#include <sys/param.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/sbuf.h>
#include <sys/stdarg.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_queue.h>
#include <cam/cam_periph.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_xpt_internal.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <cam/nvme/nvme_all.h>
struct nvme_quirk_entry {
u_int quirks;
#define CAM_QUIRK_MAXTAGS 1
u_int mintags;
u_int maxtags;
};
static periph_init_t nvme_probe_periph_init;
static struct periph_driver nvme_probe_driver =
{
nvme_probe_periph_init, "nvme_probe",
TAILQ_HEAD_INITIALIZER(nvme_probe_driver.units), 0,
CAM_PERIPH_DRV_EARLY
};
PERIPHDRIVER_DECLARE(nvme_probe, nvme_probe_driver);
typedef enum {
NVME_PROBE_IDENTIFY_CD,
NVME_PROBE_IDENTIFY_NS,
NVME_PROBE_DONE,
NVME_PROBE_INVALID
} nvme_probe_action;
static char *nvme_probe_action_text[] = {
"NVME_PROBE_IDENTIFY_CD",
"NVME_PROBE_IDENTIFY_NS",
"NVME_PROBE_DONE",
"NVME_PROBE_INVALID"
};
#define NVME_PROBE_SET_ACTION(softc, newaction) \
do { \
char **text; \
text = nvme_probe_action_text; \
CAM_DEBUG((softc)->periph->path, CAM_DEBUG_PROBE, \
("Probe %s to %s\n", text[(softc)->action], \
text[(newaction)])); \
(softc)->action = (newaction); \
} while(0)
typedef enum {
NVME_PROBE_NO_ANNOUNCE = 0x04
} nvme_probe_flags;
typedef struct {
TAILQ_HEAD(, ccb_hdr) request_ccbs;
union {
struct nvme_controller_data cd;
struct nvme_namespace_data ns;
};
nvme_probe_action action;
nvme_probe_flags flags;
int restart;
struct cam_periph *periph;
} nvme_probe_softc;
static struct nvme_quirk_entry nvme_quirk_table[] =
{
{
.quirks = 0, .mintags = 0, .maxtags = 0
},
};
static const int nvme_quirk_table_size =
sizeof(nvme_quirk_table) / sizeof(*nvme_quirk_table);
static cam_status nvme_probe_register(struct cam_periph *periph,
void *arg);
static void nvme_probe_schedule(struct cam_periph *nvme_probe_periph);
static void nvme_probe_start(struct cam_periph *periph, union ccb *start_ccb);
static void nvme_probe_done(struct cam_periph *periph, union ccb *done_ccb);
static void nvme_probe_cleanup(struct cam_periph *periph);
static void nvme_scan_lun(struct cam_periph *periph,
struct cam_path *path, cam_flags flags,
union ccb *ccb);
static struct cam_ed *
nvme_alloc_device(struct cam_eb *bus, struct cam_et *target,
lun_id_t lun_id);
static void nvme_device_transport(struct cam_path *path);
static void nvme_dev_async(uint32_t async_code,
struct cam_eb *bus,
struct cam_et *target,
struct cam_ed *device,
void *async_arg);
static void nvme_action(union ccb *start_ccb);
static void nvme_announce_periph_sbuf(struct cam_periph *periph,
struct sbuf *sb);
static void nvme_proto_announce_sbuf(struct cam_ed *device,
struct sbuf *sb);
static void nvme_proto_denounce_sbuf(struct cam_ed *device,
struct sbuf *sb);
static void nvme_proto_debug_out(union ccb *ccb);
static struct xpt_xport_ops nvme_xport_ops = {
.alloc_device = nvme_alloc_device,
.action = nvme_action,
.async = nvme_dev_async,
.announce_sbuf = nvme_announce_periph_sbuf,
};
#define NVME_XPT_XPORT(x, X) \
static struct xpt_xport nvme_xport_ ## x = { \
.xport = XPORT_ ## X, \
.name = #x, \
.ops = &nvme_xport_ops, \
}; \
CAM_XPT_XPORT(nvme_xport_ ## x);
