Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/arm/broadcom/bcm2835/bcm2835_bsc.c
39566 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2001 Tsubai Masanari.
5
* Copyright (c) 2012 Oleksandr Tymoshenko <[email protected]>
6
* Copyright (c) 2013 Luiz Otavio O Souza <[email protected]>
7
* Copyright (c) 2017 Ian Lepore <[email protected]>
8
* All rights reserved.
9
*
10
* Redistribution and use in source and binary forms, with or without
11
* modification, are permitted provided that the following conditions
12
* are met:
13
* 1. Redistributions of source code must retain the above copyright
14
* notice, this list of conditions and the following disclaimer.
15
* 2. Redistributions in binary form must reproduce the above copyright
16
* notice, this list of conditions and the following disclaimer in the
17
* documentation and/or other materials provided with the distribution.
18
*
19
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29
* SUCH DAMAGE.
30
*
31
*/
32
#include <sys/cdefs.h>
33
/*
34
* Driver for bcm2835 i2c-compatible two-wire bus, named 'BSC' on this SoC.
35
*
36
* This controller can only perform complete transfers, it does not provide
37
* low-level control over sending start/repeat-start/stop sequences on the bus.
38
* In addition, bugs in the silicon make it somewhat difficult to perform a
39
* repeat-start, and limit the repeat-start to a read following a write on
40
* the same slave device. (The i2c protocol allows a repeat start to change
41
* direction or not, and change slave address or not at any time.)
42
*
43
* The repeat-start bug and workaround are described in a problem report at
44
* https://github.com/raspberrypi/linux/issues/254 with the crucial part being
45
* in a comment block from a fragment of a GPU i2c driver, containing this:
46
*
47
* -----------------------------------------------------------------------------
48
* - See i2c.v: The I2C peripheral samples the values for rw_bit and xfer_count
49
* - in the IDLE state if start is set.
50
* -
51
* - We want to generate a ReSTART not a STOP at the end of the TX phase. In
52
* - order to do that we must ensure the state machine goes RACK1 -> RACK2 ->
53
* - SRSTRT1 (not RACK1 -> RACK2 -> SSTOP1).
54
* -
55
* - So, in the RACK2 state when (TX) xfer_count==0 we must therefore have
56
* - already set, ready to be sampled:
57
* - READ ; rw_bit <= I2CC bit 0 -- must be "read"
58
* - ST; start <= I2CC bit 7 -- must be "Go" in order to not issue STOP
59
* - DLEN; xfer_count <= I2CDLEN -- must be equal to our read amount
60
* -
61
* - The plan to do this is:
62
* - 1. Start the sub-address write, but don't let it finish
63
* - (keep xfer_count > 0)
64
* - 2. Populate READ, DLEN and ST in preparation for ReSTART read sequence
65
* - 3. Let TX finish (write the rest of the data)
66
* - 4. Read back data as it arrives
67
* -----------------------------------------------------------------------------
68
*
69
* The transfer function below scans the list of messages passed to it, looking
70
* for a read following a write to the same slave. When it finds that, it
71
* starts the write without prefilling the tx fifo, which holds xfer_count>0,
72
* then presets the direction, length, and start command for the following read,
73
* as described above. Then the tx fifo is filled and the rest of the transfer
74
* proceeds as normal, with the controller automatically supplying a
75
* repeat-start on the bus when the write operation finishes.
76
*
77
* XXX I suspect the controller may be able to do a repeat-start on any
78
* write->read or write->write transition, even when the slave addresses differ.
79
* It's unclear whether the slave address can be prestaged along with the
80
* direction and length while the write xfer_count is being held at zero. In
81
* fact, if it can't do this, then it couldn't be used to read EDID data.
