Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/arm/freescale/imx/imx6_anatop.c
39537 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2013 Ian Lepore <[email protected]>
5
* Copyright (c) 2014 Steven Lawrance <[email protected]>
6
* All rights reserved.
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice, this list of conditions and the following disclaimer.
13
* 2. Redistributions in binary form must reproduce the above copyright
14
* notice, this list of conditions and the following disclaimer in the
15
* documentation and/or other materials provided with the distribution.
16
*
17
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27
* SUCH DAMAGE.
28
*/
29
30
#include <sys/cdefs.h>
31
/*
32
* Analog PLL and power regulator driver for Freescale i.MX6 family of SoCs.
33
* Also, temperature montoring and cpu frequency control. It was Freescale who
34
* kitchen-sinked this device, not us. :)
35
*
36
* We don't really do anything with analog PLLs, but the registers for
37
* controlling them belong to the same block as the power regulator registers.
38
* Since the newbus hierarchy makes it hard for anyone other than us to get at
39
* them, we just export a couple public functions to allow the imx6 CCM clock
40
* driver to read and write those registers.
41
*
42
* We also don't do anything about power regulation yet, but when the need
43
* arises, this would be the place for that code to live.
44
*
45
* I have no idea where the "anatop" name comes from. It's in the standard DTS
46
* source describing i.MX6 SoCs, and in the linux and u-boot code which comes
47
* from Freescale, but it's not in the SoC manual.
48
*
49
* Note that temperature values throughout this code are handled in two types of
50
* units. Items with '_cnt' in the name use the hardware temperature count
51
* units (higher counts are lower temperatures). Items with '_val' in the name
52
* are deci-Celsius, which are converted to/from deci-Kelvins in the sysctl
53
* handlers (dK is the standard unit for temperature in sysctl).
54
*/
55
56
#include <sys/param.h>
57
#include <sys/systm.h>
58
#include <sys/callout.h>
59
#include <sys/kernel.h>
60
#include <sys/limits.h>
61
#include <sys/sysctl.h>
62
#include <sys/module.h>
63
#include <sys/bus.h>
64
#include <sys/rman.h>
65
66
#include <dev/ofw/ofw_bus.h>
67
#include <dev/ofw/ofw_bus_subr.h>
68
69
#include <machine/bus.h>
70
71
#include <arm/arm/mpcore_timervar.h>
72
#include <arm/freescale/fsl_ocotpreg.h>
73
#include <arm/freescale/fsl_ocotpvar.h>
74
#include <arm/freescale/imx/imx_ccmvar.h>
75
#include <arm/freescale/imx/imx_machdep.h>
76
#include <arm/freescale/imx/imx6_anatopreg.h>
77
#include <arm/freescale/imx/imx6_anatopvar.h>
78
79
static struct resource_spec imx6_anatop_spec[] = {
80
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
81
{ -1, 0 }
82
};
83
#define MEMRES 0
84
#define IRQRES 1
85
86
struct imx6_anatop_softc {
87
device_t dev;
88
struct resource *res[2];
89
struct intr_config_hook
90
intr_setup_hook;
91
uint32_t cpu_curmhz;
92
uint32_t cpu_curmv;
93
uint32_t cpu_minmhz;
94
uint32_t cpu_minmv;
95
uint32_t cpu_maxmhz;
96
uint32_t cpu_maxmv;
97
uint32_t cpu_maxmhz_hw;
98
boolean_t cpu_overclock_enable;
99
boolean_t cpu_init_done;
100
uint32_t refosc_mhz;
101
void *temp_intrhand;
102
uint32_t temp_high_val;
103
uint32_t temp_high_cnt;
104
uint32_t temp_last_cnt;
105
uint32_t temp_room_cnt;
106
struct callout temp_throttle_callout;
107
sbintime_t temp_throttle_delay;
108
uint32_t temp_throttle_reset_cnt;
109
uint32_t temp_throttle_trigger_cnt;
110
uint32_t temp_throttle_val;
111
};
112
113
static struct imx6_anatop_softc *imx6_anatop_sc;
114
115
/*
116
* Table of "operating points".
117
* These are combinations of frequency and voltage blessed by Freescale.
118
* While the datasheet says the ARM voltage can be as low as 925mV at
119
* 396MHz, it also says that the ARM and SOC voltages can't differ by
120
* more than 200mV, and the minimum SOC voltage is 1150mV, so that
121
* dictates the 950mV entry in this table.