NVME_XPT_XPORT(nvme, NVME);
NVME_XPT_XPORT(nvmf, NVMF);
#undef NVME_XPT_XPORT
static struct xpt_proto_ops nvme_proto_ops = {
.announce_sbuf = nvme_proto_announce_sbuf,
.denounce_sbuf = nvme_proto_denounce_sbuf,
.debug_out = nvme_proto_debug_out,
};
static struct xpt_proto nvme_proto = {
.proto = PROTO_NVME,
.name = "nvme",
.ops = &nvme_proto_ops,
};
CAM_XPT_PROTO(nvme_proto);
static void
nvme_probe_periph_init(void)
{
}
static cam_status
nvme_probe_register(struct cam_periph *periph, void *arg)
{
union ccb *request_ccb;
nvme_probe_softc *softc;
request_ccb = (union ccb *)arg;
if (request_ccb == NULL) {
printf(
"nvme_probe_register: no probe CCB, can't register device\n");
return(CAM_REQ_CMP_ERR);
}
softc = (nvme_probe_softc *)malloc(sizeof(*softc), M_CAMXPT, M_ZERO | M_NOWAIT);
if (softc == NULL) {
printf(
"nvme_probe_register: Unable to probe new device. Unable to allocate softc\n");
return(CAM_REQ_CMP_ERR);
}
TAILQ_INIT(&softc->request_ccbs);
TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
periph_links.tqe);
softc->flags = 0;
periph->softc = softc;
softc->periph = periph;
softc->action = NVME_PROBE_INVALID;
if (cam_periph_acquire(periph) != 0)
return (CAM_REQ_CMP_ERR);
CAM_DEBUG(periph->path, CAM_DEBUG_PROBE, ("Probe started\n"));
nvme_probe_schedule(periph);
return(CAM_REQ_CMP);
}
static void
nvme_probe_schedule(struct cam_periph *periph)
{
union ccb *ccb;
nvme_probe_softc *softc;
softc = (nvme_probe_softc *)periph->softc;
ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
NVME_PROBE_SET_ACTION(softc, NVME_PROBE_IDENTIFY_CD);
if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
softc->flags |= NVME_PROBE_NO_ANNOUNCE;
else
softc->flags &= ~NVME_PROBE_NO_ANNOUNCE;
xpt_schedule(periph, CAM_PRIORITY_XPT);
}
static void
nvme_probe_start(struct cam_periph *periph, union ccb *start_ccb)
{
struct ccb_nvmeio *nvmeio;
nvme_probe_softc *softc;
lun_id_t lun;
CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("nvme_probe_start\n"));
softc = (nvme_probe_softc *)periph->softc;
nvmeio = &start_ccb->nvmeio;
lun = xpt_path_lun_id(periph->path);
if (softc->restart) {
softc->restart = 0;
NVME_PROBE_SET_ACTION(softc, NVME_PROBE_IDENTIFY_CD);
}
switch (softc->action) {
case NVME_PROBE_IDENTIFY_CD:
cam_fill_nvmeadmin(nvmeio,
0,
nvme_probe_done,
CAM_DIR_IN,
(uint8_t *)&softc->cd,
sizeof(softc->cd),
30 * 1000);
nvme_ns_cmd(nvmeio, NVME_OPC_IDENTIFY, 0,
1, 0, 0, 0, 0, 0);
break;
case NVME_PROBE_IDENTIFY_NS:
cam_fill_nvmeadmin(nvmeio,
0,
nvme_probe_done,
CAM_DIR_IN,
(uint8_t *)&softc->ns,
sizeof(softc->ns),
30 * 1000);
nvme_ns_cmd(nvmeio, NVME_OPC_IDENTIFY, lun,
0, 0, 0, 0, 0, 0);
break;
default:
panic("nvme_probe_start: invalid action state 0x%x\n", softc->action);
}
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
xpt_action(start_ccb);
}
static void
nvme_probe_done(struct cam_periph *periph, union ccb *done_ccb)
{
struct nvme_namespace_data *nvme_data;
struct nvme_controller_data *nvme_cdata;
nvme_probe_softc *softc;
struct cam_path *path;
struct scsi_vpd_device_id *did;
struct scsi_vpd_id_descriptor *idd;
uint32_t priority;
int found = 1, e, g, len;
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("nvme_probe_done\n"));