82
*/
83
84
#include <sys/param.h>
85
#include <sys/systm.h>
86
#include <sys/kernel.h>
87
#include <sys/lock.h>
88
#include <sys/module.h>
89
#include <sys/mutex.h>
90
#include <sys/bus.h>
91
#include <machine/resource.h>
92
#include <machine/bus.h>
93
#include <sys/rman.h>
94
#include <sys/sysctl.h>
95
96
#include <dev/iicbus/iicbus.h>
97
#include <dev/iicbus/iiconf.h>
98
#include <dev/ofw/ofw_bus.h>
99
#include <dev/ofw/ofw_bus_subr.h>
100
101
#include <arm/broadcom/bcm2835/bcm2835_bscreg.h>
102
#include <arm/broadcom/bcm2835/bcm2835_bscvar.h>
103
104
#include "iicbus_if.h"
105
106
static struct ofw_compat_data compat_data[] = {
107
{"broadcom,bcm2835-bsc", 1},
108
{"brcm,bcm2708-i2c", 1},
109
{"brcm,bcm2835-i2c", 1},
110
{NULL, 0}
111
};
112
113
#define DEVICE_DEBUGF(sc, lvl, fmt, args...) \
114
if ((lvl) <= (sc)->sc_debug) \
115
device_printf((sc)->sc_dev, fmt, ##args)
116
117
#define DEBUGF(sc, lvl, fmt, args...) \
118
if ((lvl) <= (sc)->sc_debug) \
119
printf(fmt, ##args)
120
121
static void bcm_bsc_intr(void *);
122
static int bcm_bsc_detach(device_t);
123
124
static void
125
bcm_bsc_modifyreg(struct bcm_bsc_softc *sc, uint32_t off, uint32_t mask,
126
uint32_t value)
127
{
128
uint32_t reg;
129
130
mtx_assert(&sc->sc_mtx, MA_OWNED);
131
reg = BCM_BSC_READ(sc, off);
132
reg &= ~mask;
133
reg |= value;
134
BCM_BSC_WRITE(sc, off, reg);
135
}
136
137
static int
138
bcm_bsc_clock_proc(SYSCTL_HANDLER_ARGS)
139
{
140
struct bcm_bsc_softc *sc;
141
uint32_t clk;
142
143
sc = (struct bcm_bsc_softc *)arg1;
144
BCM_BSC_LOCK(sc);
145
clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
146
BCM_BSC_UNLOCK(sc);
147
clk &= 0xffff;
148
if (clk == 0)
149
clk = 32768;
150
clk = BCM_BSC_CORE_CLK / clk;
151
152
return (sysctl_handle_int(oidp, &clk, 0, req));
153
}
154
155
static int
156
bcm_bsc_clkt_proc(SYSCTL_HANDLER_ARGS)
157
{
158
struct bcm_bsc_softc *sc;
159
uint32_t clkt;
160
int error;
161
162
sc = (struct bcm_bsc_softc *)arg1;
163
164
BCM_BSC_LOCK(sc);
165
clkt = BCM_BSC_READ(sc, BCM_BSC_CLKT);
166
BCM_BSC_UNLOCK(sc);
167
clkt &= 0xffff;
168
error = sysctl_handle_int(oidp, &clkt, sizeof(clkt), req);
169
if (error != 0 || req->newptr == NULL)
170
return (error);
171
172
BCM_BSC_LOCK(sc);
173
BCM_BSC_WRITE(sc, BCM_BSC_CLKT, clkt & 0xffff);
174
BCM_BSC_UNLOCK(sc);
175
176
return (0);
177
}
178
179
static int
180
bcm_bsc_fall_proc(SYSCTL_HANDLER_ARGS)
181
{
182
struct bcm_bsc_softc *sc;
183
uint32_t clk, reg;
184
int error;
185
186
sc = (struct bcm_bsc_softc *)arg1;
187
188
BCM_BSC_LOCK(sc);
189
reg = BCM_BSC_READ(sc, BCM_BSC_DELAY);
190
BCM_BSC_UNLOCK(sc);
191
reg >>= 16;
192
error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
193
if (error != 0 || req->newptr == NULL)
194
return (error);
195
196
BCM_BSC_LOCK(sc);
197
clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
198
clk = BCM_BSC_CORE_CLK / clk;
199
if (reg > clk / 2)
200
reg = clk / 2 - 1;
201
bcm_bsc_modifyreg(sc, BCM_BSC_DELAY, 0xffff0000, reg << 16);
202
BCM_BSC_UNLOCK(sc);
203
204
return (0);
205
}
206
207
static int
208
bcm_bsc_rise_proc(SYSCTL_HANDLER_ARGS)
209
{
210
struct bcm_bsc_softc *sc;
211
uint32_t clk, reg;
212
int error;
213
214
sc = (struct bcm_bsc_softc *)arg1;
215
216
BCM_BSC_LOCK(sc);
217
