Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/compat/freebsd32/freebsd32_misc.c
39478 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2002 Doug Rabson
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26
* SUCH DAMAGE.
27
*/
28
29
#include <sys/cdefs.h>
30
#include "opt_ffclock.h"
31
#include "opt_inet.h"
32
#include "opt_inet6.h"
33
#include "opt_ktrace.h"
34
35
#define __ELF_WORD_SIZE 32
36
37
#ifdef COMPAT_FREEBSD11
38
#define _WANT_FREEBSD11_KEVENT
39
#endif
40
41
#include <sys/param.h>
42
#include <sys/bus.h>
43
#include <sys/capsicum.h>
44
#include <sys/clock.h>
45
#include <sys/exec.h>
46
#include <sys/fcntl.h>
47
#include <sys/filedesc.h>
48
#include <sys/imgact.h>
49
#include <sys/jail.h>
50
#include <sys/kernel.h>
51
#include <sys/limits.h>
52
#include <sys/linker.h>
53
#include <sys/lock.h>
54
#include <sys/malloc.h>
55
#include <sys/file.h> /* Must come after sys/malloc.h */
56
#include <sys/imgact.h>
57
#include <sys/mbuf.h>
58
#include <sys/mman.h>
59
#include <sys/module.h>
60
#include <sys/mount.h>
61
#include <sys/mutex.h>
62
#include <sys/namei.h>
63
#include <sys/priv.h>
64
#include <sys/proc.h>
65
#include <sys/procctl.h>
66
#include <sys/ptrace.h>
67
#include <sys/reboot.h>
68
#include <sys/resource.h>
69
#include <sys/resourcevar.h>
70
#include <sys/selinfo.h>
71
#include <sys/eventvar.h> /* Must come after sys/selinfo.h */
72
#include <sys/pipe.h> /* Must come after sys/selinfo.h */
73
#include <sys/signal.h>
74
#include <sys/signalvar.h>
75
#include <sys/socket.h>
76
#include <sys/socketvar.h>
77
#include <sys/stat.h>
78
#include <sys/syscall.h>
79
#include <sys/syscallsubr.h>
80
#include <sys/sysctl.h>
81
#include <sys/sysent.h>
82
#include <sys/sysproto.h>
83
#include <sys/systm.h>
84
#include <sys/thr.h>
85
#include <sys/timerfd.h>
86
#include <sys/timex.h>
87
#include <sys/unistd.h>
88
#include <sys/ucontext.h>
89
#include <sys/ucred.h>
90
#include <sys/vnode.h>
91
#include <sys/wait.h>
92
#include <sys/ipc.h>
93
#include <sys/msg.h>
94
#include <sys/sem.h>
95
#include <sys/shm.h>
96
#include <sys/timeffc.h>
97
#ifdef KTRACE
98
#include <sys/ktrace.h>
99
#endif
100
101
#ifdef INET
102
#include <netinet/in.h>
103
#endif
104
105
#include <vm/vm.h>
106
#include <vm/vm_param.h>
107
#include <vm/pmap.h>
108
#include <vm/vm_map.h>
109
#include <vm/vm_object.h>
110
#include <vm/vm_extern.h>
111
112
#include <machine/cpu.h>
113
#include <machine/elf.h>
114
#ifdef __amd64__
115
#include <machine/md_var.h>
116
#endif
117
118
#include <security/audit/audit.h>
119
#include <security/mac/mac_syscalls.h>
120
121
#include <compat/freebsd32/freebsd32_util.h>
122
#include <compat/freebsd32/freebsd32.h>
123
#include <compat/freebsd32/freebsd32_ipc.h>
124
#include <compat/freebsd32/freebsd32_misc.h>
125
#include <compat/freebsd32/freebsd32_signal.h>
126
#include <compat/freebsd32/freebsd32_proto.h>
127
128
int compat_freebsd_32bit = 1;
129
130
static void
131
register_compat32_feature(void *arg)
132
{
133
if (!compat_freebsd_32bit)
134
return;
135
136
FEATURE_ADD("compat_freebsd32", "Compatible with 32-bit FreeBSD");
137
FEATURE_ADD("compat_freebsd_32bit",
138
"Compatible with 32-bit FreeBSD (legacy feature name)");
139
}
140
SYSINIT(freebsd32, SI_SUB_EXEC, SI_ORDER_ANY, register_compat32_feature,
141
NULL);
142
143
struct ptrace_io_desc32 {
144
int piod_op;
145
uint32_t piod_offs;
146
uint32_t piod_addr;
147
uint32_t piod_len;
148
};
149
150
struct ptrace_vm_entry32 {
151
int pve_entry;
152
int pve_timestamp;
153
uint32_t pve_start;
154
uint32_t pve_end;
155
uint32_t pve_offset;
156
u_int pve_prot;
157
u_int pve_pathlen;
158
int32_t pve_fileid;
159
u_int pve_fsid;
160
uint32_t pve_path;
161
};
162
163
#ifdef __amd64__
164
CTASSERT(sizeof(struct timeval32) == 8);
165
CTASSERT(sizeof(struct timespec32) == 8);
166
CTASSERT(sizeof(struct itimerval32) == 16);
167
CTASSERT(sizeof(struct bintime32) == 12);
168
#else
169
CTASSERT(sizeof(struct timeval32) == 16);
170
CTASSERT(sizeof(struct timespec32) == 16);
171
CTASSERT(sizeof(struct itimerval32) == 32);
172
CTASSERT(sizeof(struct bintime32) == 16);
173
#endif
174
CTASSERT(sizeof(struct ostatfs32) == 256);
175
#ifdef __amd64__
176
CTASSERT(sizeof(struct rusage32) == 72);
177
#else
178
CTASSERT(sizeof(struct rusage32) == 88);
179
#endif
180
CTASSERT(sizeof(struct sigaltstack32) == 12);
181
#ifdef __amd64__
182
CTASSERT(sizeof(struct kevent32) == 56);
183
#else
184
CTASSERT(sizeof(struct kevent32) == 64);
185
#endif
186
CTASSERT(sizeof(struct iovec32) == 8);
187
CTASSERT(sizeof(struct msghdr32) == 28);
188
#ifdef __amd64__
189
CTASSERT(sizeof(struct stat32) == 208);
190
CTASSERT(sizeof(struct freebsd11_stat32) == 96);
191
#else
192
CTASSERT(sizeof(struct stat32) == 224);
193
CTASSERT(sizeof(struct freebsd11_stat32) == 120);
194
#endif
195
CTASSERT(sizeof(struct sigaction32) == 24);
196
197
static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
198
static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
199
static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
200
int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
201
202
void
203
freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
204
{
205
206
TV_CP(*s, *s32, ru_utime);
207
TV_CP(*s, *s32, ru_stime);
208
CP(*s, *s32, ru_maxrss);
209
CP(*s, *s32, ru_ixrss);
210
CP(*s, *s32, ru_idrss);
211
CP(*s, *s32, ru_isrss);
212
CP(*s, *s32, ru_minflt);
213
CP(*s, *s32, ru_majflt);
214
CP(*s, *s32, ru_nswap);
215
CP(*s, *s32, ru_inblock);
216
CP(*s, *s32, ru_oublock);
217
CP(*s, *s32, ru_msgsnd);
218
CP(*s, *s32, ru_msgrcv);
219
CP(*s, *s32, ru_nsignals);
220
CP(*s, *s32, ru_nvcsw);
221
CP(*s, *s32, ru_nivcsw);
222
}
223
224
int
225
freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
226
{
227
int error, status;
228
struct rusage32 ru32;
229
struct rusage ru, *rup;
230
231
if (uap->rusage != NULL)
232
rup = &ru;
233
else
234
rup = NULL;
235
error = kern_wait(td, uap->pid, &status, uap->options, rup);
236
if (error)
237
return (error);
238
if (uap->status != NULL)
239
error = copyout(&status, uap->status, sizeof(status));
240
if (uap->rusage != NULL && error == 0) {
241
freebsd32_rusage_out(&ru, &ru32);
242
error = copyout(&ru32, uap->rusage, sizeof(ru32));
243
}
244
return (error);
245
}
246
247
int
248
freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
249
{
250
struct __wrusage32 wru32;
251
struct __wrusage wru, *wrup;
252
struct __siginfo32 si32;
253
struct __siginfo si, *sip;
254
int error, status;
255
256
if (uap->wrusage != NULL)
257
wrup = &wru;
258
else
259
wrup = NULL;
260
if (uap->info != NULL) {
261
sip = &si;
262
bzero(sip, sizeof(*sip));
263
} else
264
sip = NULL;
265
error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
266
&status, uap->options, wrup, sip);
267
if (error != 0)
268
return (error);
269
if (uap->status != NULL)
270
error = copyout(&status, uap->status, sizeof(status));
271
if (uap->wrusage != NULL && error == 0) {
272
freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
273
freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
274
error = copyout(&wru32, uap->wrusage, sizeof(wru32));
275
}
276
if (uap->info != NULL && error == 0) {
277
siginfo_to_siginfo32 (&si, &si32);
278
error = copyout(&si32, uap->info, sizeof(si32));
279
}
280
return (error);
281
}
282
283
#ifdef COMPAT_FREEBSD4
284
static void
285
copy_statfs(struct statfs *in, struct ostatfs32 *out)
286
{
287
288
statfs_scale_blocks(in, INT32_MAX);
289
bzero(out, sizeof(*out));
290
CP(*in, *out, f_bsize);
291
out->f_iosize = MIN(in->f_iosize, INT32_MAX);
292
CP(*in, *out, f_blocks);
293
CP(*in, *out, f_bfree);
294
CP(*in, *out, f_bavail);
295
out->f_files = MIN(in->f_files, INT32_MAX);
296
out->f_ffree = MIN(in->f_ffree, INT32_MAX);
297
CP(*in, *out, f_fsid);
298
CP(*in, *out, f_owner);
299
CP(*in, *out, f_type);
300
CP(*in, *out, f_flags);
301
out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
302
out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
303
strlcpy(out->f_fstypename,
304
in->f_fstypename, MFSNAMELEN);
305
strlcpy(out->f_mntonname,
306
