Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/cddl/contrib/opensolaris/uts/intel/dtrace/fasttrap_isa.c
48546 views
1
/*
2
* CDDL HEADER START
3
*
4
* The contents of this file are subject to the terms of the
5
* Common Development and Distribution License (the "License").
6
* You may not use this file except in compliance with the License.
7
*
8
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9
* or http://www.opensolaris.org/os/licensing.
10
* See the License for the specific language governing permissions
11
* and limitations under the License.
12
*
13
* When distributing Covered Code, include this CDDL HEADER in each
14
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15
* If applicable, add the following below this CDDL HEADER, with the
16
* fields enclosed by brackets "[]" replaced with your own identifying
17
* information: Portions Copyright [yyyy] [name of copyright owner]
18
*
19
* CDDL HEADER END
20
*
21
* Portions Copyright 2010 The FreeBSD Foundation
22
*/
23
24
/*
25
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
26
* Use is subject to license terms.
27
*/
28
29
#include <sys/fasttrap_isa.h>
30
#include <sys/fasttrap_impl.h>
31
#include <sys/dtrace.h>
32
#include <sys/dtrace_impl.h>
33
#include <sys/cmn_err.h>
34
#include <sys/types.h>
35
#include <sys/dtrace_bsd.h>
36
#include <sys/proc.h>
37
#include <sys/reg.h>
38
#include <sys/rmlock.h>
39
#include <cddl/dev/dtrace/dtrace_cddl.h>
40
#include <cddl/dev/dtrace/x86/regset.h>
41
#include <machine/segments.h>
42
#include <machine/pcb.h>
43
#include <machine/trap.h>
44
#include <sys/sysmacros.h>
45
#include <sys/ptrace.h>
46
47
#ifdef __i386__
48
#define r_rax r_eax
49
#define r_rbx r_ebx
50
#define r_rip r_eip
51
#define r_rflags r_eflags
52
#define r_rsp r_esp
53
#define r_rbp r_ebp
54
#endif
55
56
/*
57
* Lossless User-Land Tracing on x86
58
* ---------------------------------
59
*
60
* The execution of most instructions is not dependent on the address; for
61
* these instructions it is sufficient to copy them into the user process's
62
* address space and execute them. To effectively single-step an instruction
63
* in user-land, we copy out the following sequence of instructions to scratch
64
* space in the user thread's ulwp_t structure.
65
*
66
* We then set the program counter (%eip or %rip) to point to this scratch
67
* space. Once execution resumes, the original instruction is executed and
68
* then control flow is redirected to what was originally the subsequent
69
* instruction. If the kernel attemps to deliver a signal while single-
70
* stepping, the signal is deferred and the program counter is moved into the
71
* second sequence of instructions. The second sequence ends in a trap into
72
* the kernel where the deferred signal is then properly handled and delivered.
73
*
74
* For instructions whose execute is position dependent, we perform simple
75
* emulation. These instructions are limited to control transfer
76
* instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
77
* of %rip-relative addressing that means that almost any instruction can be
78
* position dependent. For all the details on how we emulate generic
79
* instructions included %rip-relative instructions, see the code in
80
* fasttrap_pid_probe() below where we handle instructions of type
81
* FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
82
*/
83
84
#define FASTTRAP_MODRM_MOD(modrm) (((modrm) >> 6) & 0x3)
85
#define FASTTRAP_MODRM_REG(modrm) (((modrm) >> 3) & 0x7)
86
#define FASTTRAP_MODRM_RM(modrm) ((modrm) & 0x7)
87
#define FASTTRAP_MODRM(mod, reg, rm) (((mod) << 6) | ((reg) << 3) | (rm))
88
89
#define FASTTRAP_SIB_SCALE(sib) (((sib) >> 6) & 0x3)
90
#define FASTTRAP_SIB_INDEX(sib) (((sib) >> 3) & 0x7)
91
#define FASTTRAP_SIB_BASE(sib) ((sib) & 0x7)
92
93
#define FASTTRAP_REX_W(rex) (((rex) >> 3) & 1)
94
#define FASTTRAP_REX_R(rex) (((rex) >> 2) & 1)
95
#define FASTTRAP_REX_X(rex) (((rex) >> 1) & 1)
96
#define FASTTRAP_REX_B(rex) ((rex) & 1)
97
#define FASTTRAP_REX(w, r, x, b) \
98
(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
99
100
/*
101
* Single-byte op-codes.
102
*/
103
#define FASTTRAP_PUSHL_EBP 0x55
104
105
#define FASTTRAP_JO 0x70
106
#define FASTTRAP_JNO 0x71
107
#define FASTTRAP_JB 0x72
108
#define FASTTRAP_JAE 0x73
109
#define FASTTRAP_JE 0x74
110
#define FASTTRAP_JNE 0x75
111
#define FASTTRAP_JBE 0x76
112
#define FASTTRAP_JA 0x77
113
#define FASTTRAP_JS 0x78
114
#define FASTTRAP_JNS 0x79
115
#define FASTTRAP_JP 0x7a
116
#define FASTTRAP_JNP 0x7b
117
#define FASTTRAP_JL 0x7c
118
#define FASTTRAP_JGE 0x7d
119
#define FASTTRAP_JLE 0x7e
120
#define FASTTRAP_JG 0x7f
121
122
#define FASTTRAP_NOP 0x90
123
124
#define FASTTRAP_MOV_EAX 0xb8
125
#define FASTTRAP_MOV_ECX 0xb9
126
127
#define FASTTRAP_RET16 0xc2
128
#define FASTTRAP_RET 0xc3
129
130
#define FASTTRAP_LOOPNZ 0xe0
131
#define FASTTRAP_LOOPZ 0xe1
132
#define FASTTRAP_LOOP 0xe2
133
#define FASTTRAP_JCXZ 0xe3
134
135
#define FASTTRAP_CALL 0xe8
136
#define FASTTRAP_JMP32 0xe9
137
#define FASTTRAP_JMP8 0xeb
138
139
#define FASTTRAP_INT3 0xcc
140
#define FASTTRAP_INT 0xcd
141
142
#define FASTTRAP_2_BYTE_OP 0x0f
143
#define FASTTRAP_GROUP5_OP 0xff
144
145
/*
146
* Two-byte op-codes (second byte only).
147
*/
148
#define FASTTRAP_0F_JO 0x80
149
#define FASTTRAP_0F_JNO 0x81
150
#define FASTTRAP_0F_JB 0x82
151
#define FASTTRAP_0F_JAE 0x83
152
#define FASTTRAP_0F_JE 0x84
153
#define FASTTRAP_0F_JNE 0x85
154
#define FASTTRAP_0F_JBE 0x86
155
#define FASTTRAP_0F_JA 0x87
156
#define FASTTRAP_0F_JS 0x88
157
#define FASTTRAP_0F_JNS 0x89
158
#define FASTTRAP_0F_JP 0x8a
159
#define FASTTRAP_0F_JNP 0x8b
160
#define FASTTRAP_0F_JL 0x8c
161
#define FASTTRAP_0F_JGE 0x8d
162
#define FASTTRAP_0F_JLE 0x8e
163
#define FASTTRAP_0F_JG 0x8f
164
165
#define FASTTRAP_EFLAGS_OF 0x800
166
#define FASTTRAP_EFLAGS_DF 0x400
167
#define FASTTRAP_EFLAGS_SF 0x080
168
#define FASTTRAP_EFLAGS_ZF 0x040
169
#define FASTTRAP_EFLAGS_AF 0x010
170
#define FASTTRAP_EFLAGS_PF 0x004
171
#define FASTTRAP_EFLAGS_CF 0x001
172
173
/*
174
* Instruction prefixes.