reg = BCM_BSC_READ(sc, BCM_BSC_DELAY);
218
BCM_BSC_UNLOCK(sc);
219
reg &= 0xffff;
220
error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
221
if (error != 0 || req->newptr == NULL)
222
return (error);
223
224
BCM_BSC_LOCK(sc);
225
clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
226
clk = BCM_BSC_CORE_CLK / clk;
227
if (reg > clk / 2)
228
reg = clk / 2 - 1;
229
bcm_bsc_modifyreg(sc, BCM_BSC_DELAY, 0xffff, reg);
230
BCM_BSC_UNLOCK(sc);
231
232
return (0);
233
}
234
235
static void
236
bcm_bsc_sysctl_init(struct bcm_bsc_softc *sc)
237
{
238
struct sysctl_ctx_list *ctx;
239
struct sysctl_oid *tree_node;
240
struct sysctl_oid_list *tree;
241
242
/*
243
* Add system sysctl tree/handlers.
244
*/
245
ctx = device_get_sysctl_ctx(sc->sc_dev);
246
tree_node = device_get_sysctl_tree(sc->sc_dev);
247
tree = SYSCTL_CHILDREN(tree_node);
248
SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "frequency",
249
CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
250
sc, sizeof(*sc),
251
bcm_bsc_clock_proc, "IU", "I2C BUS clock frequency");
252
SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clock_stretch",
253
CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
254
sc, sizeof(*sc),
255
bcm_bsc_clkt_proc, "IU", "I2C BUS clock stretch timeout");
256
SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "fall_edge_delay",
257
CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
258
sc, sizeof(*sc),
259
bcm_bsc_fall_proc, "IU", "I2C BUS falling edge delay");
260
SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "rise_edge_delay",
261
CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
262
sc, sizeof(*sc),
263
bcm_bsc_rise_proc, "IU", "I2C BUS rising edge delay");
264
SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "debug",
265
CTLFLAG_RWTUN, &sc->sc_debug, 0,
266
"Enable debug; 1=reads/writes, 2=add starts/stops");
267
}
268
269
static void
270
bcm_bsc_reset(struct bcm_bsc_softc *sc)
271
{
272
273
/* Enable the BSC Controller, disable interrupts. */
274
BCM_BSC_WRITE(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_I2CEN);
275
/* Clear pending interrupts. */
276
BCM_BSC_WRITE(sc, BCM_BSC_STATUS, BCM_BSC_STATUS_CLKT |
277
BCM_BSC_STATUS_ERR | BCM_BSC_STATUS_DONE);
278
/* Clear the FIFO. */
279
bcm_bsc_modifyreg(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_CLEAR0,
280
BCM_BSC_CTRL_CLEAR0);
281
}
282
283
static int
284
bcm_bsc_probe(device_t dev)
285
{
286
287
if (!ofw_bus_status_okay(dev))
288
return (ENXIO);
289
290
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
291
return (ENXIO);
292
293
device_set_desc(dev, "BCM2708/2835 BSC controller");
294
295
return (BUS_PROBE_DEFAULT);
296
}
297
298
static int
299
bcm_bsc_attach(device_t dev)
300
{
301
struct bcm_bsc_softc *sc;
302
int rid;
303
304
sc = device_get_softc(dev);
305
sc->sc_dev = dev;
306
307
rid = 0;
308
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
309
RF_ACTIVE);
310
if (!sc->sc_mem_res) {
311
device_printf(dev, "cannot allocate memory window\n");
312
return (ENXIO);
313
}
314
315
sc->sc_bst = rman_get_bustag(sc->sc_mem_res);
316
sc->sc_bsh = rman_get_bushandle(sc->sc_mem_res);
317
318
rid = 0;
319
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
320