in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN));
307
out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
308
out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
309
strlcpy(out->f_mntfromname,
310
in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN));
311
}
312
#endif
313
314
int
315
freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap)
316
{
317
size_t count;
318
int error;
319
320
if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX)
321
return (EINVAL);
322
error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count,
323
UIO_USERSPACE, uap->mode);
324
if (error == 0)
325
td->td_retval[0] = count;
326
return (error);
327
}
328
329
#ifdef COMPAT_FREEBSD4
330
int
331
freebsd4_freebsd32_getfsstat(struct thread *td,
332
struct freebsd4_freebsd32_getfsstat_args *uap)
333
{
334
struct statfs *buf, *sp;
335
struct ostatfs32 stat32;
336
size_t count, size, copycount;
337
int error;
338
339
count = uap->bufsize / sizeof(struct ostatfs32);
340
size = count * sizeof(struct statfs);
341
error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
342
if (size > 0) {
343
sp = buf;
344
copycount = count;
345
while (copycount > 0 && error == 0) {
346
copy_statfs(sp, &stat32);
347
error = copyout(&stat32, uap->buf, sizeof(stat32));
348
sp++;
349
uap->buf++;
350
copycount--;
351
}
352
free(buf, M_STATFS);
353
}
354
if (error == 0)
355
td->td_retval[0] = count;
356
return (error);
357
}
358
#endif
359
360
#ifdef COMPAT_FREEBSD11
361
int
362
freebsd11_freebsd32_getfsstat(struct thread *td,
363
struct freebsd11_freebsd32_getfsstat_args *uap)
364
{
365
return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize,
366
uap->mode));
367
}
368
#endif
369
370
int
371
freebsd32_sigaltstack(struct thread *td,
372
struct freebsd32_sigaltstack_args *uap)
373
{
374
struct sigaltstack32 s32;
375
struct sigaltstack ss, oss, *ssp;
376
int error;
377
378
if (uap->ss != NULL) {
379
error = copyin(uap->ss, &s32, sizeof(s32));
380
if (error)
381
return (error);
382
PTRIN_CP(s32, ss, ss_sp);
383
CP(s32, ss, ss_size);
384
CP(s32, ss, ss_flags);
385
ssp = &ss;
386
} else
387
ssp = NULL;
388
error = kern_sigaltstack(td, ssp, &oss);
389
if (error == 0 && uap->oss != NULL) {
390
PTROUT_CP(oss, s32, ss_sp);
391
CP(oss, s32, ss_size);
392
CP(oss, s32, ss_flags);
393
error = copyout(&s32, uap->oss, sizeof(s32));
394
}
395
return (error);
396
}
397
398
/*
399
* Custom version of exec_copyin_args() so that we can translate
400
* the pointers.
401
*/
402
int
403
freebsd32_exec_copyin_args(struct image_args *args, const char *fname,
404
uint32_t *argv, uint32_t *envv)
405
{
406
char *argp, *envp;
407
uint32_t *p32, arg;
408
int error;
409
410
bzero(args, sizeof(*args));
411
if (argv == NULL)
412
return (EFAULT);
413
414
/*
415
* Allocate demand-paged memory for the file name, argument, and
416
* environment strings.
417
*/
418
error = exec_alloc_args(args);
419
if (error != 0)
420
return (error);
421
422
/*
423
* Copy the file name.
424
*/
425
error = exec_args_add_fname(args, fname, UIO_USERSPACE);
426
if (error != 0)
427
goto err_exit;
428
429
/*
430
* extract arguments first
431
*/
432
p32 = argv;
433
for (;;) {
434
error = copyin(p32++, &arg, sizeof(arg));
435
if (error)
436
goto err_exit;
437
if (arg == 0)
438
break;
439
argp = PTRIN(arg);
440
error = exec_args_add_arg(args, argp, UIO_USERSPACE);
441
if (error != 0)
442
goto err_exit;
443
}
444
445
/*
446
* extract environment strings
447
*/
448
if (envv) {
449
p32 = envv;
450
for (;;) {
451
error = copyin(p32++, &arg, sizeof(arg));
452
if (error)
453
goto err_exit;
454
if (arg == 0)
455
break;
456
envp = PTRIN(arg);
457
error = exec_args_add_env(args, envp, UIO_USERSPACE);
458
if (error != 0)
459
goto err_exit;
460
}
461
}
462
463
return (0);
464
465
err_exit:
466
exec_free_args(args);
467
return (error);
468
}
469
470
int
471
freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
472
{
473
struct image_args eargs;
474
struct vmspace *oldvmspace;
475
int error;
476
477
error = pre_execve(td, &oldvmspace);
478
if (error != 0)
479
return (error);
480
error = freebsd32_exec_copyin_args(&eargs, uap->fname, uap->argv,
481
uap->envv);
482
if (error == 0)
483
error = kern_execve(td, &eargs, NULL, oldvmspace);
484
post_execve(td, error, oldvmspace);
485
AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
486
return (error);
487
}
488
489
int
490
freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
491
{
492
struct image_args eargs;
493
struct vmspace *oldvmspace;
494
int error;
495
496
error = pre_execve(td, &oldvmspace);
497
if (error != 0)
498
return (error);
499
error = freebsd32_exec_copyin_args(&eargs, NULL, uap->argv, uap->envv);
500
if (error == 0) {
501
eargs.fd = uap->fd;
502
error = kern_execve(td, &eargs, NULL, oldvmspace);
503
}
504
post_execve(td, error, oldvmspace);
505
AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
506
return (error);
507
}
508
509
int
510
freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap)
511
{
512
513
return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE,
514
uap->mode, PAIR32TO64(dev_t, uap->dev)));
515
}
516
517
int
518
freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
519
{
520
int prot;
521
522
prot = uap->prot;
523
#if defined(__amd64__)
524
if (i386_read_exec && (prot & PROT_READ) != 0)
525
prot |= PROT_EXEC;
526
#endif
527
return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
528
prot, 0));
529
}
530
531
int
532
freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
533
{
534
int prot;
535
536
prot = uap->prot;
537
#if defined(__amd64__)
538
if (i386_read_exec && (prot & PROT_READ))
539
prot |= PROT_EXEC;
540
#endif
541
542
return (kern_mmap(td, &(struct mmap_req){
543
.mr_hint = (uintptr_t)uap->addr,
544
.mr_len = uap->len,
545
.mr_prot = prot,
546
.mr_flags = uap->flags,
547
.mr_fd = uap->fd,
548
.mr_pos = PAIR32TO64(off_t, uap->pos),
549
}));
550
}
551
552
#ifdef COMPAT_FREEBSD6
553
int
554
freebsd6_freebsd32_mmap(struct thread *td,
555
struct freebsd6_freebsd32_mmap_args *uap)
556
{
557
int prot;
558
559
prot = uap->prot;
560
#if defined(__amd64__)
561
if (i386_read_exec && (prot & PROT_READ))
562
prot |= PROT_EXEC;
563
#endif
564
565
return (kern_mmap(td, &(struct mmap_req){
566
.mr_hint = (uintptr_t)uap->addr,
567
.mr_len = uap->len,
568
.mr_prot = prot,
569
.mr_flags = uap->flags,
570
.mr_fd = uap->fd,
571
.mr_pos = PAIR32TO64(off_t, uap->pos),
572
}));
573
}
574
#endif
575
576
#ifdef COMPAT_43
577
int
578
ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap)
579
{
580
return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot,
581
uap->flags, uap->fd, uap->pos));
582
}
583
#endif
584
585
int
586
freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
587
{
588
struct itimerval itv, oitv, *itvp;
589
struct itimerval32 i32;
590
int error;
591
592
if (uap->itv != NULL) {
593
error = copyin(uap->itv, &i32, sizeof(i32));
594
if (error)
595
return (error);
596
TV_CP(i32, itv, it_interval);
597
TV_CP(i32, itv, it_value);
598
itvp = &itv;
599
} else
600
itvp = NULL;
601
error = kern_setitimer(td, uap->which, itvp, &oitv);
602
if (error || uap->oitv == NULL)
603
return (error);
604
TV_CP(oitv, i32, it_interval);
605
TV_CP(oitv, i32, it_value);
606
return (copyout(&i32, uap->oitv, sizeof(i32)));
607
}
608
609
int
610
freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
611
{
612
struct itimerval itv;
613
struct itimerval32 i32;
614
int error;
615
616
error = kern_getitimer(td, uap->which, &itv);
617
if (error || uap->itv == NULL)
618
return (error);
619
TV_CP(itv, i32, it_interval);
620
TV_CP(itv, i32, it_value);
621
return (copyout(&i32, uap->itv, sizeof(i32)));
622
}
623
624
int
625
freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
626
{
627
struct timeval32 tv32;
628
struct timeval tv, *tvp;
629
int error;
630
631
if (uap->tv != NULL) {
632
error = copyin(uap->tv, &tv32, sizeof(tv32));
633
if (error)
634
return (error);
635
CP(tv32, tv, tv_sec);
636
CP(tv32, tv, tv_usec);
637
tvp = &tv;
638
} else
639
tvp = NULL;
640
/*
641
* XXX Do pointers need PTRIN()?
