Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/cam/cam_iosched.c
39475 views
1
/*-
2
* CAM IO Scheduler Interface
3
*
4
* SPDX-License-Identifier: BSD-2-Clause
5
*
6
* Copyright (c) 2015 Netflix, Inc.
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice, this list of conditions and the following disclaimer.
13
* 2. Redistributions in binary form must reproduce the above copyright
14
* notice, this list of conditions and the following disclaimer in the
15
* documentation and/or other materials provided with the distribution.
16
*
17
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27
* SUCH DAMAGE.
28
*/
29
30
#include "opt_ddb.h"
31
32
#include <sys/param.h>
33
#include <sys/systm.h>
34
#include <sys/kernel.h>
35
#include <sys/bio.h>
36
#include <sys/lock.h>
37
#include <sys/malloc.h>
38
#include <sys/mutex.h>
39
#include <sys/sbuf.h>
40
#include <sys/sysctl.h>
41
42
#include <cam/cam.h>
43
#include <cam/cam_ccb.h>
44
#include <cam/cam_periph.h>
45
#include <cam/cam_xpt_periph.h>
46
#include <cam/cam_xpt_internal.h>
47
#include <cam/cam_iosched.h>
48
49
#include <ddb/ddb.h>
50
51
#include <geom/geom_disk.h>
52
53
static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
54
"CAM I/O Scheduler buffers");
55
56
static SYSCTL_NODE(_kern_cam, OID_AUTO, iosched, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
57
"CAM I/O Scheduler parameters");
58
59
/*
60
* Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
61
* over the bioq_* interface, with notions of separate calls for normal I/O and
62
* for trims.
63
*
64
* When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
65
* steer the rate of one type of traffic to help other types of traffic (eg
66
* limit writes when read latency deteriorates on SSDs).
67
*/
68
69
#ifdef CAM_IOSCHED_DYNAMIC
70
71
static bool do_dynamic_iosched = true;
72
SYSCTL_BOOL(_kern_cam_iosched, OID_AUTO, dynamic, CTLFLAG_RDTUN,
73
&do_dynamic_iosched, 1,
74
"Enable Dynamic I/O scheduler optimizations.");
75
76
/*
77
* For an EMA, with an alpha of alpha, we know
78
* alpha = 2 / (N + 1)
79
* or
80
* N = 1 + (2 / alpha)
81
* where N is the number of samples that 86% of the current
82
* EMA is derived from.
83
*
84
* So we invent[*] alpha_bits:
85
* alpha_bits = -log_2(alpha)
86
* alpha = 2^-alpha_bits
87
* So
88
* N = 1 + 2^(alpha_bits + 1)
89
*
90
* The default 9 gives a 1025 lookback for 86% of the data.
91
* For a brief intro: https://en.wikipedia.org/wiki/Moving_average
92
*
93
* [*] Steal from the load average code and many other places.
94
* Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
95
*/
96
static int alpha_bits = 9;
97
SYSCTL_INT(_kern_cam_iosched, OID_AUTO, alpha_bits, CTLFLAG_RWTUN,
98
&alpha_bits, 1,
99
"Bits in EMA's alpha.");
100
101
/*
102
* Different parameters for the buckets of latency we keep track of. These are all
103
* published read-only since at present they are compile time constants.
104
*
105
* Bucket base is the upper bounds of the first latency bucket. It's currently 20us.
106
* With 20 buckets (see below), that leads to a geometric progression with a max size
107
* of 5.2s which is safeily larger than 1s to help diagnose extreme outliers better.
108
*/
109
#ifndef BUCKET_BASE
110
#define BUCKET_BASE ((SBT_1S / 50000) + 1) /* 20us */
111
#endif
112
static sbintime_t bucket_base = BUCKET_BASE;
113
SYSCTL_SBINTIME_USEC(_kern_cam_iosched, OID_AUTO, bucket_base_us, CTLFLAG_RD,
114
&bucket_base,
115
"Size of the smallest latency bucket");
116
117
/*
118
* Bucket ratio is the geometric progression for the bucket. For a bucket b_n
119
* the size of bucket b_n+1 is b_n * bucket_ratio / 100.
120
*/
121
static int bucket_ratio = 200; /* Rather hard coded at the moment */
122
SYSCTL_INT(_kern_cam_iosched, OID_AUTO, bucket_ratio, CTLFLAG_RD,
123
&bucket_ratio, 200,
124
"Latency Bucket Ratio for geometric progression.");
125
126
/*
127
* Number of total buckets. Starting at BUCKET_BASE, each one is a power of 2.
128
*/
129
#ifndef LAT_BUCKETS
130
#define LAT_BUCKETS 20 /* < 20us < 40us ... < 2^(n-1)*20us >= 2^(n-1)*20us */
131
#endif
132
static int lat_buckets = LAT_BUCKETS;
133
SYSCTL_INT(_kern_cam_iosched, OID_AUTO, buckets, CTLFLAG_RD,
134
&lat_buckets, LAT_BUCKETS,
135
"Total number of latency buckets published");
136
137
/*
138
* Read bias: how many reads do we favor before scheduling a write
139
* when we have a choice.
140
*/
141
static int default_read_bias = 0;
142
SYSCTL_INT(_kern_cam_iosched, OID_AUTO, read_bias, CTLFLAG_RWTUN,
143
&default_read_bias, 0,
144
"Default read bias for new devices.");
145
146
struct iop_stats;
147
struct cam_iosched_softc;
148
149
int iosched_debug = 0;
150
151
typedef enum {
152
none = 0, /* No limits */
153
queue_depth, /* Limit how many ops we queue to SIM */
154
iops, /* Limit # of IOPS to the drive */
155
bandwidth, /* Limit bandwidth to the drive */
156
limiter_max
157
} io_limiter;
158
159
static const char *cam_iosched_limiter_names[] =
160
{ "none", "queue_depth", "iops", "bandwidth" };
161
162
/*
163
* Called to initialize the bits of the iop_stats structure relevant to the
164
* limiter. Called just after the limiter is set.
165
*/
166
typedef int l_init_t(struct iop_stats *);
167
168
/*
169
* Called every tick.
170
*/
171
typedef int l_tick_t(struct iop_stats *);
172
173
/*
174
* Called to see if the limiter thinks this IOP can be allowed to
175
* proceed. If so, the limiter assumes that the IOP proceeded
176
* and makes any accounting of it that's needed.
177
*/
178
typedef int l_iop_t(struct iop_stats *, struct bio *);
179
180
/*
181
* Called when an I/O completes so the limiter can update its
182
* accounting. Pending I/Os may complete in any order (even when
183
* sent to the hardware at the same time), so the limiter may not
184
* make any assumptions other than this I/O has completed. If it
185
* returns 1, then xpt_schedule() needs to be called again.
186
*/
187
typedef int l_iodone_t(struct iop_stats *, struct bio *);
188
189
static l_iop_t cam_iosched_qd_iop;
190
static l_iop_t cam_iosched_qd_caniop;
191
static l_iodone_t cam_iosched_qd_iodone;
192
193
static l_init_t cam_iosched_iops_init;
194
static l_tick_t cam_iosched_iops_tick;
195
static l_iop_t cam_iosched_iops_caniop;
196
static l_iop_t cam_iosched_iops_iop;
197
198
static l_init_t cam_iosched_bw_init;
199
static l_tick_t cam_iosched_bw_tick;
200
static l_iop_t cam_iosched_bw_caniop;
201
static l_iop_t cam_iosched_bw_iop;
202
203
struct limswitch {
204
l_init_t *l_init;
205
l_tick_t *l_tick;
206
l_iop_t *l_iop;
207
l_iop_t *l_caniop;
208
l_iodone_t *l_iodone;
209
} limsw[] =
210
{
211
{ /* none */
212
.l_init = NULL,
213
.l_tick = NULL,
214
.l_iop = NULL,
215
.l_iodone= NULL,
216
},
217
{ /* queue_depth */
218
.l_init = NULL,
219
.l_tick = NULL,
220
.l_caniop = cam_iosched_qd_caniop,
221
.l_iop = cam_iosched_qd_iop,
222
.l_iodone= cam_iosched_qd_iodone,
223
},
224
{ /* iops */
225
.l_init = cam_iosched_iops_init,
226
.l_tick = cam_iosched_iops_tick,
227
.l_caniop = cam_iosched_iops_caniop,
228
.l_iop = cam_iosched_iops_iop,
229
.l_iodone= NULL,
230
},
231
{ /* bandwidth */
232
.l_init = cam_iosched_bw_init,
233
.l_tick = cam_iosched_bw_tick,
234
.l_caniop = cam_iosched_bw_caniop,
235
.l_iop = cam_iosched_bw_iop,
236
.l_iodone= NULL,
237
},
238
};
239
240
struct iop_stats {
241
/*
242
* sysctl state for this subnode.
243
*/
244
struct sysctl_ctx_list sysctl_ctx;
245
struct sysctl_oid *sysctl_tree;
246
247
/*
248
* Information about the current rate limiters, if any
249
*/
250
io_limiter limiter; /* How are I/Os being limited */
251
int min; /* Low range of limit */
252
int max; /* High range of limit */
253
int current; /* Current rate limiter */
254
int l_value1; /* per-limiter scratch value 1. */
255
int l_value2; /* per-limiter scratch value 2. */
256
257
/*
258
* Debug information about counts of I/Os that have gone through the
259
* scheduler.