RF_ACTIVE | RF_SHAREABLE);
321
if (!sc->sc_irq_res) {
322
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
323
device_printf(dev, "cannot allocate interrupt\n");
324
return (ENXIO);
325
}
326
327
/* Hook up our interrupt handler. */
328
if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
329
NULL, bcm_bsc_intr, sc, &sc->sc_intrhand)) {
330
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
331
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
332
device_printf(dev, "cannot setup the interrupt handler\n");
333
return (ENXIO);
334
}
335
336
mtx_init(&sc->sc_mtx, "bcm_bsc", NULL, MTX_DEF);
337
338
bcm_bsc_sysctl_init(sc);
339
340
/* Enable the BSC controller. Flush the FIFO. */
341
BCM_BSC_LOCK(sc);
342
bcm_bsc_reset(sc);
343
BCM_BSC_UNLOCK(sc);
344
345
sc->sc_iicbus = device_add_child(dev, "iicbus", DEVICE_UNIT_ANY);
346
if (sc->sc_iicbus == NULL) {
347
bcm_bsc_detach(dev);
348
return (ENXIO);
349
}
350
351
/* Probe and attach the iicbus when interrupts are available. */
352
bus_delayed_attach_children(dev);
353
return (0);
354
}
355
356
static int
357
bcm_bsc_detach(device_t dev)
358
{
359
struct bcm_bsc_softc *sc;
360
361
bus_generic_detach(dev);
362
363
sc = device_get_softc(dev);
364
mtx_destroy(&sc->sc_mtx);
365
if (sc->sc_intrhand)
366
bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
367
if (sc->sc_irq_res)
368
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
369
if (sc->sc_mem_res)
370
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
371
372
return (0);
373
}
374
375
static void
376
bcm_bsc_empty_rx_fifo(struct bcm_bsc_softc *sc)
377
{
378
uint32_t status;
379
380
/* Assumes sc_totlen > 0 and BCM_BSC_STATUS_RXD is asserted on entry. */
381
do {
382
if (sc->sc_resid == 0) {
383
sc->sc_data = sc->sc_curmsg->buf;
384
sc->sc_dlen = sc->sc_curmsg->len;
385
sc->sc_resid = sc->sc_dlen;
386
++sc->sc_curmsg;
387
}
388
do {
389
*sc->sc_data = BCM_BSC_READ(sc, BCM_BSC_DATA);
390
DEBUGF(sc, 1, "0x%02x ", *sc->sc_data);
391
++sc->sc_data;
392
--sc->sc_resid;
393
--sc->sc_totlen;
394
status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
395
} while (sc->sc_resid > 0 && (status & BCM_BSC_STATUS_RXD));
396
} while (sc->sc_totlen > 0 && (status & BCM_BSC_STATUS_RXD));
397
}
398
399
static void
400
bcm_bsc_fill_tx_fifo(struct bcm_bsc_softc *sc)
401
{
402
uint32_t status;
403
404
/* Assumes sc_totlen > 0 and BCM_BSC_STATUS_TXD is asserted on entry. */
405
do {
406
if (sc->sc_resid == 0) {
407
sc->sc_data = sc->sc_curmsg->buf;
408
sc->sc_dlen = sc->sc_curmsg->len;
409
sc->sc_resid = sc->sc_dlen;
410
++sc->sc_curmsg;
411
}
412
do {
413
BCM_BSC_WRITE(sc, BCM_BSC_DATA, *sc->sc_data);
414
DEBUGF(sc, 1, "0x%02x ", *sc->sc_data);
415
++sc->sc_data;
416
--sc->sc_resid;
417
--sc->sc_totlen;
418
status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
419
} while (sc->sc_resid > 0 && (status & BCM_BSC_STATUS_TXD));
420
/*
421
* If a repeat-start was pending and we just hit the end of a tx
422
* buffer, see if it's also the end of the writes that preceeded
423
* the repeat-start. If so, log the repeat-start and the start
424
* of the following read, and return because we're not writing
425
* anymore (and TXD will be true because there's room to write
426
* in the fifo).