175
*/
176
#define FASTTRAP_PREFIX_OPERAND 0x66
177
#define FASTTRAP_PREFIX_ADDRESS 0x67
178
#define FASTTRAP_PREFIX_CS 0x2E
179
#define FASTTRAP_PREFIX_DS 0x3E
180
#define FASTTRAP_PREFIX_ES 0x26
181
#define FASTTRAP_PREFIX_FS 0x64
182
#define FASTTRAP_PREFIX_GS 0x65
183
#define FASTTRAP_PREFIX_SS 0x36
184
#define FASTTRAP_PREFIX_LOCK 0xF0
185
#define FASTTRAP_PREFIX_REP 0xF3
186
#define FASTTRAP_PREFIX_REPNE 0xF2
187
188
#define FASTTRAP_NOREG 0xff
189
190
/*
191
* Map between instruction register encodings and the kernel constants which
192
* correspond to indicies into struct regs.
193
*/
194
#ifdef __amd64
195
static const uint8_t regmap[16] = {
196
REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
197
REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
198
};
199
#else
200
static const uint8_t regmap[8] = {
201
EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
202
};
203
#endif
204
205
static ulong_t fasttrap_getreg(struct reg *, uint_t);
206
207
static uint64_t
208
fasttrap_anarg(struct reg *rp, int function_entry, int argno)
209
{
210
uint64_t value = 0;
211
int shift = function_entry ? 1 : 0;
212
213
#ifdef __amd64
214
if (curproc->p_model == DATAMODEL_LP64) {
215
uintptr_t *stack;
216
217
/*
218
* In 64-bit mode, the first six arguments are stored in
219
* registers.
220
*/
221
if (argno < 6)
222
switch (argno) {
223
case 0:
224
return (rp->r_rdi);
225
case 1:
226
return (rp->r_rsi);
227
case 2:
228
return (rp->r_rdx);
229
case 3:
230
return (rp->r_rcx);
231
case 4:
232
return (rp->r_r8);
233
case 5:
234
return (rp->r_r9);
235
}
236
237
stack = (uintptr_t *)rp->r_rsp;
238
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
239
value = dtrace_fulword(&stack[argno - 6 + shift]);
240
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
241
} else {
242
#endif
243
uint32_t *stack = (uint32_t *)rp->r_rsp;
244
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
245
value = dtrace_fuword32(&stack[argno + shift]);
246
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
247
#ifdef __amd64
248
}
249
#endif
250
251
return (value);
252
}
253
254
/*ARGSUSED*/
255
int
256
fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
257
fasttrap_probe_type_t type)
258
{
259
uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
260
size_t len = FASTTRAP_MAX_INSTR_SIZE;
261
size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
262
uint_t start = 0;
263
int rmindex, size;
264
uint8_t seg, rex = 0;
265
266
/*
267
* Read the instruction at the given address out of the process's
268
* address space. We don't have to worry about a debugger
269
* changing this instruction before we overwrite it with our trap
270
* instruction since P_PR_LOCK is set. Since instructions can span
271
* pages, we potentially read the instruction in two parts. If the
272
* second part fails, we just zero out that part of the instruction.
273
*/
274
if (uread(p, &instr[0], first, pc) != 0)
275
return (-1);
276
if (len > first &&
277
uread(p, &instr[first], len - first, pc + first) != 0) {
278
bzero(&instr[first], len - first);
279
len = first;
280
}
281
282
/*
283
* If the disassembly fails, then we have a malformed instruction.
284
*/
285
if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0)
286
return (-1);
287
288
/*
289
* Make sure the disassembler isn't completely broken.
290
*/
291
ASSERT(-1 <= rmindex && rmindex < size);
292
293
/*
294
* If the computed size is greater than the number of bytes read,
295
* then it was a malformed instruction possibly because it fell on a
296
* page boundary and the subsequent page was missing or because of
297
* some malicious user.
298
*/
299
if (size > len)
300
return (-1);
301
302
tp->ftt_size = (uint8_t)size;
303
tp->ftt_segment = FASTTRAP_SEG_NONE;
304
305
/*
306
* Find the start of the instruction's opcode by processing any
307
* legacy prefixes.
308
*/
309
for (;;) {
310
seg = 0;
311
switch (instr[start]) {
312
case FASTTRAP_PREFIX_SS:
313
seg++;
314
/*FALLTHRU*/
315
case FASTTRAP_PREFIX_GS:
316
seg++;
317
/*FALLTHRU*/
318
case FASTTRAP_PREFIX_FS:
319
seg++;
320
/*FALLTHRU*/
321
case FASTTRAP_PREFIX_ES:
322
seg++;
323
/*FALLTHRU*/
324
case FASTTRAP_PREFIX_DS:
325
seg++;
326
/*FALLTHRU*/
327
case FASTTRAP_PREFIX_CS:
328
seg++;
329
/*FALLTHRU*/
330
case FASTTRAP_PREFIX_OPERAND:
331
case FASTTRAP_PREFIX_ADDRESS:
332
case FASTTRAP_PREFIX_LOCK:
333
case FASTTRAP_PREFIX_REP:
334
case FASTTRAP_PREFIX_REPNE:
335
if (seg != 0) {
336
/*
337
* It's illegal for an instruction to specify
338
* two segment prefixes -- give up on this
339
* illegal instruction.
340
*/
341
if (tp->ftt_segment != FASTTRAP_SEG_NONE)
342
return (-1);
343
344
tp->ftt_segment = seg;
345
}
346
start++;
347
continue;
348
}
349
break;
350
}
351
352
#ifdef __amd64
353
/*
354
* Identify the REX prefix on 64-bit processes.
355
*/
356
if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
357
rex = instr[start++];
358
#endif
359
360
/*
361
* Now that we're pretty sure that the instruction is okay, copy the
362
* valid part to the tracepoint.
363
*/
364
bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
365
366
tp->ftt_type = FASTTRAP_T_COMMON;
367
if (instr[start] == FASTTRAP_2_BYTE_OP) {
368
switch (instr[start + 1]) {
369
case FASTTRAP_0F_JO:
370
case FASTTRAP_0F_JNO:
371
case FASTTRAP_0F_JB:
372
case FASTTRAP_0F_JAE:
373
case FASTTRAP_0F_JE:
374
case FASTTRAP_0F_JNE:
375
case FASTTRAP_0F_JBE:
376
case FASTTRAP_0F_JA:
377
case FASTTRAP_0F_JS:
378
case FASTTRAP_0F_JNS:
379
case FASTTRAP_0F_JP:
380
case FASTTRAP_0F_JNP:
381
case FASTTRAP_0F_JL:
382
case FASTTRAP_0F_JGE:
383
case FASTTRAP_0F_JLE:
384
case FASTTRAP_0F_JG:
385
tp->ftt_type = FASTTRAP_T_JCC;
386
tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
387
tp->ftt_dest = pc + tp->ftt_size +
388
/* LINTED - alignment */
389
*(int32_t *)&instr[start + 2];
390
break;
391
}
392
} else if (instr[start] == FASTTRAP_GROUP5_OP) {
393
uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
394
uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
395
uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
396
397
if (reg == 2 || reg == 4) {
398
uint_t i, sz;
399
400
if (reg == 2)
401
tp->ftt_type = FASTTRAP_T_CALL;
402
else
403
tp->ftt_type = FASTTRAP_T_JMP;
404
405
if (mod == 3)
406
tp->ftt_code = 2;
407
else
408
tp->ftt_code = 1;
409
410
ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
411
412
/*
413
* See AMD x86-64 Architecture Programmer's Manual
414
* Volume 3, Section 1.2.7, Table 1-12, and
415
* Appendix A.3.1, Table A-15.
416
*/
417
if (mod != 3 && rm == 4) {
418
uint8_t sib = instr[start + 2];
419
uint_t index = FASTTRAP_SIB_INDEX(sib);
420
uint_t base = FASTTRAP_SIB_BASE(sib);
421
422
tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
423
424
tp->ftt_index = (index == 4) ?