260
*/
261
int pending; /* I/Os pending in the hardware */
262
int queued; /* number currently in the queue */
263
int total; /* Total for all time -- wraps */
264
int in; /* number queued all time -- wraps */
265
int out; /* number completed all time -- wraps */
266
int errs; /* Number of I/Os completed with error -- wraps */
267
268
/*
269
* Statistics on different bits of the process.
270
*/
271
/* Exp Moving Average, see alpha_bits for more details */
272
sbintime_t ema;
273
sbintime_t emvar;
274
sbintime_t sd; /* Last computed sd */
275
276
uint64_t too_long; /* Number of I/Os greater than bad lat threshold */
277
sbintime_t bad_latency; /* Latency threshold */
278
279
uint32_t state_flags;
280
#define IOP_RATE_LIMITED 1u
281
282
uint64_t latencies[LAT_BUCKETS];
283
284
struct cam_iosched_softc *softc;
285
};
286
287
typedef enum {
288
set_max = 0, /* current = max */
289
read_latency, /* Steer read latency by throttling writes */
290
cl_max /* Keep last */
291
} control_type;
292
293
static const char *cam_iosched_control_type_names[] =
294
{ "set_max", "read_latency" };
295
296
struct control_loop {
297
/*
298
* sysctl state for this subnode.
299
*/
300
struct sysctl_ctx_list sysctl_ctx;
301
struct sysctl_oid *sysctl_tree;
302
303
sbintime_t next_steer; /* Time of next steer */
304
sbintime_t steer_interval; /* How often do we steer? */
305
sbintime_t lolat;
306
sbintime_t hilat;
307
int alpha;
308
control_type type; /* What type of control? */
309
int last_count; /* Last I/O count */
310
311
struct cam_iosched_softc *softc;
312
};
313
314
#endif
315
316
struct cam_iosched_softc {
317
struct bio_queue_head bio_queue;
318
struct bio_queue_head trim_queue;
319
const struct disk *disk;
320
cam_iosched_schedule_t schedfnc;
321
/* scheduler flags < 16, user flags >= 16 */
322
uint32_t flags;
323
int sort_io_queue;
324
int trim_goal; /* # of trims to queue before sending */
325
int trim_ticks; /* Max ticks to hold trims */
326
int last_trim_tick; /* Last 'tick' time ld a trim */
327
int queued_trims; /* Number of trims in the queue */
328
#ifdef CAM_IOSCHED_DYNAMIC
329
int read_bias; /* Read bias setting */
330
int current_read_bias; /* Current read bias state */
331
int total_ticks;
332
int load; /* EMA of 'load average' of disk / 2^16 */
333
334
struct bio_queue_head write_queue;
335
struct iop_stats read_stats, write_stats, trim_stats;
336
struct sysctl_ctx_list sysctl_ctx;
337
struct sysctl_oid *sysctl_tree;
338
339
int quanta; /* Number of quanta per second */
340
struct callout ticker; /* Callout for our quota system */
341
struct cam_periph *periph; /* cam periph associated with this device */
342
uint32_t this_frac; /* Fraction of a second (1024ths) for this tick */
343
sbintime_t last_time; /* Last time we ticked */
344
struct control_loop cl;
345
sbintime_t max_lat; /* when != 0, if iop latency > max_lat, call max_lat_fcn */
346
cam_iosched_latfcn_t latfcn;
347
void *latarg;
348
#endif
349
};
350
351
#ifdef CAM_IOSCHED_DYNAMIC
352
/*
353
* helper functions to call the limsw functions.
354
*/
355
static int
356
cam_iosched_limiter_init(struct iop_stats *ios)
357
{
358
int lim = ios->limiter;
359
360
/* maybe this should be a kassert */
361
if (lim < none || lim >= limiter_max)
362
return EINVAL;
363
364
if (limsw[lim].l_init)
365
return limsw[lim].l_init(ios);
366
367
return 0;
368
}
369
370
static int
371
cam_iosched_limiter_tick(struct iop_stats *ios)
372
{
373
int lim = ios->limiter;
374
375
/* maybe this should be a kassert */
376
if (lim < none || lim >= limiter_max)
377
return EINVAL;
378
379
if (limsw[lim].l_tick)
380
return limsw[lim].l_tick(ios);
381
382
return 0;
383
}
384
385
static int
386
cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
387
{
388
int lim = ios->limiter;
389
390
/* maybe this should be a kassert */
391
if (lim < none || lim >= limiter_max)
392
return EINVAL;
393
394
if (limsw[lim].l_iop)
395
return limsw[lim].l_iop(ios, bp);
396
397
return 0;
398
}
399
400
static int
401
cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
402
{
403
int lim = ios->limiter;
404
405
/* maybe this should be a kassert */
406
if (lim < none || lim >= limiter_max)
407
return EINVAL;
408
409
if (limsw[lim].l_caniop)
410
return limsw[lim].l_caniop(ios, bp);
411
412
return 0;
413
}
414
415
static int
416
cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
417
{
418
int lim = ios->limiter;
419
420
/* maybe this should be a kassert */
421
if (lim < none || lim >= limiter_max)
422
return 0;
423
424
if (limsw[lim].l_iodone)
425
return limsw[lim].l_iodone(ios, bp);
426
427
return 0;
428
}
429
430
/*
431
* Functions to implement the different kinds of limiters
432
*/
433
434
static int
435
cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
436
{
437
438
if (ios->current <= 0 || ios->pending < ios->current)
439
return 0;
440
441
return EAGAIN;
442
}
443
444
static int
445
cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
446
{
447
448
if (ios->current <= 0 || ios->pending < ios->current)
449
return 0;
450
451
return EAGAIN;
452
}
453
454
static int
455
cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
456
{
457
458
if (ios->current <= 0 || ios->pending != ios->current)
459
return 0;
460
461
return 1;
462
}
463
464
static int
465
cam_iosched_iops_init(struct iop_stats *ios)
466
{
467
468
ios->l_value1 = ios->current / ios->softc->quanta;
469
if (ios->l_value1 <= 0)
470
ios->l_value1 = 1;
471
ios->l_value2 = 0;
472
473
return 0;
474
}
475
476
static int
477
cam_iosched_iops_tick(struct iop_stats *ios)
478
{
479
int new_ios;
480
481
/*
482
* Allow at least one IO per tick until all
483
* the IOs for this interval have been spent.
484
*/
485
new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
486
if (new_ios < 1 && ios->l_value2 < ios->current) {
487
new_ios = 1;
488
ios->l_value2++;
489
}
490
491
/*
492
* If this a new accounting interval, discard any "unspent" ios
493
* granted in the previous interval. Otherwise add the new ios to
494
* the previously granted ones that haven't been spent yet.
495
*/
496
if ((ios->softc->total_ticks % ios->softc->quanta) == 0) {
497
ios->l_value1 = new_ios;
498
ios->l_value2 = 1;
499
} else {
500
ios->l_value1 += new_ios;
501
}
502
503
return 0;
504
}
505
506
static int
507
cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
508
{
509
510
/*
511
* So if we have any more IOPs left, allow it,
512
* otherwise wait. If current iops is 0, treat that
513
* as unlimited as a failsafe.
514
*/
515
if (ios->current > 0 && ios->l_value1 <= 0)
516
return EAGAIN;
517
return 0;
518
}
519
520
static int
521
cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
522
{
523
int rv;
524
525
rv = cam_iosched_limiter_caniop(ios, bp);
526
if (rv == 0)
527
ios->l_value1--;
528
529
return rv;
530
}
531
532
static int
533
cam_iosched_bw_init(struct iop_stats *ios)
534
{
535
536
/* ios->current is in kB/s, so scale to bytes */
537
ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
538
539
return 0;
540
}
541
542
static int
543
cam_iosched_bw_tick(struct iop_stats *ios)
544
{
545
int bw;
546
547
/*
548
* If we're in the hole for available quota from
549
* the last time, then add the quantum for this.
550
* If we have any left over from last quantum,
551
* then too bad, that's lost. Also, ios->current
552
* is in kB/s, so scale.
553
*
554
* We also allow up to 4 quanta of credits to
555
* accumulate to deal with burstiness. 4 is extremely
556
* arbitrary.
557
*/
558
bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
559
if (ios->l_value1 < bw * 4)
560
ios->l_value1 += bw;
561
562
return 0;
563
}
564
565
static int
566
cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
567
{
568
/*
569
* So if we have any more bw quota left, allow it,
570
* otherwise wait. Note, we'll go negative and that's
571
* OK. We'll just get a little less next quota.
572
*
573
* Note on going negative: that allows us to process
574
* requests in order better, since we won't allow
575
* shorter reads to get around the long one that we
576
* don't have the quota to do just yet. It also prevents
577
* starvation by being a little more permissive about
578
* what we let through this quantum (to prevent the
579
* starvation), at the cost of getting a little less
580
* next quantum.
581
*
582
* Also note that if the current limit is <= 0,
583
* we treat it as unlimited as a failsafe.
