Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/amd64/vmm/vmm.c
39507 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2011 NetApp, Inc.
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26
* SUCH DAMAGE.
27
*/
28
29
#include "opt_bhyve_snapshot.h"
30
31
#include <sys/param.h>
32
#include <sys/systm.h>
33
#include <sys/kernel.h>
34
#include <sys/module.h>
35
#include <sys/sysctl.h>
36
#include <sys/malloc.h>
37
#include <sys/pcpu.h>
38
#include <sys/lock.h>
39
#include <sys/mutex.h>
40
#include <sys/proc.h>
41
#include <sys/rwlock.h>
42
#include <sys/sched.h>
43
#include <sys/smp.h>
44
#include <sys/sx.h>
45
#include <sys/vnode.h>
46
47
#include <vm/vm.h>
48
#include <vm/vm_param.h>
49
#include <vm/vm_extern.h>
50
#include <vm/vm_object.h>
51
#include <vm/vm_page.h>
52
#include <vm/pmap.h>
53
#include <vm/vm_map.h>
54
#include <vm/vm_pager.h>
55
#include <vm/vm_kern.h>
56
#include <vm/vnode_pager.h>
57
#include <vm/swap_pager.h>
58
#include <vm/uma.h>
59
60
#include <machine/cpu.h>
61
#include <machine/pcb.h>
62
#include <machine/smp.h>
63
#include <machine/md_var.h>
64
#include <x86/psl.h>
65
#include <x86/apicreg.h>
66
#include <x86/ifunc.h>
67
68
#include <machine/vmm.h>
69
#include <machine/vmm_instruction_emul.h>
70
#include <machine/vmm_snapshot.h>
71
72
#include <dev/vmm/vmm_dev.h>
73
#include <dev/vmm/vmm_ktr.h>
74
#include <dev/vmm/vmm_mem.h>
75
76
#include "vmm_ioport.h"
77
#include "vmm_host.h"
78
#include "vmm_mem.h"
79
#include "vmm_util.h"
80
#include "vatpic.h"
81
#include "vatpit.h"
82
#include "vhpet.h"
83
#include "vioapic.h"
84
#include "vlapic.h"
85
#include "vpmtmr.h"
86
#include "vrtc.h"
87
#include "vmm_stat.h"
88
#include "vmm_lapic.h"
89
90
#include "io/ppt.h"
91
#include "io/iommu.h"
92
93
struct vlapic;
94
95
/*
96
* Initialization:
97
* (a) allocated when vcpu is created
98
* (i) initialized when vcpu is created and when it is reinitialized
99
* (o) initialized the first time the vcpu is created
100
* (x) initialized before use
101
*/
102
struct vcpu {
103
struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */
104
enum vcpu_state state; /* (o) vcpu state */
105
int vcpuid; /* (o) */
106
int hostcpu; /* (o) vcpu's host cpu */
107
int reqidle; /* (i) request vcpu to idle */
108
struct vm *vm; /* (o) */
109
void *cookie; /* (i) cpu-specific data */
110
struct vlapic *vlapic; /* (i) APIC device model */
111
enum x2apic_state x2apic_state; /* (i) APIC mode */
112
uint64_t exitintinfo; /* (i) events pending at VM exit */
113
int nmi_pending; /* (i) NMI pending */
114
int extint_pending; /* (i) INTR pending */
115
int exception_pending; /* (i) exception pending */
116
int exc_vector; /* (x) exception collateral */
117
int exc_errcode_valid;
118
uint32_t exc_errcode;
119
struct savefpu *guestfpu; /* (a,i) guest fpu state */
120
uint64_t guest_xcr0; /* (i) guest %xcr0 register */
121
void *stats; /* (a,i) statistics */
122
struct vm_exit exitinfo; /* (x) exit reason and collateral */
123
cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */
124
uint64_t nextrip; /* (x) next instruction to execute */
125
uint64_t tsc_offset; /* (o) TSC offsetting */
126
};
127
128
#define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
129
#define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx))
130
#define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
131
#define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
132
#define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
133
134
/*
135
* Initialization:
136
* (o) initialized the first time the VM is created
137
* (i) initialized when VM is created and when it is reinitialized
138
* (x) initialized before use
139
*
140
* Locking:
141
* [m] mem_segs_lock
142
* [r] rendezvous_mtx
143
* [v] reads require one frozen vcpu, writes require freezing all vcpus
144
*/
145
struct vm {
146
void *cookie; /* (i) cpu-specific data */
147
void *iommu; /* (x) iommu-specific data */
148
struct vhpet *vhpet; /* (i) virtual HPET */
149
struct vioapic *vioapic; /* (i) virtual ioapic */
150
struct vatpic *vatpic; /* (i) virtual atpic */
151
struct vatpit *vatpit; /* (i) virtual atpit */
152
struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */
153
struct vrtc *vrtc; /* (o) virtual RTC */
154
volatile cpuset_t active_cpus; /* (i) active vcpus */
155
volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */
156
cpuset_t startup_cpus; /* (i) [r] waiting for startup */
157
int suspend; /* (i) stop VM execution */
158
bool dying; /* (o) is dying */
159
volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
160
volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
161
cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */
162
cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */
163
void *rendezvous_arg; /* (x) [r] rendezvous func/arg */
164
vm_rendezvous_func_t rendezvous_func;
165
struct mtx rendezvous_mtx; /* (o) rendezvous lock */
166
struct vmspace *vmspace; /* (o) guest's address space */
167
struct vm_mem mem; /* (i) [m+v] guest memory */
168
char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */
169
struct vcpu **vcpu; /* (o) guest vcpus */
170
/* The following describe the vm cpu topology */
171
uint16_t sockets; /* (o) num of sockets */
172
uint16_t cores; /* (o) num of cores/socket */
173
uint16_t threads; /* (o) num of threads/core */
174
uint16_t maxcpus; /* (o) max pluggable cpus */
175
struct sx vcpus_init_lock; /* (o) */
176
};
177
178
#define VMM_CTR0(vcpu, format) \
179
VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format)
180
181
#define VMM_CTR1(vcpu, format, p1) \
182
VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1)
183
184
#define VMM_CTR2(vcpu, format, p1, p2) \
185
VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2)
186
187
#define VMM_CTR3(vcpu, format, p1, p2, p3) \
188
VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3)
189
190
#define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \
191
VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4)
192
193
static int vmm_initialized;
194
195
static void vmmops_panic(void);
196
197
static void
198
vmmops_panic(void)
199
{
200
panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()");
201
}
202
203
#define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \
204
DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \
205
{ \
206
if (vmm_is_intel()) \
207
return (vmm_ops_intel.opname); \
208
else if (vmm_is_svm()) \
209
return (vmm_ops_amd.opname); \
210
else \
211
return ((ret_type (*)args)vmmops_panic); \
212
}
213
214
DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum))
215
DEFINE_VMMOPS_IFUNC(int, modcleanup, (void))
216
DEFINE_VMMOPS_IFUNC(void, modsuspend, (void))
217
DEFINE_VMMOPS_IFUNC(void, modresume, (void))
218
DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap))
219
DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap,
220
struct vm_eventinfo *info))
221
DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi))
222
DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu,
223
int vcpu_id))
224
DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui))
225
DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval))
226
DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val))
227
DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc))
228
DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc))
229
DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval))
230
DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val))
231
DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min,
232
vm_offset_t max))
233
DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace))
234
DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui))
235
DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic))
236
#ifdef BHYVE_SNAPSHOT
237
DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui,
238
struct vm_snapshot_meta *meta))
239
DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now))
240
#endif
241
242
SDT_PROVIDER_DEFINE(vmm);
243
244
static MALLOC_DEFINE(M_VM, "vm", "vm");
245
246
/* statistics */
247
static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
248
249
SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
250
NULL);
251
252
/*
253
* Halt the guest if all vcpus are executing a HLT instruction with
254
* interrupts disabled.
255
*/
256
static int halt_detection_enabled = 1;
257
SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
258
&halt_detection_enabled, 0,
259
"Halt VM if all vcpus execute HLT with interrupts disabled");
260
261
static int vmm_ipinum;
262
SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
263
"IPI vector used for vcpu notifications");
264
265
static int trace_guest_exceptions;
266
SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
267
&trace_guest_exceptions, 0,
268
"Trap into hypervisor on all guest exceptions and reflect them back");
269
270
static int trap_wbinvd;
271
SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0,
272
"WBINVD triggers a VM-exit");
273
274
u_int vm_maxcpu;
275
SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
276
&vm_maxcpu, 0, "Maximum number of vCPUs");
277
278
static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
279
280
/* global statistics */
281
VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus");
282
VMM_STAT(VMEXIT_COUNT, "total number of vm exits");
283
VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt");
284
VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted");
285
VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted");
286
VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted");
287
VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted");
288
VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits");
289
VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted");
290
VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening");
291
VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening");
292
VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted");
293
VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted");
294
VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault");
295
VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation");
296
VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason");
297
VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit");
298
VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit");
299
VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace");
300
VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit");
301
VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions");
302
303
/*
304
* Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU
305
* counts as well as range of vpid values for VT-x and by the capacity
306
* of cpuset_t masks. The call to new_unrhdr() in vpid_init() in
307
* vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below.
