#include <sys/param.h>
#include <sys/pcpu.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <machine/clock.h>
#include <machine/cpufunc.h>
#include <machine/md_var.h>
#include <machine/segments.h>
#include <machine/specialreg.h>
#include <machine/vmm.h>
#include <dev/vmm/vmm_ktr.h>
#include "vmm_host.h"
#include "vmm_util.h"
#include "x86.h"
SYSCTL_DECL(_hw_vmm);
static SYSCTL_NODE(_hw_vmm, OID_AUTO, topology, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
NULL);
#define CPUID_VM_SIGNATURE 0x40000000
#define CPUID_BHYVE_FEATURES 0x40000001
#define CPUID_VM_HIGH CPUID_BHYVE_FEATURES
#define CPUID_BHYVE_FEAT_EXT_DEST_ID (1UL << 0)
static const char bhyve_id[12] = "bhyve bhyve ";
static uint64_t bhyve_xcpuids;
SYSCTL_ULONG(_hw_vmm, OID_AUTO, bhyve_xcpuids, CTLFLAG_RW, &bhyve_xcpuids, 0,
"Number of times an unknown cpuid leaf was accessed");
static int cpuid_leaf_b = 1;
SYSCTL_INT(_hw_vmm_topology, OID_AUTO, cpuid_leaf_b, CTLFLAG_RDTUN,
&cpuid_leaf_b, 0, NULL);
static __inline int
log2(u_int x)
{
return (x == 0 ? -1 : order_base_2(x));
}
int
x86_emulate_cpuid(struct vcpu *vcpu, uint64_t *rax, uint64_t *rbx,
uint64_t *rcx, uint64_t *rdx)
{
struct vm *vm = vcpu_vm(vcpu);
int vcpu_id = vcpu_vcpuid(vcpu);
const struct xsave_limits *limits;
uint64_t cr4;
int error, enable_invpcid, enable_rdpid, enable_rdtscp, level,
width, x2apic_id;
unsigned int func, regs[4], logical_cpus, param;
enum x2apic_state x2apic_state;
uint16_t cores, maxcpus, sockets, threads;
func = (uint32_t)*rax;
param = (uint32_t)*rcx;
VCPU_CTR2(vm, vcpu_id, "cpuid %#x,%#x", func, param);
if (cpu_exthigh != 0 && func >= 0x80000000) {
if (func > cpu_exthigh)
func = cpu_exthigh;
} else if (func >= CPUID_VM_SIGNATURE) {
if (func > CPUID_VM_HIGH)
func = CPUID_VM_HIGH;
} else if (func > cpu_high) {
func = cpu_high;
}
switch (func) {
case CPUID_0000_0000:
case CPUID_0000_0002:
case CPUID_0000_0003:
case CPUID_8000_0000:
case CPUID_8000_0002:
case CPUID_8000_0003:
case CPUID_8000_0004:
case CPUID_8000_0006:
cpuid_count(func, param, regs);
break;
case CPUID_8000_0008:
cpuid_count(func, param, regs);
if (vmm_is_svm()) {
regs[1] &= (AMDFEID_CLZERO | AMDFEID_IRPERF |
AMDFEID_XSAVEERPTR);
vm_get_topology(vm, &sockets, &cores, &threads,
&maxcpus);
width = MIN(0xF, log2(threads * cores));
logical_cpus = MIN(0xFF, threads * cores - 1);
regs[2] = (width << AMDID_COREID_SIZE_SHIFT) | logical_cpus;
}
break;
case CPUID_8000_0001:
cpuid_count(func, param, regs);
regs[2] &= ~AMDID2_SVM;
regs[2] &= ~AMDID2_PCXC;
regs[2] &= ~AMDID2_PNXC;
regs[2] &= ~AMDID2_PTSCEL2I;