584
*/
585
if (ios->current > 0 && ios->l_value1 <= 0)
586
return EAGAIN;
587
588
return 0;
589
}
590
591
static int
592
cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
593
{
594
int rv;
595
596
rv = cam_iosched_limiter_caniop(ios, bp);
597
if (rv == 0)
598
ios->l_value1 -= bp->bio_length;
599
600
return rv;
601
}
602
603
static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
604
605
static void
606
cam_iosched_ticker(void *arg)
607
{
608
struct cam_iosched_softc *isc = arg;
609
sbintime_t now, delta;
610
int pending;
611
612
callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
613
614
now = sbinuptime();
615
delta = now - isc->last_time;
616
isc->this_frac = (uint32_t)delta >> 16; /* Note: discards seconds -- should be 0 harmless if not */
617
isc->last_time = now;
618
619
cam_iosched_cl_maybe_steer(&isc->cl);
620
621
cam_iosched_limiter_tick(&isc->read_stats);
622
cam_iosched_limiter_tick(&isc->write_stats);
623
cam_iosched_limiter_tick(&isc->trim_stats);
624
625
isc->schedfnc(isc->periph);
626
627
/*
628
* isc->load is an EMA of the pending I/Os at each tick. The number of
629
* pending I/Os is the sum of the I/Os queued to the hardware, and those
630
* in the software queue that could be queued to the hardware if there
631
* were slots.
632
*
633
* ios_stats.pending is a count of requests in the SIM right now for
634
* each of these types of I/O. So the total pending count is the sum of
635
* these I/Os and the sum of the queued I/Os still in the software queue
636
* for those operations that aren't being rate limited at the moment.
637
*
638
* The reason for the rate limiting bit is because those I/Os
639
* aren't part of the software queued load (since we could
640
* give them to hardware, but choose not to).
641
*
642
* Note: due to a bug in counting pending TRIM in the device, we
643
* don't include them in this count. We count each BIO_DELETE in
644
* the pending count, but the periph drivers collapse them down
645
* into one TRIM command. That one trim command gets the completion
646
* so the counts get off.
647
*/
648
pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
649
pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
650
!!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
651
!!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
652
pending <<= 16;
653
pending /= isc->periph->path->device->ccbq.total_openings;
654
655
isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
656
657
isc->total_ticks++;
658
}
659
660
static void
661
cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
662
{
663
664
clp->next_steer = sbinuptime();
665
clp->softc = isc;
666
clp->steer_interval = SBT_1S * 5; /* Let's start out steering every 5s */
667
clp->lolat = 5 * SBT_1MS;
668
clp->hilat = 15 * SBT_1MS;
669
clp->alpha = 20; /* Alpha == gain. 20 = .2 */
670
clp->type = set_max;
671
}
672
673
static void
674
cam_iosched_cl_maybe_steer(struct control_loop *clp)
675
{
676
struct cam_iosched_softc *isc;
677
sbintime_t now, lat;
678
int old;
679
680
isc = clp->softc;
681
now = isc->last_time;
682
if (now < clp->next_steer)
683
return;
684
685
clp->next_steer = now + clp->steer_interval;
686
switch (clp->type) {
687
case set_max:
688
if (isc->write_stats.current != isc->write_stats.max)
689
printf("Steering write from %d kBps to %d kBps\n",
690
isc->write_stats.current, isc->write_stats.max);
691
isc->read_stats.current = isc->read_stats.max;
692
isc->write_stats.current = isc->write_stats.max;
693
isc->trim_stats.current = isc->trim_stats.max;
694
break;
695
case read_latency:
696
old = isc->write_stats.current;
697
lat = isc->read_stats.ema;
698
/*
699
* Simple PLL-like engine. Since we're steering to a range for
700
* the SP (set point) that makes things a little more
701
* complicated. In addition, we're not directly controlling our
702
* PV (process variable), the read latency, but instead are
703
* manipulating the write bandwidth limit for our MV
704
* (manipulation variable), analysis of this code gets a bit
705
* messy. Also, the MV is a very noisy control surface for read
706
* latency since it is affected by many hidden processes inside
707
* the device which change how responsive read latency will be
708
* in reaction to changes in write bandwidth. Unlike the classic
709
* boiler control PLL. this may result in over-steering while
710
* the SSD takes its time to react to the new, lower load. This
711
* is why we use a relatively low alpha of between .1 and .25 to
712
* compensate for this effect. At .1, it takes ~22 steering
713
* intervals to back off by a factor of 10. At .2 it only takes
714
* ~10. At .25 it only takes ~8. However some preliminary data
715
* from the SSD drives suggests a reasponse time in 10's of
716
* seconds before latency drops regardless of the new write
717
* rate. Careful observation will be required to tune this
718
* effectively.
719
*
720
* Also, when there's no read traffic, we jack up the write
721
* limit too regardless of the last read latency. 10 is
722
* somewhat arbitrary.
723
*/
724
if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
725
isc->write_stats.current = isc->write_stats.current *
726
(100 + clp->alpha) / 100; /* Scale up */
727
else if (lat > clp->hilat)
728
isc->write_stats.current = isc->write_stats.current *
729
(100 - clp->alpha) / 100; /* Scale down */
730
clp->last_count = isc->read_stats.total;
731
732
/*
733
* Even if we don't steer, per se, enforce the min/max limits as
734
* those may have changed.
735
*/
736
if (isc->write_stats.current < isc->write_stats.min)
737
isc->write_stats.current = isc->write_stats.min;
738
if (isc->write_stats.current > isc->write_stats.max)
739
isc->write_stats.current = isc->write_stats.max;
740
if (old != isc->write_stats.current && iosched_debug)
741
printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
742
old, isc->write_stats.current,
743
(uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
744
break;
745
case cl_max:
746
break;
747
}
748
}
749
#endif
750
751
/*
752
* Trim or similar currently pending completion. Should only be set for
753
* those drivers wishing only one Trim active at a time.
754
*/
755
#define CAM_IOSCHED_FLAG_TRIM_ACTIVE (1ul << 0)
756
/* Callout active, and needs to be torn down */
757
#define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
758
759
/* Periph drivers set these flags to indicate work */
760
#define CAM_IOSCHED_FLAG_WORK_FLAGS ((0xffffu) << 16)
761
762
#ifdef CAM_IOSCHED_DYNAMIC
763
static void
764
cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
765
sbintime_t sim_latency, const struct bio *bp);
766
#endif
767
768
static inline bool
769
cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
770
{
771
return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
772
}
773
774
static inline bool
775
cam_iosched_has_io(struct cam_iosched_softc *isc)
776
{
777
#ifdef CAM_IOSCHED_DYNAMIC
778
if (do_dynamic_iosched) {
779
struct bio *rbp = bioq_first(&isc->bio_queue);
780
struct bio *wbp = bioq_first(&isc->write_queue);
781
bool can_write = wbp != NULL &&
782
cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
783
bool can_read = rbp != NULL &&
784
cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
785
if (iosched_debug > 2) {
786
printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
787
printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
788
printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
789
}
790
return can_read || can_write;
791
}
792
#endif
793
return bioq_first(&isc->bio_queue) != NULL;
794
}
795
796
static inline bool
797
cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
798
{
799
struct bio *bp;
800
801
bp = bioq_first(&isc->trim_queue);
802
#ifdef CAM_IOSCHED_DYNAMIC
803
if (do_dynamic_iosched) {
804
/*
805
* If we're limiting trims, then defer action on trims
806
* for a bit.
807
*/
808
if (bp == NULL || cam_iosched_limiter_caniop(&isc->trim_stats, bp) != 0)
809
return false;
810
}
811
#endif
812
813
/*
814
* If we've set a trim_goal, then if we exceed that allow trims
815
* to be passed back to the driver. If we've also set a tick timeout
816
* allow trims back to the driver. Otherwise, don't allow trims yet.