softc = (nvme_probe_softc *)periph->softc;
path = done_ccb->ccb_h.path;
priority = done_ccb->ccb_h.pinfo.priority;
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
if (cam_periph_error(done_ccb,
0, softc->restart ? (SF_NO_RECOVERY | SF_NO_RETRY) : 0
) == ERESTART) {
out:
cam_release_devq(path, 0, 0, 0, FALSE);
return;
}
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
xpt_release_devq(path, 1, TRUE);
}
device_fail: if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
xpt_async(AC_LOST_DEVICE, path, NULL);
NVME_PROBE_SET_ACTION(softc, NVME_PROBE_INVALID);
found = 0;
goto done;
}
if (softc->restart)
goto done;
switch (softc->action) {
case NVME_PROBE_IDENTIFY_CD:
nvme_controller_data_swapbytes(&softc->cd);
nvme_cdata = path->device->nvme_cdata;
if (nvme_cdata == NULL) {
nvme_cdata = malloc(sizeof(*nvme_cdata), M_CAMXPT,
M_NOWAIT);
if (nvme_cdata == NULL) {
xpt_print(path, "Can't allocate memory");
goto device_fail;
}
}
bcopy(&softc->cd, nvme_cdata, sizeof(*nvme_cdata));
path->device->nvme_cdata = nvme_cdata;
if (path->device->serial_num != NULL) {
free(path->device->serial_num, M_CAMXPT);
path->device->serial_num = NULL;
path->device->serial_num_len = 0;
}
path->device->serial_num = (uint8_t *)
malloc(NVME_SERIAL_NUMBER_LENGTH + 1, M_CAMXPT, M_NOWAIT);
if (path->device->serial_num != NULL) {
cam_strvis_flag(path->device->serial_num,
nvme_cdata->sn, sizeof(nvme_cdata->sn),
NVME_SERIAL_NUMBER_LENGTH + 1,
CAM_STRVIS_FLAG_NONASCII_SPC);
path->device->serial_num_len =
strlen(path->device->serial_num);
}
nvme_device_transport(path);
NVME_PROBE_SET_ACTION(softc, NVME_PROBE_IDENTIFY_NS);
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
goto out;
case NVME_PROBE_IDENTIFY_NS:
nvme_namespace_data_swapbytes(&softc->ns);
if (softc->ns.nsze == 0)
goto device_fail;
nvme_data = path->device->nvme_data;
if (nvme_data == NULL) {
nvme_data = malloc(sizeof(*nvme_data), M_CAMXPT,
M_NOWAIT);
if (nvme_data == NULL) {
xpt_print(path, "Can't allocate memory");
goto device_fail;
}
}
bcopy(&softc->ns, nvme_data, sizeof(*nvme_data));
path->device->nvme_data = nvme_data;
if (path->device->device_id != NULL) {
free(path->device->device_id, M_CAMXPT);
path->device->device_id = NULL;
path->device->device_id_len = 0;
}
len = 0;
for (g = 0; g < sizeof(nvme_data->nguid); g++) {
if (nvme_data->nguid[g] != 0)
break;
}
if (g < sizeof(nvme_data->nguid))
len += sizeof(struct scsi_vpd_id_descriptor) + 16;
for (e = 0; e < sizeof(nvme_data->eui64); e++) {
if (nvme_data->eui64[e] != 0)
break;
}
if (e < sizeof(nvme_data->eui64))
len += sizeof(struct scsi_vpd_id_descriptor) + 8;
if (len > 0) {
path->device->device_id = (uint8_t *)
malloc(SVPD_DEVICE_ID_HDR_LEN + len,
M_CAMXPT, M_NOWAIT);
}
if (path->device->device_id != NULL) {
did = (struct scsi_vpd_device_id *)path->device->device_id;
did->device = SID_QUAL_LU_CONNECTED | T_DIRECT;
did->page_code = SVPD_DEVICE_ID;
scsi_ulto2b(len, did->length);
idd = (struct scsi_vpd_id_descriptor *)(did + 1);
if (g < sizeof(nvme_data->nguid)) {
idd->proto_codeset = SVPD_ID_CODESET_BINARY;
idd->id_type = SVPD_ID_ASSOC_LUN | SVPD_ID_TYPE_EUI64;
idd->length = 16;
bcopy(nvme_data->nguid, idd->identifier, 16);