308
*/
309
#define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE)
310
311
#ifdef KTR
312
static const char *
313
vcpu_state2str(enum vcpu_state state)
314
{
315
316
switch (state) {
317
case VCPU_IDLE:
318
return ("idle");
319
case VCPU_FROZEN:
320
return ("frozen");
321
case VCPU_RUNNING:
322
return ("running");
323
case VCPU_SLEEPING:
324
return ("sleeping");
325
default:
326
return ("unknown");
327
}
328
}
329
#endif
330
331
static void
332
vcpu_cleanup(struct vcpu *vcpu, bool destroy)
333
{
334
vmmops_vlapic_cleanup(vcpu->vlapic);
335
vmmops_vcpu_cleanup(vcpu->cookie);
336
vcpu->cookie = NULL;
337
if (destroy) {
338
vmm_stat_free(vcpu->stats);
339
fpu_save_area_free(vcpu->guestfpu);
340
vcpu_lock_destroy(vcpu);
341
free(vcpu, M_VM);
342
}
343
}
344
345
static struct vcpu *
346
vcpu_alloc(struct vm *vm, int vcpu_id)
347
{
348
struct vcpu *vcpu;
349
350
KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
351
("vcpu_init: invalid vcpu %d", vcpu_id));
352
353
vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO);
354
vcpu_lock_init(vcpu);
355
vcpu->state = VCPU_IDLE;
356
vcpu->hostcpu = NOCPU;
357
vcpu->vcpuid = vcpu_id;
358
vcpu->vm = vm;
359
vcpu->guestfpu = fpu_save_area_alloc();
360
vcpu->stats = vmm_stat_alloc();
361
vcpu->tsc_offset = 0;
362
return (vcpu);
363
}
364
365
static void
366
vcpu_init(struct vcpu *vcpu)
367
{
368
vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
369
vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie);
370
vm_set_x2apic_state(vcpu, X2APIC_DISABLED);
371
vcpu->reqidle = 0;
372
vcpu->exitintinfo = 0;
373
vcpu->nmi_pending = 0;
374
vcpu->extint_pending = 0;
375
vcpu->exception_pending = 0;
376
vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
377
fpu_save_area_reset(vcpu->guestfpu);
378
vmm_stat_init(vcpu->stats);
379
}
380
381
int
382
vcpu_trace_exceptions(struct vcpu *vcpu)
383
{
384
385
return (trace_guest_exceptions);
386
}
387
388
int
389
vcpu_trap_wbinvd(struct vcpu *vcpu)
390
{
391
return (trap_wbinvd);
392
}
393
394
struct vm_exit *
395
vm_exitinfo(struct vcpu *vcpu)
396
{
397
return (&vcpu->exitinfo);
398
}
399
400
cpuset_t *
401
vm_exitinfo_cpuset(struct vcpu *vcpu)
402
{
403
return (&vcpu->exitinfo_cpuset);
404
}
405
406
static int
407
vmm_init(void)
408
{
409
if (!vmm_is_hw_supported())
410
return (ENXIO);
411
412
vm_maxcpu = mp_ncpus;
413
TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu);
414
415
if (vm_maxcpu > VM_MAXCPU) {
416
printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU);
417
vm_maxcpu = VM_MAXCPU;
418
}
419
if (vm_maxcpu == 0)
420
vm_maxcpu = 1;
421
422
vmm_host_state_init();
423
424
vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
425
&IDTVEC(justreturn));
426
if (vmm_ipinum < 0)
427
vmm_ipinum = IPI_AST;
428
429
vmm_suspend_p = vmmops_modsuspend;
430
vmm_resume_p = vmmops_modresume;
431
432
return (vmmops_modinit(vmm_ipinum));
433
}
434
435
static int
436
vmm_handler(module_t mod, int what, void *arg)
437
{
438
int error;
439
440
switch (what) {
441
case MOD_LOAD:
442
if (vmm_is_hw_supported()) {
443
error = vmmdev_init();
444
if (error != 0)
445
break;
446
error = vmm_init();
447
if (error == 0)
448
vmm_initialized = 1;
449
else
450
(void)vmmdev_cleanup();
451
} else {
452
error = ENXIO;
453
}
454
break;
455
case MOD_UNLOAD:
456
if (vmm_is_hw_supported()) {
457
error = vmmdev_cleanup();
458
if (error == 0) {
459
vmm_suspend_p = NULL;
460
vmm_resume_p = NULL;
461
iommu_cleanup();
462
if (vmm_ipinum != IPI_AST)
463
lapic_ipi_free(vmm_ipinum);
464
error = vmmops_modcleanup();
465
/*
466
* Something bad happened - prevent new
467
* VMs from being created
468
*/
469
if (error)
470
vmm_initialized = 0;
471
}
472
} else {
473
error = 0;
474
}
475
break;
476
default:
477
error = 0;
478
break;
479
}
480
return (error);
481
}
482
483
static moduledata_t vmm_kmod = {
484
"vmm",
485
vmm_handler,
486
NULL
487
};
488
489
/*
490
* vmm initialization has the following dependencies:
491
*
492
* - VT-x initialization requires smp_rendezvous() and therefore must happen
493
* after SMP is fully functional (after SI_SUB_SMP).
494
* - vmm device initialization requires an initialized devfs.
495
*/
496
DECLARE_MODULE(vmm, vmm_kmod, MAX(SI_SUB_SMP, SI_SUB_DEVFS) + 1, SI_ORDER_ANY);
497
MODULE_VERSION(vmm, 1);
498
499
static void
500
vm_init(struct vm *vm, bool create)
501
{
502
vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace));
503
vm->iommu = NULL;
504
vm->vioapic = vioapic_init(vm);
505
vm->vhpet = vhpet_init(vm);
506
vm->vatpic = vatpic_init(vm);
507
vm->vatpit = vatpit_init(vm);
508
vm->vpmtmr = vpmtmr_init(vm);
509
if (create)
510
vm->vrtc = vrtc_init(vm);
511
512
CPU_ZERO(&vm->active_cpus);
513
CPU_ZERO(&vm->debug_cpus);
514
CPU_ZERO(&vm->startup_cpus);
515
516
vm->suspend = 0;
517
CPU_ZERO(&vm->suspended_cpus);
518
519
if (!create) {
520
for (int i = 0; i < vm->maxcpus; i++) {
521
if (vm->vcpu[i] != NULL)
522
vcpu_init(vm->vcpu[i]);
523
}
524
}
525
}
526
527
void
528
vm_disable_vcpu_creation(struct vm *vm)
529
{
530
sx_xlock(&vm->vcpus_init_lock);
531
vm->dying = true;
532
sx_xunlock(&vm->vcpus_init_lock);
533
}
534
535
struct vcpu *
536
vm_alloc_vcpu(struct vm *vm, int vcpuid)
537
{
538
struct vcpu *vcpu;
539
540
if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
541
return (NULL);
542
543
vcpu = (struct vcpu *)
544
atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]);
545
if (__predict_true(vcpu != NULL))
546
return (vcpu);
547
548
sx_xlock(&vm->vcpus_init_lock);
549
vcpu = vm->vcpu[vcpuid];
550
if (vcpu == NULL && !vm->dying) {
551
vcpu = vcpu_alloc(vm, vcpuid);
552
vcpu_init(vcpu);
553
554
/*
555
* Ensure vCPU is fully created before updating pointer
556
* to permit unlocked reads above.
557
*/
558
atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
559
(uintptr_t)vcpu);
560
}
561
sx_xunlock(&vm->vcpus_init_lock);
562
return (vcpu);
563
}
564
565
void
566
vm_slock_vcpus(struct vm *vm)
567
{
568
sx_slock(&vm->vcpus_init_lock);
569
}
570
571
void
572
vm_unlock_vcpus(struct vm *vm)
573
{
574
sx_unlock(&vm->vcpus_init_lock);
575
}
576
577
/*
578
* The default CPU topology is a single thread per package.
579
*/
580
u_int cores_per_package = 1;
581
u_int threads_per_core = 1;
582
583
int
584
vm_create(const char *name, struct vm **retvm)
585
{
586
struct vm *vm;
587
struct vmspace *vmspace;
588
589
/*
590
* If vmm.ko could not be successfully initialized then don't attempt
591
* to create the virtual machine.
592
*/
593
if (!vmm_initialized)
594
return (ENXIO);
595
596
if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) ==
597
VM_MAX_NAMELEN + 1)
598
return (EINVAL);
599
600
vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48);
601
if (vmspace == NULL)
602
return (ENOMEM);
603
604
vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
605
strcpy(vm->name, name);
606
vm->vmspace = vmspace;
607
vm_mem_init(&vm->mem);
608
mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
609
sx_init(&vm->vcpus_init_lock, "vm vcpus");
610
vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK |
611
M_ZERO);
612
613
vm->sockets = 1;
614
vm->cores = cores_per_package; /* XXX backwards compatibility */
615
vm->threads = threads_per_core; /* XXX backwards compatibility */
616
vm->maxcpus = vm_maxcpu;
617
618
vm_init(vm, true);
619
620
*retvm = vm;
621
return (0);
622
}
623
624
void
625
vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
626
uint16_t *threads, uint16_t *maxcpus)
627
{
628
*sockets = vm->sockets;
629
*cores = vm->cores;
630
*threads = vm->threads;
631
*maxcpus = vm->maxcpus;
632
}
633
634
uint16_t
635
vm_get_maxcpus(struct vm *vm)
636
{
637
return (vm->maxcpus);
638
}
639
640
int
641
vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
642
uint16_t threads, uint16_t maxcpus __unused)
643
{
644
/* Ignore maxcpus. */
645
if ((sockets * cores * threads) > vm->maxcpus)
646
return (EINVAL);
647
vm->sockets = sockets;
648
vm->cores = cores;
649
vm->threads = threads;
650
return(0);
651
}
652
653
static void
654
vm_cleanup(struct vm *vm, bool destroy)
655
{
656
if (destroy)
657
vm_xlock_memsegs(vm);
658
else
659
vm_assert_memseg_xlocked(vm);
660
661
ppt_unassign_all(vm);
662
663
if (vm->iommu != NULL)
664
iommu_destroy_domain(vm->iommu);
665
666
if (destroy)
667
vrtc_cleanup(vm->vrtc);
668
else
669
vrtc_reset(vm->vrtc);
670
vpmtmr_cleanup(vm->vpmtmr);
671
vatpit_cleanup(vm->vatpit);
672
vhpet_cleanup(vm->vhpet);
673
vatpic_cleanup(vm->vatpic);
674
vioapic_cleanup(vm->vioapic);
675
676
for (int i = 0; i < vm->maxcpus; i++) {
677
if (vm->vcpu[i] != NULL)
678
vcpu_cleanup(vm->vcpu[i], destroy);
679
}
680
681
vmmops_cleanup(vm->cookie);
682
683
vm_mem_cleanup(vm);
684
685
if (destroy) {
686
vm_mem_destroy(vm);
687
688
vmmops_vmspace_free(vm->vmspace);
689
vm->vmspace = NULL;
690
691
free(vm->vcpu, M_VM);
692
sx_destroy(&vm->vcpus_init_lock);
693
mtx_destroy(&vm->rendezvous_mtx);
694
}
695
}
696
697
void
698
vm_destroy(struct vm *vm)
699
{
700
vm_cleanup(vm, true);
701
free(vm, M_VM);
702
}
703
704
int
705
vm_reinit(struct vm *vm)
706
{
707
int error;
708
709
/*
710
* A virtual machine can be reset only if all vcpus are suspended.