817
*/
818
if (isc->trim_goal > 0) {
819
if (isc->queued_trims >= isc->trim_goal)
820
return true;
821
if (isc->queued_trims > 0 &&
822
isc->trim_ticks > 0 &&
823
ticks - isc->last_trim_tick > isc->trim_ticks)
824
return true;
825
return false;
826
}
827
828
/* NB: Should perhaps have a max trim active independent of I/O limiters */
829
return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) && bp != NULL;
830
}
831
832
#define cam_iosched_sort_queue(isc) ((isc)->sort_io_queue >= 0 ? \
833
(isc)->sort_io_queue : cam_sort_io_queues)
834
835
static inline bool
836
cam_iosched_has_work(struct cam_iosched_softc *isc)
837
{
838
#ifdef CAM_IOSCHED_DYNAMIC
839
if (iosched_debug > 2)
840
printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
841
cam_iosched_has_more_trim(isc),
842
cam_iosched_has_flagged_work(isc));
843
#endif
844
845
return cam_iosched_has_io(isc) ||
846
cam_iosched_has_more_trim(isc) ||
847
cam_iosched_has_flagged_work(isc);
848
}
849
850
#ifdef CAM_IOSCHED_DYNAMIC
851
static void
852
cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
853
{
854
855
ios->limiter = none;
856
ios->in = 0;
857
ios->max = ios->current = 300000;
858
ios->min = 1;
859
ios->out = 0;
860
ios->errs = 0;
861
ios->pending = 0;
862
ios->queued = 0;
863
ios->total = 0;
864
ios->ema = 0;
865
ios->emvar = 0;
866
ios->bad_latency = SBT_1S / 2; /* Default to 500ms */
867
ios->softc = isc;
868
cam_iosched_limiter_init(ios);
869
}
870
871
static int
872
cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
873
{
874
char buf[16];
875
struct iop_stats *ios;
876
struct cam_iosched_softc *isc;
877
int value, i, error;
878
const char *p;
879
880
ios = arg1;
881
isc = ios->softc;
882
value = ios->limiter;
883
if (value < none || value >= limiter_max)
884
p = "UNKNOWN";
885
else
886
p = cam_iosched_limiter_names[value];
887
888
strlcpy(buf, p, sizeof(buf));
889
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
890
if (error != 0 || req->newptr == NULL)
891
return error;
892
893
cam_periph_lock(isc->periph);
894
895
for (i = none; i < limiter_max; i++) {
896
if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
897
continue;
898
ios->limiter = i;
899
error = cam_iosched_limiter_init(ios);
900
if (error != 0) {
901
ios->limiter = value;
902
cam_periph_unlock(isc->periph);
903
return error;
904
}
905
/* Note: disk load averate requires ticker to be always running */
906
callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
907
isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
908
909
cam_periph_unlock(isc->periph);
910
return 0;
911
}
912
913
cam_periph_unlock(isc->periph);
914
return EINVAL;
915
}
916
917
static int
918
cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
919
{
920
char buf[16];
921
struct control_loop *clp;
922
struct cam_iosched_softc *isc;
923
int value, i, error;
924
const char *p;
925
926
clp = arg1;
927
isc = clp->softc;
928
value = clp->type;
929
if (value < none || value >= cl_max)
930
p = "UNKNOWN";
931
else
932
p = cam_iosched_control_type_names[value];
933
934
strlcpy(buf, p, sizeof(buf));
935
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
936
if (error != 0 || req->newptr == NULL)
937
return error;
938
939
for (i = set_max; i < cl_max; i++) {
940
if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
941
continue;
942
cam_periph_lock(isc->periph);
943
clp->type = i;
944
cam_periph_unlock(isc->periph);
945
return 0;
946
}
947
948
return EINVAL;
949
}
950
951
static int
952
cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
953
{
954
char buf[16];
955
sbintime_t value;
956
int error;
957
uint64_t us;
958
959
value = *(sbintime_t *)arg1;
960
us = (uint64_t)value / SBT_1US;
961
snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
962
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
963
if (error != 0 || req->newptr == NULL)
964
return error;
965
us = strtoul(buf, NULL, 10);
966
if (us == 0)
967
return EINVAL;
968
*(sbintime_t *)arg1 = us * SBT_1US;
969
return 0;
970
}
971
972
static int
973
cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
974
{
975
int i, error;
976
struct sbuf sb;
977
uint64_t *latencies;
978
979
latencies = arg1;
980
sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
981
982
for (i = 0; i < LAT_BUCKETS - 1; i++)
983
sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
984
sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
985
error = sbuf_finish(&sb);
986
sbuf_delete(&sb);
987
988
return (error);
989
}
990
991
static int
992
cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)
993
{
994
int *quanta;
995
int error, value;
996
997
quanta = (unsigned *)arg1;
998
value = *quanta;
999
1000
error = sysctl_handle_int(oidp, (int *)&value, 0, req);
1001
if ((error != 0) || (req->newptr == NULL))
1002
return (error);
1003
1004
if (value < 1 || value > hz)
1005
return (EINVAL);
1006
1007
*quanta = value;
1008
1009
return (0);
1010
}
1011
1012
static void
1013
cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
1014
{
1015
struct sysctl_oid_list *n;
1016
struct sysctl_ctx_list *ctx;
1017
1018
ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1019
SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
1020
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, name);
1021
n = SYSCTL_CHILDREN(ios->sysctl_tree);
1022
ctx = &ios->sysctl_ctx;
1023
1024
SYSCTL_ADD_UQUAD(ctx, n,
1025
OID_AUTO, "ema", CTLFLAG_RD,
1026
&ios->ema,
1027
"Fast Exponentially Weighted Moving Average");
1028
SYSCTL_ADD_UQUAD(ctx, n,
1029
OID_AUTO, "emvar", CTLFLAG_RD,
1030
&ios->emvar,
1031
"Fast Exponentially Weighted Moving Variance");
1032
1033
SYSCTL_ADD_INT(ctx, n,
1034
OID_AUTO, "pending", CTLFLAG_RD,
1035
&ios->pending, 0,
1036
"Instantaneous # of pending transactions");
1037
SYSCTL_ADD_INT(ctx, n,
1038
OID_AUTO, "count", CTLFLAG_RD,
1039
&ios->total, 0,
1040
"# of transactions submitted to hardware");
1041
SYSCTL_ADD_INT(ctx, n,
1042
OID_AUTO, "queued", CTLFLAG_RD,
1043
&ios->queued, 0,
1044
"# of transactions in the queue");
1045
SYSCTL_ADD_INT(ctx, n,
1046
OID_AUTO, "in", CTLFLAG_RD,
1047
&ios->in, 0,
1048
"# of transactions queued to driver");
1049
SYSCTL_ADD_INT(ctx, n,
1050
OID_AUTO, "out", CTLFLAG_RD,
1051
&ios->out, 0,
1052
"# of transactions completed (including with error)");
1053
SYSCTL_ADD_INT(ctx, n,
1054
OID_AUTO, "errs", CTLFLAG_RD,
1055
&ios->errs, 0,
1056
"# of transactions completed with an error");
1057
SYSCTL_ADD_U64(ctx, n,
1058
OID_AUTO, "too_long", CTLFLAG_RD,
1059
&ios->too_long, 0,
1060
"# of transactions completed took too long");
1061
SYSCTL_ADD_PROC(ctx, n,
1062
OID_AUTO, "bad_latency",
1063
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1064
&ios->bad_latency, 0, cam_iosched_sbintime_sysctl, "A",
1065
"Threshold for counting transactions that took too long (in us)");
1066
1067
SYSCTL_ADD_PROC(ctx, n,
1068
OID_AUTO, "limiter",
1069
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1070
ios, 0, cam_iosched_limiter_sysctl, "A",
1071
"Current limiting type.");
1072
SYSCTL_ADD_INT(ctx, n,
1073
OID_AUTO, "min", CTLFLAG_RW,
1074
&ios->min, 0,
1075
"min resource");
1076
SYSCTL_ADD_INT(ctx, n,
1077
OID_AUTO, "max", CTLFLAG_RW,
1078
&ios->max, 0,
1079
"max resource");
1080
SYSCTL_ADD_INT(ctx, n,
1081
OID_AUTO, "current", CTLFLAG_RW,
1082
&ios->current, 0,
1083
"current resource");
1084
1085
SYSCTL_ADD_PROC(ctx, n,
1086
OID_AUTO, "latencies",
1087
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1088
&ios->latencies, 0,
1089
cam_iosched_sysctl_latencies, "A",
1090
"Array of latencies, a geometric progresson from\n"
1091
"kern.cam.iosched.bucket_base_us with a ratio of\n"
1092
"kern.cam.iosched.bucket_ration / 100 from one to\n"
1093
"the next. By default 20 steps from 20us to 10.485s\n"
1094
"by doubling.");
1095
1096
}
1097
1098
static void
1099
cam_iosched_iop_stats_fini(struct iop_stats *ios)
1100
{
1101
if (ios->sysctl_tree)
1102
if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
1103
printf("can't remove iosched sysctl stats context\n");
1104
}
1105
1106
static void
1107
cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
1108
{
1109
struct sysctl_oid_list *n;
1110
struct sysctl_ctx_list *ctx;
1111
struct control_loop *clp;
1112
1113
clp = &isc->cl;
1114
clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1115
SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
1116
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Control loop info");
1117
n = SYSCTL_CHILDREN(clp->sysctl_tree);
1118
ctx = &clp->sysctl_ctx;
1119
1120
SYSCTL_ADD_PROC(ctx, n,
1121
OID_AUTO, "type",
1122
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1123
clp, 0, cam_iosched_control_type_sysctl, "A",
1124
"Control loop algorithm");
1125
SYSCTL_ADD_PROC(ctx, n,
1126
OID_AUTO, "steer_interval",
1127
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1128
&clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
1129
"How often to steer (in us)");
1130
SYSCTL_ADD_PROC(ctx, n,
1131
OID_AUTO, "lolat",
1132
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1133
&clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
1134
"Low water mark for Latency (in us)");
1135
SYSCTL_ADD_PROC(ctx, n,
1136
OID_AUTO, "hilat",
1137
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1138
&clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
1139
"Hi water mark for Latency (in us)");
1140
SYSCTL_ADD_INT(ctx, n,
1141
OID_AUTO, "alpha", CTLFLAG_RW,
1142
&clp->alpha, 0,
1143
"Alpha for PLL (x100) aka gain");
1144
}
1145
1146
static void
1147
cam_iosched_cl_sysctl_fini(struct control_loop *clp)
1148
{
1149
if (clp->sysctl_tree)
1150
if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
1151
printf("can't remove iosched sysctl control loop context\n");
1152
}
1153
#endif
1154
1155
/*
1156
* Allocate the iosched structure. This also insulates callers from knowing
1157
* sizeof struct cam_iosched_softc.