642
*/
643
return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
644
sizeof(int32_t) * 8));
645
}
646
647
int
648
freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
649
{
650
struct timespec32 ts32;
651
struct timespec ts;
652
struct timeval tv, *tvp;
653
sigset_t set, *uset;
654
int error;
655
656
if (uap->ts != NULL) {
657
error = copyin(uap->ts, &ts32, sizeof(ts32));
658
if (error != 0)
659
return (error);
660
CP(ts32, ts, tv_sec);
661
CP(ts32, ts, tv_nsec);
662
TIMESPEC_TO_TIMEVAL(&tv, &ts);
663
tvp = &tv;
664
} else
665
tvp = NULL;
666
if (uap->sm != NULL) {
667
error = copyin(uap->sm, &set, sizeof(set));
668
if (error != 0)
669
return (error);
670
uset = &set;
671
} else
672
uset = NULL;
673
/*
674
* XXX Do pointers need PTRIN()?
675
*/
676
error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
677
uset, sizeof(int32_t) * 8);
678
return (error);
679
}
680
681
static void
682
freebsd32_kevent_to_kevent32(const struct kevent *kevp, struct kevent32 *ks32)
683
{
684
uint64_t e;
685
int j;
686
687
CP(*kevp, *ks32, ident);
688
CP(*kevp, *ks32, filter);
689
CP(*kevp, *ks32, flags);
690
CP(*kevp, *ks32, fflags);
691
#if BYTE_ORDER == LITTLE_ENDIAN
692
ks32->data1 = kevp->data;
693
ks32->data2 = kevp->data >> 32;
694
#else
695
ks32->data1 = kevp->data >> 32;
696
ks32->data2 = kevp->data;
697
#endif
698
PTROUT_CP(*kevp, *ks32, udata);
699
for (j = 0; j < nitems(kevp->ext); j++) {
700
e = kevp->ext[j];
701
#if BYTE_ORDER == LITTLE_ENDIAN
702
ks32->ext64[2 * j] = e;
703
ks32->ext64[2 * j + 1] = e >> 32;
704
#else
705
ks32->ext64[2 * j] = e >> 32;
706
ks32->ext64[2 * j + 1] = e;
707
#endif
708
}
709
}
710
711
void
712
freebsd32_kinfo_knote_to_32(const struct kinfo_knote *kin,
713
struct kinfo_knote32 *kin32)
714
{
715
memset(kin32, 0, sizeof(*kin32));
716
CP(*kin, *kin32, knt_kq_fd);
717
freebsd32_kevent_to_kevent32(&kin->knt_event, &kin32->knt_event);
718
CP(*kin, *kin32, knt_status);
719
CP(*kin, *kin32, knt_extdata);
720
switch (kin->knt_extdata) {
721
case KNOTE_EXTDATA_NONE:
722
break;
723
case KNOTE_EXTDATA_VNODE:
724
CP(*kin, *kin32, knt_vnode.knt_vnode_type);
725
#if BYTE_ORDER == LITTLE_ENDIAN
726
kin32->knt_vnode.knt_vnode_fsid[0] = kin->knt_vnode.
727
knt_vnode_fsid;
728
kin32->knt_vnode.knt_vnode_fsid[1] = kin->knt_vnode.
729
knt_vnode_fsid >> 32;
730
kin32->knt_vnode.knt_vnode_fileid[0] = kin->knt_vnode.
731
knt_vnode_fileid;
732
kin32->knt_vnode.knt_vnode_fileid[1] = kin->knt_vnode.
733
knt_vnode_fileid >> 32;
734
#else
735
kin32->knt_vnode.knt_vnode_fsid[1] = kin->knt_vnode.
736
knt_vnode_fsid;
737
kin32->knt_vnode.knt_vnode_fsid[0] = kin->knt_vnode.
738
knt_vnode_fsid >> 32;
739
kin32->knt_vnode.knt_vnode_fileid[1] = kin->knt_vnode.
740
knt_vnode_fileid;
741
kin32->knt_vnode.knt_vnode_fileid[0] = kin->knt_vnode.
742
knt_vnode_fileid >> 32;
743
#endif
744
memcpy(kin32->knt_vnode.knt_vnode_fullpath,
745
kin->knt_vnode.knt_vnode_fullpath, PATH_MAX);
746
break;
747
case KNOTE_EXTDATA_PIPE:
748
#if BYTE_ORDER == LITTLE_ENDIAN
749
kin32->knt_pipe.knt_pipe_ino[0] = kin->knt_pipe.knt_pipe_ino;
750
kin32->knt_pipe.knt_pipe_ino[1] = kin->knt_pipe.
751
knt_pipe_ino >> 32;
752
#else
753
kin32->knt_pipe.knt_pipe_ino[1] = kin->knt_pipe.knt_pipe_ino;
754
kin32->knt_pipe.knt_pipe_ino[0] = kin->knt_pipe.
755
knt_pipe_ino >> 32;
756
#endif
757
break;
758
}
759
}
760
761
/*
762
* Copy 'count' items into the destination list pointed to by uap->eventlist.
763
*/
764
static int
765
freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
766
{
767
struct freebsd32_kevent_args *uap;
768
struct kevent32 ks32[KQ_NEVENTS];
769
int i, error;
770
771
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
772
uap = (struct freebsd32_kevent_args *)arg;
773
774
for (i = 0; i < count; i++)
775
freebsd32_kevent_to_kevent32(&kevp[i], &ks32[i]);
776
error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
777
if (error == 0)
778
uap->eventlist += count;
779
return (error);
780
}
781
782
/*
783
* Copy 'count' items from the list pointed to by uap->changelist.
784
*/
785
static int
786
freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
787
{
788
struct freebsd32_kevent_args *uap;
789
struct kevent32 ks32[KQ_NEVENTS];
790
uint64_t e;
791
int i, j, error;
792
793
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
794
uap = (struct freebsd32_kevent_args *)arg;
795
796
error = copyin(uap->changelist, ks32, count * sizeof *ks32);
797
if (error)
798
goto done;
799
uap->changelist += count;
800
801
for (i = 0; i < count; i++) {
802
CP(ks32[i], kevp[i], ident);
803
CP(ks32[i], kevp[i], filter);
804
CP(ks32[i], kevp[i], flags);
805
CP(ks32[i], kevp[i], fflags);
806
kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data);
807
PTRIN_CP(ks32[i], kevp[i], udata);
808
for (j = 0; j < nitems(kevp->ext); j++) {
809
#if BYTE_ORDER == LITTLE_ENDIAN
810
e = ks32[i].ext64[2 * j + 1];
811
e <<= 32;
812
e += ks32[i].ext64[2 * j];
813
#else
814
e = ks32[i].ext64[2 * j];
815
e <<= 32;
816
e += ks32[i].ext64[2 * j + 1];
817
#endif
818
kevp[i].ext[j] = e;
819
}
820
}
821
done:
822
return (error);
823
}
824
825
int
826
freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
827
{
828
struct timespec32 ts32;
829
struct timespec ts, *tsp;
830
struct kevent_copyops k_ops = {
831
.arg = uap,
832
.k_copyout = freebsd32_kevent_copyout,
833
.k_copyin = freebsd32_kevent_copyin,
834
};
835
#ifdef KTRACE
836
struct kevent32 *eventlist = uap->eventlist;
837
#endif
838
int error;
839
840
if (uap->timeout) {
841
error = copyin(uap->timeout, &ts32, sizeof(ts32));
842
if (error)
843
return (error);
844
CP(ts32, ts, tv_sec);
845
CP(ts32, ts, tv_nsec);
846
tsp = &ts;
847
} else
848
tsp = NULL;
849
#ifdef KTRACE
850
if (KTRPOINT(td, KTR_STRUCT_ARRAY))
851
ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist,
852
uap->nchanges, sizeof(struct kevent32));
853
#endif
854
error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
855
&k_ops, tsp);
856
#ifdef KTRACE
857
if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
858
ktrstructarray("kevent32", UIO_USERSPACE, eventlist,
859
td->td_retval[0], sizeof(struct kevent32));
860
#endif
861
return (error);
862
}
863
864
#ifdef COMPAT_FREEBSD11
865
static int
866
freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
867
{
868
struct freebsd11_freebsd32_kevent_args *uap;
869
struct freebsd11_kevent32 ks32[KQ_NEVENTS];
870
int i, error;
871
872
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
873
uap = (struct freebsd11_freebsd32_kevent_args *)arg;
874
875
for (i = 0; i < count; i++) {
876
CP(kevp[i], ks32[i], ident);
877
CP(kevp[i], ks32[i], filter);
878
CP(kevp[i], ks32[i], flags);
879
CP(kevp[i], ks32[i], fflags);
880
CP(kevp[i], ks32[i], data);
881
PTROUT_CP(kevp[i], ks32[i], udata);
882
}
883
error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
884
if (error == 0)
885
uap->eventlist += count;
886
return (error);
887
}
888
889
/*
890
* Copy 'count' items from the list pointed to by uap->changelist.