427
*/
428
if (sc->sc_replen > 0 && sc->sc_resid == 0) {
429
sc->sc_replen -= sc->sc_dlen;
430
if (sc->sc_replen == 0) {
431
DEBUGF(sc, 1, " err=0\n");
432
DEVICE_DEBUGF(sc, 2, "rstart 0x%02x\n",
433
sc->sc_curmsg->slave | 0x01);
434
DEVICE_DEBUGF(sc, 1,
435
"read 0x%02x len %d: ",
436
sc->sc_curmsg->slave | 0x01,
437
sc->sc_totlen);
438
sc->sc_flags |= BCM_I2C_READ;
439
return;
440
}
441
}
442
} while (sc->sc_totlen > 0 && (status & BCM_BSC_STATUS_TXD));
443
}
444
445
static void
446
bcm_bsc_intr(void *arg)
447
{
448
struct bcm_bsc_softc *sc;
449
uint32_t status;
450
451
sc = (struct bcm_bsc_softc *)arg;
452
453
BCM_BSC_LOCK(sc);
454
455
/* The I2C interrupt is shared among all the BSC controllers. */
456
if ((sc->sc_flags & BCM_I2C_BUSY) == 0) {
457
BCM_BSC_UNLOCK(sc);
458
return;
459
}
460
461
status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
462
DEBUGF(sc, 4, " <intrstatus=0x%08x> ", status);
463
464
/* RXD and DONE can assert together, empty fifo before checking done. */
465
if ((sc->sc_flags & BCM_I2C_READ) && (status & BCM_BSC_STATUS_RXD))
466
bcm_bsc_empty_rx_fifo(sc);
467
468
/* Check for completion. */
469
if (status & (BCM_BSC_STATUS_ERRBITS | BCM_BSC_STATUS_DONE)) {
470
sc->sc_flags |= BCM_I2C_DONE;
471
if (status & BCM_BSC_STATUS_ERRBITS)
472
sc->sc_flags |= BCM_I2C_ERROR;
473
/* Disable interrupts. */
474
bcm_bsc_reset(sc);
475
wakeup(sc);
476
} else if (!(sc->sc_flags & BCM_I2C_READ)) {
477
/*
478
* Don't check for TXD until after determining whether the
479
* transfer is complete; TXD will be asserted along with ERR or
480
* DONE if there is room in the fifo.
481
*/
482
if ((status & BCM_BSC_STATUS_TXD) && sc->sc_totlen > 0)
483
bcm_bsc_fill_tx_fifo(sc);
484
}
485
486
BCM_BSC_UNLOCK(sc);
487
}
488
489
static int
490
bcm_bsc_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
491
{
492
struct bcm_bsc_softc *sc;
493
struct iic_msg *endmsgs, *nxtmsg;
494
uint32_t readctl, status;
495
int err;
496
uint16_t curlen;
497
uint8_t curisread, curslave, nxtisread, nxtslave;
498
499
sc = device_get_softc(dev);
500
BCM_BSC_LOCK(sc);
501
502
/* If the controller is busy wait until it is available. */
503
while (sc->sc_flags & BCM_I2C_BUSY)
504
mtx_sleep(dev, &sc->sc_mtx, 0, "bscbusw", 0);
505
506
/* Now we have control over the BSC controller. */
507
sc->sc_flags = BCM_I2C_BUSY;
508
509
DEVICE_DEBUGF(sc, 3, "Transfer %d msgs\n", nmsgs);
510
511
/* Clear the FIFO and the pending interrupts. */
512
bcm_bsc_reset(sc);
513
514
/*
515
* Perform all the transfers requested in the array of msgs. Note that
516
* it is bcm_bsc_empty_rx_fifo() and bcm_bsc_fill_tx_fifo() that advance
517
* sc->sc_curmsg through the array of messages, as the data from each
518
* message is fully consumed, but it is this loop that notices when we
519
* have no more messages to process.