711
*/
712
if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
713
vm_cleanup(vm, false);
714
vm_init(vm, false);
715
error = 0;
716
} else {
717
error = EBUSY;
718
}
719
720
return (error);
721
}
722
723
const char *
724
vm_name(struct vm *vm)
725
{
726
return (vm->name);
727
}
728
729
int
730
vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
731
{
732
vm_object_t obj;
733
734
if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
735
return (ENOMEM);
736
else
737
return (0);
738
}
739
740
int
741
vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
742
{
743
744
vmm_mmio_free(vm->vmspace, gpa, len);
745
return (0);
746
}
747
748
static int
749
vm_iommu_map(struct vm *vm)
750
{
751
vm_paddr_t gpa, hpa;
752
struct vm_mem_map *mm;
753
int error, i;
754
755
sx_assert(&vm->mem.mem_segs_lock, SX_LOCKED);
756
757
for (i = 0; i < VM_MAX_MEMMAPS; i++) {
758
if (!vm_memseg_sysmem(vm, i))
759
continue;
760
761
mm = &vm->mem.mem_maps[i];
762
KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
763
("iommu map found invalid memmap %#lx/%#lx/%#x",
764
mm->gpa, mm->len, mm->flags));
765
if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
766
continue;
767
mm->flags |= VM_MEMMAP_F_IOMMU;
768
769
for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
770
hpa = pmap_extract(vmspace_pmap(vm->vmspace), gpa);
771
772
/*
773
* All mappings in the vmm vmspace must be
774
* present since they are managed by vmm in this way.
775
* Because we are in pass-through mode, the
776
* mappings must also be wired. This implies
777
* that all pages must be mapped and wired,
778
* allowing to use pmap_extract() and avoiding the
779
* need to use vm_gpa_hold_global().
780
*
781
* This could change if/when we start
782
* supporting page faults on IOMMU maps.
783
*/
784
KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)),
785
("vm_iommu_map: vm %p gpa %jx hpa %jx not wired",
786
vm, (uintmax_t)gpa, (uintmax_t)hpa));
787
788
iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE);
789
}
790
}
791
792
error = iommu_invalidate_tlb(iommu_host_domain());
793
return (error);
794
}
795
796
static int
797
vm_iommu_unmap(struct vm *vm)
798
{
799
vm_paddr_t gpa;
800
struct vm_mem_map *mm;
801
int error, i;
802
803
sx_assert(&vm->mem.mem_segs_lock, SX_LOCKED);
804
805
for (i = 0; i < VM_MAX_MEMMAPS; i++) {
806
if (!vm_memseg_sysmem(vm, i))
807
continue;
808
809
mm = &vm->mem.mem_maps[i];
810
if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
811
continue;
812
mm->flags &= ~VM_MEMMAP_F_IOMMU;
813
KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
814
("iommu unmap found invalid memmap %#lx/%#lx/%#x",
815
mm->gpa, mm->len, mm->flags));
816
817
for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
818
KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract(
819
vmspace_pmap(vm->vmspace), gpa))),
820
("vm_iommu_unmap: vm %p gpa %jx not wired",
821
vm, (uintmax_t)gpa));
822
iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE);
823
}
824
}
825
826
/*
827
* Invalidate the cached translations associated with the domain
828
* from which pages were removed.
829
*/
830
error = iommu_invalidate_tlb(vm->iommu);
831
return (error);
832
}
833
834
int
835
vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
836
{
837
int error;
838
839
error = ppt_unassign_device(vm, bus, slot, func);
840
if (error)
841
return (error);
842
843
if (ppt_assigned_devices(vm) == 0)
844
error = vm_iommu_unmap(vm);
845
846
return (error);
847
}
848
849
int
850
vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
851
{
852
int error;
853
vm_paddr_t maxaddr;
854
bool map = false;
855
856
/* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
857
if (ppt_assigned_devices(vm) == 0) {
858
KASSERT(vm->iommu == NULL,
859
("vm_assign_pptdev: iommu must be NULL"));
860
maxaddr = vmm_sysmem_maxaddr(vm);
861
vm->iommu = iommu_create_domain(maxaddr);
862
if (vm->iommu == NULL)
863
return (ENXIO);
864
map = true;
865
}
866
867
error = ppt_assign_device(vm, bus, slot, func);
868
if (error == 0 && map)
869
error = vm_iommu_map(vm);
870
return (error);
871
}
872
873
int
874
vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
875
{
876
877
if (reg >= VM_REG_LAST)
878
return (EINVAL);
879
880
return (vmmops_getreg(vcpu->cookie, reg, retval));
881
}
882
883
int
884
vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
885
{
886
int error;
887
888
if (reg >= VM_REG_LAST)
889
return (EINVAL);
890
891
error = vmmops_setreg(vcpu->cookie, reg, val);
892
if (error || reg != VM_REG_GUEST_RIP)
893
return (error);
894
895
/* Set 'nextrip' to match the value of %rip */
896
VMM_CTR1(vcpu, "Setting nextrip to %#lx", val);
897
vcpu->nextrip = val;
898
return (0);
899
}
900
901
static bool
902
is_descriptor_table(int reg)
903
{
904
905
switch (reg) {
906
case VM_REG_GUEST_IDTR:
907
case VM_REG_GUEST_GDTR:
908
return (true);
909
default:
910
return (false);
911
}
912
}
913
914
static bool
915
is_segment_register(int reg)
916
{
917
918
switch (reg) {
919
case VM_REG_GUEST_ES:
920
case VM_REG_GUEST_CS:
921
case VM_REG_GUEST_SS:
922
case VM_REG_GUEST_DS:
923
case VM_REG_GUEST_FS:
924
case VM_REG_GUEST_GS:
925
case VM_REG_GUEST_TR:
926
case VM_REG_GUEST_LDTR:
927
return (true);
928
default:
929
return (false);
930
}
931
}
932
933
int
934
vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
935
{
936
937
if (!is_segment_register(reg) && !is_descriptor_table(reg))
938
return (EINVAL);
939
940
return (vmmops_getdesc(vcpu->cookie, reg, desc));
941
}
942
943
int
944
vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
945
{
946
947
if (!is_segment_register(reg) && !is_descriptor_table(reg))
948
return (EINVAL);
949
950
return (vmmops_setdesc(vcpu->cookie, reg, desc));
951
}
952
953
static void
954
restore_guest_fpustate(struct vcpu *vcpu)
955
{
956
957
/* flush host state to the pcb */
958
fpuexit(curthread);
959
960
/* restore guest FPU state */
961
fpu_enable();
962
fpurestore(vcpu->guestfpu);
963
964
/* restore guest XCR0 if XSAVE is enabled in the host */
965
if (rcr4() & CR4_XSAVE)
966
load_xcr(0, vcpu->guest_xcr0);
967
968
/*
969
* The FPU is now "dirty" with the guest's state so disable
970
* the FPU to trap any access by the host.
971
*/
972
fpu_disable();
973
}
974
975
static void
976
save_guest_fpustate(struct vcpu *vcpu)
977
{
978
979
if ((rcr0() & CR0_TS) == 0)
980
panic("fpu emulation not enabled in host!");
981
982
/* save guest XCR0 and restore host XCR0 */
983
if (rcr4() & CR4_XSAVE) {
984
vcpu->guest_xcr0 = rxcr(0);
985
load_xcr(0, vmm_get_host_xcr0());
986
}
987
988
/* save guest FPU state */
989
fpu_enable();
990
fpusave(vcpu->guestfpu);
991
fpu_disable();
992
}
993
994
static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
995
996
static int
997
vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
998
bool from_idle)
999
{
1000
int error;
1001
1002
vcpu_assert_locked(vcpu);
1003
1004
/*
1005
* State transitions from the vmmdev_ioctl() must always begin from
1006
* the VCPU_IDLE state. This guarantees that there is only a single
1007
* ioctl() operating on a vcpu at any point.