425
FASTTRAP_NOREG :
426
regmap[index | (FASTTRAP_REX_X(rex) << 3)];
427
tp->ftt_base = (mod == 0 && base == 5) ?
428
FASTTRAP_NOREG :
429
regmap[base | (FASTTRAP_REX_B(rex) << 3)];
430
431
i = 3;
432
sz = mod == 1 ? 1 : 4;
433
} else {
434
/*
435
* In 64-bit mode, mod == 0 and r/m == 5
436
* denotes %rip-relative addressing; in 32-bit
437
* mode, the base register isn't used. In both
438
* modes, there is a 32-bit operand.
439
*/
440
if (mod == 0 && rm == 5) {
441
#ifdef __amd64
442
if (p->p_model == DATAMODEL_LP64)
443
tp->ftt_base = REG_RIP;
444
else
445
#endif
446
tp->ftt_base = FASTTRAP_NOREG;
447
sz = 4;
448
} else {
449
uint8_t base = rm |
450
(FASTTRAP_REX_B(rex) << 3);
451
452
tp->ftt_base = regmap[base];
453
sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
454
}
455
tp->ftt_index = FASTTRAP_NOREG;
456
i = 2;
457
}
458
459
if (sz == 1) {
460
tp->ftt_dest = *(int8_t *)&instr[start + i];
461
} else if (sz == 4) {
462
/* LINTED - alignment */
463
tp->ftt_dest = *(int32_t *)&instr[start + i];
464
} else {
465
tp->ftt_dest = 0;
466
}
467
}
468
} else {
469
switch (instr[start]) {
470
case FASTTRAP_RET:
471
tp->ftt_type = FASTTRAP_T_RET;
472
break;
473
474
case FASTTRAP_RET16:
475
tp->ftt_type = FASTTRAP_T_RET16;
476
/* LINTED - alignment */
477
tp->ftt_dest = *(uint16_t *)&instr[start + 1];
478
break;
479
480
case FASTTRAP_JO:
481
case FASTTRAP_JNO:
482
case FASTTRAP_JB:
483
case FASTTRAP_JAE:
484
case FASTTRAP_JE:
485
case FASTTRAP_JNE:
486
case FASTTRAP_JBE:
487
case FASTTRAP_JA:
488
case FASTTRAP_JS:
489
case FASTTRAP_JNS:
490
case FASTTRAP_JP:
491
case FASTTRAP_JNP:
492
case FASTTRAP_JL:
493
case FASTTRAP_JGE:
494
case FASTTRAP_JLE:
495
case FASTTRAP_JG:
496
tp->ftt_type = FASTTRAP_T_JCC;
497
tp->ftt_code = instr[start];
498
tp->ftt_dest = pc + tp->ftt_size +
499
(int8_t)instr[start + 1];
500
break;
501
502
case FASTTRAP_LOOPNZ:
503
case FASTTRAP_LOOPZ:
504
case FASTTRAP_LOOP:
505
tp->ftt_type = FASTTRAP_T_LOOP;
506
tp->ftt_code = instr[start];
507
tp->ftt_dest = pc + tp->ftt_size +
508
(int8_t)instr[start + 1];
509
break;
510
511
case FASTTRAP_JCXZ:
512
tp->ftt_type = FASTTRAP_T_JCXZ;
513
tp->ftt_dest = pc + tp->ftt_size +
514
(int8_t)instr[start + 1];
515
break;
516
517
case FASTTRAP_CALL:
518
tp->ftt_type = FASTTRAP_T_CALL;
519
tp->ftt_dest = pc + tp->ftt_size +
520
/* LINTED - alignment */
521
*(int32_t *)&instr[start + 1];
522
tp->ftt_code = 0;
523
break;
524
525
case FASTTRAP_JMP32:
526
tp->ftt_type = FASTTRAP_T_JMP;
527
tp->ftt_dest = pc + tp->ftt_size +
528
/* LINTED - alignment */
529
*(int32_t *)&instr[start + 1];
530
break;
531
case FASTTRAP_JMP8:
532
tp->ftt_type = FASTTRAP_T_JMP;
533
tp->ftt_dest = pc + tp->ftt_size +
534
(int8_t)instr[start + 1];
535
break;
536
537
case FASTTRAP_PUSHL_EBP:
538
if (start == 0)
539
tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
540
break;
541
542
case FASTTRAP_NOP:
543
#ifdef __amd64
544
ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
545
546
/*
547
* On amd64 we have to be careful not to confuse a nop
548
* (actually xchgl %eax, %eax) with an instruction using
549
* the same opcode, but that does something different
550
* (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
551
*/
552
if (FASTTRAP_REX_B(rex) == 0)
553
#endif
554
tp->ftt_type = FASTTRAP_T_NOP;
555
break;
556
557
case FASTTRAP_INT3:
558
/*
559
* The pid provider shares the int3 trap with debugger
560
* breakpoints so we can't instrument them.
561
*/
562
ASSERT(instr[start] == FASTTRAP_INSTR);
563
return (-1);
564
565
case FASTTRAP_INT:
566
/*
567
* Interrupts seem like they could be traced with
568
* no negative implications, but it's possible that
569
* a thread could be redirected by the trap handling
570
* code which would eventually return to the
571
* instruction after the interrupt. If the interrupt
572
* were in our scratch space, the subsequent
573
* instruction might be overwritten before we return.
574
* Accordingly we refuse to instrument any interrupt.
575
*/
576
return (-1);
577
}
578
}
579
580
#ifdef __amd64
581
if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
582
/*
583
* If the process is 64-bit and the instruction type is still
584
* FASTTRAP_T_COMMON -- meaning we're going to copy it out an
585
* execute it -- we need to watch for %rip-relative
586
* addressing mode. See the portion of fasttrap_pid_probe()
587
* below where we handle tracepoints with type
588
* FASTTRAP_T_COMMON for how we emulate instructions that
589
* employ %rip-relative addressing.
590
*/
591
if (rmindex != -1) {
592
uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
593
uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
594
uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
595
596
ASSERT(rmindex > start);
597
598
if (mod == 0 && rm == 5) {
599
/*
600
* We need to be sure to avoid other
601
* registers used by this instruction. While
602
* the reg field may determine the op code
603
* rather than denoting a register, assuming
604
* that it denotes a register is always safe.
605
* We leave the REX field intact and use
606
* whatever value's there for simplicity.
607
*/
608
if (reg != 0) {
609
tp->ftt_ripmode = FASTTRAP_RIP_1 |
610
(FASTTRAP_RIP_X *
611
FASTTRAP_REX_B(rex));
612
rm = 0;
613
} else {
614
tp->ftt_ripmode = FASTTRAP_RIP_2 |
615
(FASTTRAP_RIP_X *
616
FASTTRAP_REX_B(rex));
617
rm = 1;
618
}
619
620
tp->ftt_modrm = tp->ftt_instr[rmindex];
621
tp->ftt_instr[rmindex] =
622
FASTTRAP_MODRM(2, reg, rm);
623
}
624
}
625
}
626
#endif
627
628
return (0);
629
}
630
631
int
632
fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
633
{
634
fasttrap_instr_t instr = FASTTRAP_INSTR;
635
636
if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
637
return (-1);
638
639
return (0);
640
}
641
642
int
643
fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
644
{
645
uint8_t instr;
646
647
/*
648
* Distinguish between read or write failures and a changed
649
* instruction.