regs[2] &= ~AMDID2_IBS;
regs[2] &= ~AMDID2_NODE_ID;
regs[2] &= ~AMDID2_OSVW;
regs[2] &= ~AMDID2_MWAITX;
error = vm_get_capability(vcpu,
VM_CAP_RDTSCP, &enable_rdtscp);
if (error == 0 && enable_rdtscp)
regs[3] |= AMDID_RDTSCP;
else
regs[3] &= ~AMDID_RDTSCP;
break;
case CPUID_8000_0007:
regs[0] = 0;
regs[1] = 0;
regs[2] = 0;
regs[3] = 0;
if (tsc_is_invariant && smp_tsc)
regs[3] |= AMDPM_TSC_INVARIANT;
break;
case CPUID_8000_001D:
if (!vmm_is_svm())
goto default_leaf;
vm_get_topology(vm, &sockets, &cores, &threads,
&maxcpus);
switch (param) {
case 0:
logical_cpus = threads;
level = 1;
func = 1;
break;
case 1:
logical_cpus = threads;
level = 2;
func = 3;
break;
case 2:
logical_cpus = threads * cores;
level = 3;
func = 3;
break;
default:
logical_cpus = sockets * threads * cores;
level = 0;
func = 0;
break;
}
logical_cpus = MIN(0xfff, logical_cpus - 1);
regs[0] = (logical_cpus << 14) | (1 << 8) |
(level << 5) | func;
regs[1] = (func > 0) ? (CACHE_LINE_SIZE - 1) : 0;
regs[2] = 0;
regs[3] = 0;
break;
case CPUID_8000_001E:
if (!vmm_is_svm() || CPUID_TO_FAMILY(cpu_id) < 0x16)
goto default_leaf;
vm_get_topology(vm, &sockets, &cores, &threads,
&maxcpus);
regs[0] = vcpu_id;
threads = MIN(0xFF, threads - 1);
regs[1] = (threads << 8) |
(vcpu_id >> log2(threads + 1));
regs[2] = 0;
regs[3] = 0;
break;
case CPUID_0000_0001:
do_cpuid(1, regs);
error = vm_get_x2apic_state(vcpu, &x2apic_state);
if (error) {
panic("x86_emulate_cpuid: error %d "
"fetching x2apic state", error);
}
regs[1] &= ~(CPUID_LOCAL_APIC_ID);
regs[1] |= (vcpu_id << CPUID_0000_0001_APICID_SHIFT);
regs[2] &= ~(CPUID2_VMX | CPUID2_EST | CPUID2_TM2);
regs[2] &= ~(CPUID2_SMX);
regs[2] |= CPUID2_HV;
if (x2apic_state != X2APIC_DISABLED)
regs[2] |= CPUID2_X2APIC;
else
regs[2] &= ~CPUID2_X2APIC;
if (!(regs[2] & CPUID2_OSXSAVE))
regs[2] &= ~CPUID2_XSAVE;
regs[2] &= ~CPUID2_OSXSAVE;
if (regs[2] & CPUID2_XSAVE) {
error = vm_get_register(vcpu,
VM_REG_GUEST_CR4, &cr4);
if (error)
panic("x86_emulate_cpuid: error %d "
"fetching %%cr4", error);
if (cr4 & CR4_XSAVE)
regs[2] |= CPUID2_OSXSAVE;
}
regs[2] &= ~CPUID2_MON;
regs[2] &= ~CPUID2_PDCM;
regs[2] &= ~CPUID2_TSCDLT;
regs[3] &= ~(CPUID_ACPI | CPUID_TM);
regs[3] &= ~CPUID_DS;
regs[3] |= (CPUID_MCA | CPUID_MCE | CPUID_MTRR);
vm_get_topology(vm, &sockets, &cores, &threads,
&maxcpus);
logical_cpus = threads * cores;
regs[1] &= ~CPUID_HTT_CORES;
regs[1] |= (logical_cpus & 0xff) << 16;
regs[3] |= CPUID_HTT;
break;
case CPUID_0000_0004:
cpuid_count(func, param, regs);
if (regs[0] || regs[1] || regs[2] || regs[3]) {
vm_get_topology(vm, &sockets, &cores, &threads,