122
*/
123
static struct oppt {
124
uint32_t mhz;
125
uint32_t mv;
126
} imx6_oppt_table[] = {
127
{ 396, 950},
128
{ 792, 1150},
129
{ 852, 1225},
130
{ 996, 1225},
131
{1200, 1275},
132
};
133
134
/*
135
* Table of CPU max frequencies. This is used to translate the max frequency
136
* value (0-3) from the ocotp CFG3 register into a mhz value that can be looked
137
* up in the operating points table.
138
*/
139
static uint32_t imx6_ocotp_mhz_tab[] = {792, 852, 996, 1200};
140
141
#define TZ_ZEROC 2731 /* deci-Kelvin <-> deci-Celsius offset. */
142
143
uint32_t
144
imx6_anatop_read_4(bus_size_t offset)
145
{
146
147
KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_read_4 sc NULL"));
148
149
return (bus_read_4(imx6_anatop_sc->res[MEMRES], offset));
150
}
151
152
void
153
imx6_anatop_write_4(bus_size_t offset, uint32_t value)
154
{
155
156
KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_write_4 sc NULL"));
157
158
bus_write_4(imx6_anatop_sc->res[MEMRES], offset, value);
159
}
160
161
static void
162
vdd_set(struct imx6_anatop_softc *sc, int mv)
163
{
164
int newtarg, newtargSoc, oldtarg;
165
uint32_t delay, pmureg;
166
static boolean_t init_done = false;
167
168
/*
169
* The datasheet says VDD_PU and VDD_SOC must be equal, and VDD_ARM
170
* can't be more than 50mV above or 200mV below them. We keep them the
171
* same except in the case of the lowest operating point, which is
172
* handled as a special case below.
173
*/
174
175
pmureg = imx6_anatop_read_4(IMX6_ANALOG_PMU_REG_CORE);
176
oldtarg = pmureg & IMX6_ANALOG_PMU_REG0_TARG_MASK;
177
178
/* Convert mV to target value. Clamp target to valid range. */
179
if (mv < 725)
180
newtarg = 0x00;
181
else if (mv > 1450)
182
newtarg = 0x1F;
183
else
184
newtarg = (mv - 700) / 25;
185
186
/*
187
* The SOC voltage can't go below 1150mV, and thus because of the 200mV
188
* rule, the ARM voltage can't go below 950mV. The 950 is encoded in
189
* our oppt table, here we handle the SOC 1150 rule as a special case.
190
* (1150-700/25=18).
191
*/
192
newtargSoc = (newtarg < 18) ? 18 : newtarg;
193
194
/*
195
* The first time through the 3 voltages might not be equal so use a
196
* long conservative delay. After that we need to delay 3uS for every
197
* 25mV step upward; we actually delay 6uS because empirically, it works
198
* and the 3uS per step recommended by the docs doesn't (3uS fails when
199
* going from 400->1200, but works for smaller changes).
200
*/
201
if (init_done) {
202
if (newtarg == oldtarg)
203
return;
204
else if (newtarg > oldtarg)
205
delay = (newtarg - oldtarg) * 6;
206
else
207
delay = 0;
208
} else {
209
delay = (700 / 25) * 6;
210
init_done = true;
211
}
212
213
/*
214
* Make the change and wait for it to take effect.