891
*/
892
static int
893
freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
894
{
895
struct freebsd11_freebsd32_kevent_args *uap;
896
struct freebsd11_kevent32 ks32[KQ_NEVENTS];
897
int i, j, error;
898
899
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
900
uap = (struct freebsd11_freebsd32_kevent_args *)arg;
901
902
error = copyin(uap->changelist, ks32, count * sizeof *ks32);
903
if (error)
904
goto done;
905
uap->changelist += count;
906
907
for (i = 0; i < count; i++) {
908
CP(ks32[i], kevp[i], ident);
909
CP(ks32[i], kevp[i], filter);
910
CP(ks32[i], kevp[i], flags);
911
CP(ks32[i], kevp[i], fflags);
912
CP(ks32[i], kevp[i], data);
913
PTRIN_CP(ks32[i], kevp[i], udata);
914
for (j = 0; j < nitems(kevp->ext); j++)
915
kevp[i].ext[j] = 0;
916
}
917
done:
918
return (error);
919
}
920
921
int
922
freebsd11_freebsd32_kevent(struct thread *td,
923
struct freebsd11_freebsd32_kevent_args *uap)
924
{
925
struct timespec32 ts32;
926
struct timespec ts, *tsp;
927
struct kevent_copyops k_ops = {
928
.arg = uap,
929
.k_copyout = freebsd32_kevent11_copyout,
930
.k_copyin = freebsd32_kevent11_copyin,
931
};
932
#ifdef KTRACE
933
struct freebsd11_kevent32 *eventlist = uap->eventlist;
934
#endif
935
int error;
936
937
if (uap->timeout) {
938
error = copyin(uap->timeout, &ts32, sizeof(ts32));
939
if (error)
940
return (error);
941
CP(ts32, ts, tv_sec);
942
CP(ts32, ts, tv_nsec);
943
tsp = &ts;
944
} else
945
tsp = NULL;
946
#ifdef KTRACE
947
if (KTRPOINT(td, KTR_STRUCT_ARRAY))
948
ktrstructarray("freebsd11_kevent32", UIO_USERSPACE,
949
uap->changelist, uap->nchanges,
950
sizeof(struct freebsd11_kevent32));
951
#endif
952
error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
953
&k_ops, tsp);
954
#ifdef KTRACE
955
if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
956
ktrstructarray("freebsd11_kevent32", UIO_USERSPACE,
957
eventlist, td->td_retval[0],
958
sizeof(struct freebsd11_kevent32));
959
#endif
960
return (error);
961
}
962
#endif
963
964
int
965
freebsd32_gettimeofday(struct thread *td,
966
struct freebsd32_gettimeofday_args *uap)
967
{
968
struct timeval atv;
969
struct timeval32 atv32;
970
struct timezone rtz;
971
int error = 0;
972
973
if (uap->tp) {
974
microtime(&atv);
975
CP(atv, atv32, tv_sec);
976
CP(atv, atv32, tv_usec);
977
error = copyout(&atv32, uap->tp, sizeof (atv32));
978
}
979
if (error == 0 && uap->tzp != NULL) {
980
rtz.tz_minuteswest = 0;
981
rtz.tz_dsttime = 0;
982
error = copyout(&rtz, uap->tzp, sizeof (rtz));
983
}
984
return (error);
985
}
986
987
int
988
freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
989
{
990
struct rusage32 s32;
991
struct rusage s;
992
int error;
993
994
error = kern_getrusage(td, uap->who, &s);
995
if (error == 0) {
996
freebsd32_rusage_out(&s, &s32);
997
error = copyout(&s32, uap->rusage, sizeof(s32));
998
}
999
return (error);
1000
}
1001
1002
static void
1003
ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
1004
struct ptrace_lwpinfo32 *pl32)
1005
{
1006
1007
bzero(pl32, sizeof(*pl32));
1008
pl32->pl_lwpid = pl->pl_lwpid;
1009
pl32->pl_event = pl->pl_event;
1010
pl32->pl_flags = pl->pl_flags;
1011
pl32->pl_sigmask = pl->pl_sigmask;
1012
pl32->pl_siglist = pl->pl_siglist;
1013
siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
1014
strcpy(pl32->pl_tdname, pl->pl_tdname);
1015
pl32->pl_child_pid = pl->pl_child_pid;
1016
pl32->pl_syscall_code = pl->pl_syscall_code;
1017
pl32->pl_syscall_narg = pl->pl_syscall_narg;
1018
}
1019
1020
static void
1021
ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr,
1022
struct ptrace_sc_ret32 *psr32)
1023
{
1024
1025
bzero(psr32, sizeof(*psr32));
1026
psr32->sr_retval[0] = psr->sr_retval[0];
1027
psr32->sr_retval[1] = psr->sr_retval[1];
1028
psr32->sr_error = psr->sr_error;
1029
}
1030
1031
int
1032
freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap)
1033
{
1034
union {
1035
struct ptrace_io_desc piod;
1036
struct ptrace_lwpinfo pl;
1037
struct ptrace_vm_entry pve;
1038
struct ptrace_coredump pc;
1039
struct ptrace_sc_remote sr;
1040
struct dbreg32 dbreg;
1041
struct fpreg32 fpreg;
1042
struct reg32 reg;
1043
struct iovec vec;
1044
register_t args[nitems(td->td_sa.args)];
1045
struct ptrace_sc_ret psr;
1046
int ptevents;
1047
} r;
1048
union {
1049
struct ptrace_io_desc32 piod;
1050
struct ptrace_lwpinfo32 pl;
1051
struct ptrace_vm_entry32 pve;
1052
struct ptrace_coredump32 pc;
1053
struct ptrace_sc_remote32 sr;
1054
uint32_t args[nitems(td->td_sa.args)];
1055
struct ptrace_sc_ret32 psr;
1056
struct iovec32 vec;
1057
} r32;
1058
syscallarg_t pscr_args[nitems(td->td_sa.args)];
1059
u_int pscr_args32[nitems(td->td_sa.args)];
1060
void *addr;
1061
int data, error, i;
1062
1063
if (!allow_ptrace)
1064
return (ENOSYS);
1065
error = 0;
1066
1067
AUDIT_ARG_PID(uap->pid);
1068
AUDIT_ARG_CMD(uap->req);
1069
AUDIT_ARG_VALUE(uap->data);
1070
addr = &r;
1071
data = uap->data;
1072
switch (uap->req) {
1073
case PT_GET_EVENT_MASK:
1074
case PT_GET_SC_ARGS:
1075
case PT_GET_SC_RET:
1076
break;
1077
case PT_LWPINFO:
1078
if (uap->data > sizeof(r32.pl))
1079
return (EINVAL);
1080
1081
/*
1082
* Pass size of native structure in 'data'. Truncate
1083
* if necessary to avoid siginfo.
1084
*/
1085
data = sizeof(r.pl);
1086
if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) +
1087
sizeof(struct __siginfo32))
1088
data = offsetof(struct ptrace_lwpinfo, pl_siginfo);
1089
break;
1090
case PT_GETREGS:
1091
bzero(&r.reg, sizeof(r.reg));
1092
break;
1093
case PT_GETFPREGS:
1094
bzero(&r.fpreg, sizeof(r.fpreg));
1095
break;
1096
case PT_GETDBREGS:
1097
bzero(&r.dbreg, sizeof(r.dbreg));
1098
break;
1099
case PT_SETREGS:
1100
error = copyin(uap->addr, &r.reg, sizeof(r.reg));
1101
break;
1102
case PT_SETFPREGS:
1103
error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
1104
break;
1105
case PT_SETDBREGS:
1106
error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
1107
break;
1108
case PT_GETREGSET:
1109
case PT_SETREGSET:
1110
error = copyin(uap->addr, &r32.vec, sizeof(r32.vec));
1111
if (error != 0)
1112
break;
1113
1114
r.vec.iov_len = r32.vec.iov_len;
1115
r.vec.iov_base = PTRIN(r32.vec.iov_base);
1116
break;
1117
case PT_SET_EVENT_MASK:
1118
if (uap->data != sizeof(r.ptevents))
1119
error = EINVAL;
1120
else
1121
error = copyin(uap->addr, &r.ptevents, uap->data);
1122
break;
1123
case PT_IO:
1124
error = copyin(uap->addr, &r32.piod, sizeof(r32.piod));
1125
if (error)
1126
break;
1127
CP(r32.piod, r.piod, piod_op);
1128
PTRIN_CP(r32.piod, r.piod, piod_offs);
1129
PTRIN_CP(r32.piod, r.piod, piod_addr);
1130
CP(r32.piod, r.piod, piod_len);
1131
break;
1132
case PT_VM_ENTRY:
1133
error = copyin(uap->addr, &r32.pve, sizeof(r32.pve));
1134
if (error)
1135
break;
1136
1137
CP(r32.pve, r.pve, pve_entry);
1138
CP(r32.pve, r.pve, pve_timestamp);
1139
CP(r32.pve, r.pve, pve_start);
1140
CP(r32.pve, r.pve, pve_end);
1141
CP(r32.pve, r.pve, pve_offset);
1142
CP(r32.pve, r.pve, pve_prot);
1143
CP(r32.pve, r.pve, pve_pathlen);
1144
CP(r32.pve, r.pve, pve_fileid);
1145
CP(r32.pve, r.pve, pve_fsid);
1146
PTRIN_CP(r32.pve, r.pve, pve_path);
1147
break;
1148
case PT_COREDUMP:
1149
if (uap->data != sizeof(r32.pc))
1150
error = EINVAL;
1151
else
1152
error = copyin(uap->addr, &r32.pc, uap->data);
1153
CP(r32.pc, r.pc, pc_fd);
1154
CP(r32.pc, r.pc, pc_flags);
1155
r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit);
1156
data = sizeof(r.pc);
1157
break;
1158
case PT_SC_REMOTE:
1159
if (uap->data != sizeof(r32.sr)) {
1160
error = EINVAL;
1161
break;
1162
}
1163
error = copyin(uap->addr, &r32.sr, uap->data);
1164
if (error != 0)
1165
break;
1166
CP(r32.sr, r.sr, pscr_syscall);
1167
CP(r32.sr, r.sr, pscr_nargs);
1168
if (r.sr.pscr_nargs > nitems(td->td_sa.args)) {
1169
error = EINVAL;
1170
break;
1171
}
1172
error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32,
1173
sizeof(u_int) * r32.sr.pscr_nargs);
1174
if (error != 0)
1175
break;
1176
for (i = 0; i < r32.sr.pscr_nargs; i++)
1177
pscr_args[i] = pscr_args32[i];
1178
r.sr.pscr_args = pscr_args;
1179
break;
1180
case PTINTERNAL_FIRST ... PTINTERNAL_LAST:
1181
error = EINVAL;
1182
break;
1183
default:
1184
addr = uap->addr;
1185
break;
1186
}
1187
if (error)
1188
return (error);
1189
1190
error = kern_ptrace(td, uap->req, uap->pid, addr, data);
1191
if (error)