650
*/
651
if (uread(p, &instr, 1, tp->ftt_pc) != 0)
652
return (0);
653
if (instr != FASTTRAP_INSTR)
654
return (0);
655
if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
656
return (-1);
657
658
return (0);
659
}
660
661
#ifdef __amd64
662
static uintptr_t
663
fasttrap_fulword_noerr(const void *uaddr)
664
{
665
uintptr_t ret;
666
667
if ((ret = fasttrap_fulword(uaddr)) != -1)
668
return (ret);
669
670
return (0);
671
}
672
#endif
673
674
static uint32_t
675
fasttrap_fuword32_noerr(const void *uaddr)
676
{
677
uint32_t ret;
678
679
if ((ret = fasttrap_fuword32(uaddr)) != -1)
680
return (ret);
681
682
return (0);
683
}
684
685
static void
686
fasttrap_return_common(struct reg *rp, uintptr_t pc, pid_t pid,
687
uintptr_t new_pc)
688
{
689
fasttrap_tracepoint_t *tp;
690
fasttrap_bucket_t *bucket;
691
fasttrap_id_t *id;
692
struct rm_priotracker tracker;
693
694
rm_rlock(&fasttrap_tp_lock, &tracker);
695
bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
696
697
for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
698
if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
699
tp->ftt_proc->ftpc_acount != 0)
700
break;
701
}
702
703
/*
704
* Don't sweat it if we can't find the tracepoint again; unlike
705
* when we're in fasttrap_pid_probe(), finding the tracepoint here
706
* is not essential to the correct execution of the process.
707
*/
708
if (tp == NULL) {
709
rm_runlock(&fasttrap_tp_lock, &tracker);
710
return;
711
}
712
713
for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
714
/*
715
* If there's a branch that could act as a return site, we
716
* need to trace it, and check here if the program counter is
717
* external to the function.
718
*/
719
if (tp->ftt_type != FASTTRAP_T_RET &&
720
tp->ftt_type != FASTTRAP_T_RET16 &&
721
new_pc - id->fti_probe->ftp_faddr <
722
id->fti_probe->ftp_fsize)
723
continue;
724
725
dtrace_probe(id->fti_probe->ftp_id,
726
pc - id->fti_probe->ftp_faddr,
727
rp->r_rax, rp->r_rbx, 0, 0);
728
}
729
730
rm_runlock(&fasttrap_tp_lock, &tracker);
731
}
732
733
static void
734
fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
735
{
736
ksiginfo_t ksi;
737
738
ksiginfo_init(&ksi);
739
ksi.ksi_signo = SIGSEGV;
740
ksi.ksi_code = SEGV_MAPERR;
741
ksi.ksi_addr = (caddr_t)addr;
742
PROC_LOCK(p);
743
(void)tdksignal(t, SIGSEGV, &ksi);
744
PROC_UNLOCK(p);
745
}
746
747
#ifdef __amd64
748
static void
749
fasttrap_usdt_args64(fasttrap_probe_t *probe, struct reg *rp, int argc,
750
uintptr_t *argv)
751
{
752
int i, x, cap = MIN(argc, probe->ftp_nargs);
753
uintptr_t *stack = (uintptr_t *)rp->r_rsp;
754
755
for (i = 0; i < cap; i++) {
756
x = probe->ftp_argmap[i];
757
758
if (x < 6)
759
argv[i] = (&rp->r_rdi)[x];
760
else
761
argv[i] = fasttrap_fulword_noerr(&stack[x]);
762
}
763
764
for (; i < argc; i++) {
765
argv[i] = 0;
766
}
767
}
768
#endif
769
770
static void
771
fasttrap_usdt_args32(fasttrap_probe_t *probe, struct reg *rp, int argc,
772
uint32_t *argv)
773
{
774
int i, x, cap = MIN(argc, probe->ftp_nargs);
775
uint32_t *stack = (uint32_t *)rp->r_rsp;
776
777
for (i = 0; i < cap; i++) {
778
x = probe->ftp_argmap[i];
779
780
argv[i] = fasttrap_fuword32_noerr(&stack[x]);
781
}
782
783
for (; i < argc; i++) {
784
argv[i] = 0;
785
}
786
}
787
788
static int
789
fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct reg *rp, uintptr_t *addr)
790
{
791
proc_t *p = curproc;
792
#ifdef __i386__
793
struct segment_descriptor *desc;
794
#else
795
struct user_segment_descriptor *desc;
796
#endif
797
uint16_t sel = 0, ndx, type;
798
uintptr_t limit;
799
800
switch (tp->ftt_segment) {
801
case FASTTRAP_SEG_CS:
802
sel = rp->r_cs;
803
break;
804
case FASTTRAP_SEG_DS:
805
sel = rp->r_ds;
806
break;
807
case FASTTRAP_SEG_ES:
808
sel = rp->r_es;
809
break;
810
case FASTTRAP_SEG_FS:
811
sel = rp->r_fs;
812
break;
813
case FASTTRAP_SEG_GS:
814
sel = rp->r_gs;
815
break;
816
case FASTTRAP_SEG_SS:
817
sel = rp->r_ss;
818
break;
819
}
820
821
/*
822
* Make sure the given segment register specifies a user priority
823
* selector rather than a kernel selector.
824
*/
825
if (ISPL(sel) != SEL_UPL)
826
return (-1);
827
828
ndx = IDXSEL(sel);
829
830
/*
831
* Check the bounds and grab the descriptor out of the specified
832
* descriptor table.
833
*/
834
if (ISLDT(sel)) {
835
#ifdef __i386__
836
if (ndx > p->p_md.md_ldt->ldt_len)
837
return (-1);
838
839
desc = (struct segment_descriptor *)
840
p->p_md.md_ldt[ndx].ldt_base;
841
#else
842
if (ndx > max_ldt_segment)
843
return (-1);
844
845
desc = (struct user_segment_descriptor *)
846
p->p_md.md_ldt[ndx].ldt_base;
847
#endif
848
849
} else {
850
if (ndx >= NGDT)
851
return (-1);
852
853
#ifdef __i386__
854
desc = &gdt[ndx].sd;
855
#else
856
desc = PCPU_PTR(gdt)[ndx];
857
#endif
858
}
859
860
/*
861
* The descriptor must have user privilege level and it must be
862
* present in memory.
863
*/
864
if (desc->sd_dpl != SEL_UPL || desc->sd_p != 1)
865
return (-1);
866
867
type = desc->sd_type;
868
869
/*
870
* If the S bit in the type field is not set, this descriptor can
871
* only be used in system context.
872
*/
873
if ((type & 0x10) != 0x10)
874
return (-1);
875
876
limit = USD_GETLIMIT(desc) * (desc->sd_gran ? PAGESIZE : 1);
877
878
if (tp->ftt_segment == FASTTRAP_SEG_CS) {
879
/*
880
* The code/data bit and readable bit must both be set.
881
*/
882
if ((type & 0xa) != 0xa)
883
return (-1);
884
885
if (*addr > limit)
886
return (-1);
887
} else {
888
/*
889
* The code/data bit must be clear.
890
*/
891
if ((type & 0x8) != 0)
892
return (-1);
893
894
/*
895
* If the expand-down bit is clear, we just check the limit as
896
* it would naturally be applied. Otherwise, we need to check
897
* that the address is the range [limit + 1 .. 0xffff] or
898
* [limit + 1 ... 0xffffffff] depending on if the default
899
* operand size bit is set.
900
*/
901
if ((type & 0x4) == 0) {
902
if (*addr > limit)
903
return (-1);
904
} else if (desc->sd_def32) {
905
if (*addr < limit + 1 || 0xffff < *addr)
906
return (-1);
907
} else {
908
if (*addr < limit + 1 || 0xffffffff < *addr)
909
return (-1);
910
}
911
}
912
913
*addr += USD_GETBASE(desc);
914
915
return (0);
916
}
917
918
int
919
fasttrap_pid_probe(struct trapframe *tf)
920
{
921
struct reg reg, *rp;
922
proc_t *p = curproc, *pp;
923
struct rm_priotracker tracker;
924
uint64_t gen;
925
uintptr_t pc;
926
uintptr_t new_pc = 0;
927
fasttrap_bucket_t *bucket;
928
fasttrap_tracepoint_t *tp, tp_local;
929
pid_t pid;
930
dtrace_icookie_t cookie;
931
uint_t is_enabled = 0;
932
933
fill_frame_regs(tf, &reg);
934
rp = &reg;
935
936
pc = rp->r_rip - 1;
937
938
/*
939
* It's possible that a user (in a veritable orgy of bad planning)
940
* could redirect this thread's flow of control before it reached the
941
* return probe fasttrap. In this case we need to kill the process
942
* since it's in a unrecoverable state.