215
*/
216
pmureg &= ~(IMX6_ANALOG_PMU_REG0_TARG_MASK |
217
IMX6_ANALOG_PMU_REG1_TARG_MASK |
218
IMX6_ANALOG_PMU_REG2_TARG_MASK);
219
220
pmureg |= newtarg << IMX6_ANALOG_PMU_REG0_TARG_SHIFT;
221
pmureg |= newtarg << IMX6_ANALOG_PMU_REG1_TARG_SHIFT;
222
pmureg |= newtargSoc << IMX6_ANALOG_PMU_REG2_TARG_SHIFT;
223
224
imx6_anatop_write_4(IMX6_ANALOG_PMU_REG_CORE, pmureg);
225
DELAY(delay);
226
sc->cpu_curmv = newtarg * 25 + 700;
227
}
228
229
static inline uint32_t
230
cpufreq_mhz_from_div(struct imx6_anatop_softc *sc, uint32_t corediv,
231
uint32_t plldiv)
232
{
233
234
return ((sc->refosc_mhz * (plldiv / 2)) / (corediv + 1));
235
}
236
237
static inline void
238
cpufreq_mhz_to_div(struct imx6_anatop_softc *sc, uint32_t cpu_mhz,
239
uint32_t *corediv, uint32_t *plldiv)
240
{
241
242
*corediv = (cpu_mhz < 650) ? 1 : 0;
243
*plldiv = ((*corediv + 1) * cpu_mhz) / (sc->refosc_mhz / 2);
244
}
245
246
static inline uint32_t
247
cpufreq_actual_mhz(struct imx6_anatop_softc *sc, uint32_t cpu_mhz)
248
{
249
uint32_t corediv, plldiv;
250
251
cpufreq_mhz_to_div(sc, cpu_mhz, &corediv, &plldiv);
252
return (cpufreq_mhz_from_div(sc, corediv, plldiv));
253
}
254
255
static struct oppt *
256
cpufreq_nearest_oppt(struct imx6_anatop_softc *sc, uint32_t cpu_newmhz)
257
{
258
int d, diff, i, nearest;
259
260
if (cpu_newmhz > sc->cpu_maxmhz_hw && !sc->cpu_overclock_enable)
261
cpu_newmhz = sc->cpu_maxmhz_hw;
262
263
diff = INT_MAX;
264
nearest = 0;
265
for (i = 0; i < nitems(imx6_oppt_table); ++i) {
266
d = abs((int)cpu_newmhz - (int)imx6_oppt_table[i].mhz);
267
if (diff > d) {
268
diff = d;
269
nearest = i;
270
}
271
}
272
return (&imx6_oppt_table[nearest]);
273
}
274
275
static void
276
cpufreq_set_clock(struct imx6_anatop_softc * sc, struct oppt *op)
277
{
278
uint32_t corediv, plldiv, timeout, wrk32;
279
280
/* If increasing the frequency, we must first increase the voltage. */
281
if (op->mhz > sc->cpu_curmhz) {
282
vdd_set(sc, op->mv);
283
}
284
285
/*
286
* I can't find a documented procedure for changing the ARM PLL divisor,
287
* but some trial and error came up with this:
288
* - Set the bypass clock source to REF_CLK_24M (source #0).
289
* - Set the PLL into bypass mode; cpu should now be running at 24mhz.
290
* - Change the divisor.
291
* - Wait for the LOCK bit to come on; it takes ~50 loop iterations.
292
* - Turn off bypass mode; cpu should now be running at the new speed.
293
*/
294
cpufreq_mhz_to_div(sc, op->mhz, &corediv, &plldiv);
295
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR,
296
IMX6_ANALOG_CCM_PLL_ARM_CLK_SRC_MASK);
297
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_SET,
298
IMX6_ANALOG_CCM_PLL_ARM_BYPASS);
299
300
wrk32 = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM);
301
wrk32 &= ~IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK;
302
wrk32 |= plldiv;
303
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM, wrk32);
304
305
timeout = 10000;
306
while ((imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) &
307
IMX6_ANALOG_CCM_PLL_ARM_LOCK) == 0)
308
if (--timeout == 0)
309
panic("imx6_set_cpu_clock(): PLL never locked");
310
311
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR,
312
IMX6_ANALOG_CCM_PLL_ARM_BYPASS);
313
imx_ccm_set_cacrr(corediv);
314
315
/* If lowering the frequency, it is now safe to lower the voltage. */
316
if (op->mhz < sc->cpu_curmhz)
317
vdd_set(sc, op->mv);
318
sc->cpu_curmhz = op->mhz;
319
320
/* Tell the mpcore timer that its frequency has changed. */
321
arm_tmr_change_frequency(
322
cpufreq_actual_mhz(sc, sc->cpu_curmhz) * 1000000 / 2);
323
}
324
325
static int
326
cpufreq_sysctl_minmhz(SYSCTL_HANDLER_ARGS)
327
{
328
struct imx6_anatop_softc *sc;
329
struct oppt * op;
330
uint32_t temp;
331
int err;
332
333
sc = arg1;
334
335
temp = sc->cpu_minmhz;
336
err = sysctl_handle_int(oidp, &temp, 0, req);
337
if (err != 0 || req->newptr == NULL)
338
return (err);
339
340
op = cpufreq_nearest_oppt(sc, temp);
341
if (op->mhz > sc->cpu_maxmhz)
342
return (ERANGE);
343
else if (op->mhz == sc->cpu_minmhz)
344
return (0);
345
346
/*
347
* Value changed, update softc. If the new min is higher than the
348
* current speed, raise the current speed to match.