1008
*/
1009
if (from_idle) {
1010
while (vcpu->state != VCPU_IDLE) {
1011
vcpu->reqidle = 1;
1012
vcpu_notify_event_locked(vcpu, false);
1013
VMM_CTR1(vcpu, "vcpu state change from %s to "
1014
"idle requested", vcpu_state2str(vcpu->state));
1015
msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1016
}
1017
} else {
1018
KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1019
"vcpu idle state"));
1020
}
1021
1022
if (vcpu->state == VCPU_RUNNING) {
1023
KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1024
"mismatch for running vcpu", curcpu, vcpu->hostcpu));
1025
} else {
1026
KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1027
"vcpu that is not running", vcpu->hostcpu));
1028
}
1029
1030
/*
1031
* The following state transitions are allowed:
1032
* IDLE -> FROZEN -> IDLE
1033
* FROZEN -> RUNNING -> FROZEN
1034
* FROZEN -> SLEEPING -> FROZEN
1035
*/
1036
switch (vcpu->state) {
1037
case VCPU_IDLE:
1038
case VCPU_RUNNING:
1039
case VCPU_SLEEPING:
1040
error = (newstate != VCPU_FROZEN);
1041
break;
1042
case VCPU_FROZEN:
1043
error = (newstate == VCPU_FROZEN);
1044
break;
1045
default:
1046
error = 1;
1047
break;
1048
}
1049
1050
if (error)
1051
return (EBUSY);
1052
1053
VMM_CTR2(vcpu, "vcpu state changed from %s to %s",
1054
vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
1055
1056
vcpu->state = newstate;
1057
if (newstate == VCPU_RUNNING)
1058
vcpu->hostcpu = curcpu;
1059
else
1060
vcpu->hostcpu = NOCPU;
1061
1062
if (newstate == VCPU_IDLE)
1063
wakeup(&vcpu->state);
1064
1065
return (0);
1066
}
1067
1068
static void
1069
vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
1070
{
1071
int error;
1072
1073
if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
1074
panic("Error %d setting state to %d\n", error, newstate);
1075
}
1076
1077
static void
1078
vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
1079
{
1080
int error;
1081
1082
if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
1083
panic("Error %d setting state to %d", error, newstate);
1084
}
1085
1086
static int
1087
vm_handle_rendezvous(struct vcpu *vcpu)
1088
{
1089
struct vm *vm = vcpu->vm;
1090
struct thread *td;
1091
int error, vcpuid;
1092
1093
error = 0;
1094
vcpuid = vcpu->vcpuid;
1095
td = curthread;
1096
mtx_lock(&vm->rendezvous_mtx);
1097
while (vm->rendezvous_func != NULL) {
1098
/* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
1099
CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus);
1100
1101
if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
1102
!CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
1103
VMM_CTR0(vcpu, "Calling rendezvous func");
1104
(*vm->rendezvous_func)(vcpu, vm->rendezvous_arg);
1105
CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
1106
}
1107
if (CPU_CMP(&vm->rendezvous_req_cpus,
1108
&vm->rendezvous_done_cpus) == 0) {
1109
VMM_CTR0(vcpu, "Rendezvous completed");
1110
CPU_ZERO(&vm->rendezvous_req_cpus);
1111
vm->rendezvous_func = NULL;
1112
wakeup(&vm->rendezvous_func);
1113
break;
1114
}
1115
VMM_CTR0(vcpu, "Wait for rendezvous completion");
1116
mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1117
"vmrndv", hz);
1118
if (td_ast_pending(td, TDA_SUSPEND)) {
1119
mtx_unlock(&vm->rendezvous_mtx);
1120
error = thread_check_susp(td, true);
1121
if (error != 0)
1122
return (error);
1123
mtx_lock(&vm->rendezvous_mtx);
1124
}
1125
}
1126
mtx_unlock(&vm->rendezvous_mtx);
1127
return (0);
1128
}
1129
1130
/*
1131
* Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1132
*/
1133
static int
1134
vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu)
1135
{
1136
struct vm *vm = vcpu->vm;
1137
const char *wmesg;
1138
struct thread *td;
1139
int error, t, vcpuid, vcpu_halted, vm_halted;
1140
1141
vcpuid = vcpu->vcpuid;
1142
vcpu_halted = 0;
1143
vm_halted = 0;
1144
error = 0;
1145
td = curthread;
1146
1147
KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1148
1149
vcpu_lock(vcpu);
1150
while (1) {
1151
/*
1152
* Do a final check for pending NMI or interrupts before
1153
* really putting this thread to sleep. Also check for
1154
* software events that would cause this vcpu to wakeup.
1155
*
1156
* These interrupts/events could have happened after the
1157
* vcpu returned from vmmops_run() and before it acquired the
1158
* vcpu lock above.
1159
*/
1160
if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1161
break;
1162
if (vm_nmi_pending(vcpu))
1163
break;
1164
if (!intr_disabled) {
1165
if (vm_extint_pending(vcpu) ||
1166
vlapic_pending_intr(vcpu->vlapic, NULL)) {
1167
break;
1168
}
1169
}
1170
1171
/* Don't go to sleep if the vcpu thread needs to yield */
1172
if (vcpu_should_yield(vcpu))
1173
break;
1174
1175
if (vcpu_debugged(vcpu))
1176
break;
1177
1178
/*
1179
* Some Linux guests implement "halt" by having all vcpus
1180
* execute HLT with interrupts disabled. 'halted_cpus' keeps
1181
* track of the vcpus that have entered this state. When all
1182
* vcpus enter the halted state the virtual machine is halted.
1183
*/
1184
if (intr_disabled) {
1185
wmesg = "vmhalt";
1186
VMM_CTR0(vcpu, "Halted");
1187
if (!vcpu_halted && halt_detection_enabled) {
1188
vcpu_halted = 1;
1189
CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1190
}
1191
if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1192
vm_halted = 1;
1193
break;
1194
}
1195
} else {
1196
wmesg = "vmidle";
1197
}
1198
1199
t = ticks;
1200
vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1201
/*
1202
* XXX msleep_spin() cannot be interrupted by signals so
1203
* wake up periodically to check pending signals.
1204
*/
1205
msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1206
vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1207
vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t);
1208
if (td_ast_pending(td, TDA_SUSPEND)) {
1209
vcpu_unlock(vcpu);
1210
error = thread_check_susp(td, false);
1211
if (error != 0) {
1212
if (vcpu_halted) {
1213
CPU_CLR_ATOMIC(vcpuid,
1214
&vm->halted_cpus);
1215
}
1216
return (error);
1217
}
1218
vcpu_lock(vcpu);
1219
}
1220
}
1221
1222
if (vcpu_halted)
1223
CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1224
1225
vcpu_unlock(vcpu);
1226
1227
if (vm_halted)
1228
vm_suspend(vm, VM_SUSPEND_HALT);
1229
1230
return (0);
1231
}
1232
1233
static int
1234
vm_handle_paging(struct vcpu *vcpu, bool *retu)
1235
{
1236
struct vm *vm = vcpu->vm;
1237
int rv, ftype;
1238
struct vm_map *map;
1239
struct vm_exit *vme;
1240
1241
vme = &vcpu->exitinfo;
1242
1243
KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1244
__func__, vme->inst_length));
1245
1246
ftype = vme->u.paging.fault_type;
1247
KASSERT(ftype == VM_PROT_READ ||
1248
ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1249
("vm_handle_paging: invalid fault_type %d", ftype));
1250
1251
if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1252
rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
1253
vme->u.paging.gpa, ftype);
1254
if (rv == 0) {
1255
VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx",
1256
ftype == VM_PROT_READ ? "accessed" : "dirty",
1257
vme->u.paging.gpa);
1258
goto done;
1259
}
1260
}
1261
1262
map = &vm->vmspace->vm_map;
1263
rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1264
1265
VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, "
1266
"ftype = %d", rv, vme->u.paging.gpa, ftype);
1267
1268
if (rv != KERN_SUCCESS)
1269
return (EFAULT);
1270
done:
1271
return (0);
1272
}
1273
1274
static int
1275
vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
1276
{
1277
struct vie *vie;
1278
struct vm_exit *vme;
1279
uint64_t gla, gpa, cs_base;
1280
struct vm_guest_paging *paging;
1281
mem_region_read_t mread;
1282
mem_region_write_t mwrite;
1283
enum vm_cpu_mode cpu_mode;
1284
int cs_d, error, fault;
1285
1286
vme = &vcpu->exitinfo;
1287
1288
KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1289
__func__, vme->inst_length));
1290
1291
gla = vme->u.inst_emul.gla;
1292
gpa = vme->u.inst_emul.gpa;
1293
cs_base = vme->u.inst_emul.cs_base;
1294
cs_d = vme->u.inst_emul.cs_d;
1295
vie = &vme->u.inst_emul.vie;
1296
paging = &vme->u.inst_emul.paging;
1297
cpu_mode = paging->cpu_mode;
1298
1299
VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa);
1300
1301
/* Fetch, decode and emulate the faulting instruction */
1302
if (vie->num_valid == 0) {
1303
error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base,
1304
VIE_INST_SIZE, vie, &fault);
1305
} else {
1306
/*
1307
* The instruction bytes have already been copied into 'vie'
1308
*/
1309
error = fault = 0;
1310
}
1311
if (error || fault)
1312
return (error);
1313
1314
if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) {
1315
VMM_CTR1(vcpu, "Error decoding instruction at %#lx",
1316
vme->rip + cs_base);
1317
*retu = true; /* dump instruction bytes in userspace */
1318
return (0);
1319
}
1320
1321
/*
1322
* Update 'nextrip' based on the length of the emulated instruction.
1323
*/
1324
vme->inst_length = vie->num_processed;
1325
vcpu->nextrip += vie->num_processed;
1326
VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding",
1327
vcpu->nextrip);
1328
1329
/* return to userland unless this is an in-kernel emulated device */
1330
if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1331
mread = lapic_mmio_read;
1332
mwrite = lapic_mmio_write;
1333
} else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1334
mread = vioapic_mmio_read;
1335
mwrite = vioapic_mmio_write;
1336
} else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1337
mread = vhpet_mmio_read;
1338
mwrite = vhpet_mmio_write;
1339
} else {
1340
*retu = true;
1341
return (0);
1342
}
1343
1344
error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite,
1345
retu);
1346
1347
return (error);
1348
}
1349
1350
static int
1351
vm_handle_suspend(struct vcpu *vcpu, bool *retu)
1352
{
1353
struct vm *vm = vcpu->vm;
1354
int error, i;
1355
struct thread *td;
1356
1357
error = 0;
1358
td = curthread;
1359
1360
CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
1361
1362
/*
1363
* Wait until all 'active_cpus' have suspended themselves.