1192
return (error);
1193
1194
switch (uap->req) {
1195
case PT_VM_ENTRY:
1196
CP(r.pve, r32.pve, pve_entry);
1197
CP(r.pve, r32.pve, pve_timestamp);
1198
CP(r.pve, r32.pve, pve_start);
1199
CP(r.pve, r32.pve, pve_end);
1200
CP(r.pve, r32.pve, pve_offset);
1201
CP(r.pve, r32.pve, pve_prot);
1202
CP(r.pve, r32.pve, pve_pathlen);
1203
CP(r.pve, r32.pve, pve_fileid);
1204
CP(r.pve, r32.pve, pve_fsid);
1205
error = copyout(&r32.pve, uap->addr, sizeof(r32.pve));
1206
break;
1207
case PT_IO:
1208
CP(r.piod, r32.piod, piod_len);
1209
error = copyout(&r32.piod, uap->addr, sizeof(r32.piod));
1210
break;
1211
case PT_GETREGS:
1212
error = copyout(&r.reg, uap->addr, sizeof(r.reg));
1213
break;
1214
case PT_GETFPREGS:
1215
error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
1216
break;
1217
case PT_GETDBREGS:
1218
error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
1219
break;
1220
case PT_GETREGSET:
1221
r32.vec.iov_len = r.vec.iov_len;
1222
error = copyout(&r32.vec, uap->addr, sizeof(r32.vec));
1223
break;
1224
case PT_GET_EVENT_MASK:
1225
/* NB: The size in uap->data is validated in kern_ptrace(). */
1226
error = copyout(&r.ptevents, uap->addr, uap->data);
1227
break;
1228
case PT_LWPINFO:
1229
ptrace_lwpinfo_to32(&r.pl, &r32.pl);
1230
error = copyout(&r32.pl, uap->addr, uap->data);
1231
break;
1232
case PT_GET_SC_ARGS:
1233
for (i = 0; i < nitems(r.args); i++)
1234
r32.args[i] = (uint32_t)r.args[i];
1235
error = copyout(r32.args, uap->addr, MIN(uap->data,
1236
sizeof(r32.args)));
1237
break;
1238
case PT_GET_SC_RET:
1239
ptrace_sc_ret_to32(&r.psr, &r32.psr);
1240
error = copyout(&r32.psr, uap->addr, MIN(uap->data,
1241
sizeof(r32.psr)));
1242
break;
1243
case PT_SC_REMOTE:
1244
ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret);
1245
error = copyout(&r32.sr.pscr_ret, uap->addr +
1246
offsetof(struct ptrace_sc_remote32, pscr_ret),
1247
sizeof(r32.psr));
1248
break;
1249
}
1250
1251
return (error);
1252
}
1253
1254
int
1255
freebsd32_copyinuio(const struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
1256
{
1257
struct iovec32 iov32;
1258
struct iovec *iov;
1259
struct uio *uio;
1260
int error, i;
1261
1262
*uiop = NULL;
1263
if (iovcnt > UIO_MAXIOV)
1264
return (EINVAL);
1265
uio = allocuio(iovcnt);
1266
iov = uio->uio_iov;
1267
for (i = 0; i < iovcnt; i++) {
1268
error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
1269
if (error) {
1270
freeuio(uio);
1271
return (error);
1272
}
1273
iov[i].iov_base = PTRIN(iov32.iov_base);
1274
iov[i].iov_len = iov32.iov_len;
1275
}
1276
uio->uio_iovcnt = iovcnt;
1277
uio->uio_segflg = UIO_USERSPACE;
1278
uio->uio_offset = -1;
1279
uio->uio_resid = 0;
1280
for (i = 0; i < iovcnt; i++) {
1281
if (iov->iov_len > INT_MAX - uio->uio_resid) {
1282
freeuio(uio);
1283
return (EINVAL);
1284
}
1285
uio->uio_resid += iov->iov_len;
1286
iov++;
1287
}
1288
*uiop = uio;
1289
return (0);
1290
}
1291
1292
int
1293
freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
1294
{
1295
struct uio *auio;
1296
int error;
1297
1298
error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1299
if (error)
1300
return (error);
1301
error = kern_readv(td, uap->fd, auio);
1302
freeuio(auio);
1303
return (error);
1304
}
1305
1306
int
1307
freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
1308
{
1309
struct uio *auio;
1310
int error;
1311
1312
error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1313
if (error)
1314
return (error);
1315
error = kern_writev(td, uap->fd, auio);
1316
freeuio(auio);
1317
return (error);
1318
}
1319
1320
int
1321
freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
1322
{
1323
struct uio *auio;
1324
int error;
1325
1326
error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1327
if (error)
1328
return (error);
1329
error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1330
freeuio(auio);
1331
return (error);
1332
}
1333
1334
int
1335
freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
1336
{
1337
struct uio *auio;
1338
int error;
1339
1340
error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1341
if (error)
1342
return (error);
1343
error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1344
freeuio(auio);
1345
return (error);
1346
}
1347
1348
int
1349
freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
1350
int error)
1351
{
1352
struct iovec32 iov32;
1353
struct iovec *iov;
1354
u_int iovlen;
1355
int i;
1356
1357
*iovp = NULL;
1358
if (iovcnt > UIO_MAXIOV)
1359
return (error);
1360
iovlen = iovcnt * sizeof(struct iovec);
1361
iov = malloc(iovlen, M_IOV, M_WAITOK);
1362
for (i = 0; i < iovcnt; i++) {
1363
error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
1364
if (error) {
1365
free(iov, M_IOV);
1366
return (error);
1367
}
1368
iov[i].iov_base = PTRIN(iov32.iov_base);
1369
iov[i].iov_len = iov32.iov_len;
1370
}
1371
*iovp = iov;
1372
return (0);
1373
}
1374
1375
static int
1376
freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg)
1377
{
1378
struct msghdr32 m32;
1379
int error;
1380
1381
error = copyin(msg32, &m32, sizeof(m32));
1382
if (error)
1383
return (error);
1384
msg->msg_name = PTRIN(m32.msg_name);
1385
msg->msg_namelen = m32.msg_namelen;
1386
msg->msg_iov = PTRIN(m32.msg_iov);
1387
msg->msg_iovlen = m32.msg_iovlen;
1388
msg->msg_control = PTRIN(m32.msg_control);
1389
msg->msg_controllen = m32.msg_controllen;
1390
msg->msg_flags = m32.msg_flags;
1391
return (0);
1392
}
1393
1394
static int
1395
freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1396
{
1397
struct msghdr32 m32;
1398
int error;
1399
1400
m32.msg_name = PTROUT(msg->msg_name);
1401
m32.msg_namelen = msg->msg_namelen;
1402
m32.msg_iov = PTROUT(msg->msg_iov);
1403
m32.msg_iovlen = msg->msg_iovlen;
1404
m32.msg_control = PTROUT(msg->msg_control);
1405
m32.msg_controllen = msg->msg_controllen;
1406
m32.msg_flags = msg->msg_flags;
1407
error = copyout(&m32, msg32, sizeof(m32));
1408
return (error);
1409
}
1410
1411
#define FREEBSD32_ALIGNBYTES (sizeof(int) - 1)
1412
#define FREEBSD32_ALIGN(p) \
1413
(((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1414
#define FREEBSD32_CMSG_SPACE(l) \
1415
(FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1416
1417
#define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \
1418
FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1419
1420
static size_t
1421
freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen)
1422
{
1423
size_t copylen;
1424
union {
1425
struct timespec32 ts;
1426
struct timeval32 tv;
1427
struct bintime32 bt;
1428
} tmp32;
1429
1430
union {
1431
struct timespec ts;
1432
struct timeval tv;
1433
struct bintime bt;
1434
} *in;
1435
1436
in = data;
1437
copylen = 0;
1438
switch (cm->cmsg_level) {
1439
case SOL_SOCKET:
1440
switch (cm->cmsg_type) {
1441
case SCM_TIMESTAMP:
1442
TV_CP(*in, tmp32, tv);
1443
copylen = sizeof(tmp32.tv);
1444
break;
1445
1446
case SCM_BINTIME:
1447
BT_CP(*in, tmp32, bt);
1448
copylen = sizeof(tmp32.bt);
1449
break;
1450
1451
case SCM_REALTIME:
1452
case SCM_MONOTONIC:
1453
TS_CP(*in, tmp32, ts);
1454
copylen = sizeof(tmp32.ts);
1455
break;
1456
1457
default:
1458
break;
1459
}
1460
1461
default:
1462
break;
1463
}
1464
1465
if (copylen == 0)
1466
return (datalen);
1467
1468
KASSERT((datalen >= copylen), ("corrupted cmsghdr"));
1469
1470
bcopy(&tmp32, data, copylen);
1471
return (copylen);
1472
}
1473
1474
static int
1475
freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1476
{
1477
struct cmsghdr *cm;
1478
void *data;
1479
socklen_t clen, datalen, datalen_out, oldclen;
1480
int error;
1481
caddr_t ctlbuf;
1482
int len, copylen;
1483
struct mbuf *m;
1484
error = 0;
1485
1486
len = msg->msg_controllen;
1487
msg->msg_controllen = 0;
1488
1489
ctlbuf = msg->msg_control;
1490
for (m = control; m != NULL && len > 0; m = m->m_next) {
1491
cm = mtod(m, struct cmsghdr *);
1492
clen = m->m_len;
1493
while (cm != NULL) {
1494
if (sizeof(struct cmsghdr) > clen ||
1495
cm->cmsg_len > clen) {
1496
error = EINVAL;
1497
break;
1498
}
1499
1500
data = CMSG_DATA(cm);
1501
datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1502
datalen_out = freebsd32_cmsg_convert(cm, data, datalen);
1503
1504
/*
1505
* Copy out the message header. Preserve the native
1506
* message size in case we need to inspect the message
1507
* contents later.