520
*/
521
err = 0;
522
sc->sc_resid = 0;
523
sc->sc_curmsg = msgs;
524
endmsgs = &msgs[nmsgs];
525
while (sc->sc_curmsg < endmsgs) {
526
readctl = 0;
527
curslave = sc->sc_curmsg->slave >> 1;
528
curisread = sc->sc_curmsg->flags & IIC_M_RD;
529
sc->sc_replen = 0;
530
sc->sc_totlen = sc->sc_curmsg->len;
531
/*
532
* Scan for scatter/gather IO (same slave and direction) or
533
* repeat-start (read following write for the same slave).
534
*/
535
for (nxtmsg = sc->sc_curmsg + 1; nxtmsg < endmsgs; ++nxtmsg) {
536
nxtslave = nxtmsg->slave >> 1;
537
if (curslave == nxtslave) {
538
nxtisread = nxtmsg->flags & IIC_M_RD;
539
if (curisread == nxtisread) {
540
/*
541
* Same slave and direction, this
542
* message will be part of the same
543
* transfer as the previous one.
544
*/
545
sc->sc_totlen += nxtmsg->len;
546
continue;
547
} else if (curisread == IIC_M_WR) {
548
/*
549
* Read after write to same slave means
550
* repeat-start, remember how many bytes
551
* come before the repeat-start, switch
552
* the direction to IIC_M_RD, and gather
553
* up following reads to the same slave.
554
*/
555
curisread = IIC_M_RD;
556
sc->sc_replen = sc->sc_totlen;
557
sc->sc_totlen += nxtmsg->len;
558
continue;
559
}
560
}
561
break;
562
}
563
564
/*
565
* curslave and curisread temporaries from above may refer to
566
* the after-repstart msg, reset them to reflect sc_curmsg.
567
*/
568
curisread = (sc->sc_curmsg->flags & IIC_M_RD) ? 1 : 0;
569
curslave = sc->sc_curmsg->slave | curisread;
570
571
/* Write the slave address. */
572
BCM_BSC_WRITE(sc, BCM_BSC_SLAVE, curslave >> 1);
573
574
DEVICE_DEBUGF(sc, 2, "start 0x%02x\n", curslave);
575
576
/*
577
* Either set up read length and direction variables for a
578
* simple transfer or get the hardware started on the first
579
* piece of a transfer that involves a repeat-start and set up
580
* the read length and direction vars for the second piece.
581
*/
582
if (sc->sc_replen == 0) {
583
DEVICE_DEBUGF(sc, 1, "%-6s 0x%02x len %d: ",
584
(curisread) ? "read" : "write", curslave,
585
sc->sc_totlen);
586
curlen = sc->sc_totlen;
587
if (curisread) {
588
readctl = BCM_BSC_CTRL_READ;
589
sc->sc_flags |= BCM_I2C_READ;
590
} else {
591
readctl = 0;
592
sc->sc_flags &= ~BCM_I2C_READ;
593
}
594
} else {
595
DEVICE_DEBUGF(sc, 1, "%-6s 0x%02x len %d: ",
596
(curisread) ? "read" : "write", curslave,
597
sc->sc_replen);
598
599
/*
600
* Start the write transfer with an empty fifo and wait
601
* for the 'transfer active' status bit to light up;
602
* that indicates that the hardware has latched the
603
* direction and length for the write, and we can safely
604
* reload those registers and issue the start for the
605
* following read; interrupts are not enabled here.
606
*/
607
BCM_BSC_WRITE(sc, BCM_BSC_DLEN, sc->sc_replen);
608
BCM_BSC_WRITE(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_I2CEN |
609
BCM_BSC_CTRL_ST);
610
do {
611
status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
612
if (status & BCM_BSC_STATUS_ERR) {
613
/* no ACK on slave addr */
614
err = EIO;
615
goto xfer_done;
616
}
617
} while ((status & BCM_BSC_STATUS_TA) == 0);
618
/*
619
* Set curlen and readctl for the repeat-start read that
620
* we need to set up below, but set sc_flags to write,
621
* because that is the operation in progress right now.