1364
*
1365
* Since a VM may be suspended at any time including when one or
1366
* more vcpus are doing a rendezvous we need to call the rendezvous
1367
* handler while we are waiting to prevent a deadlock.
1368
*/
1369
vcpu_lock(vcpu);
1370
while (error == 0) {
1371
if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1372
VMM_CTR0(vcpu, "All vcpus suspended");
1373
break;
1374
}
1375
1376
if (vm->rendezvous_func == NULL) {
1377
VMM_CTR0(vcpu, "Sleeping during suspend");
1378
vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1379
msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1380
vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1381
if (td_ast_pending(td, TDA_SUSPEND)) {
1382
vcpu_unlock(vcpu);
1383
error = thread_check_susp(td, false);
1384
vcpu_lock(vcpu);
1385
}
1386
} else {
1387
VMM_CTR0(vcpu, "Rendezvous during suspend");
1388
vcpu_unlock(vcpu);
1389
error = vm_handle_rendezvous(vcpu);
1390
vcpu_lock(vcpu);
1391
}
1392
}
1393
vcpu_unlock(vcpu);
1394
1395
/*
1396
* Wakeup the other sleeping vcpus and return to userspace.
1397
*/
1398
for (i = 0; i < vm->maxcpus; i++) {
1399
if (CPU_ISSET(i, &vm->suspended_cpus)) {
1400
vcpu_notify_event(vm_vcpu(vm, i), false);
1401
}
1402
}
1403
1404
*retu = true;
1405
return (error);
1406
}
1407
1408
static int
1409
vm_handle_reqidle(struct vcpu *vcpu, bool *retu)
1410
{
1411
vcpu_lock(vcpu);
1412
KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1413
vcpu->reqidle = 0;
1414
vcpu_unlock(vcpu);
1415
*retu = true;
1416
return (0);
1417
}
1418
1419
static int
1420
vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1421
{
1422
int error, fault;
1423
uint64_t rsp;
1424
uint64_t rflags;
1425
struct vm_copyinfo copyinfo[2];
1426
1427
*retu = true;
1428
if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) {
1429
return (0);
1430
}
1431
1432
vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp);
1433
error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t),
1434
VM_PROT_RW, copyinfo, nitems(copyinfo), &fault);
1435
if (error != 0 || fault != 0) {
1436
*retu = false;
1437
return (EINVAL);
1438
}
1439
1440
/* Read pushed rflags value from top of stack. */
1441
vm_copyin(copyinfo, &rflags, sizeof(uint64_t));
1442
1443
/* Clear TF bit. */
1444
rflags &= ~(PSL_T);
1445
1446
/* Write updated value back to memory. */
1447
vm_copyout(&rflags, copyinfo, sizeof(uint64_t));
1448
vm_copy_teardown(copyinfo, nitems(copyinfo));
1449
1450
return (0);
1451
}
1452
1453
int
1454
vm_suspend(struct vm *vm, enum vm_suspend_how how)
1455
{
1456
int i;
1457
1458
if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1459
return (EINVAL);
1460
1461
if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1462
VM_CTR2(vm, "virtual machine already suspended %d/%d",
1463
vm->suspend, how);
1464
return (EALREADY);
1465
}
1466
1467
VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1468
1469
/*
1470
* Notify all active vcpus that they are now suspended.
1471
*/
1472
for (i = 0; i < vm->maxcpus; i++) {
1473
if (CPU_ISSET(i, &vm->active_cpus))
1474
vcpu_notify_event(vm_vcpu(vm, i), false);
1475
}
1476
1477
return (0);
1478
}
1479
1480
void
1481
vm_exit_suspended(struct vcpu *vcpu, uint64_t rip)
1482
{
1483
struct vm *vm = vcpu->vm;
1484
struct vm_exit *vmexit;
1485
1486
KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1487
("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1488
1489
vmexit = vm_exitinfo(vcpu);
1490
vmexit->rip = rip;
1491
vmexit->inst_length = 0;
1492
vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1493
vmexit->u.suspended.how = vm->suspend;
1494
}
1495
1496
void
1497
vm_exit_debug(struct vcpu *vcpu, uint64_t rip)
1498
{
1499
struct vm_exit *vmexit;
1500
1501
vmexit = vm_exitinfo(vcpu);
1502
vmexit->rip = rip;
1503
vmexit->inst_length = 0;
1504
vmexit->exitcode = VM_EXITCODE_DEBUG;
1505
}
1506
1507
void
1508
vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip)
1509
{
1510
struct vm_exit *vmexit;
1511
1512
vmexit = vm_exitinfo(vcpu);
1513
vmexit->rip = rip;
1514
vmexit->inst_length = 0;
1515
vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1516
vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1);
1517
}
1518
1519
void
1520
vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip)
1521
{
1522
struct vm_exit *vmexit;
1523
1524
vmexit = vm_exitinfo(vcpu);
1525
vmexit->rip = rip;
1526
vmexit->inst_length = 0;
1527
vmexit->exitcode = VM_EXITCODE_REQIDLE;
1528
vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1);
1529
}
1530
1531
void
1532
vm_exit_astpending(struct vcpu *vcpu, uint64_t rip)
1533
{
1534
struct vm_exit *vmexit;
1535
1536
vmexit = vm_exitinfo(vcpu);
1537
vmexit->rip = rip;
1538
vmexit->inst_length = 0;
1539
vmexit->exitcode = VM_EXITCODE_BOGUS;
1540
vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1);
1541
}
1542
1543
int
1544
vm_run(struct vcpu *vcpu)
1545
{
1546
struct vm *vm = vcpu->vm;
1547
struct vm_eventinfo evinfo;
1548
int error, vcpuid;
1549
struct pcb *pcb;
1550
uint64_t tscval;
1551
struct vm_exit *vme;
1552
bool retu, intr_disabled;
1553
pmap_t pmap;
1554
1555
vcpuid = vcpu->vcpuid;
1556
1557
if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1558
return (EINVAL);
1559
1560
if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1561
return (EINVAL);
1562
1563
pmap = vmspace_pmap(vm->vmspace);
1564
vme = &vcpu->exitinfo;
1565
evinfo.rptr = &vm->rendezvous_req_cpus;
1566
evinfo.sptr = &vm->suspend;
1567
evinfo.iptr = &vcpu->reqidle;
1568
restart:
1569
critical_enter();
1570
1571
KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1572
("vm_run: absurd pm_active"));
1573
1574
tscval = rdtsc();
1575
1576
pcb = PCPU_GET(curpcb);
1577
set_pcb_flags(pcb, PCB_FULL_IRET);
1578
1579
restore_guest_fpustate(vcpu);
1580
1581
vcpu_require_state(vcpu, VCPU_RUNNING);
1582
error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo);
1583
vcpu_require_state(vcpu, VCPU_FROZEN);
1584
1585
save_guest_fpustate(vcpu);
1586
1587
vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1588
1589
critical_exit();
1590
1591
if (error == 0) {
1592
retu = false;
1593
vcpu->nextrip = vme->rip + vme->inst_length;
1594
switch (vme->exitcode) {
1595
case VM_EXITCODE_REQIDLE:
1596
error = vm_handle_reqidle(vcpu, &retu);
1597
break;
1598
case VM_EXITCODE_SUSPENDED:
1599
error = vm_handle_suspend(vcpu, &retu);
1600
break;
1601
case VM_EXITCODE_IOAPIC_EOI:
1602
vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector);
1603
break;
1604
case VM_EXITCODE_RENDEZVOUS:
1605
error = vm_handle_rendezvous(vcpu);
1606
break;
1607
case VM_EXITCODE_HLT:
1608
intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1609
error = vm_handle_hlt(vcpu, intr_disabled, &retu);
1610
break;
1611
case VM_EXITCODE_PAGING:
1612
error = vm_handle_paging(vcpu, &retu);
1613
break;
1614
case VM_EXITCODE_INST_EMUL:
1615
error = vm_handle_inst_emul(vcpu, &retu);
1616
break;
1617
case VM_EXITCODE_INOUT:
1618
case VM_EXITCODE_INOUT_STR:
1619
error = vm_handle_inout(vcpu, vme, &retu);
1620
break;
1621
case VM_EXITCODE_DB:
1622
error = vm_handle_db(vcpu, vme, &retu);
1623
break;
1624
case VM_EXITCODE_MONITOR:
1625
case VM_EXITCODE_MWAIT:
1626
case VM_EXITCODE_VMINSN:
1627
vm_inject_ud(vcpu);
1628
break;
1629
default:
1630
retu = true; /* handled in userland */
1631
break;
1632
}
1633
}
1634
1635
/*
1636
* VM_EXITCODE_INST_EMUL could access the apic which could transform the
1637
* exit code into VM_EXITCODE_IPI.
1638
*/
1639
if (error == 0 && vme->exitcode == VM_EXITCODE_IPI)
1640
error = vm_handle_ipi(vcpu, vme, &retu);
1641
1642
if (error == 0 && retu == false)
1643
goto restart;
1644
1645
vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1);
1646
VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode);
1647
1648
return (error);
1649
}
1650
1651
int
1652
vm_restart_instruction(struct vcpu *vcpu)
1653
{
1654
enum vcpu_state state;
1655
uint64_t rip;
1656
int error __diagused;
1657
1658
state = vcpu_get_state(vcpu, NULL);
1659
if (state == VCPU_RUNNING) {
1660
/*
1661
* When a vcpu is "running" the next instruction is determined
1662
* by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
1663
* Thus setting 'inst_length' to zero will cause the current
1664
* instruction to be restarted.