943
*/
944
if (curthread->t_dtrace_step) {
945
ASSERT(curthread->t_dtrace_on);
946
fasttrap_sigtrap(p, curthread, pc);
947
return (0);
948
}
949
950
/*
951
* Clear all user tracing flags.
952
*/
953
curthread->t_dtrace_ft = 0;
954
curthread->t_dtrace_pc = 0;
955
curthread->t_dtrace_npc = 0;
956
curthread->t_dtrace_scrpc = 0;
957
curthread->t_dtrace_astpc = 0;
958
#ifdef __amd64
959
curthread->t_dtrace_regv = 0;
960
#endif
961
962
/*
963
* Treat a child created by a call to vfork(2) as if it were its
964
* parent. We know that there's only one thread of control in such a
965
* process: this one.
966
*/
967
pp = p;
968
sx_slock(&proctree_lock);
969
while (pp->p_vmspace == pp->p_pptr->p_vmspace)
970
pp = pp->p_pptr;
971
pid = pp->p_pid;
972
if (pp != p) {
973
PROC_LOCK(pp);
974
if ((pp->p_flag & P_WEXIT) != 0) {
975
/*
976
* This can happen if the child was created with
977
* rfork(2). Userspace tracing cannot work reliably in
978
* such a scenario, but we can at least try.
979
*/
980
PROC_UNLOCK(pp);
981
sx_sunlock(&proctree_lock);
982
return (-1);
983
}
984
_PHOLD(pp);
985
PROC_UNLOCK(pp);
986
}
987
sx_sunlock(&proctree_lock);
988
989
rm_rlock(&fasttrap_tp_lock, &tracker);
990
991
bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
992
993
/*
994
* Lookup the tracepoint that the process just hit.
995
*/
996
for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
997
if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
998
tp->ftt_proc->ftpc_acount != 0)
999
break;
1000
}
1001
1002
/*
1003
* If we couldn't find a matching tracepoint, either a tracepoint has
1004
* been inserted without using the pid<pid> ioctl interface (see
1005
* fasttrap_ioctl), or somehow we have mislaid this tracepoint.
1006
*/
1007
if (tp == NULL) {
1008
rm_runlock(&fasttrap_tp_lock, &tracker);
1009
gen = atomic_load_acq_64(&pp->p_fasttrap_tp_gen);
1010
if (pp != p)
1011
PRELE(pp);
1012
if (curthread->t_fasttrap_tp_gen != gen) {
1013
/*
1014
* At least one tracepoint associated with this PID has
1015
* been removed from the table since #BP was raised.
1016
* Speculate that we hit a tracepoint that has since
1017
* been removed, and retry the instruction.
1018
*/
1019
curthread->t_fasttrap_tp_gen = gen;
1020
#ifdef __amd64
1021
tf->tf_rip = pc;
1022
#else
1023
tf->tf_eip = pc;
1024
#endif
1025
return (0);
1026
}
1027
return (-1);
1028
}
1029
if (pp != p)
1030
PRELE(pp);
1031
1032
/*
1033
* Set the program counter to the address of the traced instruction
1034
* so that it looks right in ustack() output.
1035
*/
1036
rp->r_rip = pc;
1037
1038
if (tp->ftt_ids != NULL) {
1039
fasttrap_id_t *id;
1040
1041
#ifdef __amd64
1042
if (p->p_model == DATAMODEL_LP64) {
1043
for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1044
fasttrap_probe_t *probe = id->fti_probe;
1045
1046
if (id->fti_ptype == DTFTP_ENTRY) {
1047
/*
1048
* We note that this was an entry
1049
* probe to help ustack() find the
1050
* first caller.
1051
*/
1052
cookie = dtrace_interrupt_disable();
1053
DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1054
dtrace_probe(probe->ftp_id, rp->r_rdi,
1055
rp->r_rsi, rp->r_rdx, rp->r_rcx,
1056
rp->r_r8);
1057
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1058
dtrace_interrupt_enable(cookie);
1059
} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1060
/*
1061
* Note that in this case, we don't
1062
* call dtrace_probe() since it's only
1063
* an artificial probe meant to change
1064
* the flow of control so that it
1065
* encounters the true probe.
1066
*/
1067
is_enabled = 1;
1068
} else if (probe->ftp_argmap == NULL) {
1069
dtrace_probe(probe->ftp_id, rp->r_rdi,
1070
rp->r_rsi, rp->r_rdx, rp->r_rcx,
1071
rp->r_r8);
1072
} else {
1073
uintptr_t t[5];
1074
1075
fasttrap_usdt_args64(probe, rp,
1076
sizeof (t) / sizeof (t[0]), t);
1077
1078
dtrace_probe(probe->ftp_id, t[0], t[1],
1079
t[2], t[3], t[4]);
1080
}
1081
}
1082
} else {
1083
#endif
1084
uintptr_t s0, s1, s2, s3, s4, s5;
1085
uint32_t *stack = (uint32_t *)rp->r_rsp;
1086
1087
/*
1088
* In 32-bit mode, all arguments are passed on the
1089
* stack. If this is a function entry probe, we need
1090
* to skip the first entry on the stack as it
1091
* represents the return address rather than a
1092
* parameter to the function.
1093
*/
1094
s0 = fasttrap_fuword32_noerr(&stack[0]);
1095
s1 = fasttrap_fuword32_noerr(&stack[1]);
1096
s2 = fasttrap_fuword32_noerr(&stack[2]);
1097
s3 = fasttrap_fuword32_noerr(&stack[3]);
1098
s4 = fasttrap_fuword32_noerr(&stack[4]);
1099
s5 = fasttrap_fuword32_noerr(&stack[5]);
1100
1101
for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1102
fasttrap_probe_t *probe = id->fti_probe;
1103
1104
if (id->fti_ptype == DTFTP_ENTRY) {
1105
/*
1106
* We note that this was an entry
1107
* probe to help ustack() find the
1108
* first caller.
1109
*/
1110
cookie = dtrace_interrupt_disable();
1111
DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1112
dtrace_probe(probe->ftp_id, s1, s2,
1113
s3, s4, s5);
1114
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1115
dtrace_interrupt_enable(cookie);
1116
} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1117
/*
1118
* Note that in this case, we don't
1119
* call dtrace_probe() since it's only
1120
* an artificial probe meant to change
1121
* the flow of control so that it
1122
* encounters the true probe.
1123
*/
1124
is_enabled = 1;
1125
} else if (probe->ftp_argmap == NULL) {
1126
dtrace_probe(probe->ftp_id, s0, s1,
1127
s2, s3, s4);
1128
} else {
1129
uint32_t t[5];
1130
1131
fasttrap_usdt_args32(probe, rp,
1132
sizeof (t) / sizeof (t[0]), t);
1133
1134
dtrace_probe(probe->ftp_id, t[0], t[1],
1135
t[2], t[3], t[4]);
1136
}
1137
}
1138
#ifdef __amd64
1139
}
1140
#endif
1141
}
1142
1143
/*
1144
* We're about to do a bunch of work so we cache a local copy of
1145
* the tracepoint to emulate the instruction, and then find the
1146
* tracepoint again later if we need to light up any return probes.
1147
*/
1148
tp_local = *tp;
1149
rm_runlock(&fasttrap_tp_lock, &tracker);
1150
tp = &tp_local;
1151
1152
/*
1153
* Set the program counter to appear as though the traced instruction
1154
* had completely executed. This ensures that fasttrap_getreg() will
1155
* report the expected value for REG_RIP.