idd = (struct scsi_vpd_id_descriptor *)
&idd->identifier[16];
}
if (e < sizeof(nvme_data->eui64)) {
idd->proto_codeset = SVPD_ID_CODESET_BINARY;
idd->id_type = SVPD_ID_ASSOC_LUN | SVPD_ID_TYPE_EUI64;
idd->length = 8;
bcopy(nvme_data->eui64, idd->identifier, 8);
}
path->device->device_id_len = SVPD_DEVICE_ID_HDR_LEN + len;
}
if (periph->path->device->flags & CAM_DEV_UNCONFIGURED) {
path->device->flags &= ~CAM_DEV_UNCONFIGURED;
xpt_acquire_device(path->device);
done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action(done_ccb);
xpt_async(AC_FOUND_DEVICE, path, done_ccb);
}
NVME_PROBE_SET_ACTION(softc, NVME_PROBE_DONE);
break;
default:
panic("nvme_probe_done: invalid action state 0x%x\n", softc->action);
}
done:
if (softc->restart) {
softc->restart = 0;
xpt_release_ccb(done_ccb);
nvme_probe_schedule(periph);
goto out;
}
xpt_release_ccb(done_ccb);
CAM_DEBUG(periph->path, CAM_DEBUG_PROBE, ("Probe completed\n"));
while ((done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs))) {
TAILQ_REMOVE(&softc->request_ccbs,
&done_ccb->ccb_h, periph_links.tqe);
done_ccb->ccb_h.status = found ? CAM_REQ_CMP : CAM_REQ_CMP_ERR;
xpt_done(done_ccb);
}
cam_release_devq(path, 0, 0, 0, FALSE);
cam_periph_invalidate(periph);
cam_periph_release_locked(periph);
}
static void
nvme_probe_cleanup(struct cam_periph *periph)
{
free(periph->softc, M_CAMXPT);
}
#if 0
static void
nvme_find_quirk(struct cam_ed *device)
{
struct nvme_quirk_entry *quirk;
caddr_t match;
match = cam_quirkmatch((caddr_t)&device->nvme_data,
(caddr_t)nvme_quirk_table,
nvme_quirk_table_size,
sizeof(*nvme_quirk_table), nvme_identify_match);
if (match == NULL)
panic("xpt_find_quirk: device didn't match wildcard entry!!");
quirk = (struct nvme_quirk_entry *)match;
device->quirk = quirk;
if (quirk->quirks & CAM_QUIRK_MAXTAGS) {
device->mintags = quirk->mintags;
device->maxtags = quirk->maxtags;
}
}
#endif
static void
nvme_scan_lun(struct cam_periph *periph, struct cam_path *path,
cam_flags flags, union ccb *request_ccb)
{
struct ccb_pathinq cpi;
cam_status status;
struct cam_periph *old_periph;
int lock;
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("nvme_scan_lun\n"));
xpt_path_inq(&cpi, path);
if (cpi.ccb_h.status != CAM_REQ_CMP) {
if (request_ccb != NULL) {
request_ccb->ccb_h.status = cpi.ccb_h.status;
xpt_done(request_ccb);
}
return;
}
if (xpt_path_lun_id(path) == CAM_LUN_WILDCARD) {
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("nvme_scan_lun ignoring bus\n"));
request_ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(request_ccb);
return;
}
lock = (xpt_path_owned(path) == 0);
if (lock)
xpt_path_lock(path);
if ((old_periph = cam_periph_find(path, "nvme_probe")) != NULL) {
if ((old_periph->flags & CAM_PERIPH_INVALID) == 0) {
nvme_probe_softc *softc;
softc = (nvme_probe_softc *)old_periph->softc;
TAILQ_INSERT_TAIL(&softc->request_ccbs,
&request_ccb->ccb_h, periph_links.tqe);
softc->restart = 1;
CAM_DEBUG(path, CAM_DEBUG_TRACE,
("restarting nvme_probe device\n"));
} else {
request_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
CAM_DEBUG(path, CAM_DEBUG_TRACE,
("Failing to restart nvme_probe device\n"));
xpt_done(request_ccb);
}
