830
const struct vmm_ops vmm_ops_amd = {
2831
.modinit = svm_modinit,
2832
.modcleanup = svm_modcleanup,
2833
.modresume = svm_modresume,
2834
.modsuspend = svm_modsuspend,
2835
.init = svm_init,
2836
.run = svm_run,
2837
.cleanup = svm_cleanup,
2838
.vcpu_init = svm_vcpu_init,
2839
.vcpu_cleanup = svm_vcpu_cleanup,
2840
.getreg = svm_getreg,
2841
.setreg = svm_setreg,
2842
.getdesc = svm_getdesc,
2843
.setdesc = svm_setdesc,
2844
.getcap = svm_getcap,
2845
.setcap = svm_setcap,
2846
.vmspace_alloc = svm_vmspace_alloc,
2847
.vmspace_free = svm_vmspace_free,
2848
.vlapic_init = svm_vlapic_init,
2849
.vlapic_cleanup = svm_vlapic_cleanup,
2850
#ifdef BHYVE_SNAPSHOT
2851
.vcpu_snapshot = svm_vcpu_snapshot,
2852
.restore_tsc = svm_restore_tsc,
2853
#endif
2854
};
2855
2856