1156
*/
1157
rp->r_rip = pc + tp->ftt_size;
1158
1159
/*
1160
* If there's an is-enabled probe connected to this tracepoint it
1161
* means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1162
* instruction that was placed there by DTrace when the binary was
1163
* linked. As this probe is, in fact, enabled, we need to stuff 1
1164
* into %eax or %rax. Accordingly, we can bypass all the instruction
1165
* emulation logic since we know the inevitable result. It's possible
1166
* that a user could construct a scenario where the 'is-enabled'
1167
* probe was on some other instruction, but that would be a rather
1168
* exotic way to shoot oneself in the foot.
1169
*/
1170
if (is_enabled) {
1171
rp->r_rax = 1;
1172
new_pc = rp->r_rip;
1173
goto done;
1174
}
1175
1176
/*
1177
* We emulate certain types of instructions to ensure correctness
1178
* (in the case of position dependent instructions) or optimize
1179
* common cases. The rest we have the thread execute back in user-
1180
* land.
1181
*/
1182
switch (tp->ftt_type) {
1183
case FASTTRAP_T_RET:
1184
case FASTTRAP_T_RET16:
1185
{
1186
uintptr_t dst = 0;
1187
uintptr_t addr = 0;
1188
int ret = 0;
1189
1190
/*
1191
* We have to emulate _every_ facet of the behavior of a ret
1192
* instruction including what happens if the load from %esp
1193
* fails; in that case, we send a SIGSEGV.
1194
*/
1195
#ifdef __amd64
1196
if (p->p_model == DATAMODEL_NATIVE) {
1197
ret = dst = fasttrap_fulword((void *)rp->r_rsp);
1198
addr = rp->r_rsp + sizeof (uintptr_t);
1199
} else {
1200
#endif
1201
uint32_t dst32;
1202
ret = dst32 = fasttrap_fuword32((void *)rp->r_rsp);
1203
dst = dst32;
1204
addr = rp->r_rsp + sizeof (uint32_t);
1205
#ifdef __amd64
1206
}
1207
#endif
1208
1209
if (ret == -1) {
1210
fasttrap_sigsegv(p, curthread, rp->r_rsp);
1211
new_pc = pc;
1212
break;
1213
}
1214
1215
if (tp->ftt_type == FASTTRAP_T_RET16)
1216
addr += tp->ftt_dest;
1217
1218
rp->r_rsp = addr;
1219
new_pc = dst;
1220
break;
1221
}
1222
1223
case FASTTRAP_T_JCC:
1224
{
1225
uint_t taken = 0;
1226
1227
switch (tp->ftt_code) {
1228
case FASTTRAP_JO:
1229
taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) != 0;
1230
break;
1231
case FASTTRAP_JNO:
1232
taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0;
1233
break;
1234
case FASTTRAP_JB:
1235
taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0;
1236
break;
1237
case FASTTRAP_JAE:
1238
taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0;
1239
break;
1240
case FASTTRAP_JE:
1241
taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1242
break;
1243
case FASTTRAP_JNE:
1244
taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1245
break;
1246
case FASTTRAP_JBE:
1247
taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0 ||
1248
(rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1249
break;
1250
case FASTTRAP_JA:
1251
taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0 &&
1252
(rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1253
break;
1254
case FASTTRAP_JS:
1255
taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) != 0;
1256
break;
1257
case FASTTRAP_JNS:
1258
taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0;
1259
break;
1260
case FASTTRAP_JP:
1261
taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) != 0;
1262
break;
1263
case FASTTRAP_JNP:
1264
taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) == 0;
1265
break;
1266
case FASTTRAP_JL:
1267
taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1268
((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1269
break;
1270
case FASTTRAP_JGE:
1271
taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1272
((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1273
break;
1274
case FASTTRAP_JLE:
1275
taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 ||
1276
((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1277
((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1278
break;
1279
case FASTTRAP_JG:
1280
taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1281
((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1282
((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1283
break;
1284
1285
}
1286
1287
if (taken)
1288
new_pc = tp->ftt_dest;
1289
else
1290
new_pc = pc + tp->ftt_size;
1291
break;
1292
}
1293
1294
case FASTTRAP_T_LOOP:
1295
{
1296
uint_t taken = 0;
1297
#ifdef __amd64
1298
greg_t cx = rp->r_rcx--;
1299
#else
1300
greg_t cx = rp->r_ecx--;
1301
#endif
1302
1303
switch (tp->ftt_code) {
1304
case FASTTRAP_LOOPNZ:
1305
taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1306
cx != 0;
1307
break;
1308
case FASTTRAP_LOOPZ:
1309
taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 &&
1310
cx != 0;
1311
break;
1312
case FASTTRAP_LOOP:
1313
taken = (cx != 0);
1314
break;
1315
}
1316
1317
if (taken)
1318
new_pc = tp->ftt_dest;
1319
else
1320
new_pc = pc + tp->ftt_size;
1321
break;
1322
}
1323
1324
case FASTTRAP_T_JCXZ:
1325
{
1326
#ifdef __amd64
1327
greg_t cx = rp->r_rcx;
1328
#else
1329
greg_t cx = rp->r_ecx;
1330
#endif
1331
1332
if (cx == 0)
1333
new_pc = tp->ftt_dest;
1334
else
1335
new_pc = pc + tp->ftt_size;
1336
break;
1337
}
1338
1339
case FASTTRAP_T_PUSHL_EBP:
1340
{
1341
int ret = 0;
1342
1343
#ifdef __amd64
1344
if (p->p_model == DATAMODEL_NATIVE) {
1345
rp->r_rsp -= sizeof (uintptr_t);
1346
ret = fasttrap_sulword((void *)rp->r_rsp, rp->r_rbp);
1347
} else {
1348
#endif
1349
rp->r_rsp -= sizeof (uint32_t);
1350
ret = fasttrap_suword32((void *)rp->r_rsp, rp->r_rbp);
1351
#ifdef __amd64
1352
}
1353
#endif
1354
1355
if (ret == -1) {
1356
fasttrap_sigsegv(p, curthread, rp->r_rsp);
1357
new_pc = pc;
1358
break;
1359
}
1360
1361
new_pc = pc + tp->ftt_size;
1362
break;
1363
}
1364
1365
case FASTTRAP_T_NOP:
1366
new_pc = pc + tp->ftt_size;
1367
break;
1368
1369
case FASTTRAP_T_JMP:
1370
case FASTTRAP_T_CALL:
1371
if (tp->ftt_code == 0) {
1372
new_pc = tp->ftt_dest;
1373
} else {
1374
uintptr_t value, addr = tp->ftt_dest;
1375
1376
if (tp->ftt_base != FASTTRAP_NOREG)
1377
addr += fasttrap_getreg(rp, tp->ftt_base);
1378
if (tp->ftt_index != FASTTRAP_NOREG)
1379
addr += fasttrap_getreg(rp, tp->ftt_index) <<
1380
tp->ftt_scale;
1381
1382
if (tp->ftt_code == 1) {
1383
/*
1384
* If there's a segment prefix for this
1385
* instruction, we'll need to check permissions
1386
* and bounds on the given selector, and adjust
1387
* the address accordingly.