1665
*/
1666
vcpu->exitinfo.inst_length = 0;
1667
VMM_CTR1(vcpu, "restarting instruction at %#lx by "
1668
"setting inst_length to zero", vcpu->exitinfo.rip);
1669
} else if (state == VCPU_FROZEN) {
1670
/*
1671
* When a vcpu is "frozen" it is outside the critical section
1672
* around vmmops_run() and 'nextrip' points to the next
1673
* instruction. Thus instruction restart is achieved by setting
1674
* 'nextrip' to the vcpu's %rip.
1675
*/
1676
error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip);
1677
KASSERT(!error, ("%s: error %d getting rip", __func__, error));
1678
VMM_CTR2(vcpu, "restarting instruction by updating "
1679
"nextrip from %#lx to %#lx", vcpu->nextrip, rip);
1680
vcpu->nextrip = rip;
1681
} else {
1682
panic("%s: invalid state %d", __func__, state);
1683
}
1684
return (0);
1685
}
1686
1687
int
1688
vm_exit_intinfo(struct vcpu *vcpu, uint64_t info)
1689
{
1690
int type, vector;
1691
1692
if (info & VM_INTINFO_VALID) {
1693
type = info & VM_INTINFO_TYPE;
1694
vector = info & 0xff;
1695
if (type == VM_INTINFO_NMI && vector != IDT_NMI)
1696
return (EINVAL);
1697
if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
1698
return (EINVAL);
1699
if (info & VM_INTINFO_RSVD)
1700
return (EINVAL);
1701
} else {
1702
info = 0;
1703
}
1704
VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info);
1705
vcpu->exitintinfo = info;
1706
return (0);
1707
}
1708
1709
enum exc_class {
1710
EXC_BENIGN,
1711
EXC_CONTRIBUTORY,
1712
EXC_PAGEFAULT
1713
};
1714
1715
#define IDT_VE 20 /* Virtualization Exception (Intel specific) */
1716
1717
static enum exc_class
1718
exception_class(uint64_t info)
1719
{
1720
int type, vector;
1721
1722
KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
1723
type = info & VM_INTINFO_TYPE;
1724
vector = info & 0xff;
1725
1726
/* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
1727
switch (type) {
1728
case VM_INTINFO_HWINTR:
1729
case VM_INTINFO_SWINTR:
1730
case VM_INTINFO_NMI:
1731
return (EXC_BENIGN);
1732
default:
1733
/*
1734
* Hardware exception.
1735
*
1736
* SVM and VT-x use identical type values to represent NMI,
1737
* hardware interrupt and software interrupt.
1738
*
1739
* SVM uses type '3' for all exceptions. VT-x uses type '3'
1740
* for exceptions except #BP and #OF. #BP and #OF use a type
1741
* value of '5' or '6'. Therefore we don't check for explicit
1742
* values of 'type' to classify 'intinfo' into a hardware
1743
* exception.
1744
*/
1745
break;
1746
}
1747
1748
switch (vector) {
1749
case IDT_PF:
1750
case IDT_VE:
1751
return (EXC_PAGEFAULT);
1752
case IDT_DE:
1753
case IDT_TS:
1754
case IDT_NP:
1755
case IDT_SS:
1756
case IDT_GP:
1757
return (EXC_CONTRIBUTORY);
1758
default:
1759
return (EXC_BENIGN);
1760
}
1761
}
1762
1763
static int
1764
nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2,
1765
uint64_t *retinfo)
1766
{
1767
enum exc_class exc1, exc2;
1768
int type1, vector1;
1769
1770
KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
1771
KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
1772
1773
/*
1774
* If an exception occurs while attempting to call the double-fault
1775
* handler the processor enters shutdown mode (aka triple fault).
1776
*/
1777
type1 = info1 & VM_INTINFO_TYPE;
1778
vector1 = info1 & 0xff;
1779
if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
1780
VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)",
1781
info1, info2);
1782
vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT);
1783
*retinfo = 0;
1784
return (0);
1785
}
1786
1787
/*
1788
* Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
1789
*/
1790
exc1 = exception_class(info1);
1791
exc2 = exception_class(info2);
1792
if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
1793
(exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
1794
/* Convert nested fault into a double fault. */
1795
*retinfo = IDT_DF;
1796
*retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1797
*retinfo |= VM_INTINFO_DEL_ERRCODE;
1798
} else {
1799
/* Handle exceptions serially */
1800
*retinfo = info2;
1801
}
1802
return (1);
1803
}
1804
1805
static uint64_t
1806
vcpu_exception_intinfo(struct vcpu *vcpu)
1807
{
1808
uint64_t info = 0;
1809
1810
if (vcpu->exception_pending) {
1811
info = vcpu->exc_vector & 0xff;
1812
info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1813
if (vcpu->exc_errcode_valid) {
1814
info |= VM_INTINFO_DEL_ERRCODE;
1815
info |= (uint64_t)vcpu->exc_errcode << 32;
1816
}
1817
}
1818
return (info);
1819
}
1820
1821
int
1822
vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo)
1823
{
1824
uint64_t info1, info2;
1825
int valid;
1826
1827
info1 = vcpu->exitintinfo;
1828
vcpu->exitintinfo = 0;
1829
1830
info2 = 0;
1831
if (vcpu->exception_pending) {
1832
info2 = vcpu_exception_intinfo(vcpu);
1833
vcpu->exception_pending = 0;
1834
VMM_CTR2(vcpu, "Exception %d delivered: %#lx",
1835
vcpu->exc_vector, info2);
1836
}
1837
1838
if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
1839
valid = nested_fault(vcpu, info1, info2, retinfo);
1840
} else if (info1 & VM_INTINFO_VALID) {
1841
*retinfo = info1;
1842
valid = 1;
1843
} else if (info2 & VM_INTINFO_VALID) {
1844
*retinfo = info2;
1845
valid = 1;
1846
} else {
1847
valid = 0;
1848
}
1849
1850
if (valid) {
1851
VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), "
1852
"retinfo(%#lx)", __func__, info1, info2, *retinfo);
1853
}
1854
1855
return (valid);
1856
}
1857
1858
int
1859
vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
1860
{
1861
*info1 = vcpu->exitintinfo;
1862
*info2 = vcpu_exception_intinfo(vcpu);
1863
return (0);
1864
}
1865
1866
int
1867
vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid,
1868
uint32_t errcode, int restart_instruction)
1869
{
1870
uint64_t regval;
1871
int error __diagused;
1872
1873
if (vector < 0 || vector >= 32)
1874
return (EINVAL);
1875
1876
/*
1877
* A double fault exception should never be injected directly into
1878
* the guest. It is a derived exception that results from specific
1879
* combinations of nested faults.
1880
*/
1881
if (vector == IDT_DF)
1882
return (EINVAL);
1883
1884
if (vcpu->exception_pending) {
1885
VMM_CTR2(vcpu, "Unable to inject exception %d due to "
1886
"pending exception %d", vector, vcpu->exc_vector);
1887
return (EBUSY);
1888
}
1889
1890
if (errcode_valid) {
1891
/*
1892
* Exceptions don't deliver an error code in real mode.
1893
*/
1894
error = vm_get_register(vcpu, VM_REG_GUEST_CR0, &regval);
1895
KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
1896
if (!(regval & CR0_PE))
1897
errcode_valid = 0;
1898
}
1899
1900
/*
1901
* From section 26.6.1 "Interruptibility State" in Intel SDM:
1902
*
1903
* Event blocking by "STI" or "MOV SS" is cleared after guest executes
1904
* one instruction or incurs an exception.
1905
*/
1906
error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0);
1907
KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
1908
__func__, error));
1909
1910
if (restart_instruction)
1911
vm_restart_instruction(vcpu);
1912
1913
vcpu->exception_pending = 1;
1914
vcpu->exc_vector = vector;
1915
vcpu->exc_errcode = errcode;
1916
vcpu->exc_errcode_valid = errcode_valid;
1917
VMM_CTR1(vcpu, "Exception %d pending", vector);
1918
return (0);
1919
}
1920
1921
void
1922
vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode)
1923
{
1924
int error __diagused, restart_instruction;
1925
1926
restart_instruction = 1;
1927
1928
error = vm_inject_exception(vcpu, vector, errcode_valid,
1929
errcode, restart_instruction);
1930
KASSERT(error == 0, ("vm_inject_exception error %d", error));
1931
}
1932
1933
void
1934
vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2)
1935
{
1936
int error __diagused;
1937
1938
VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx",
1939
error_code, cr2);
1940
1941
error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2);
1942
KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
1943
1944
vm_inject_fault(vcpu, IDT_PF, 1, error_code);
1945
}
1946
1947
static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
1948
1949
int
1950
vm_inject_nmi(struct vcpu *vcpu)
1951
{
1952
1953
vcpu->nmi_pending = 1;
1954
vcpu_notify_event(vcpu, false);
1955
return (0);
1956
}
1957
1958
int
1959
vm_nmi_pending(struct vcpu *vcpu)
1960
{
1961
return (vcpu->nmi_pending);
1962
}
1963
1964
void
1965
vm_nmi_clear(struct vcpu *vcpu)
1966
{
1967
if (vcpu->nmi_pending == 0)
1968
panic("vm_nmi_clear: inconsistent nmi_pending state");
1969
1970
vcpu->nmi_pending = 0;
1971
vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1);
1972
}
1973
1974
static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
1975
1976
int
1977
vm_inject_extint(struct vcpu *vcpu)
1978
{
1979
1980
vcpu->extint_pending = 1;
1981
vcpu_notify_event(vcpu, false);
1982
return (0);
1983
}
1984
1985
int
1986
vm_extint_pending(struct vcpu *vcpu)
1987
{
1988
return (vcpu->extint_pending);
1989
}
1990
1991
void
1992
vm_extint_clear(struct vcpu *vcpu)
1993
{
1994
if (vcpu->extint_pending == 0)
1995
panic("vm_extint_clear: inconsistent extint_pending state");
1996
1997
vcpu->extint_pending = 0;
1998
vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1);
1999
}
2000
2001
int
2002
vm_get_capability(struct vcpu *vcpu, int type, int *retval)
2003
{
2004
if (type < 0 || type >= VM_CAP_MAX)
2005
return (EINVAL);
2006
2007
return (vmmops_getcap(vcpu->cookie, type, retval));
2008
}
2009
2010
int
2011
vm_set_capability(struct vcpu *vcpu, int type, int val)
2012
{
2013
if (type < 0 || type >= VM_CAP_MAX)
2014
return (EINVAL);
2015
2016
return (vmmops_setcap(vcpu->cookie, type, val));
2017
}
2018
2019
struct vm *
2020
vcpu_vm(struct vcpu *vcpu)
2021
{
2022
return (vcpu->vm);
2023
}
2024
2025
int
2026
vcpu_vcpuid(struct vcpu *vcpu)
2027
{
2028
return (vcpu->vcpuid);
2029
}
2030
2031
struct vcpu *
2032
vm_vcpu(struct vm *vm, int vcpuid)
2033
{
2034
return (vm->vcpu[vcpuid]);
2035
}
2036
2037
struct vlapic *
2038
vm_lapic(struct vcpu *vcpu)
2039
{
2040
return (vcpu->vlapic);
2041
}
2042
2043
struct vioapic *
2044
vm_ioapic(struct vm *vm)
2045
{
2046
2047
return (vm->vioapic);
2048
}
2049
2050
struct vhpet *
2051
vm_hpet(struct vm *vm)
2052
{
2053
2054
return (vm->vhpet);
2055
}
2056
2057
bool
2058
vmm_is_pptdev(int bus, int slot, int func)
2059
{
2060
int b, f, i, n, s;
2061
char *val, *cp, *cp2;
2062
bool found;
2063
2064
/*
2065
* XXX
2066
* The length of an environment variable is limited to 128 bytes which
2067
* puts an upper limit on the number of passthru devices that may be
2068
* specified using a single environment variable.