1508
*/
1509
copylen = sizeof(struct cmsghdr);
1510
if (len < copylen) {
1511
msg->msg_flags |= MSG_CTRUNC;
1512
m_dispose_extcontrolm(m);
1513
goto exit;
1514
}
1515
oldclen = cm->cmsg_len;
1516
cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1517
datalen_out;
1518
error = copyout(cm, ctlbuf, copylen);
1519
cm->cmsg_len = oldclen;
1520
if (error != 0)
1521
goto exit;
1522
1523
ctlbuf += FREEBSD32_ALIGN(copylen);
1524
len -= FREEBSD32_ALIGN(copylen);
1525
1526
copylen = datalen_out;
1527
if (len < copylen) {
1528
msg->msg_flags |= MSG_CTRUNC;
1529
m_dispose_extcontrolm(m);
1530
break;
1531
}
1532
1533
/* Copy out the message data. */
1534
error = copyout(data, ctlbuf, copylen);
1535
if (error)
1536
goto exit;
1537
1538
ctlbuf += FREEBSD32_ALIGN(copylen);
1539
len -= FREEBSD32_ALIGN(copylen);
1540
1541
if (CMSG_SPACE(datalen) < clen) {
1542
clen -= CMSG_SPACE(datalen);
1543
cm = (struct cmsghdr *)
1544
((caddr_t)cm + CMSG_SPACE(datalen));
1545
} else {
1546
clen = 0;
1547
cm = NULL;
1548
}
1549
1550
msg->msg_controllen +=
1551
FREEBSD32_CMSG_SPACE(datalen_out);
1552
}
1553
}
1554
if (len == 0 && m != NULL) {
1555
msg->msg_flags |= MSG_CTRUNC;
1556
m_dispose_extcontrolm(m);
1557
}
1558
1559
exit:
1560
return (error);
1561
}
1562
1563
int
1564
freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap)
1565
{
1566
struct msghdr msg;
1567
struct iovec *uiov, *iov;
1568
struct mbuf *control = NULL;
1569
struct mbuf **controlp;
1570
int error;
1571
1572
error = freebsd32_copyinmsghdr(uap->msg, &msg);
1573
if (error)
1574
return (error);
1575
error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1576
EMSGSIZE);
1577
if (error)
1578
return (error);
1579
msg.msg_flags = uap->flags;
1580
uiov = msg.msg_iov;
1581
msg.msg_iov = iov;
1582
1583
controlp = (msg.msg_control != NULL) ? &control : NULL;
1584
error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1585
if (error == 0) {
1586
msg.msg_iov = uiov;
1587
1588
if (control != NULL)
1589
error = freebsd32_copy_msg_out(&msg, control);
1590
else
1591
msg.msg_controllen = 0;
1592
1593
if (error == 0)
1594
error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1595
}
1596
free(iov, M_IOV);
1597
1598
if (control != NULL) {
1599
if (error != 0)
1600
m_dispose_extcontrolm(control);
1601
m_freem(control);
1602
}
1603
1604
return (error);
1605
}
1606
1607
#ifdef COMPAT_43
1608
int
1609
ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap)
1610
{
1611
return (ENOSYS);
1612
}
1613
#endif
1614
1615
/*
1616
* Copy-in the array of control messages constructed using alignment
1617
* and padding suitable for a 32-bit environment and construct an
1618
* mbuf using alignment and padding suitable for a 64-bit kernel.
1619
* The alignment and padding are defined indirectly by CMSG_DATA(),
1620
* CMSG_SPACE() and CMSG_LEN().
1621
*/
1622
static int
1623
freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1624
{
1625
struct cmsghdr *cm;
1626
struct mbuf *m;
1627
void *in, *in1, *md;
1628
u_int msglen, outlen;
1629
int error;
1630
1631
/* Enforce the size limit of the native implementation. */
1632
if (buflen > MCLBYTES)
1633
return (EINVAL);
1634
1635
in = malloc(buflen, M_TEMP, M_WAITOK);
1636
error = copyin(buf, in, buflen);
1637
if (error != 0)
1638
goto out;
1639
1640
/*
1641
* Make a pass over the input buffer to determine the amount of space
1642
* required for 64 bit-aligned copies of the control messages.
1643
*/
1644
in1 = in;
1645
outlen = 0;
1646
while (buflen > 0) {
1647
if (buflen < sizeof(*cm)) {
1648
error = EINVAL;
1649
break;
1650
}
1651
cm = (struct cmsghdr *)in1;
1652
if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) ||
1653
cm->cmsg_len > buflen) {
1654
error = EINVAL;
1655
break;
1656
}
1657
msglen = FREEBSD32_ALIGN(cm->cmsg_len);
1658
if (msglen < cm->cmsg_len) {
1659
error = EINVAL;
1660
break;
1661
}
1662
/* The native ABI permits the final padding to be omitted. */
1663
if (msglen > buflen)
1664
msglen = buflen;
1665
buflen -= msglen;
1666
1667
in1 = (char *)in1 + msglen;
1668
outlen += CMSG_ALIGN(sizeof(*cm)) +
1669
CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm)));
1670
}
1671
if (error != 0)
1672
goto out;
1673
1674
/*
1675
* Allocate up to MJUMPAGESIZE space for the re-aligned and
1676
* re-padded control messages. This allows a full MCLBYTES of
1677
* 32-bit sized and aligned messages to fit and avoids an ABI
1678
* mismatch with the native implementation.
1679
*/
1680
m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0);
1681
if (m == NULL) {
1682
error = EINVAL;
1683
goto out;
1684
}
1685
m->m_len = outlen;
1686
md = mtod(m, void *);
1687
1688
/*
1689
* Make a second pass over input messages, copying them into the output
1690
* buffer.
1691
*/
1692
in1 = in;
1693
while (outlen > 0) {
1694
/* Copy the message header and align the length field. */
1695
cm = md;
1696
memcpy(cm, in1, sizeof(*cm));
1697
msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm));
1698
cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen;
1699
1700
/* Copy the message body. */
1701
in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm));
1702
md = (char *)md + CMSG_ALIGN(sizeof(*cm));
1703
memcpy(md, in1, msglen);
1704
in1 = (char *)in1 + FREEBSD32_ALIGN(msglen);
1705
md = (char *)md + CMSG_ALIGN(msglen);
1706
KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen),
1707
("outlen %u underflow, msglen %u", outlen, msglen));
1708
outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen);
1709
}
1710
1711
*mp = m;
1712
out:
1713
free(in, M_TEMP);
1714
return (error);
1715
}
1716
1717
int
1718
freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap)
1719
{
1720
struct msghdr msg;
1721
struct iovec *iov;
1722
struct mbuf *control = NULL;
1723
struct sockaddr *to = NULL;
1724
int error;
1725
1726
error = freebsd32_copyinmsghdr(uap->msg, &msg);
1727
if (error)
1728
return (error);
1729
error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1730
EMSGSIZE);
1731
if (error)
1732
return (error);
1733
msg.msg_iov = iov;
1734
if (msg.msg_name != NULL) {
1735
error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1736
if (error) {
1737
to = NULL;
1738
goto out;
1739
}
1740
msg.msg_name = to;
1741
}
1742
1743
if (msg.msg_control) {
1744
if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1745
error = EINVAL;
1746
goto out;
1747
}
1748
1749
error = freebsd32_copyin_control(&control, msg.msg_control,
1750
msg.msg_controllen);
1751
if (error)
1752
goto out;
1753
1754
msg.msg_control = NULL;
1755
msg.msg_controllen = 0;
1756
}
1757
1758
error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1759
UIO_USERSPACE);
1760
1761
out:
1762
free(iov, M_IOV);
1763
if (to)
1764
free(to, M_SONAME);
1765
return (error);
1766
}
1767
1768
#ifdef COMPAT_43
1769
int
1770
ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap)
1771
{
1772
return (ENOSYS);
1773
}
1774
#endif
1775
1776
1777
int
1778
freebsd32_settimeofday(struct thread *td,
1779
struct freebsd32_settimeofday_args *uap)
1780
{
1781
struct timeval32 tv32;
1782
struct timeval tv, *tvp;
1783
struct timezone tz, *tzp;
1784
int error;
1785
1786
if (uap->tv) {
1787
error = copyin(uap->tv, &tv32, sizeof(tv32));
1788
if (error)
1789
return (error);
1790
CP(tv32, tv, tv_sec);
1791
CP(tv32, tv, tv_usec);
1792
tvp = &tv;
1793
} else
1794
tvp = NULL;
1795
if (uap->tzp) {
1796
error = copyin(uap->tzp, &tz, sizeof(tz));
1797
if (error)
1798
return (error);
1799
tzp = &tz;
1800
} else
1801
tzp = NULL;
1802
return (kern_settimeofday(td, tvp, tzp));
1803
}
1804
1805
int
1806
freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1807
{
1808
struct timeval32 s32[2];
1809
struct timeval s[2], *sp;
1810
int error;
1811
1812
if (uap->tptr != NULL) {
1813
error = copyin(uap->tptr, s32, sizeof(s32));
1814
if (error)
1815
return (error);
1816
CP(s32[0], s[0], tv_sec);
1817
CP(s32[0], s[0], tv_usec);
1818
CP(s32[1], s[1], tv_sec);
1819
CP(s32[1], s[1], tv_usec);
1820
sp = s;
1821
} else
1822
sp = NULL;
1823
return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1824
sp, UIO_SYSSPACE));
1825
}
1826
1827
int
1828
freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1829
{
1830
struct timeval32 s32[2];
1831
struct timeval s[2], *sp;
1832
int error;
1833
1834
if (uap->tptr != NULL) {
1835
error = copyin(uap->tptr, s32, sizeof(s32));
1836
if (error)
1837
return (error);
1838
CP(s32[0], s[0], tv_sec);
1839
CP(s32[0], s[0], tv_usec);
1840
CP(s32[1], s[1], tv_sec);
1841
CP(s32[1], s[1], tv_usec);
1842
sp = s;
1843
} else
1844
sp = NULL;
1845
return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1846
}
1847
1848
int
1849
freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1850
{
1851
struct timeval32 s32[2];
1852
struct timeval s[2], *sp;
1853
int error;
1854
1855
if (uap->tptr != NULL) {
1856
error = copyin(uap->tptr, s32, sizeof(s32));
1857
if (error)
1858
return (error);
1859
CP(s32[0], s[0], tv_sec);
1860
CP(s32[0], s[0], tv_usec);
1861
CP(s32[1], s[1], tv_sec);
1862
CP(s32[1], s[1], tv_usec);
1863
sp = s;
1864
} else
1865
sp = NULL;
1866
return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1867
}
1868
1869
int
1870
freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1871
{
1872
struct timeval32 s32[2];
1873
struct timeval s[2], *sp;
1874
int error;
1875
1876
if (uap->times != NULL) {
1877
error = copyin(uap->times, s32, sizeof(s32));
1878
if (error)
1879
return (error);
1880
CP(s32[0], s[0], tv_sec);
1881
CP(s32[0], s[0], tv_usec);
1882
CP(s32[1], s[1], tv_sec);
1883
CP(s32[1], s[1], tv_usec);
1884
sp = s;
1885
} else
1886
sp = NULL;
1887
return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1888
sp, UIO_SYSSPACE));
1889
}
1890
1891
int
1892
freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1893
{
1894
struct timespec32 ts32[2];
1895
struct timespec ts[2], *tsp;
1896
int error;
1897
1898
if (uap->times != NULL) {
1899
error = copyin(uap->times, ts32, sizeof(ts32));
1900
if (error)
1901
return (error);
1902
CP(ts32[0], ts[0], tv_sec);
1903
CP(ts32[0], ts[0], tv_nsec);
1904
CP(ts32[1], ts[1], tv_sec);
1905
CP(ts32[1], ts[1], tv_nsec);
1906
tsp = ts;
1907
} else
1908
tsp = NULL;
1909
return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1910
}
1911
1912
int
1913
freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1914
{
1915
struct timespec32 ts32[2];
1916
struct timespec ts[2], *tsp;
1917
int error;
1918
1919
if (uap->times != NULL) {
1920
error = copyin(uap->times, ts32, sizeof(ts32));
1921
if (error)
1922
return (error);
1923
CP(ts32[0], ts[0], tv_sec);
1924
CP(ts32[0], ts[0], tv_nsec);
1925
CP(ts32[1], ts[1], tv_sec);
1926
CP(ts32[1], ts[1], tv_nsec);
1927
tsp = ts;
1928
} else
1929
tsp = NULL;
1930
return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1931
tsp, UIO_SYSSPACE, uap->flag));
1932
}
1933
1934
int
1935
freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1936
{
1937
struct timeval32 tv32;
1938
struct timeval delta, olddelta, *deltap;
1939
int error;
1940
1941
if (uap->delta) {
1942
error = copyin(uap->delta, &tv32, sizeof(tv32));
1943
if (error)
1944
return (error);
1945
CP(tv32, delta, tv_sec);
1946
CP(tv32, delta, tv_usec);
1947
deltap = &delta;
1948
} else
1949
deltap = NULL;
1950
error = kern_adjtime(td, deltap, &olddelta);
1951
if (uap->olddelta && error == 0) {
1952
CP(olddelta, tv32, tv_sec);
1953
CP(olddelta, tv32, tv_usec);
1954
error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1955
}
1956
return (error);
1957
}
1958
1959
#ifdef COMPAT_FREEBSD4
1960
int
1961
freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1962
{
1963
struct ostatfs32 s32;
1964
struct statfs *sp;
1965
int error;
1966
1967
sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1968
error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1969
if (error == 0) {
1970
copy_statfs(sp, &s32);
1971
error = copyout(&s32, uap->buf, sizeof(s32));
1972
}
1973
free(sp, M_STATFS);
1974
return (error);
1975
}
1976
#endif
1977
1978
#ifdef COMPAT_FREEBSD4
1979
int
1980
freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1981
{
1982
struct ostatfs32 s32;
1983
struct statfs *sp;
1984
int error;
1985
1986
sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1987
error = kern_fstatfs(td, uap->fd, sp);
1988
if (error == 0) {
1989
copy_statfs(sp, &s32);
1990
error = copyout(&s32, uap->buf, sizeof(s32));
1991
}
1992
free(sp, M_STATFS);
1993
return (error);
1994
}
1995
#endif
1996
1997
#ifdef COMPAT_FREEBSD4
1998
int
1999
freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
2000
{
2001
struct ostatfs32 s32;
2002
struct statfs *sp;
2003
fhandle_t fh;
2004
int error;
2005
2006
if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
2007
return (error);
2008
sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
2009
error = kern_fhstatfs(td, fh, sp);
2010
if (error == 0) {
2011
copy_statfs(sp, &s32);
2012
error = copyout(&s32, uap->buf, sizeof(s32));
2013
}
2014
free(sp, M_STATFS);
2015
return (error);
2016
}
2017
#endif
2018
2019
int
2020
freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
2021
{
2022
2023
return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
2024
PAIR32TO64(off_t, uap->offset)));
2025
}
2026
2027
int
2028
freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
2029
{
2030
2031
return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
2032
PAIR32TO64(off_t, uap->offset)));
2033
}
2034
2035
#ifdef COMPAT_43
2036
int
2037
ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
2038
{
2039
2040
return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
2041
}
2042
#endif
2043
2044
int
2045
freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
2046
{
2047
int error;
2048
off_t pos;
2049
2050
error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2051
uap->whence);
2052
/* Expand the quad return into two parts for eax and edx */
2053
pos = td->td_uretoff.tdu_off;
2054
td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */
2055
td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */
2056
return error;
2057
}
2058
2059
int
2060
freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
2061
{
2062
2063
return (kern_truncate(td, uap->path, UIO_USERSPACE,
2064
PAIR32TO64(off_t, uap->length)));
2065
}
2066
2067
#ifdef COMPAT_43
2068
int
2069
ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap)
2070
{
2071
return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length));
2072
}
2073
#endif
2074
2075
int
2076
freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
2077
{
2078
2079
return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2080
}
2081
2082
#ifdef COMPAT_43
2083
int
2084
ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap)
2085
{
2086
return (kern_ftruncate(td, uap->fd, uap->length));
2087
}
2088
2089
int
2090
ofreebsd32_getdirentries(struct thread *td,
2091
struct ofreebsd32_getdirentries_args *uap)
2092
{
2093
struct ogetdirentries_args ap;
2094
int error;
2095
long loff;
2096
int32_t loff_cut;
2097
2098
ap.fd = uap->fd;
2099
ap.buf = uap->buf;
2100
ap.count = uap->count;
2101
ap.basep = NULL;
2102
error = kern_ogetdirentries(td, &ap, &loff);
2103
if (error == 0) {
2104
loff_cut = loff;
2105
error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
2106
}
2107
return (error);
2108
}
2109
#endif
2110
2111
#if defined(COMPAT_FREEBSD11)
2112
int
2113
freebsd11_freebsd32_getdirentries(struct thread *td,
2114
struct freebsd11_freebsd32_getdirentries_args *uap)
2115
{
2116
long base;
2117
int32_t base32;
2118
int error;
2119
2120
error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
2121
&base, NULL);
2122
if (error)
2123
return (error);
2124
if (uap->basep != NULL) {
2125
base32 = base;
2126
error = copyout(&base32, uap->basep, sizeof(int32_t));
2127
}
2128
return (error);
2129
}
2130
#endif /* COMPAT_FREEBSD11 */
2131
2132
#ifdef COMPAT_FREEBSD6
2133
/* versions with the 'int pad' argument */
2134
int
2135
freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
2136
{
2137
2138
return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
2139
PAIR32TO64(off_t, uap->offset)));
2140
}
2141
2142
int
2143
freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
2144
{
2145
2146
return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
2147
PAIR32TO64(off_t, uap->offset)));
2148
}
2149
2150
int
2151
freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
2152
{
2153
int error;
2154
off_t pos;
2155
2156
error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2157
uap->whence);
2158
/* Expand the quad return into two parts for eax and edx */
2159
pos = *(off_t *)(td->td_retval);
2160
td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */
2161
td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */
2162
return error;
2163
}
2164
2165
int
2166
freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
2167
{
2168
2169
return (kern_truncate(td, uap->path, UIO_USERSPACE,
2170
PAIR32TO64(off_t, uap->length)));
2171
}
2172
2173
int
2174
freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
2175
{
2176
2177
return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2178
}
2179
#endif /* COMPAT_FREEBSD6 */
2180
2181
struct sf_hdtr32 {
2182
uint32_t headers;
2183
int hdr_cnt;
2184
uint32_t trailers;
2185
int trl_cnt;
2186
};
2187
2188
static int
2189
freebsd32_do_sendfile(struct thread *td,
2190
struct freebsd32_sendfile_args *uap, int compat)
2191
{
2192
struct sf_hdtr32 hdtr32;
2193
struct sf_hdtr hdtr;
2194
struct uio *hdr_uio, *trl_uio;
2195
struct file *fp;
2196
cap_rights_t rights;
2197
struct iovec32 *iov32;
2198
off_t offset, sbytes;
2199
int error;
2200
2201
offset = PAIR32TO64(off_t, uap->offset);
2202
if (offset < 0)
2203
return (EINVAL);
2204
2205
hdr_uio = trl_uio = NULL;
2206
2207
if (uap->hdtr != NULL) {
2208
error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
2209
if (error)
2210
goto out;
2211
PTRIN_CP(hdtr32, hdtr, headers);
2212
CP(hdtr32, hdtr, hdr_cnt);
2213
PTRIN_CP(hdtr32, hdtr, trailers);
2214
CP(hdtr32, hdtr, trl_cnt);
2215
2216
if (hdtr.headers != NULL) {
2217
iov32 = PTRIN(hdtr32.headers);
2218
error = freebsd32_copyinuio(iov32,
2219
hdtr32.hdr_cnt, &hdr_uio);
2220
if (error)
2221
goto out;
2222
#ifdef COMPAT_FREEBSD4
2223
/*
2224
* In FreeBSD < 5.0 the nbytes to send also included
2225
* the header. If compat is specified subtract the
2226
* header size from nbytes.