} else {
CAM_DEBUG(path, CAM_DEBUG_TRACE,
("Adding nvme_probe device\n"));
status = cam_periph_alloc(nvme_probe_register, NULL, nvme_probe_cleanup,
nvme_probe_start, "nvme_probe",
CAM_PERIPH_BIO,
request_ccb->ccb_h.path, NULL, 0,
request_ccb);
if (status != CAM_REQ_CMP) {
xpt_print(path,
"xpt_scan_lun: cam_alloc_periph returned an error, can't continue probe\n");
request_ccb->ccb_h.status = status;
xpt_done(request_ccb);
}
}
if (lock)
xpt_path_unlock(path);
}
static struct cam_ed *
nvme_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
{
struct nvme_quirk_entry *quirk;
struct cam_ed *device;
device = xpt_alloc_device(bus, target, lun_id);
if (device == NULL)
return (NULL);
quirk = &nvme_quirk_table[nvme_quirk_table_size - 1];
device->quirk = (void *)quirk;
device->mintags = 0;
device->maxtags = 0;
device->inq_flags = 0;
device->queue_flags = 0;
device->device_id = NULL;
device->device_id_len = 0;
device->serial_num = NULL;
device->serial_num_len = 0;
return (device);
}
static void
nvme_device_transport(struct cam_path *path)
{
struct ccb_pathinq cpi;
struct ccb_trans_settings cts;
xpt_path_inq(&cpi, path);
path->device->transport = cpi.transport;
path->device->transport_version = cpi.transport_version;
path->device->protocol = cpi.protocol;
path->device->protocol_version = cpi.protocol_version;
memset(&cts, 0, sizeof(cts));
xpt_setup_ccb(&cts.ccb_h, path, CAM_PRIORITY_NONE);
cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
cts.type = CTS_TYPE_CURRENT_SETTINGS;
cts.transport = path->device->transport;
cts.transport_version = path->device->transport_version;
cts.protocol = path->device->protocol;
cts.protocol_version = path->device->protocol_version;
cts.proto_specific.valid = 0;
cts.xport_specific.valid = 0;
xpt_action((union ccb *)&cts);
}
static void
nvme_dev_advinfo(union ccb *start_ccb)
{
struct cam_ed *device;
struct ccb_dev_advinfo *cdai;
off_t amt;
xpt_path_assert(start_ccb->ccb_h.path, MA_OWNED);
start_ccb->ccb_h.status = CAM_REQ_INVALID;
device = start_ccb->ccb_h.path->device;
cdai = &start_ccb->cdai;
switch(cdai->buftype) {
case CDAI_TYPE_SCSI_DEVID:
if (cdai->flags & CDAI_FLAG_STORE)
return;
cdai->provsiz = device->device_id_len;
if (device->device_id_len == 0)
break;
amt = device->device_id_len;
if (cdai->provsiz > cdai->bufsiz)
amt = cdai->bufsiz;
memcpy(cdai->buf, device->device_id, amt);
break;
case CDAI_TYPE_SERIAL_NUM:
if (cdai->flags & CDAI_FLAG_STORE)
return;
cdai->provsiz = device->serial_num_len;
if (device->serial_num_len == 0)
break;
amt = device->serial_num_len;
if (cdai->provsiz > cdai->bufsiz)
amt = cdai->bufsiz;
memcpy(cdai->buf, device->serial_num, amt);
break;
case CDAI_TYPE_PHYS_PATH:
if (cdai->flags & CDAI_FLAG_STORE) {
if (device->physpath != NULL) {
free(device->physpath, M_CAMXPT);
device->physpath = NULL;
device->physpath_len = 0;
}
if (cdai->bufsiz == 0)
break;
device->physpath = malloc(cdai->bufsiz, M_CAMXPT, M_NOWAIT);
if (device->physpath == NULL) {
start_ccb->ccb_h.status = CAM_REQ_ABORTED;
return;
}
device->physpath_len = cdai->bufsiz;
memcpy(device->physpath, cdai->buf, cdai->bufsiz);
} else {
cdai->provsiz = device->physpath_len;
if (device->physpath_len == 0)
break;