2069
*
2070
* Work around this by scanning multiple environment variable
2071
* names instead of a single one - yuck!
2072
*/
2073
const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2074
2075
/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2076
found = false;
2077
for (i = 0; names[i] != NULL && !found; i++) {
2078
cp = val = kern_getenv(names[i]);
2079
while (cp != NULL && *cp != '\0') {
2080
if ((cp2 = strchr(cp, ' ')) != NULL)
2081
*cp2 = '\0';
2082
2083
n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2084
if (n == 3 && bus == b && slot == s && func == f) {
2085
found = true;
2086
break;
2087
}
2088
2089
if (cp2 != NULL)
2090
*cp2++ = ' ';
2091
2092
cp = cp2;
2093
}
2094
freeenv(val);
2095
}
2096
return (found);
2097
}
2098
2099
void *
2100
vm_iommu_domain(struct vm *vm)
2101
{
2102
2103
return (vm->iommu);
2104
}
2105
2106
int
2107
vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
2108
{
2109
int error;
2110
2111
vcpu_lock(vcpu);
2112
error = vcpu_set_state_locked(vcpu, newstate, from_idle);
2113
vcpu_unlock(vcpu);
2114
2115
return (error);
2116
}
2117
2118
enum vcpu_state
2119
vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
2120
{
2121
enum vcpu_state state;
2122
2123
vcpu_lock(vcpu);
2124
state = vcpu->state;
2125
if (hostcpu != NULL)
2126
*hostcpu = vcpu->hostcpu;
2127
vcpu_unlock(vcpu);
2128
2129
return (state);
2130
}
2131
2132
int
2133
vm_activate_cpu(struct vcpu *vcpu)
2134
{
2135
struct vm *vm = vcpu->vm;
2136
2137
if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2138
return (EBUSY);
2139
2140
VMM_CTR0(vcpu, "activated");
2141
CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
2142
return (0);
2143
}
2144
2145
int
2146
vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
2147
{
2148
if (vcpu == NULL) {
2149
vm->debug_cpus = vm->active_cpus;
2150
for (int i = 0; i < vm->maxcpus; i++) {
2151
if (CPU_ISSET(i, &vm->active_cpus))
2152
vcpu_notify_event(vm_vcpu(vm, i), false);
2153
}
2154
} else {
2155
if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2156
return (EINVAL);
2157
2158
CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2159
vcpu_notify_event(vcpu, false);
2160
}
2161
return (0);
2162
}
2163
2164
int
2165
vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
2166
{
2167
2168
if (vcpu == NULL) {
2169
CPU_ZERO(&vm->debug_cpus);
2170
} else {
2171
if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
2172
return (EINVAL);
2173
2174
CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2175
}
2176
return (0);
2177
}
2178
2179
int
2180
vcpu_debugged(struct vcpu *vcpu)
2181
{
2182
2183
return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
2184
}
2185
2186
cpuset_t
2187
vm_active_cpus(struct vm *vm)
2188
{
2189
2190
return (vm->active_cpus);
2191
}
2192
2193
cpuset_t
2194
vm_debug_cpus(struct vm *vm)
2195
{
2196
2197
return (vm->debug_cpus);
2198
}
2199
2200
cpuset_t
2201
vm_suspended_cpus(struct vm *vm)
2202
{
2203
2204
return (vm->suspended_cpus);
2205
}
2206
2207
/*
2208
* Returns the subset of vCPUs in tostart that are awaiting startup.
2209
* These vCPUs are also marked as no longer awaiting startup.
2210
*/
2211
cpuset_t
2212
vm_start_cpus(struct vm *vm, const cpuset_t *tostart)
2213
{
2214
cpuset_t set;
2215
2216
mtx_lock(&vm->rendezvous_mtx);
2217
CPU_AND(&set, &vm->startup_cpus, tostart);
2218
CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set);
2219
mtx_unlock(&vm->rendezvous_mtx);
2220
return (set);
2221
}
2222
2223
void
2224
vm_await_start(struct vm *vm, const cpuset_t *waiting)
2225
{
2226
mtx_lock(&vm->rendezvous_mtx);
2227
CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting);
2228
mtx_unlock(&vm->rendezvous_mtx);
2229
}
2230
2231
void *
2232
vcpu_stats(struct vcpu *vcpu)
2233
{
2234
2235
return (vcpu->stats);
2236
}
2237
2238
int
2239
vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state)
2240
{
2241
*state = vcpu->x2apic_state;
2242
2243
return (0);
2244
}
2245
2246
int
2247
vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state)
2248
{
2249
if (state >= X2APIC_STATE_LAST)
2250
return (EINVAL);
2251
2252
vcpu->x2apic_state = state;
2253
2254
vlapic_set_x2apic_state(vcpu, state);
2255
2256
return (0);
2257
}
2258
2259
/*
2260
* This function is called to ensure that a vcpu "sees" a pending event
2261
* as soon as possible:
2262
* - If the vcpu thread is sleeping then it is woken up.
2263
* - If the vcpu is running on a different host_cpu then an IPI will be directed
2264
* to the host_cpu to cause the vcpu to trap into the hypervisor.
2265
*/
2266
static void
2267
vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
2268
{
2269
int hostcpu;
2270
2271
hostcpu = vcpu->hostcpu;
2272
if (vcpu->state == VCPU_RUNNING) {
2273
KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2274
if (hostcpu != curcpu) {
2275
if (lapic_intr) {
2276
vlapic_post_intr(vcpu->vlapic, hostcpu,
2277
vmm_ipinum);
2278
} else {
2279
ipi_cpu(hostcpu, vmm_ipinum);
2280
}
2281
} else {
2282
/*
2283
* If the 'vcpu' is running on 'curcpu' then it must
2284
* be sending a notification to itself (e.g. SELF_IPI).
2285
* The pending event will be picked up when the vcpu
2286
* transitions back to guest context.
2287
*/
2288
}
2289
} else {
2290
KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2291
"with hostcpu %d", vcpu->state, hostcpu));
2292
if (vcpu->state == VCPU_SLEEPING)
2293
wakeup_one(vcpu);
2294
}
2295
}
2296
2297
void
2298
vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr)
2299
{
2300
vcpu_lock(vcpu);
2301
vcpu_notify_event_locked(vcpu, lapic_intr);
2302
vcpu_unlock(vcpu);
2303
}
2304
2305
struct vmspace *
2306
vm_vmspace(struct vm *vm)
2307
{
2308
return (vm->vmspace);
2309
}
2310
2311
struct vm_mem *
2312
vm_mem(struct vm *vm)
2313
{
2314
return (&vm->mem);
2315
}
2316
2317
int
2318
vm_apicid2vcpuid(struct vm *vm, int apicid)
2319
{
2320
/*
2321
* XXX apic id is assumed to be numerically identical to vcpu id
2322
*/
2323
return (apicid);
2324
}
2325
2326
int
2327
vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest,
2328
vm_rendezvous_func_t func, void *arg)
2329
{
2330
struct vm *vm = vcpu->vm;
2331
int error, i;
2332
2333
/*
2334
* Enforce that this function is called without any locks
2335
*/
2336
WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2337
2338
restart:
2339
mtx_lock(&vm->rendezvous_mtx);
2340
if (vm->rendezvous_func != NULL) {
2341
/*
2342
* If a rendezvous is already in progress then we need to
2343
* call the rendezvous handler in case this 'vcpu' is one
2344
* of the targets of the rendezvous.