1388
*/
1389
if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1390
fasttrap_do_seg(tp, rp, &addr) != 0) {
1391
fasttrap_sigsegv(p, curthread, addr);
1392
new_pc = pc;
1393
break;
1394
}
1395
1396
#ifdef __amd64
1397
if (p->p_model == DATAMODEL_NATIVE) {
1398
#endif
1399
if ((value = fasttrap_fulword((void *)addr))
1400
== -1) {
1401
fasttrap_sigsegv(p, curthread,
1402
addr);
1403
new_pc = pc;
1404
break;
1405
}
1406
new_pc = value;
1407
#ifdef __amd64
1408
} else {
1409
uint32_t value32;
1410
addr = (uintptr_t)(uint32_t)addr;
1411
if ((value32 = fasttrap_fuword32((void *)addr))
1412
== -1) {
1413
fasttrap_sigsegv(p, curthread,
1414
addr);
1415
new_pc = pc;
1416
break;
1417
}
1418
new_pc = value32;
1419
}
1420
#endif
1421
} else {
1422
new_pc = addr;
1423
}
1424
}
1425
1426
/*
1427
* If this is a call instruction, we need to push the return
1428
* address onto the stack. If this fails, we send the process
1429
* a SIGSEGV and reset the pc to emulate what would happen if
1430
* this instruction weren't traced.
1431
*/
1432
if (tp->ftt_type == FASTTRAP_T_CALL) {
1433
int ret = 0;
1434
uintptr_t addr = 0, pcps;
1435
#ifdef __amd64
1436
if (p->p_model == DATAMODEL_NATIVE) {
1437
addr = rp->r_rsp - sizeof (uintptr_t);
1438
pcps = pc + tp->ftt_size;
1439
ret = fasttrap_sulword((void *)addr, pcps);
1440
} else {
1441
#endif
1442
addr = rp->r_rsp - sizeof (uint32_t);
1443
pcps = (uint32_t)(pc + tp->ftt_size);
1444
ret = fasttrap_suword32((void *)addr, pcps);
1445
#ifdef __amd64
1446
}
1447
#endif
1448
1449
if (ret == -1) {
1450
fasttrap_sigsegv(p, curthread, addr);
1451
new_pc = pc;
1452
break;
1453
}
1454
1455
rp->r_rsp = addr;
1456
}
1457
1458
break;
1459
1460
case FASTTRAP_T_COMMON:
1461
{
1462
uintptr_t addr;
1463
#if defined(__amd64)
1464
uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
1465
#else
1466
uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
1467
#endif
1468
uint_t i = 0;
1469
fasttrap_scrspace_t *scrspace;
1470
scrspace = fasttrap_scraddr(curthread, tp->ftt_proc);
1471
if (scrspace == NULL) {
1472
/*
1473
* We failed to allocate scratch space for this thread.
1474
* Try to write the original instruction back out and
1475
* reset the pc.
1476
*/
1477
if (fasttrap_copyout(tp->ftt_instr, (void *)pc,
1478
tp->ftt_size))
1479
fasttrap_sigtrap(p, curthread, pc);
1480
new_pc = pc;
1481
break;
1482
}
1483
addr = scrspace->ftss_addr;
1484
1485
/*
1486
* Generic Instruction Tracing
1487
* ---------------------------
1488
*
1489
* This is the layout of the scratch space in the user-land
1490
* thread structure for our generated instructions.
1491
*
1492
* 32-bit mode bytes
1493
* ------------------------ -----
1494
* a: <original instruction> <= 15
1495
* jmp <pc + tp->ftt_size> 5
1496
* b: <original instruction> <= 15
1497
* int T_DTRACE_RET 2
1498
* -----
1499
* <= 37
1500
*
1501
* 64-bit mode bytes
1502
* ------------------------ -----
1503
* a: <original instruction> <= 15
1504
* jmp 0(%rip) 6
1505
* <pc + tp->ftt_size> 8
1506
* b: <original instruction> <= 15
1507
* int T_DTRACE_RET 2
1508
* -----
1509
* <= 46
1510
*
1511
* The %pc is set to a, and curthread->t_dtrace_astpc is set
1512
* to b. If we encounter a signal on the way out of the
1513
* kernel, trap() will set %pc to curthread->t_dtrace_astpc
1514
* so that we execute the original instruction and re-enter
1515
* the kernel rather than redirecting to the next instruction.
1516
*
1517
* If there are return probes (so we know that we're going to
1518
* need to reenter the kernel after executing the original
1519
* instruction), the scratch space will just contain the
1520
* original instruction followed by an interrupt -- the same
1521
* data as at b.
1522
*
1523
* %rip-relative Addressing
1524
* ------------------------
1525
*
1526
* There's a further complication in 64-bit mode due to %rip-
1527
* relative addressing. While this is clearly a beneficial
1528
* architectural decision for position independent code, it's
1529
* hard not to see it as a personal attack against the pid
1530
* provider since before there was a relatively small set of
1531
* instructions to emulate; with %rip-relative addressing,
1532
* almost every instruction can potentially depend on the
1533
* address at which it's executed. Rather than emulating
1534
* the broad spectrum of instructions that can now be
1535
* position dependent, we emulate jumps and others as in
1536
* 32-bit mode, and take a different tack for instructions
1537
* using %rip-relative addressing.
1538
*
1539
* For every instruction that uses the ModRM byte, the
1540
* in-kernel disassembler reports its location. We use the
1541
* ModRM byte to identify that an instruction uses
1542
* %rip-relative addressing and to see what other registers
1543
* the instruction uses. To emulate those instructions,
1544
* we modify the instruction to be %rax-relative rather than
1545
* %rip-relative (or %rcx-relative if the instruction uses
1546
* %rax; or %r8- or %r9-relative if the REX.B is present so
1547
* we don't have to rewrite the REX prefix). We then load
1548
* the value that %rip would have been into the scratch
1549
* register and generate an instruction to reset the scratch
1550
* register back to its original value. The instruction
1551
* sequence looks like this:
1552
*
1553
* 64-mode %rip-relative bytes
1554
* ------------------------ -----
1555
* a: <modified instruction> <= 15
1556
* movq $<value>, %<scratch> 6
1557
* jmp 0(%rip) 6
1558
* <pc + tp->ftt_size> 8
1559
* b: <modified instruction> <= 15
1560
* int T_DTRACE_RET 2
1561
* -----
1562
* 52
1563
*
1564
* We set curthread->t_dtrace_regv so that upon receiving
1565
* a signal we can reset the value of the scratch register.
1566
*/
1567
1568
ASSERT(tp->ftt_size <= FASTTRAP_MAX_INSTR_SIZE);
1569
1570
curthread->t_dtrace_scrpc = addr;
1571
bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1572
i += tp->ftt_size;
1573
1574
#ifdef __amd64
1575
if (tp->ftt_ripmode != 0) {
1576
greg_t *reg = NULL;
1577
1578
ASSERT(p->p_model == DATAMODEL_LP64);
1579
ASSERT(tp->ftt_ripmode &
1580
(FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1581
1582
/*
1583
* If this was a %rip-relative instruction, we change
1584
* it to be either a %rax- or %rcx-relative
1585
* instruction (depending on whether those registers
1586
* are used as another operand; or %r8- or %r9-
1587
* relative depending on the value of REX.B). We then
1588
* set that register and generate a movq instruction
1589
* to reset the value.
1590
*/
1591
if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1592
scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1593
else
1594
scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1595
1596
if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1597
scratch[i++] = FASTTRAP_MOV_EAX;
1598
else
1599
scratch[i++] = FASTTRAP_MOV_ECX;
1600
1601
switch (tp->ftt_ripmode) {
1602
case FASTTRAP_RIP_1:
1603
reg = &rp->r_rax;
1604
curthread->t_dtrace_reg = REG_RAX;
1605
break;
1606
case FASTTRAP_RIP_2:
1607
reg = &rp->r_rcx;
1608
curthread->t_dtrace_reg = REG_RCX;
1609
break;
1610
case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1611
reg = &rp->r_r8;
1612
curthread->t_dtrace_reg = REG_R8;
1613
break;
1614
case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1615
reg = &rp->r_r9;
1616
curthread->t_dtrace_reg = REG_R9;
1617
break;
1618
}
1619
1620
/* LINTED - alignment */
1621
*(uint64_t *)&scratch[i] = *reg;
1622
curthread->t_dtrace_regv = *reg;
1623
*reg = pc + tp->ftt_size;
1624
i += sizeof (uint64_t);
1625
}
1626
#endif
1627
1628
/*
1629
* Generate the branch instruction to what would have
1630
* normally been the subsequent instruction. In 32-bit mode,
1631
* this is just a relative branch; in 64-bit mode this is a
1632
* %rip-relative branch that loads the 64-bit pc value
1633
* immediately after the jmp instruction.