1158
*/
1159
int
1160
cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph,
1161
const struct disk *dp, cam_iosched_schedule_t schedfnc)
1162
{
1163
struct cam_iosched_softc *isc;
1164
1165
isc = malloc(sizeof(*isc), M_CAMSCHED, M_NOWAIT | M_ZERO);
1166
if (isc == NULL)
1167
return ENOMEM;
1168
isc->disk = dp;
1169
isc->schedfnc = schedfnc;
1170
#ifdef CAM_IOSCHED_DYNAMIC
1171
if (iosched_debug)
1172
printf("CAM IOSCHEDULER Allocating entry at %p\n", isc);
1173
#endif
1174
isc->sort_io_queue = -1;
1175
bioq_init(&isc->bio_queue);
1176
bioq_init(&isc->trim_queue);
1177
#ifdef CAM_IOSCHED_DYNAMIC
1178
if (do_dynamic_iosched) {
1179
bioq_init(&isc->write_queue);
1180
isc->read_bias = default_read_bias;
1181
isc->current_read_bias = 0;
1182
isc->quanta = min(hz, 200);
1183
cam_iosched_iop_stats_init(isc, &isc->read_stats);
1184
cam_iosched_iop_stats_init(isc, &isc->write_stats);
1185
cam_iosched_iop_stats_init(isc, &isc->trim_stats);
1186
isc->trim_stats.max = 1; /* Trims are special: one at a time for now */
1187
isc->last_time = sbinuptime();
1188
callout_init_mtx(&isc->ticker, cam_periph_mtx(periph), 0);
1189
isc->periph = periph;
1190
cam_iosched_cl_init(&isc->cl, isc);
1191
callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
1192
isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1193
}
1194
#endif
1195
*iscp = isc;
1196
1197
return 0;
1198
}
1199
1200
/*
1201
* Reclaim all used resources. This assumes that other folks have
1202
* drained the requests in the hardware. Maybe an unwise assumption.
1203
*/
1204
void
1205
cam_iosched_fini(struct cam_iosched_softc *isc)
1206
{
1207
if (isc) {
1208
cam_iosched_flush(isc, NULL, ENXIO);
1209
#ifdef CAM_IOSCHED_DYNAMIC
1210
cam_iosched_iop_stats_fini(&isc->read_stats);
1211
cam_iosched_iop_stats_fini(&isc->write_stats);
1212
cam_iosched_iop_stats_fini(&isc->trim_stats);
1213
cam_iosched_cl_sysctl_fini(&isc->cl);
1214
if (isc->sysctl_tree)
1215
if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
1216
printf("can't remove iosched sysctl stats context\n");
1217
if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
1218
callout_drain(&isc->ticker);
1219
isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1220
}
1221
#endif
1222
free(isc, M_CAMSCHED);
1223
}
1224
}
1225
1226
/*
1227
* After we're sure we're attaching a device, go ahead and add
1228
* hooks for any sysctl we may wish to honor.
1229
*/
1230
void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
1231
struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
1232
{
1233
struct sysctl_oid_list *n;
1234
1235
n = SYSCTL_CHILDREN(node);
1236
SYSCTL_ADD_INT(ctx, n,
1237
OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
1238
&isc->sort_io_queue, 0,
1239
"Sort IO queue to try and optimise disk access patterns");
1240
SYSCTL_ADD_INT(ctx, n,
1241
OID_AUTO, "trim_goal", CTLFLAG_RW,
1242
&isc->trim_goal, 0,
1243
"Number of trims to try to accumulate before sending to hardware");
1244
SYSCTL_ADD_INT(ctx, n,
1245
OID_AUTO, "trim_ticks", CTLFLAG_RW,
1246
&isc->trim_goal, 0,
1247
"IO Schedul qaunta to hold back trims for when accumulating");
1248
1249
#ifdef CAM_IOSCHED_DYNAMIC
1250
if (!do_dynamic_iosched)
1251
return;
1252
1253
isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1254
SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
1255
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "I/O scheduler statistics");
1256
n = SYSCTL_CHILDREN(isc->sysctl_tree);
1257
ctx = &isc->sysctl_ctx;
1258
1259
cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
1260
cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
1261
cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
1262
cam_iosched_cl_sysctl_init(isc);
1263
1264
SYSCTL_ADD_INT(ctx, n,
1265
OID_AUTO, "read_bias", CTLFLAG_RW,
1266
&isc->read_bias, default_read_bias,
1267
"How biased towards read should we be independent of limits");
1268
1269
SYSCTL_ADD_PROC(ctx, n,
1270
OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1271
&isc->quanta, 0, cam_iosched_quanta_sysctl, "I",
1272
"How many quanta per second do we slice the I/O up into");
1273
1274
SYSCTL_ADD_INT(ctx, n,
1275
OID_AUTO, "total_ticks", CTLFLAG_RD,
1276
&isc->total_ticks, 0,
1277
"Total number of ticks we've done");
1278
1279
SYSCTL_ADD_INT(ctx, n,
1280
OID_AUTO, "load", CTLFLAG_RD,
1281
&isc->load, 0,
1282
"scaled load average / 100");
1283
1284
SYSCTL_ADD_U64(ctx, n,
1285
OID_AUTO, "latency_trigger", CTLFLAG_RW,
1286
&isc->max_lat, 0,
1287
"Latency treshold to trigger callbacks");
1288
#endif
1289
}
1290
1291
void
1292
cam_iosched_set_latfcn(struct cam_iosched_softc *isc,
1293
cam_iosched_latfcn_t fnp, void *argp)
1294
{
1295
#ifdef CAM_IOSCHED_DYNAMIC
1296
isc->latfcn = fnp;
1297
isc->latarg = argp;
1298
#endif
1299
}
1300
1301
/*
1302
* Client drivers can set two parameters. "goal" is the number of BIO_DELETEs
1303
* that will be queued up before iosched will "release" the trims to the client
1304
* driver to wo with what they will (usually combine as many as possible). If we
1305
* don't get this many, after trim_ticks we'll submit the I/O anyway with
1306
* whatever we have. We do need an I/O of some kind of to clock the deferred
1307
* trims out to disk. Since we will eventually get a write for the super block
1308
* or something before we shutdown, the trims will complete. To be safe, when a
1309
* BIO_FLUSH is presented to the iosched work queue, we set the ticks time far
1310
* enough in the past so we'll present the BIO_DELETEs to the client driver.
1311
* There might be a race if no BIO_DELETESs were queued, a BIO_FLUSH comes in
1312
* and then a BIO_DELETE is sent down. No know client does this, and there's
1313
* already a race between an ordered BIO_FLUSH and any BIO_DELETEs in flight,
1314
* but no client depends on the ordering being honored.
1315
*
1316
* XXX I'm not sure what the interaction between UFS direct BIOs and the BUF
1317
* flushing on shutdown. I think there's bufs that would be dependent on the BIO
1318
* finishing to write out at least metadata, so we'll be fine. To be safe, keep
1319
* the number of ticks low (less than maybe 10s) to avoid shutdown races.
1320
*/
1321
1322
void
1323
cam_iosched_set_trim_goal(struct cam_iosched_softc *isc, int goal)
1324
{
1325
1326
isc->trim_goal = goal;
1327
}
1328
1329
void
1330
cam_iosched_set_trim_ticks(struct cam_iosched_softc *isc, int trim_ticks)
1331
{
1332
1333
isc->trim_ticks = trim_ticks;
1334
}
1335
1336
/*
1337
* Flush outstanding I/O. Consumers of this library don't know all the
1338
* queues we may keep, so this allows all I/O to be flushed in one
1339
* convenient call.
1340
*/
1341
void
1342
cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
1343
{
1344
bioq_flush(&isc->bio_queue, stp, err);
1345
bioq_flush(&isc->trim_queue, stp, err);
1346
#ifdef CAM_IOSCHED_DYNAMIC
1347
if (do_dynamic_iosched)
1348
bioq_flush(&isc->write_queue, stp, err);
1349
#endif
1350
}
1351
1352
#ifdef CAM_IOSCHED_DYNAMIC
1353
static struct bio *
1354
cam_iosched_get_write(struct cam_iosched_softc *isc)
1355
{
1356
struct bio *bp;
1357
1358
/*
1359
* We control the write rate by controlling how many requests we send
1360
* down to the drive at any one time. Fewer requests limits the
1361
* effects of both starvation when the requests take a while and write
1362
* amplification when each request is causing more than one write to
1363
* the NAND media. Limiting the queue depth like this will also limit
1364
* the write throughput and give and reads that want to compete to
1365
* compete unfairly.
1366
*/
1367
bp = bioq_first(&isc->write_queue);
1368
if (bp == NULL) {
1369
if (iosched_debug > 3)
1370
printf("No writes present in write_queue\n");
1371
return NULL;
1372
}
1373
1374
/*
1375
* If pending read, prefer that based on current read bias
1376
* setting.
1377
*/
1378
if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1379
if (iosched_debug)
1380
printf(
1381
"Reads present and current_read_bias is %d queued writes %d queued reads %d\n",
1382
isc->current_read_bias, isc->write_stats.queued,
1383
isc->read_stats.queued);
1384
isc->current_read_bias--;
1385
/* We're not limiting writes, per se, just doing reads first */
1386
return NULL;
1387
}
1388
1389
/*
1390
* See if our current limiter allows this I/O.