2345
*/
2346
VMM_CTR0(vcpu, "Rendezvous already in progress");
2347
mtx_unlock(&vm->rendezvous_mtx);
2348
error = vm_handle_rendezvous(vcpu);
2349
if (error != 0)
2350
return (error);
2351
goto restart;
2352
}
2353
KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2354
"rendezvous is still in progress"));
2355
2356
VMM_CTR0(vcpu, "Initiating rendezvous");
2357
vm->rendezvous_req_cpus = dest;
2358
CPU_ZERO(&vm->rendezvous_done_cpus);
2359
vm->rendezvous_arg = arg;
2360
vm->rendezvous_func = func;
2361
mtx_unlock(&vm->rendezvous_mtx);
2362
2363
/*
2364
* Wake up any sleeping vcpus and trigger a VM-exit in any running
2365
* vcpus so they handle the rendezvous as soon as possible.
2366
*/
2367
for (i = 0; i < vm->maxcpus; i++) {
2368
if (CPU_ISSET(i, &dest))
2369
vcpu_notify_event(vm_vcpu(vm, i), false);
2370
}
2371
2372
return (vm_handle_rendezvous(vcpu));
2373
}
2374
2375
struct vatpic *
2376
vm_atpic(struct vm *vm)
2377
{
2378
return (vm->vatpic);
2379
}
2380
2381
struct vatpit *
2382
vm_atpit(struct vm *vm)
2383
{
2384
return (vm->vatpit);
2385
}
2386
2387
struct vpmtmr *
2388
vm_pmtmr(struct vm *vm)
2389
{
2390
2391
return (vm->vpmtmr);
2392
}
2393
2394
struct vrtc *
2395
vm_rtc(struct vm *vm)
2396
{
2397
2398
return (vm->vrtc);
2399
}
2400
2401
enum vm_reg_name
2402
vm_segment_name(int seg)
2403
{
2404
static enum vm_reg_name seg_names[] = {
2405
VM_REG_GUEST_ES,
2406
VM_REG_GUEST_CS,
2407
VM_REG_GUEST_SS,
2408
VM_REG_GUEST_DS,
2409
VM_REG_GUEST_FS,
2410
VM_REG_GUEST_GS
2411
};
2412
2413
KASSERT(seg >= 0 && seg < nitems(seg_names),
2414
("%s: invalid segment encoding %d", __func__, seg));
2415
return (seg_names[seg]);
2416
}
2417
2418
void
2419
vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo)
2420
{
2421
int idx;
2422
2423
for (idx = 0; idx < num_copyinfo; idx++) {
2424
if (copyinfo[idx].cookie != NULL)
2425
vm_gpa_release(copyinfo[idx].cookie);
2426
}
2427
bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2428
}
2429
2430
int
2431
vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
2432
uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2433
int num_copyinfo, int *fault)
2434
{
2435
int error, idx, nused;
2436
size_t n, off, remaining;
2437
void *hva, *cookie;
2438
uint64_t gpa;
2439
2440
bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2441
2442
nused = 0;
2443
remaining = len;
2444
while (remaining > 0) {
2445
if (nused >= num_copyinfo)
2446
return (EFAULT);
2447
error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
2448
if (error || *fault)
2449
return (error);
2450
off = gpa & PAGE_MASK;
2451
n = min(remaining, PAGE_SIZE - off);
2452
copyinfo[nused].gpa = gpa;
2453
copyinfo[nused].len = n;
2454
remaining -= n;
2455
gla += n;
2456
nused++;
2457
}
2458
2459
for (idx = 0; idx < nused; idx++) {
2460
hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa,
2461
copyinfo[idx].len, prot, &cookie);
2462
if (hva == NULL)
2463
break;
2464
copyinfo[idx].hva = hva;
2465
copyinfo[idx].cookie = cookie;
2466
}
2467
2468
if (idx != nused) {
2469
vm_copy_teardown(copyinfo, num_copyinfo);
2470
return (EFAULT);
2471
} else {
2472
*fault = 0;
2473
return (0);
2474
}
2475
}
2476
2477
void
2478
vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len)
2479
{
2480
char *dst;
2481
int idx;
2482
2483
dst = kaddr;
2484
idx = 0;
2485
while (len > 0) {
2486
bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2487
len -= copyinfo[idx].len;
2488
dst += copyinfo[idx].len;
2489
idx++;
2490
}
2491
}
2492
2493
void
2494
vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len)
2495
{
2496
const char *src;
2497
int idx;
2498
2499
src = kaddr;
2500
idx = 0;
2501
while (len > 0) {
2502
bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2503
len -= copyinfo[idx].len;
2504
src += copyinfo[idx].len;
2505
idx++;
2506
}
2507
}
2508
2509
/*
2510
* Return the amount of in-use and wired memory for the VM. Since
2511
* these are global stats, only return the values with for vCPU 0
2512
*/
2513
VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2514
VMM_STAT_DECLARE(VMM_MEM_WIRED);
2515
2516
static void
2517
vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2518
{
2519
2520
if (vcpu->vcpuid == 0) {
2521
vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE *
2522
vmspace_resident_count(vcpu->vm->vmspace));
2523
}
2524
}
2525
2526
static void
2527
vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2528
{
2529
2530
if (vcpu->vcpuid == 0) {
2531
vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE *
2532
pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace)));
2533
}
2534
}
2535
2536
VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2537
VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2538
2539
#ifdef BHYVE_SNAPSHOT
2540
static int
2541
vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta)
2542
{
2543
uint64_t tsc, now;
2544
int ret;
2545
struct vcpu *vcpu;
2546
uint16_t i, maxcpus;
2547
2548
now = rdtsc();
2549
maxcpus = vm_get_maxcpus(vm);
2550
for (i = 0; i < maxcpus; i++) {
2551
vcpu = vm->vcpu[i];
2552
if (vcpu == NULL)
2553
continue;
2554
2555
SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done);
2556
SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done);
2557
SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done);
2558
SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done);
2559
SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done);
2560
SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done);
2561
SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done);
2562
SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done);
2563
2564
/*
2565
* Save the absolute TSC value by adding now to tsc_offset.
2566
*
2567
* It will be turned turned back into an actual offset when the
2568
* TSC restore function is called
2569
*/
2570
tsc = now + vcpu->tsc_offset;
2571
SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done);
2572
if (meta->op == VM_SNAPSHOT_RESTORE)
2573
vcpu->tsc_offset = tsc;
2574
}
2575
2576
done:
2577
return (ret);
2578
}
2579
2580
static int
2581
vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta)
2582
{
2583
int ret;
2584
2585
ret = vm_snapshot_vcpus(vm, meta);
2586
if (ret != 0)
2587
goto done;
2588
2589
SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done);
2590
done:
2591
return (ret);
2592
}
2593
2594
static int
2595
vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta)
2596
{
2597
int error;
2598
struct vcpu *vcpu;
2599
uint16_t i, maxcpus;
2600
2601
error = 0;
2602
2603
maxcpus = vm_get_maxcpus(vm);
2604
for (i = 0; i < maxcpus; i++) {
2605
vcpu = vm->vcpu[i];
2606
if (vcpu == NULL)
2607
continue;
2608
2609
error = vmmops_vcpu_snapshot(vcpu->cookie, meta);
2610
if (error != 0) {
2611
printf("%s: failed to snapshot vmcs/vmcb data for "
2612
"vCPU: %d; error: %d\n", __func__, i, error);
2613
goto done;
2614
}
2615
}
2616
2617
done:
2618
return (error);
2619
}
2620
2621
/*
2622
* Save kernel-side structures to user-space for snapshotting.
2623
*/
2624
int
2625
vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta)
2626
{
2627
int ret = 0;
2628
2629
switch (meta->dev_req) {
2630
case STRUCT_VMCX:
2631
ret = vm_snapshot_vcpu(vm, meta);
2632
break;
2633
case STRUCT_VM:
2634
ret = vm_snapshot_vm(vm, meta);
2635
break;
2636
case STRUCT_VIOAPIC:
2637
ret = vioapic_snapshot(vm_ioapic(vm), meta);
2638
break;
2639
case STRUCT_VLAPIC:
2640
ret = vlapic_snapshot(vm, meta);
2641
break;
2642
case STRUCT_VHPET:
2643
ret = vhpet_snapshot(vm_hpet(vm), meta);
2644
break;
2645
case STRUCT_VATPIC:
2646
ret = vatpic_snapshot(vm_atpic(vm), meta);
2647
break;
2648
case STRUCT_VATPIT:
2649
ret = vatpit_snapshot(vm_atpit(vm), meta);
2650
break;
2651
case STRUCT_VPMTMR:
2652
ret = vpmtmr_snapshot(vm_pmtmr(vm), meta);
2653
break;
2654
case STRUCT_VRTC:
2655
ret = vrtc_snapshot(vm_rtc(vm), meta);
2656
break;
2657
default:
2658
printf("%s: failed to find the requested type %#x\n",
2659
__func__, meta->dev_req);
2660
ret = (EINVAL);
2661
}
2662
return (ret);
2663
}
2664
2665
void
2666
vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset)
2667
{
2668
vcpu->tsc_offset = offset;
2669
}
2670
2671
int
2672
vm_restore_time(struct vm *vm)
2673
{
2674
int error;
2675
uint64_t now;
2676
struct vcpu *vcpu;
2677
uint16_t i, maxcpus;
2678
2679
now = rdtsc();
2680
2681
error = vhpet_restore_time(vm_hpet(vm));
2682
if (error)
2683
return (error);
2684
2685
maxcpus = vm_get_maxcpus(vm);
2686
for (i = 0; i < maxcpus; i++) {
2687
vcpu = vm->vcpu[i];
2688
if (vcpu == NULL)
2689
continue;
2690
2691
error = vmmops_restore_tsc(vcpu->cookie,
2692
vcpu->tsc_offset - now);
2693
if (error)
2694
return (error);
2695
}
2696
2697
return (0);
2698
}
2699
#endif
2700
2701