349
*/
350
sc->cpu_minmhz = op->mhz;
351
if (sc->cpu_minmhz > sc->cpu_curmhz) {
352
cpufreq_set_clock(sc, op);
353
}
354
return (err);
355
}
356
357
static int
358
cpufreq_sysctl_maxmhz(SYSCTL_HANDLER_ARGS)
359
{
360
struct imx6_anatop_softc *sc;
361
struct oppt * op;
362
uint32_t temp;
363
int err;
364
365
sc = arg1;
366
367
temp = sc->cpu_maxmhz;
368
err = sysctl_handle_int(oidp, &temp, 0, req);
369
if (err != 0 || req->newptr == NULL)
370
return (err);
371
372
op = cpufreq_nearest_oppt(sc, temp);
373
if (op->mhz < sc->cpu_minmhz)
374
return (ERANGE);
375
else if (op->mhz == sc->cpu_maxmhz)
376
return (0);
377
378
/*
379
* Value changed, update softc and hardware. The hardware update is
380
* unconditional. We always try to run at max speed, so any change of
381
* the max means we need to change the current speed too, regardless of
382
* whether it is higher or lower than the old max.
383
*/
384
sc->cpu_maxmhz = op->mhz;
385
cpufreq_set_clock(sc, op);
386
387
return (err);
388
}
389
390
static void
391
cpufreq_initialize(struct imx6_anatop_softc *sc)
392
{
393
uint32_t cfg3speed;
394
struct oppt * op;
395
396
SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
397
OID_AUTO, "cpu_mhz", CTLFLAG_RD, &sc->cpu_curmhz, 0,
398
"CPU frequency");
399
400
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
401
OID_AUTO, "cpu_minmhz",
402
CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_NEEDGIANT,
403
sc, 0, cpufreq_sysctl_minmhz, "IU", "Minimum CPU frequency");
404
405
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
406
OID_AUTO, "cpu_maxmhz",
407
CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_NEEDGIANT,
408
sc, 0, cpufreq_sysctl_maxmhz, "IU", "Maximum CPU frequency");
409
410
SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
411
OID_AUTO, "cpu_maxmhz_hw", CTLFLAG_RD, &sc->cpu_maxmhz_hw, 0,
412
"Maximum CPU frequency allowed by hardware");
413
414
SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
415
OID_AUTO, "cpu_overclock_enable", CTLFLAG_RWTUN,
416
&sc->cpu_overclock_enable, 0,
417
"Allow setting CPU frequency higher than cpu_maxmhz_hw");
418
419
/*
420
* XXX 24mhz shouldn't be hard-coded, should get this from imx6_ccm
421
* (even though in the real world it will always be 24mhz). Oh wait a
422
* sec, I never wrote imx6_ccm.
423
*/
424
sc->refosc_mhz = 24;
425
426
/*
427
* Get the maximum speed this cpu can be set to. The values in the
428
* OCOTP CFG3 register are not documented in the reference manual.
429
* The following info was in an archived email found via web search:
430
* - 2b'11: 1200000000Hz;
431
* - 2b'10: 996000000Hz;
432
* - 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
433
* - 2b'00: 792000000Hz;
434
* The default hardware max speed can be overridden by a tunable.
435
*/
436
cfg3speed = (fsl_ocotp_read_4(FSL_OCOTP_CFG3) &
437
FSL_OCOTP_CFG3_SPEED_MASK) >> FSL_OCOTP_CFG3_SPEED_SHIFT;
438
sc->cpu_maxmhz_hw = imx6_ocotp_mhz_tab[cfg3speed];
439
sc->cpu_maxmhz = sc->cpu_maxmhz_hw;
440
441
TUNABLE_INT_FETCH("hw.imx6.cpu_minmhz", &sc->cpu_minmhz);
442
op = cpufreq_nearest_oppt(sc, sc->cpu_minmhz);
443
sc->cpu_minmhz = op->mhz;
444
sc->cpu_minmv = op->mv;
445
446
TUNABLE_INT_FETCH("hw.imx6.cpu_maxmhz", &sc->cpu_maxmhz);
447
op = cpufreq_nearest_oppt(sc, sc->cpu_maxmhz);
448
sc->cpu_maxmhz = op->mhz;
449
sc->cpu_maxmv = op->mv;
450
451
/*
452
* Set the CPU to maximum speed.