1391
*/
1392
if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1393
if (iosched_debug)
1394
printf("Can't write because limiter says no.\n");
1395
isc->write_stats.state_flags |= IOP_RATE_LIMITED;
1396
return NULL;
1397
}
1398
1399
/*
1400
* Let's do this: We've passed all the gates and we're a go
1401
* to schedule the I/O in the SIM.
1402
*/
1403
isc->current_read_bias = isc->read_bias;
1404
bioq_remove(&isc->write_queue, bp);
1405
if (bp->bio_cmd == BIO_WRITE) {
1406
isc->write_stats.queued--;
1407
isc->write_stats.total++;
1408
isc->write_stats.pending++;
1409
}
1410
if (iosched_debug > 9)
1411
printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1412
isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
1413
return bp;
1414
}
1415
#endif
1416
1417
/*
1418
* Put back a trim that you weren't able to actually schedule this time.
1419
*/
1420
void
1421
cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
1422
{
1423
bioq_insert_head(&isc->trim_queue, bp);
1424
if (isc->queued_trims == 0)
1425
isc->last_trim_tick = ticks;
1426
isc->queued_trims++;
1427
#ifdef CAM_IOSCHED_DYNAMIC
1428
isc->trim_stats.queued++;
1429
isc->trim_stats.total--; /* since we put it back, don't double count */
1430
isc->trim_stats.pending--;
1431
#endif
1432
}
1433
1434
/*
1435
* gets the next trim from the trim queue.
1436
*
1437
* Assumes we're called with the periph lock held. It removes this
1438
* trim from the queue and the device must explicitly reinsert it
1439
* should the need arise.
1440
*/
1441
struct bio *
1442
cam_iosched_next_trim(struct cam_iosched_softc *isc)
1443
{
1444
struct bio *bp;
1445
1446
bp = bioq_first(&isc->trim_queue);
1447
if (bp == NULL)
1448
return NULL;
1449
bioq_remove(&isc->trim_queue, bp);
1450
isc->queued_trims--;
1451
isc->last_trim_tick = ticks; /* Reset the tick timer when we take trims */
1452
#ifdef CAM_IOSCHED_DYNAMIC
1453
isc->trim_stats.queued--;
1454
isc->trim_stats.total++;
1455
isc->trim_stats.pending++;
1456
#endif
1457
return bp;
1458
}
1459
1460
/*
1461
* gets an available trim from the trim queue, if there's no trim
1462
* already pending. It removes this trim from the queue and the device
1463
* must explicitly reinsert it should the need arise.
1464
*
1465
* Assumes we're called with the periph lock held.
1466
*/
1467
struct bio *
1468
cam_iosched_get_trim(struct cam_iosched_softc *isc)
1469
{
1470
#ifdef CAM_IOSCHED_DYNAMIC
1471
struct bio *bp;
1472
#endif
1473
1474
if (!cam_iosched_has_more_trim(isc))
1475
return NULL;
1476
#ifdef CAM_IOSCHED_DYNAMIC
1477
bp = bioq_first(&isc->trim_queue);
1478
if (bp == NULL)
1479
return NULL;
1480
1481
/*
1482
* If pending read, prefer that based on current read bias setting. The
1483
* read bias is shared for both writes and TRIMs, but on TRIMs the bias
1484
* is for a combined TRIM not a single TRIM request that's come in.
1485
*/
1486
if (do_dynamic_iosched) {
1487
if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1488
if (iosched_debug)
1489
printf(
1490
"Reads present and current_read_bias is %d queued trims %d queued reads %d\n",
1491
isc->current_read_bias, isc->trim_stats.queued,
1492
isc->read_stats.queued);
1493
isc->current_read_bias--;
1494
/* We're not limiting TRIMS, per se, just doing reads first */
1495
return NULL;
1496
}
1497
/*
1498
* We're going to do a trim, so reset the bias.
1499
*/
1500
isc->current_read_bias = isc->read_bias;
1501
}
1502
1503
/*
1504
* See if our current limiter allows this I/O. Because we only call this
1505
* here, and not in next_trim, the 'bandwidth' limits for trims won't
1506
* work, while the iops or max queued limits will work. It's tricky
1507
* because we want the limits to be from the perspective of the
1508
* "commands sent to the device." To make iops work, we need to check
1509
* only here (since we want all the ops we combine to count as one). To
1510
* make bw limits work, we'd need to check in next_trim, but that would
1511
* have the effect of limiting the iops as seen from the upper layers.
1512
*/
1513
if (cam_iosched_limiter_iop(&isc->trim_stats, bp) != 0) {
1514
if (iosched_debug)
1515
printf("Can't trim because limiter says no.\n");
1516
isc->trim_stats.state_flags |= IOP_RATE_LIMITED;
1517
return NULL;
1518
}
1519
isc->current_read_bias = isc->read_bias;
1520
isc->trim_stats.state_flags &= ~IOP_RATE_LIMITED;
1521
/* cam_iosched_next_trim below keeps proper book */
1522
#endif
1523
return cam_iosched_next_trim(isc);
1524
}
1525
1526
1527
#ifdef CAM_IOSCHED_DYNAMIC
1528
static struct bio *
1529
bio_next(struct bio *bp)
1530
{
1531
bp = TAILQ_NEXT(bp, bio_queue);
1532
/*
1533
* After the first commands, the ordered bit terminates
1534
* our search because BIO_ORDERED acts like a barrier.
1535
*/
1536
if (bp == NULL || bp->bio_flags & BIO_ORDERED)
1537
return NULL;
1538
return bp;
1539
}
1540
1541
static bool
1542
cam_iosched_rate_limited(struct iop_stats *ios)
1543
{
1544
return ios->state_flags & IOP_RATE_LIMITED;
1545
}
1546
#endif
1547
1548
/*
1549
* Determine what the next bit of work to do is for the periph. The
1550
* default implementation looks to see if we have trims to do, but no
1551
* trims outstanding. If so, we do that. Otherwise we see if we have
1552
* other work. If we do, then we do that. Otherwise why were we called?
1553
*/
1554
struct bio *
1555
cam_iosched_next_bio(struct cam_iosched_softc *isc)
1556
{
1557
struct bio *bp;
1558
1559
/*
1560
* See if we have a trim that can be scheduled. We can only send one
1561
* at a time down, so this takes that into account.
1562
*
1563
* XXX newer TRIM commands are queueable. Revisit this when we
1564
* implement them.
1565
*/
1566
if ((bp = cam_iosched_get_trim(isc)) != NULL)
1567
return bp;
1568
1569
#ifdef CAM_IOSCHED_DYNAMIC
1570
/*
1571
* See if we have any pending writes, room in the queue for them,
1572
* and no pending reads (unless we've scheduled too many).
1573
* if so, those are next.
1574
*/
1575
if (do_dynamic_iosched) {
1576
if ((bp = cam_iosched_get_write(isc)) != NULL)
1577
return bp;
1578
}
1579
#endif
1580
/*
1581
* next, see if there's other, normal I/O waiting. If so return that.
1582
*/
1583
#ifdef CAM_IOSCHED_DYNAMIC
1584
if (do_dynamic_iosched) {
1585
for (bp = bioq_first(&isc->bio_queue); bp != NULL;
1586
bp = bio_next(bp)) {
1587
/*
1588
* For the dynamic scheduler with a read bias, bio_queue
1589
* is only for reads. However, without one, all
1590
* operations are queued. Enforce limits here for any
1591
* operation we find here.
1592
*/
1593
if (bp->bio_cmd == BIO_READ) {
1594
if (cam_iosched_rate_limited(&isc->read_stats) ||
1595
cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
1596
isc->read_stats.state_flags |= IOP_RATE_LIMITED;
1597
continue;
1598
}
1599
isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
1600
}
1601
/*
1602
* There can only be write requests on the queue when
1603
* the read bias is 0, but we need to process them
1604
* here. We do not assert for read bias == 0, however,
1605
* since it is dynamic and we can have WRITE operations
1606
* in the queue after we transition from 0 to non-zero.
1607
*/
1608
if (bp->bio_cmd == BIO_WRITE) {
1609
if (cam_iosched_rate_limited(&isc->write_stats) ||
1610
cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1611
isc->write_stats.state_flags |= IOP_RATE_LIMITED;
1612
continue;
1613
}
1614
isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
1615
}
1616
/*
1617
* here we know we have a bp that's != NULL, that's not rate limited
1618
* and can be the next I/O.
1619
*/
1620
break;
1621
}
1622
} else
1623
#endif
1624
bp = bioq_first(&isc->bio_queue);
1625
1626
if (bp == NULL)
1627
return (NULL);
1628
bioq_remove(&isc->bio_queue, bp);
1629
#ifdef CAM_IOSCHED_DYNAMIC
1630
if (do_dynamic_iosched) {
1631
if (bp->bio_cmd == BIO_READ) {
1632
isc->read_stats.queued--;
1633
isc->read_stats.total++;
1634
isc->read_stats.pending++;
1635
} else if (bp->bio_cmd == BIO_WRITE) {
1636
isc->write_stats.queued--;
1637
isc->write_stats.total++;
1638
isc->write_stats.pending++;
1639
}
1640
}
1641
if (iosched_debug > 9)
1642
printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1643
#endif
1644
return bp;
1645
}
1646
1647
/*
1648
* Driver has been given some work to do by the block layer. Tell the
1649
* scheduler about it and have it queue the work up. The scheduler module
1650
* will then return the currently most useful bit of work later, possibly
1651
* deferring work for various reasons.