1634
*/
1635
#ifdef __amd64
1636
if (p->p_model == DATAMODEL_LP64) {
1637
scratch[i++] = FASTTRAP_GROUP5_OP;
1638
scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1639
/* LINTED - alignment */
1640
*(uint32_t *)&scratch[i] = 0;
1641
i += sizeof (uint32_t);
1642
/* LINTED - alignment */
1643
*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1644
i += sizeof (uint64_t);
1645
} else {
1646
#endif
1647
/*
1648
* Set up the jmp to the next instruction; note that
1649
* the size of the traced instruction cancels out.
1650
*/
1651
scratch[i++] = FASTTRAP_JMP32;
1652
/* LINTED - alignment */
1653
*(uint32_t *)&scratch[i] = pc - addr - 5;
1654
i += sizeof (uint32_t);
1655
#ifdef __amd64
1656
}
1657
#endif
1658
1659
curthread->t_dtrace_astpc = addr + i;
1660
bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1661
i += tp->ftt_size;
1662
scratch[i++] = FASTTRAP_INT;
1663
scratch[i++] = T_DTRACE_RET;
1664
1665
ASSERT(i <= sizeof (scratch));
1666
1667
if (uwrite(curproc, scratch, i, addr) != 0) {
1668
fasttrap_sigtrap(p, curthread, pc);
1669
new_pc = pc;
1670
break;
1671
}
1672
if (tp->ftt_retids != NULL) {
1673
curthread->t_dtrace_step = 1;
1674
curthread->t_dtrace_ret = 1;
1675
new_pc = curthread->t_dtrace_astpc;
1676
} else {
1677
new_pc = curthread->t_dtrace_scrpc;
1678
}
1679
1680
curthread->t_dtrace_pc = pc;
1681
curthread->t_dtrace_npc = pc + tp->ftt_size;
1682
curthread->t_dtrace_on = 1;
1683
break;
1684
}
1685
1686
default:
1687
panic("fasttrap: mishandled an instruction");
1688
}
1689
1690
done:
1691
/*
1692
* If there were no return probes when we first found the tracepoint,
1693
* we should feel no obligation to honor any return probes that were
1694
* subsequently enabled -- they'll just have to wait until the next
1695
* time around.
1696
*/
1697
if (tp->ftt_retids != NULL) {
1698
/*
1699
* We need to wait until the results of the instruction are
1700
* apparent before invoking any return probes. If this
1701
* instruction was emulated we can just call
1702
* fasttrap_return_common(); if it needs to be executed, we
1703
* need to wait until the user thread returns to the kernel.
1704
*/
1705
if (tp->ftt_type != FASTTRAP_T_COMMON) {
1706
/*
1707
* Set the program counter to the address of the traced
1708
* instruction so that it looks right in ustack()
1709
* output. We had previously set it to the end of the
1710
* instruction to simplify %rip-relative addressing.
1711
*/
1712
rp->r_rip = pc;
1713
1714
fasttrap_return_common(rp, pc, pid, new_pc);
1715
} else {
1716
ASSERT(curthread->t_dtrace_ret != 0);
1717
ASSERT(curthread->t_dtrace_pc == pc);
1718
ASSERT(curthread->t_dtrace_scrpc != 0);
1719
ASSERT(new_pc == curthread->t_dtrace_astpc);
1720
}
1721
}
1722
1723
rp->r_rip = new_pc;
1724
1725
PROC_LOCK(p);
1726
proc_write_regs(curthread, rp);
1727
PROC_UNLOCK(p);
1728
1729
return (0);
1730
}
1731
1732
int
1733
fasttrap_return_probe(struct trapframe *tf)
1734
{
1735
struct reg reg, *rp;
1736
proc_t *p = curproc;
1737
uintptr_t pc = curthread->t_dtrace_pc;
1738
uintptr_t npc = curthread->t_dtrace_npc;
1739
1740
fill_frame_regs(tf, &reg);
1741
rp = &reg;
1742
1743
curthread->t_dtrace_pc = 0;
1744
curthread->t_dtrace_npc = 0;
1745
curthread->t_dtrace_scrpc = 0;
1746
curthread->t_dtrace_astpc = 0;
1747
1748
#ifdef illumos
1749
/*
1750
* Treat a child created by a call to vfork(2) as if it were its
1751
* parent. We know that there's only one thread of control in such a
1752
* process: this one.
1753
*/
1754
while (p->p_flag & SVFORK) {
1755
p = p->p_parent;
1756
}
1757
#endif
1758
1759
/*
1760
* We set rp->r_rip to the address of the traced instruction so
1761
* that it appears to dtrace_probe() that we're on the original
1762
* instruction.
1763
*/
1764
rp->r_rip = pc;
1765
1766
fasttrap_return_common(rp, pc, p->p_pid, npc);
1767
1768
return (0);
1769
}
1770
1771
/*ARGSUSED*/
1772
uint64_t
1773
fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1774
int aframes)
1775
{
1776
struct reg r;
1777
1778
fill_regs(curthread, &r);
1779
1780
return (fasttrap_anarg(&r, 1, argno));
1781
}
1782
1783
/*ARGSUSED*/
1784
uint64_t
1785
fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1786
int aframes)
1787
{
1788
struct reg r;
1789
1790
fill_regs(curthread, &r);
1791
1792
return (fasttrap_anarg(&r, 0, argno));
1793
}
1794
1795
static ulong_t
1796
fasttrap_getreg(struct reg *rp, uint_t reg)
1797
{
1798
#ifdef __amd64
1799
switch (reg) {
1800
case REG_R15: return (rp->r_r15);
1801
case REG_R14: return (rp->r_r14);
1802
case REG_R13: return (rp->r_r13);
1803
case REG_R12: return (rp->r_r12);
1804
case REG_R11: return (rp->r_r11);
1805
case REG_R10: return (rp->r_r10);
1806
case REG_R9: return (rp->r_r9);
1807
case REG_R8: return (rp->r_r8);
1808
case REG_RDI: return (rp->r_rdi);
1809
case REG_RSI: return (rp->r_rsi);
1810
case REG_RBP: return (rp->r_rbp);
1811
case REG_RBX: return (rp->r_rbx);
1812
case REG_RDX: return (rp->r_rdx);
1813
case REG_RCX: return (rp->r_rcx);
1814
case REG_RAX: return (rp->r_rax);
1815
case REG_TRAPNO: return (rp->r_trapno);
1816
case REG_ERR: return (rp->r_err);
1817
case REG_RIP: return (rp->r_rip);
1818
case REG_CS: return (rp->r_cs);
1819
case REG_RFL: return (rp->r_rflags);
1820
case REG_RSP: return (rp->r_rsp);
1821
case REG_SS: return (rp->r_ss);
1822
case REG_FS: return (rp->r_fs);
1823
case REG_GS: return (rp->r_gs);
1824
case REG_DS: return (rp->r_ds);
1825
case REG_ES: return (rp->r_es);
1826
case REG_FSBASE: return (rdmsr(MSR_FSBASE));
1827
case REG_GSBASE: return (rdmsr(MSR_GSBASE));
1828
}
1829
1830
panic("dtrace: illegal register constant");
1831
/*NOTREACHED*/
1832
#else
1833
#define _NGREG 19
1834
if (reg >= _NGREG)
1835
panic("dtrace: illegal register constant");
1836
1837
return (((greg_t *)&rp->r_gs)[reg]);
1838
#endif
1839
}
1840
1841