amt = device->physpath_len;
if (cdai->provsiz > cdai->bufsiz)
amt = cdai->bufsiz;
memcpy(cdai->buf, device->physpath, amt);
}
break;
case CDAI_TYPE_NVME_CNTRL:
if (cdai->flags & CDAI_FLAG_STORE)
return;
amt = sizeof(struct nvme_controller_data);
cdai->provsiz = amt;
if (amt > cdai->bufsiz)
amt = cdai->bufsiz;
memcpy(cdai->buf, device->nvme_cdata, amt);
break;
case CDAI_TYPE_NVME_NS:
if (cdai->flags & CDAI_FLAG_STORE)
return;
amt = sizeof(struct nvme_namespace_data);
cdai->provsiz = amt;
if (amt > cdai->bufsiz)
amt = cdai->bufsiz;
memcpy(cdai->buf, device->nvme_data, amt);
break;
default:
return;
}
start_ccb->ccb_h.status = CAM_REQ_CMP;
if (cdai->flags & CDAI_FLAG_STORE) {
xpt_async(AC_ADVINFO_CHANGED, start_ccb->ccb_h.path,
(void *)(uintptr_t)cdai->buftype);
}
}
static void
nvme_action(union ccb *start_ccb)
{
CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
("nvme_action: func= %#x\n", start_ccb->ccb_h.func_code));
switch (start_ccb->ccb_h.func_code) {
case XPT_SCAN_BUS:
case XPT_SCAN_TGT:
case XPT_SCAN_LUN:
nvme_scan_lun(start_ccb->ccb_h.path->periph,
start_ccb->ccb_h.path, start_ccb->crcn.flags,
start_ccb);
break;
case XPT_DEV_ADVINFO:
nvme_dev_advinfo(start_ccb);
break;
default:
xpt_action_default(start_ccb);
break;
}
}
static void
nvme_dev_async(uint32_t async_code, struct cam_eb *bus, struct cam_et *target,
struct cam_ed *device, void *async_arg)
{
if (target->target_id == CAM_TARGET_WILDCARD
|| device->lun_id == CAM_LUN_WILDCARD)
return;
if (async_code == AC_LOST_DEVICE &&
(device->flags & CAM_DEV_UNCONFIGURED) == 0) {
device->flags |= CAM_DEV_UNCONFIGURED;
xpt_release_device(device);
}
}
static void
nvme_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
{
struct ccb_pathinq cpi;
struct ccb_trans_settings cts;
struct cam_path *path = periph->path;
struct ccb_trans_settings_nvme *nvmex;
cam_periph_assert(periph, MA_OWNED);
memset(&cts, 0, sizeof(cts));
xpt_setup_ccb(&cts.ccb_h, path, CAM_PRIORITY_NORMAL);
cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
cts.type = CTS_TYPE_CURRENT_SETTINGS;
xpt_action((union ccb*)&cts);
if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
return;
xpt_path_inq(&cpi, periph->path);
sbuf_printf(sb, "%s%d: nvme version %d.%d",
periph->periph_name, periph->unit_number,
NVME_MAJOR(cts.protocol_version),
NVME_MINOR(cts.protocol_version));
if (cts.transport == XPORT_NVME) {
nvmex = &cts.proto_specific.nvme;
if (nvmex->valid & CTS_NVME_VALID_LINK)
sbuf_printf(sb,
" x%d (max x%d) lanes PCIe Gen%d (max Gen%d) link",
nvmex->lanes, nvmex->max_lanes,
nvmex->speed, nvmex->max_speed);
}
sbuf_putc(sb, '\n');
}
static void
nvme_proto_announce_sbuf(struct cam_ed *device, struct sbuf *sb)
{
nvme_print_ident(device->nvme_cdata, device->nvme_data, sb);
}
static void
nvme_proto_denounce_sbuf(struct cam_ed *device, struct sbuf *sb)
{
nvme_print_ident_short(device->nvme_cdata, device->nvme_data, sb);
}
static void
nvme_proto_debug_out(union ccb *ccb)
{
char command_str[128];
if (ccb->ccb_h.func_code != XPT_NVME_IO &&
ccb->ccb_h.func_code != XPT_NVME_ADMIN)
return;
CAM_DEBUG(ccb->ccb_h.path,
CAM_DEBUG_CDB,("%s\n", nvme_command_string(&ccb->nvmeio,
command_str, sizeof(command_str))));
}