1652
*/
1653
void
1654
cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
1655
{
1656
1657
/*
1658
* A BIO_SPEEDUP from the upper layers means that they have a block
1659
* shortage. At the present, this is only sent when we're trying to
1660
* allocate blocks, but have a shortage before giving up. bio_length is
1661
* the size of their shortage. We will complete just enough BIO_DELETEs
1662
* in the queue to satisfy the need. If bio_length is 0, we'll complete
1663
* them all. This allows the scheduler to delay BIO_DELETEs to improve
1664
* read/write performance without worrying about the upper layers. When
1665
* it's possibly a problem, we respond by pretending the BIO_DELETEs
1666
* just worked. We can't do anything about the BIO_DELETEs in the
1667
* hardware, though. We have to wait for them to complete.
1668
*/
1669
if (bp->bio_cmd == BIO_SPEEDUP) {
1670
off_t len;
1671
struct bio *nbp;
1672
1673
len = 0;
1674
while (bioq_first(&isc->trim_queue) &&
1675
(bp->bio_length == 0 || len < bp->bio_length)) {
1676
nbp = bioq_takefirst(&isc->trim_queue);
1677
len += nbp->bio_length;
1678
nbp->bio_error = 0;
1679
biodone(nbp);
1680
}
1681
if (bp->bio_length > 0) {
1682
if (bp->bio_length > len)
1683
bp->bio_resid = bp->bio_length - len;
1684
else
1685
bp->bio_resid = 0;
1686
}
1687
bp->bio_error = 0;
1688
biodone(bp);
1689
return;
1690
}
1691
1692
/*
1693
* If we get a BIO_FLUSH, and we're doing delayed BIO_DELETEs then we
1694
* set the last tick time to one less than the current ticks minus the
1695
* delay to force the BIO_DELETEs to be presented to the client driver.
1696
*/
1697
if (bp->bio_cmd == BIO_FLUSH && isc->trim_ticks > 0)
1698
isc->last_trim_tick = ticks - isc->trim_ticks - 1;
1699
1700
/*
1701
* Put all trims on the trim queue. Otherwise put the work on the bio
1702
* queue.
1703
*/
1704
if (bp->bio_cmd == BIO_DELETE) {
1705
bioq_insert_tail(&isc->trim_queue, bp);
1706
if (isc->queued_trims == 0)
1707
isc->last_trim_tick = ticks;
1708
isc->queued_trims++;
1709
#ifdef CAM_IOSCHED_DYNAMIC
1710
isc->trim_stats.in++;
1711
isc->trim_stats.queued++;
1712
#endif
1713
}
1714
#ifdef CAM_IOSCHED_DYNAMIC
1715
else if (do_dynamic_iosched && isc->read_bias != 0 &&
1716
(bp->bio_cmd != BIO_READ)) {
1717
if (cam_iosched_sort_queue(isc))
1718
bioq_disksort(&isc->write_queue, bp);
1719
else
1720
bioq_insert_tail(&isc->write_queue, bp);
1721
if (iosched_debug > 9)
1722
printf("Qw : %p %#x\n", bp, bp->bio_cmd);
1723
if (bp->bio_cmd == BIO_WRITE) {
1724
isc->write_stats.in++;
1725
isc->write_stats.queued++;
1726
}
1727
}
1728
#endif
1729
else {
1730
if (cam_iosched_sort_queue(isc))
1731
bioq_disksort(&isc->bio_queue, bp);
1732
else
1733
bioq_insert_tail(&isc->bio_queue, bp);
1734
#ifdef CAM_IOSCHED_DYNAMIC
1735
if (iosched_debug > 9)
1736
printf("Qr : %p %#x\n", bp, bp->bio_cmd);
1737
if (bp->bio_cmd == BIO_READ) {
1738
isc->read_stats.in++;
1739
isc->read_stats.queued++;
1740
} else if (bp->bio_cmd == BIO_WRITE) {
1741
isc->write_stats.in++;
1742
isc->write_stats.queued++;
1743
}
1744
#endif
1745
}
1746
}
1747
1748
/*
1749
* If we have work, get it scheduled. Called with the periph lock held.
1750
*/
1751
void
1752
cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
1753
{
1754
1755
if (cam_iosched_has_work(isc))
1756
xpt_schedule(periph, CAM_PRIORITY_NORMAL);
1757
}
1758
1759
/*
1760
* Complete a trim request. Mark that we no longer have one in flight.
1761
*/
1762
void
1763
cam_iosched_trim_done(struct cam_iosched_softc *isc)
1764
{
1765
1766
isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1767
}
1768
1769
/*
1770
* Complete a bio. Called before we release the ccb with xpt_release_ccb so we
1771
* might use notes in the ccb for statistics.
1772
*/
1773
int
1774
cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
1775
union ccb *done_ccb)
1776
{
1777
int retval = 0;
1778
#ifdef CAM_IOSCHED_DYNAMIC
1779
if (!do_dynamic_iosched)
1780
return retval;
1781
1782
if (iosched_debug > 10)
1783
printf("done: %p %#x\n", bp, bp->bio_cmd);
1784
if (bp->bio_cmd == BIO_WRITE) {
1785
retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
1786
if ((bp->bio_flags & BIO_ERROR) != 0)
1787
isc->write_stats.errs++;
1788
isc->write_stats.out++;
1789
isc->write_stats.pending--;
1790
} else if (bp->bio_cmd == BIO_READ) {
1791
retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
1792
if ((bp->bio_flags & BIO_ERROR) != 0)
1793
isc->read_stats.errs++;
1794
isc->read_stats.out++;
1795
isc->read_stats.pending--;
1796
} else if (bp->bio_cmd == BIO_DELETE) {
1797
if ((bp->bio_flags & BIO_ERROR) != 0)
1798
isc->trim_stats.errs++;
1799
isc->trim_stats.out++;
1800
isc->trim_stats.pending--;
1801
} else if (bp->bio_cmd != BIO_FLUSH) {
1802
if (iosched_debug)
1803
printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
1804
}
1805
1806
if ((bp->bio_flags & BIO_ERROR) == 0 && done_ccb != NULL &&
1807
(done_ccb->ccb_h.status & CAM_QOS_VALID) != 0) {
1808
sbintime_t sim_latency;
1809
1810
sim_latency = cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data);
1811
1812
cam_iosched_io_metric_update(isc, sim_latency, bp);
1813
1814
/*
1815
* Debugging code: allow callbacks to the periph driver when latency max
1816
* is exceeded. This can be useful for triggering external debugging actions.
1817
*/
1818
if (isc->latfcn && isc->max_lat != 0 && sim_latency > isc->max_lat)
1819
isc->latfcn(isc->latarg, sim_latency, bp);
1820
}
1821
#endif
1822
return retval;
1823
}
1824
1825
/*
1826
* Tell the io scheduler that you've pushed a trim down into the sim.
1827
* This also tells the I/O scheduler not to push any more trims down, so
1828
* some periphs do not call it if they can cope with multiple trims in flight.
1829
*/
1830
void
1831
cam_iosched_submit_trim(struct cam_iosched_softc *isc)
1832
{
1833
1834
isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1835
}
1836
1837
/*
1838
* Change the sorting policy hint for I/O transactions for this device.
1839
*/
1840
void
1841
cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
1842
{
1843
1844
isc->sort_io_queue = val;
1845
}
1846
1847
int
1848
cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1849
{
1850
return isc->flags & flags;
1851
}
1852
1853
void
1854
cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1855
{
1856
isc->flags |= flags;
1857
}
1858
1859
void
1860
cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1861
{
1862
isc->flags &= ~flags;
1863
}
1864
1865
#ifdef CAM_IOSCHED_DYNAMIC
1866
/*
1867
* After the method presented in Jack Crenshaw's 1998 article "Integer
1868
* Square Roots," reprinted at
1869
* http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
1870
* and well worth the read. Briefly, we find the power of 4 that's the
1871
* largest smaller than val. We then check each smaller power of 4 to
1872
* see if val is still bigger. The right shifts at each step divide
1873
* the result by 2 which after successive application winds up
1874
* accumulating the right answer. It could also have been accumulated
1875
* using a separate root counter, but this code is smaller and faster
1876
* than that method. This method is also integer size invariant.
1877
* It returns floor(sqrt((float)val)), or the largest integer less than
1878
* or equal to the square root.
1879
*/
1880
static uint64_t
1881
isqrt64(uint64_t val)
1882
{
1883
uint64_t res = 0;
1884
uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
1885
1886
/*
1887
* Find the largest power of 4 smaller than val.
1888
*/
1889
while (bit > val)
1890
bit >>= 2;
1891
1892
/*
1893
* Accumulate the answer, one bit at a time (we keep moving
1894
* them over since 2 is the square root of 4 and we test
1895
* powers of 4). We accumulate where we find the bit, but
1896
* the successive shifts land the bit in the right place
1897
* by the end.