453
*
454
* We won't have thermal throttling until interrupts are enabled, but we
455
* want to run at full speed through all the device init stuff. This
456
* basically assumes that a single core can't overheat before interrupts
457
* are enabled; empirical testing shows that to be a safe assumption.
458
*/
459
cpufreq_set_clock(sc, op);
460
}
461
462
static inline uint32_t
463
temp_from_count(struct imx6_anatop_softc *sc, uint32_t count)
464
{
465
466
return (((sc->temp_high_val - (count - sc->temp_high_cnt) *
467
(sc->temp_high_val - 250) /
468
(sc->temp_room_cnt - sc->temp_high_cnt))));
469
}
470
471
static inline uint32_t
472
temp_to_count(struct imx6_anatop_softc *sc, uint32_t temp)
473
{
474
475
return ((sc->temp_room_cnt - sc->temp_high_cnt) *
476
(sc->temp_high_val - temp) / (sc->temp_high_val - 250) +
477
sc->temp_high_cnt);
478
}
479
480
static void
481
temp_update_count(struct imx6_anatop_softc *sc)
482
{
483
uint32_t val;
484
485
val = imx6_anatop_read_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0);
486
if (!(val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_VALID))
487
return;
488
sc->temp_last_cnt =
489
(val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_MASK) >>
490
IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_SHIFT;
491
}
492
493
static int
494
temp_sysctl_handler(SYSCTL_HANDLER_ARGS)
495
{
496
struct imx6_anatop_softc *sc = arg1;
497
uint32_t t;
498
499
temp_update_count(sc);
500
501
t = temp_from_count(sc, sc->temp_last_cnt) + TZ_ZEROC;
502
503
return (sysctl_handle_int(oidp, &t, 0, req));
504
}
505
506
static int
507
temp_throttle_sysctl_handler(SYSCTL_HANDLER_ARGS)
508
{
509
struct imx6_anatop_softc *sc = arg1;
510
int err;
511
uint32_t temp;
512
513
temp = sc->temp_throttle_val + TZ_ZEROC;
514
err = sysctl_handle_int(oidp, &temp, 0, req);
515
if (temp < TZ_ZEROC)
516
return (ERANGE);
517
temp -= TZ_ZEROC;
518
if (err != 0 || req->newptr == NULL || temp == sc->temp_throttle_val)
519
return (err);
520
521
/* Value changed, update counts in softc and hardware. */
522
sc->temp_throttle_val = temp;
523
sc->temp_throttle_trigger_cnt = temp_to_count(sc, sc->temp_throttle_val);
524
sc->temp_throttle_reset_cnt = temp_to_count(sc, sc->temp_throttle_val - 100);
525
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_CLR,
526
IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_MASK);
527
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_SET,
528
(sc->temp_throttle_trigger_cnt <<
529
IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT));
530
return (err);
531
}
532
533
static void
534
tempmon_gofast(struct imx6_anatop_softc *sc)
535
{
536
537
if (sc->cpu_curmhz < sc->cpu_maxmhz) {
538
cpufreq_set_clock(sc, cpufreq_nearest_oppt(sc, sc->cpu_maxmhz));
539
}
540
}
541
542
static void
543
tempmon_goslow(struct imx6_anatop_softc *sc)
544
{
545
546
if (sc->cpu_curmhz > sc->cpu_minmhz) {
547
cpufreq_set_clock(sc, cpufreq_nearest_oppt(sc, sc->cpu_minmhz));
548
}
549
}
550
551
static int
552
tempmon_intr(void *arg)
553
{
554
struct imx6_anatop_softc *sc = arg;
555
556
/*
557
* XXX Note that this code doesn't currently run (for some mysterious
558
* reason we just never get an interrupt), so the real monitoring is
559
* done by tempmon_throttle_check().