&maxcpus);
regs[0] &= 0x3ff;
regs[0] |= (cores - 1) << 26;
logical_cpus = threads;
level = (regs[0] >> 5) & 0x7;
if (level >= 3)
logical_cpus *= cores;
regs[0] |= (logical_cpus - 1) << 14;
}
break;
case CPUID_0000_0007:
regs[0] = 0;
regs[1] = 0;
regs[2] = 0;
regs[3] = 0;
if (param == 0) {
cpuid_count(func, param, regs);
regs[0] = 0;
regs[1] &= CPUID_STDEXT_FSGSBASE |
CPUID_STDEXT_BMI1 | CPUID_STDEXT_HLE |
CPUID_STDEXT_AVX2 | CPUID_STDEXT_SMEP |
CPUID_STDEXT_BMI2 |
CPUID_STDEXT_ERMS | CPUID_STDEXT_RTM |
CPUID_STDEXT_AVX512F |
CPUID_STDEXT_AVX512DQ |
CPUID_STDEXT_RDSEED |
CPUID_STDEXT_SMAP |
CPUID_STDEXT_AVX512PF |
CPUID_STDEXT_AVX512ER |
CPUID_STDEXT_AVX512CD | CPUID_STDEXT_SHA |
CPUID_STDEXT_AVX512BW |
CPUID_STDEXT_AVX512VL;
regs[2] &= CPUID_STDEXT2_VAES |
CPUID_STDEXT2_VPCLMULQDQ;
regs[3] &= CPUID_STDEXT3_MD_CLEAR;
error = vm_get_capability(vcpu, VM_CAP_RDPID,
&enable_rdpid);
if (error == 0 && enable_rdpid)
regs[2] |= CPUID_STDEXT2_RDPID;
error = vm_get_capability(vcpu,
VM_CAP_ENABLE_INVPCID, &enable_invpcid);
if (error == 0 && enable_invpcid)
regs[1] |= CPUID_STDEXT_INVPCID;
}
break;
case CPUID_0000_0006:
regs[0] = CPUTPM1_ARAT;
regs[1] = 0;
regs[2] = 0;
regs[3] = 0;
break;
case CPUID_0000_000A:
regs[0] = 0;
regs[1] = 0;
regs[2] = 0;
regs[3] = 0;
break;
case CPUID_0000_000B:
if (vmm_is_intel()) {
vm_get_topology(vm, &sockets, &cores, &threads,
&maxcpus);
if (param == 0) {
logical_cpus = threads;
width = log2(logical_cpus);
level = CPUID_TYPE_SMT;
x2apic_id = vcpu_id;
}
if (param == 1) {
logical_cpus = threads * cores;
width = log2(logical_cpus);
level = CPUID_TYPE_CORE;
x2apic_id = vcpu_id;
}
if (!cpuid_leaf_b || param >= 2) {
width = 0;
logical_cpus = 0;
level = 0;
x2apic_id = 0;
}
regs[0] = width & 0x1f;
regs[1] = logical_cpus & 0xffff;
regs[2] = (level << 8) | (param & 0xff);
regs[3] = x2apic_id;
} else {
regs[0] = 0;
regs[1] = 0;
regs[2] = 0;
regs[3] = 0;
}
break;
case CPUID_0000_000D:
limits = vmm_get_xsave_limits();
if (!limits->xsave_enabled) {
regs[0] = 0;
regs[1] = 0;
regs[2] = 0;
regs[3] = 0;
break;
}
cpuid_count(func, param, regs);
switch (param) {
case 0:
regs[0] &= limits->xcr0_allowed;
regs[2] = limits->xsave_max_size;
regs[3] &= (limits->xcr0_allowed >> 32);
break;
case 1:
regs[0] &= CPUID_EXTSTATE_XSAVEOPT;
regs[1] = 0;
regs[2] = 0;
regs[3] = 0;
break;
default:
if (!(limits->xcr0_allowed & (1ul << param))) {
regs[0] = 0;
regs[1] = 0;
regs[2] = 0;
regs[3] = 0;
}
break;
}
break;
case CPUID_0000_000F:
case CPUID_0000_0010:
regs[0] = 0;
regs[1] = 0;
regs[2] = 0;
regs[3] = 0;
break;