622
*/
623
curlen = sc->sc_totlen - sc->sc_replen;
624
readctl = BCM_BSC_CTRL_READ;
625
sc->sc_flags &= ~BCM_I2C_READ;
626
}
627
628
/*
629
* Start the transfer with interrupts enabled, then if doing a
630
* write, fill the tx fifo. Not prefilling the fifo until after
631
* this start command is the key workaround for making
632
* repeat-start work, and it's harmless to do it in this order
633
* for a regular write too.
634
*/
635
BCM_BSC_WRITE(sc, BCM_BSC_DLEN, curlen);
636
BCM_BSC_WRITE(sc, BCM_BSC_CTRL, readctl | BCM_BSC_CTRL_I2CEN |
637
BCM_BSC_CTRL_ST | BCM_BSC_CTRL_INT_ALL);
638
639
if (!(sc->sc_curmsg->flags & IIC_M_RD)) {
640
bcm_bsc_fill_tx_fifo(sc);
641
}
642
643
/* Wait for the transaction to complete. */
644
while (err == 0 && !(sc->sc_flags & BCM_I2C_DONE)) {
645
err = mtx_sleep(sc, &sc->sc_mtx, 0, "bsciow", hz);
646
}
647
/* Check for errors. */
648
if (err == 0 && (sc->sc_flags & BCM_I2C_ERROR))
649
err = EIO;
650
xfer_done:
651
DEBUGF(sc, 1, " err=%d\n", err);
652
DEVICE_DEBUGF(sc, 2, "stop\n");
653
if (err != 0)
654
break;
655
}
656
657
/* Disable interrupts, clean fifo, etc. */
658
bcm_bsc_reset(sc);
659
660
/* Clean the controller flags. */
661
sc->sc_flags = 0;
662
663
/* Wake up the threads waiting for bus. */
664
wakeup(dev);
665
666
BCM_BSC_UNLOCK(sc);
667
668
return (err);
669
}
670
671
static int
672
bcm_bsc_iicbus_reset(device_t dev, u_char speed, u_char addr, u_char *oldaddr)
673
{
674
struct bcm_bsc_softc *sc;
675
uint32_t busfreq;
676
677
sc = device_get_softc(dev);
678
BCM_BSC_LOCK(sc);
679
bcm_bsc_reset(sc);
680
if (sc->sc_iicbus == NULL)
681
busfreq = 100000;
682
else
683
busfreq = IICBUS_GET_FREQUENCY(sc->sc_iicbus, speed);
684
BCM_BSC_WRITE(sc, BCM_BSC_CLOCK, BCM_BSC_CORE_CLK / busfreq);
685
BCM_BSC_UNLOCK(sc);
686
687
return (IIC_ENOADDR);
688
}
689
690
static phandle_t
691
bcm_bsc_get_node(device_t bus, device_t dev)
692
{
693
694
/* We only have one child, the I2C bus, which needs our own node. */
695
return (ofw_bus_get_node(bus));
696
}
697
698
static device_method_t bcm_bsc_methods[] = {
699
/* Device interface */
700
DEVMETHOD(device_probe, bcm_bsc_probe),
701
DEVMETHOD(device_attach, bcm_bsc_attach),
702
DEVMETHOD(device_detach, bcm_bsc_detach),
703
704
/* iicbus interface */
705
DEVMETHOD(iicbus_reset, bcm_bsc_iicbus_reset),
706
DEVMETHOD(iicbus_callback, iicbus_null_callback),
707
DEVMETHOD(iicbus_transfer, bcm_bsc_transfer),
708
709
/* ofw_bus interface */
710
DEVMETHOD(ofw_bus_get_node, bcm_bsc_get_node),
711
712
DEVMETHOD_END
713
};
714
715
static driver_t bcm_bsc_driver = {
716
"iichb",
717
bcm_bsc_methods,
718
sizeof(struct bcm_bsc_softc),
719
};
720
721
DRIVER_MODULE(iicbus, bcm2835_bsc, iicbus_driver, 0, 0);
722
DRIVER_MODULE(bcm2835_bsc, simplebus, bcm_bsc_driver, 0, 0);
723
724