560
*/
561
tempmon_goslow(sc);
562
/* XXX Schedule callout to speed back up eventually. */
563
return (FILTER_HANDLED);
564
}
565
566
static void
567
tempmon_throttle_check(void *arg)
568
{
569
struct imx6_anatop_softc *sc = arg;
570
571
/* Lower counts are higher temperatures. */
572
if (sc->temp_last_cnt < sc->temp_throttle_trigger_cnt)
573
tempmon_goslow(sc);
574
else if (sc->temp_last_cnt > (sc->temp_throttle_reset_cnt))
575
tempmon_gofast(sc);
576
577
callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay,
578
0, tempmon_throttle_check, sc, 0);
579
580
}
581
582
static void
583
initialize_tempmon(struct imx6_anatop_softc *sc)
584
{
585
uint32_t cal;
586
587
/*
588
* Fetch calibration data: a sensor count at room temperature (25C),
589
* a sensor count at a high temperature, and that temperature
590
*/
591
cal = fsl_ocotp_read_4(FSL_OCOTP_ANA1);
592
sc->temp_room_cnt = (cal & 0xFFF00000) >> 20;
593
sc->temp_high_cnt = (cal & 0x000FFF00) >> 8;
594
sc->temp_high_val = (cal & 0x000000FF) * 10;
595
596
/*
597
* Throttle to a lower cpu freq at 10C below the "hot" temperature, and
598
* reset back to max cpu freq at 5C below the trigger.
599
*/
600
sc->temp_throttle_val = sc->temp_high_val - 100;
601
sc->temp_throttle_trigger_cnt =
602
temp_to_count(sc, sc->temp_throttle_val);
603
sc->temp_throttle_reset_cnt =
604
temp_to_count(sc, sc->temp_throttle_val - 50);
605
606
/*
607
* Set the sensor to sample automatically at 16Hz (32.768KHz/0x800), set
608
* the throttle count, and begin making measurements.
609
*/
610
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE1, 0x0800);
611
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0,
612
(sc->temp_throttle_trigger_cnt <<
613
IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT) |
614
IMX6_ANALOG_TEMPMON_TEMPSENSE0_MEASURE);
615
616
/*
617
* XXX Note that the alarm-interrupt feature isn't working yet, so
618
* we'll use a callout handler to check at 10Hz. Make sure we have an
619
* initial temperature reading before starting up the callouts so we
620
* don't get a bogus reading of zero.
621
*/
622
while (sc->temp_last_cnt == 0)
623
temp_update_count(sc);
624
sc->temp_throttle_delay = 100 * SBT_1MS;
625
callout_init(&sc->temp_throttle_callout, 0);
626
callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay,
627
0, tempmon_throttle_check, sc, 0);
628
629
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
630
OID_AUTO, "temperature",
631
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
632
temp_sysctl_handler, "IK", "Current die temperature");
633
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
634
OID_AUTO, "throttle_temperature",
635
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc,
636
0, temp_throttle_sysctl_handler, "IK",
637
"Throttle CPU when exceeding this temperature");
638
}
639
640
static void
641
intr_setup(void *arg)
642
{
643
int rid;
644
struct imx6_anatop_softc *sc;
645
646
sc = arg;
647
rid = 0;
648
sc->res[IRQRES] = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &rid,
649
RF_ACTIVE);
650
if (sc->res[IRQRES] != NULL) {
651
bus_setup_intr(sc->dev, sc->res[IRQRES],
652
INTR_TYPE_MISC | INTR_MPSAFE, tempmon_intr, NULL, sc,
653
&sc->temp_intrhand);
654
} else {
655
device_printf(sc->dev, "Cannot allocate IRQ resource\n");
656
}
657
config_intrhook_disestablish(&sc->intr_setup_hook);
658
}
659
660
static void
661
imx6_anatop_new_pass(device_t dev)
662
{
663
struct imx6_anatop_softc *sc;
664
const int cpu_init_pass = BUS_PASS_CPU + BUS_PASS_ORDER_MIDDLE;
665
666
/*
667
* We attach during BUS_PASS_BUS (because some day we will be a
668
* simplebus that has regulator devices as children), but some of our
669
* init work cannot be done until BUS_PASS_CPU (we rely on other devices
670
* that attach on the CPU pass).