case CPUID_0000_0015:
regs[0] = 0;
regs[1] = 0;
regs[2] = 0;
regs[3] = 0;
break;
case CPUID_VM_SIGNATURE:
regs[0] = CPUID_VM_HIGH;
bcopy(bhyve_id, ®s[1], 4);
bcopy(bhyve_id + 4, ®s[2], 4);
bcopy(bhyve_id + 8, ®s[3], 4);
break;
case CPUID_BHYVE_FEATURES:
regs[0] = CPUID_BHYVE_FEAT_EXT_DEST_ID;
regs[1] = 0;
regs[2] = 0;
regs[3] = 0;
break;
default:
default_leaf:
atomic_add_long(&bhyve_xcpuids, 1);
cpuid_count(func, param, regs);
break;
}
*rax = regs[0];
*rbx = regs[1];
*rcx = regs[2];
*rdx = regs[3];
return (1);
}
bool
vm_cpuid_capability(struct vcpu *vcpu, enum vm_cpuid_capability cap)
{
bool rv;
KASSERT(cap > 0 && cap < VCC_LAST, ("%s: invalid vm_cpu_capability %d",
__func__, cap));
rv = false;
switch (cap) {
case VCC_NO_EXECUTE:
if (amd_feature & AMDID_NX)
rv = true;
break;
case VCC_FFXSR:
if (amd_feature & AMDID_FFXSR)
rv = true;
break;
case VCC_TCE:
if (amd_feature2 & AMDID2_TCE)
rv = true;
break;
default:
panic("%s: unknown vm_cpu_capability %d", __func__, cap);
}
return (rv);
}
int
vm_rdmtrr(struct vm_mtrr *mtrr, u_int num, uint64_t *val)
{
switch (num) {
case MSR_MTRRcap:
*val = MTRR_CAP_WC | MTRR_CAP_FIXED | VMM_MTRR_VAR_MAX;
break;
case MSR_MTRRdefType:
*val = mtrr->def_type;
break;
case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
*val = mtrr->fixed4k[num - MSR_MTRR4kBase];
break;
case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
*val = mtrr->fixed16k[num - MSR_MTRR16kBase];
break;
case MSR_MTRR64kBase:
*val = mtrr->fixed64k;
break;
case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1: {
u_int offset = num - MSR_MTRRVarBase;
if (offset % 2 == 0) {
*val = mtrr->var[offset / 2].base;
} else {
*val = mtrr->var[offset / 2].mask;
}
break;
}
default:
return (-1);
}
return (0);
}
int
vm_wrmtrr(struct vm_mtrr *mtrr, u_int num, uint64_t val)
{
switch (num) {
case MSR_MTRRcap:
return (-1);
case MSR_MTRRdefType:
if (val & ~VMM_MTRR_DEF_MASK) {
return (-1);
}
mtrr->def_type = val;
break;
case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
mtrr->fixed4k[num - MSR_MTRR4kBase] = val;
break;
case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
mtrr->fixed16k[num - MSR_MTRR16kBase] = val;
break;
case MSR_MTRR64kBase:
mtrr->fixed64k = val;
break;
case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1: {
u_int offset = num - MSR_MTRRVarBase;
if (offset % 2 == 0) {
if (val & ~VMM_MTRR_PHYSBASE_MASK) {
return (-1);
}
mtrr->var[offset / 2].base = val;
} else {
if (val & ~VMM_MTRR_PHYSMASK_MASK) {
return (-1);
}
mtrr->var[offset / 2].mask = val;
}
break;
}
default:
return (-1);
}
return (0);
}