1898
*/
1899
while (bit != 0) {
1900
if (val >= res + bit) {
1901
val -= res + bit;
1902
res = (res >> 1) + bit;
1903
} else
1904
res >>= 1;
1905
bit >>= 2;
1906
}
1907
1908
return res;
1909
}
1910
1911
static sbintime_t latencies[LAT_BUCKETS - 1] = {
1912
BUCKET_BASE << 0, /* 20us */
1913
BUCKET_BASE << 1,
1914
BUCKET_BASE << 2,
1915
BUCKET_BASE << 3,
1916
BUCKET_BASE << 4,
1917
BUCKET_BASE << 5,
1918
BUCKET_BASE << 6,
1919
BUCKET_BASE << 7,
1920
BUCKET_BASE << 8,
1921
BUCKET_BASE << 9,
1922
BUCKET_BASE << 10,
1923
BUCKET_BASE << 11,
1924
BUCKET_BASE << 12,
1925
BUCKET_BASE << 13,
1926
BUCKET_BASE << 14,
1927
BUCKET_BASE << 15,
1928
BUCKET_BASE << 16,
1929
BUCKET_BASE << 17,
1930
BUCKET_BASE << 18 /* 5,242,880us */
1931
};
1932
1933
#define CAM_IOSCHED_DEVD_MSG_SIZE 256
1934
1935
static void
1936
cam_iosched_devctl_outlier(struct iop_stats *iop, sbintime_t sim_latency,
1937
const struct bio *bp)
1938
{
1939
daddr_t lba = bp->bio_pblkno;
1940
daddr_t cnt = bp->bio_bcount / iop->softc->disk->d_sectorsize;
1941
char *sbmsg;
1942
struct sbuf sb;
1943
1944
sbmsg = malloc(CAM_IOSCHED_DEVD_MSG_SIZE, M_CAMSCHED, M_NOWAIT);
1945
if (sbmsg == NULL)
1946
return;
1947
sbuf_new(&sb, sbmsg, CAM_IOSCHED_DEVD_MSG_SIZE, SBUF_FIXEDLEN);
1948
1949
sbuf_printf(&sb, "device=%s%d lba=%jd blocks=%jd latency=%jd",
1950
iop->softc->periph->periph_name,
1951
iop->softc->periph->unit_number,
1952
lba, cnt, sbttons(sim_latency));
1953
if (sbuf_finish(&sb) == 0)
1954
devctl_notify("CAM", "iosched", "latency", sbuf_data(&sb));
1955
sbuf_delete(&sb);
1956
free(sbmsg, M_CAMSCHED);
1957
}
1958
1959
static void
1960
cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency,
1961
const struct bio *bp)
1962
{
1963
sbintime_t y, deltasq, delta;
1964
int i;
1965
1966
/*
1967
* Simple threshold: count the number of events that excede the
1968
* configured threshold.
1969
*/
1970
if (sim_latency > iop->bad_latency) {
1971
cam_iosched_devctl_outlier(iop, sim_latency, bp);
1972
iop->too_long++;
1973
}
1974
1975
/*
1976
* Keep counts for latency. We do it by power of two buckets.
1977
* This helps us spot outlier behavior obscured by averages.
1978
*/
1979
for (i = 0; i < LAT_BUCKETS - 1; i++) {
1980
if (sim_latency < latencies[i]) {
1981
iop->latencies[i]++;
1982
break;
1983
}
1984
}
1985
if (i == LAT_BUCKETS - 1)
1986
iop->latencies[i]++; /* Put all > 8192ms values into the last bucket. */
1987
1988
/*
1989
* Classic exponentially decaying average with a tiny alpha
1990
* (2 ^ -alpha_bits). For more info see the NIST statistical
1991
* handbook.
1992
*
1993
* ema_t = y_t * alpha + ema_t-1 * (1 - alpha) [nist]
1994
* ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
1995
* ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
1996
* alpha = 1 / (1 << alpha_bits)
1997
* sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
1998
* = y_t/b - e/b + be/b
1999
* = (y_t - e + be) / b
2000
* = (e + d) / b
2001
*
2002
* Since alpha is a power of two, we can compute this w/o any mult or
2003
* division.
2004
*
2005
* Variance can also be computed. Usually, it would be expressed as follows:
2006
* diff_t = y_t - ema_t-1
2007
* emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
2008
* = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
2009
* sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
2010
* = e - e/b + dd/b + dd/bb
2011
* = (bbe - be + bdd + dd) / bb
2012
* = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
2013
*/
2014
/*
2015
* XXX possible numeric issues
2016
* o We assume right shifted integers do the right thing, since that's
2017
* implementation defined. You can change the right shifts to / (1LL << alpha).
2018
* o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
2019
* for emvar. This puts a ceiling of 13 bits on alpha since we need a
2020
* few tens of seconds of representation.
2021
* o We mitigate alpha issues by never setting it too high.
2022
*/
2023
y = sim_latency;
2024
delta = (y - iop->ema); /* d */
2025
iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
2026
2027
/*
2028
* Were we to naively plow ahead at this point, we wind up with many numerical
2029
* issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
2030
* us with microsecond level precision in the input, so the same in the
2031
* output. It means we can't overflow deltasq unless delta > 4k seconds. It
2032
* also means that emvar can be up 46 bits 40 of which are fraction, which
2033
* gives us a way to measure up to ~8s in the SD before the computation goes
2034
* unstable. Even the worst hard disk rarely has > 1s service time in the
2035
* drive. It does mean we have to shift left 12 bits after taking the
2036
* square root to compute the actual standard deviation estimate. This loss of
2037
* precision is preferable to needing int128 types to work. The above numbers
2038
* assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
2039
* so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
2040
*/
2041
delta >>= 12;
2042
deltasq = delta * delta; /* dd */
2043
iop->emvar = ((iop->emvar << (2 * alpha_bits)) + /* bbe */
2044
((deltasq - iop->emvar) << alpha_bits) + /* b(dd-e) */
2045
deltasq) /* dd */
2046
>> (2 * alpha_bits); /* div bb */
2047
iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
2048
}
2049
2050
static void
2051
cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
2052
sbintime_t sim_latency, const struct bio *bp)
2053
{
2054
switch (bp->bio_cmd) {
2055
case BIO_READ:
2056
cam_iosched_update(&isc->read_stats, sim_latency, bp);
2057
break;
2058
case BIO_WRITE:
2059
cam_iosched_update(&isc->write_stats, sim_latency, bp);
2060
break;
2061
case BIO_DELETE:
2062
cam_iosched_update(&isc->trim_stats, sim_latency, bp);
2063
break;
2064
default:
2065
break;
2066
}
2067
}
2068
2069
#ifdef DDB
2070
static int biolen(struct bio_queue_head *bq)
2071
{
2072
int i = 0;
2073
struct bio *bp;
2074
2075
TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
2076
i++;
2077
}
2078
return i;
2079
}
2080
2081
/*
2082
* Show the internal state of the I/O scheduler.
2083
*/
2084
DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
2085
{
2086
struct cam_iosched_softc *isc;
2087
2088
if (!have_addr) {
2089
db_printf("Need addr\n");
2090
return;
2091
}
2092
isc = (struct cam_iosched_softc *)addr;
2093
db_printf("pending_reads: %d\n", isc->read_stats.pending);
2094
db_printf("min_reads: %d\n", isc->read_stats.min);
2095
db_printf("max_reads: %d\n", isc->read_stats.max);
2096
db_printf("reads: %d\n", isc->read_stats.total);
2097
db_printf("in_reads: %d\n", isc->read_stats.in);
2098
db_printf("out_reads: %d\n", isc->read_stats.out);
2099
db_printf("queued_reads: %d\n", isc->read_stats.queued);
2100
db_printf("Read Q len %d\n", biolen(&isc->bio_queue));
2101
db_printf("pending_writes: %d\n", isc->write_stats.pending);
2102
db_printf("min_writes: %d\n", isc->write_stats.min);
2103
db_printf("max_writes: %d\n", isc->write_stats.max);
2104
db_printf("writes: %d\n", isc->write_stats.total);
2105
db_printf("in_writes: %d\n", isc->write_stats.in);
2106
db_printf("out_writes: %d\n", isc->write_stats.out);
2107
db_printf("queued_writes: %d\n", isc->write_stats.queued);
2108
db_printf("Write Q len %d\n", biolen(&isc->write_queue));
2109
db_printf("pending_trims: %d\n", isc->trim_stats.pending);
2110
db_printf("min_trims: %d\n", isc->trim_stats.min);
2111
db_printf("max_trims: %d\n", isc->trim_stats.max);
2112
db_printf("trims: %d\n", isc->trim_stats.total);
2113
db_printf("in_trims: %d\n", isc->trim_stats.in);
2114
db_printf("out_trims: %d\n", isc->trim_stats.out);
2115
db_printf("queued_trims: %d\n", isc->trim_stats.queued);
2116
db_printf("Trim Q len %d\n", biolen(&isc->trim_queue));
2117
db_printf("read_bias: %d\n", isc->read_bias);
2118
db_printf("current_read_bias: %d\n", isc->current_read_bias);
2119
db_printf("Trim active? %s\n",
2120
(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
2121
}
2122
#endif
2123
#endif
2124
2125