671
*/
672
sc = device_get_softc(dev);
673
if (!sc->cpu_init_done && bus_get_pass() >= cpu_init_pass) {
674
sc->cpu_init_done = true;
675
cpufreq_initialize(sc);
676
initialize_tempmon(sc);
677
if (bootverbose) {
678
device_printf(sc->dev, "CPU %uMHz @ %umV\n",
679
sc->cpu_curmhz, sc->cpu_curmv);
680
}
681
}
682
bus_generic_new_pass(dev);
683
}
684
685
static int
686
imx6_anatop_detach(device_t dev)
687
{
688
689
/* This device can never detach. */
690
return (EBUSY);
691
}
692
693
static int
694
imx6_anatop_attach(device_t dev)
695
{
696
struct imx6_anatop_softc *sc;
697
int err;
698
699
sc = device_get_softc(dev);
700
sc->dev = dev;
701
702
/* Allocate bus_space resources. */
703
if (bus_alloc_resources(dev, imx6_anatop_spec, sc->res)) {
704
device_printf(dev, "Cannot allocate resources\n");
705
err = ENXIO;
706
goto out;
707
}
708
709
sc->intr_setup_hook.ich_func = intr_setup;
710
sc->intr_setup_hook.ich_arg = sc;
711
config_intrhook_establish(&sc->intr_setup_hook);
712
713
SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev),
714
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
715
OID_AUTO, "cpu_voltage", CTLFLAG_RD,
716
&sc->cpu_curmv, 0, "Current CPU voltage in millivolts");
717
718
imx6_anatop_sc = sc;
719
720
/*
721
* Other code seen on the net sets this SELFBIASOFF flag around the same
722
* time the temperature sensor is set up, although it's unclear how the
723
* two are related (if at all).
724
*/
725
imx6_anatop_write_4(IMX6_ANALOG_PMU_MISC0_SET,
726
IMX6_ANALOG_PMU_MISC0_SELFBIASOFF);
727
728
/*
729
* Some day, when we're ready to deal with the actual anatop regulators
730
* that are described in fdt data as children of this "bus", this would
731
* be the place to invoke a simplebus helper routine to instantiate the
732
* children from the fdt data.
733
*/
734
735
err = 0;
736
737
out:
738
739
if (err != 0) {
740
bus_release_resources(dev, imx6_anatop_spec, sc->res);
741
}
742
743
return (err);
744
}
745
746
uint32_t
747
pll4_configure_output(uint32_t mfi, uint32_t mfn, uint32_t mfd)
748
{
749
int reg;
750
751
/*
752
* Audio PLL (PLL4).
753
* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM)
754
*/
755
756
reg = (IMX6_ANALOG_CCM_PLL_AUDIO_ENABLE);
757
reg &= ~(IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_MASK << \
758
IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_SHIFT);
759
reg |= (mfi << IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_SHIFT);
760
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO, reg);
761
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO_NUM, mfn);
762
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO_DENOM, mfd);
763
764
return (0);
765
}
766
767
static int
768
imx6_anatop_probe(device_t dev)
769
{
770
771
if (!ofw_bus_status_okay(dev))
772
return (ENXIO);
773
774
if (ofw_bus_is_compatible(dev, "fsl,imx6q-anatop") == 0)
775
return (ENXIO);
776
777
device_set_desc(dev, "Freescale i.MX6 Analog PLLs and Power");
778
779
return (BUS_PROBE_DEFAULT);
780
}
781
782
uint32_t
783
imx6_get_cpu_clock(void)
784
{
785
uint32_t corediv, plldiv;
786
787
corediv = imx_ccm_get_cacrr();
788
plldiv = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) &
789
IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK;
790
return (cpufreq_mhz_from_div(imx6_anatop_sc, corediv, plldiv));
791
}
792
793
static device_method_t imx6_anatop_methods[] = {
794
/* Device interface */
795
DEVMETHOD(device_probe, imx6_anatop_probe),
796
DEVMETHOD(device_attach, imx6_anatop_attach),
797
DEVMETHOD(device_detach, imx6_anatop_detach),
798
799
/* Bus interface */
800
DEVMETHOD(bus_new_pass, imx6_anatop_new_pass),
801
802
DEVMETHOD_END
803
};
804
805
static driver_t imx6_anatop_driver = {
806
"imx6_anatop",
807
imx6_anatop_methods,
808
sizeof(struct imx6_anatop_softc)
809
};
810
811
EARLY_DRIVER_MODULE(imx6_anatop, simplebus, imx6_anatop_driver, 0, 0,
812
BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
813
EARLY_DRIVER_MODULE(imx6_anatop, ofwbus, imx6_anatop_driver, 0, 0,
814
BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
815
816