2227
*/
2228
if (compat) {
2229
if (uap->nbytes > hdr_uio->uio_resid)
2230
uap->nbytes -= hdr_uio->uio_resid;
2231
else
2232
uap->nbytes = 0;
2233
}
2234
#endif
2235
}
2236
if (hdtr.trailers != NULL) {
2237
iov32 = PTRIN(hdtr32.trailers);
2238
error = freebsd32_copyinuio(iov32,
2239
hdtr32.trl_cnt, &trl_uio);
2240
if (error)
2241
goto out;
2242
}
2243
}
2244
2245
AUDIT_ARG_FD(uap->fd);
2246
2247
if ((error = fget_read(td, uap->fd,
2248
cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0)
2249
goto out;
2250
2251
error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
2252
uap->nbytes, &sbytes, uap->flags, td);
2253
fdrop(fp, td);
2254
2255
if (uap->sbytes != NULL)
2256
(void)copyout(&sbytes, uap->sbytes, sizeof(off_t));
2257
2258
out:
2259
if (hdr_uio)
2260
freeuio(hdr_uio);
2261
if (trl_uio)
2262
freeuio(trl_uio);
2263
return (error);
2264
}
2265
2266
#ifdef COMPAT_FREEBSD4
2267
int
2268
freebsd4_freebsd32_sendfile(struct thread *td,
2269
struct freebsd4_freebsd32_sendfile_args *uap)
2270
{
2271
return (freebsd32_do_sendfile(td,
2272
(struct freebsd32_sendfile_args *)uap, 1));
2273
}
2274
#endif
2275
2276
int
2277
freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
2278
{
2279
2280
return (freebsd32_do_sendfile(td, uap, 0));
2281
}
2282
2283
static void
2284
copy_stat(struct stat *in, struct stat32 *out)
2285
{
2286
2287
#ifndef __amd64__
2288
/*
2289
* 32-bit architectures other than i386 have 64-bit time_t. This
2290
* results in struct timespec32 with 12 bytes for tv_sec and tv_nsec,
2291
* and 4 bytes of padding. Zero the padding holes in struct stat32.
2292
*/
2293
bzero(&out->st_atim, sizeof(out->st_atim));
2294
bzero(&out->st_mtim, sizeof(out->st_mtim));
2295
bzero(&out->st_ctim, sizeof(out->st_ctim));
2296
bzero(&out->st_birthtim, sizeof(out->st_birthtim));
2297
#endif
2298
CP(*in, *out, st_dev);
2299
CP(*in, *out, st_ino);
2300
CP(*in, *out, st_mode);
2301
CP(*in, *out, st_nlink);
2302
CP(*in, *out, st_uid);
2303
CP(*in, *out, st_gid);
2304
CP(*in, *out, st_rdev);
2305
TS_CP(*in, *out, st_atim);
2306
TS_CP(*in, *out, st_mtim);
2307
TS_CP(*in, *out, st_ctim);
2308
CP(*in, *out, st_size);
2309
CP(*in, *out, st_blocks);
2310
CP(*in, *out, st_blksize);
2311
CP(*in, *out, st_flags);
2312
CP(*in, *out, st_gen);
2313
CP(*in, *out, st_filerev);
2314
CP(*in, *out, st_bsdflags);
2315
TS_CP(*in, *out, st_birthtim);
2316
out->st_padding1 = 0;
2317
#ifdef __STAT32_TIME_T_EXT
2318
out->st_atim_ext = 0;
2319
out->st_mtim_ext = 0;
2320
out->st_ctim_ext = 0;
2321
out->st_btim_ext = 0;
2322
#endif
2323
bzero(out->st_spare, sizeof(out->st_spare));
2324
}
2325
2326
#ifdef COMPAT_43
2327
static void
2328
copy_ostat(struct stat *in, struct ostat32 *out)
2329
{
2330
2331
bzero(out, sizeof(*out));
2332
CP(*in, *out, st_dev);
2333
CP(*in, *out, st_ino);
2334
CP(*in, *out, st_mode);
2335
CP(*in, *out, st_nlink);
2336
CP(*in, *out, st_uid);
2337
CP(*in, *out, st_gid);
2338
CP(*in, *out, st_rdev);
2339
out->st_size = MIN(in->st_size, INT32_MAX);
2340
TS_CP(*in, *out, st_atim);
2341
TS_CP(*in, *out, st_mtim);
2342
TS_CP(*in, *out, st_ctim);
2343
CP(*in, *out, st_blksize);
2344
CP(*in, *out, st_blocks);
2345
CP(*in, *out, st_flags);
2346
CP(*in, *out, st_gen);
2347
}
2348
#endif
2349
2350
#ifdef COMPAT_43
2351
int
2352
ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
2353
{
2354
struct stat sb;
2355
struct ostat32 sb32;
2356
int error;
2357
2358
error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2359
if (error)
2360
return (error);
2361
copy_ostat(&sb, &sb32);
2362
error = copyout(&sb32, uap->ub, sizeof (sb32));
2363
return (error);
2364
}
2365
#endif
2366
2367
int
2368
freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
2369
{
2370
struct stat ub;
2371
struct stat32 ub32;
2372
int error;
2373
2374
error = kern_fstat(td, uap->fd, &ub);
2375
if (error)
2376
return (error);
2377
copy_stat(&ub, &ub32);
2378
error = copyout(&ub32, uap->sb, sizeof(ub32));
2379
return (error);
2380
}
2381
2382
#ifdef COMPAT_43
2383
int
2384
ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
2385
{
2386
struct stat ub;
2387
struct ostat32 ub32;
2388
int error;
2389
2390
error = kern_fstat(td, uap->fd, &ub);
2391
if (error)
2392
return (error);
2393
copy_ostat(&ub, &ub32);
2394
error = copyout(&ub32, uap->sb, sizeof(ub32));
2395
return (error);
2396
}
2397
#endif
2398
2399
int
2400
freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
2401
{
2402
struct stat ub;
2403
struct stat32 ub32;
2404
int error;
2405
2406
error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2407
&ub);
2408
if (error)
2409
return (error);
2410
copy_stat(&ub, &ub32);
2411
error = copyout(&ub32, uap->buf, sizeof(ub32));
2412
return (error);
2413
}
2414
2415
#ifdef COMPAT_43
2416
int
2417
ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
2418
{
2419
struct stat sb;
2420
struct ostat32 sb32;
2421
int error;
2422
2423
error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2424
UIO_USERSPACE, &sb);
2425
if (error)
2426
return (error);
2427
copy_ostat(&sb, &sb32);
2428
error = copyout(&sb32, uap->ub, sizeof (sb32));
2429
return (error);
2430
}
2431
#endif
2432
2433
int
2434
freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2435
{
2436
struct stat sb;
2437
struct stat32 sb32;
2438
struct fhandle fh;
2439
int error;
2440
2441
error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2442
if (error != 0)
2443
return (error);
2444
error = kern_fhstat(td, fh, &sb);
2445
if (error != 0)
2446
return (error);
2447
copy_stat(&sb, &sb32);
2448
error = copyout(&sb32, uap->sb, sizeof (sb32));
2449
return (error);
2450
}
2451
2452
#if defined(COMPAT_FREEBSD11)
2453
extern int ino64_trunc_error;
2454
2455
static int
2456
freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2457
{
2458
2459
#ifndef __amd64__
2460
/*
2461
* 32-bit architectures other than i386 have 64-bit time_t. This
2462
* results in struct timespec32 with 12 bytes for tv_sec and tv_nsec,
2463
* and 4 bytes of padding. Zero the padding holes in freebsd11_stat32.
2464
*/
2465
bzero(&out->st_atim, sizeof(out->st_atim));
2466
bzero(&out->st_mtim, sizeof(out->st_mtim));
2467
bzero(&out->st_ctim, sizeof(out->st_ctim));
2468
bzero(&out->st_birthtim, sizeof(out->st_birthtim));
2469
#endif
2470
2471
CP(*in, *out, st_ino);
2472
if (in->st_ino != out->st_ino) {
2473
switch (ino64_trunc_error) {
2474
default:
2475
case 0:
2476
break;
2477
case 1:
2478
return (EOVERFLOW);
2479
case 2:
2480
out->st_ino = UINT32_MAX;
2481
break;
2482
}
2483
}
2484
CP(*in, *out, st_nlink);
2485
if (in->st_nlink != out->st_nlink) {
2486
switch (ino64_trunc_error) {
2487
default:
2488
case 0:
2489
break;
2490
case 1:
2491
return (EOVERFLOW);
2492
case 2:
2493
out->st_nlink = UINT16_MAX;
2494
break;
2495
}
2496
}
2497
out->st_dev = in->st_dev;
2498
if (out->st_dev != in->st_dev) {
2499
switch (ino64_trunc_error) {
2500
default:
2501
break;
2502
case 1:
2503
return (EOVERFLOW);
2504
}
2505
}
2506
CP(*in, *out, st_mode);
2507
CP(*in, *out, st_uid);
2508
CP(*in, *out, st_gid);
2509
out->st_rdev = in->st_rdev;
2510
if (out->st_rdev != in->st_rdev) {
2511
switch (ino64_trunc_error) {
2512
default:
2513
break;
2514
case 1:
2515
return (EOVERFLOW);
2516
}
2517
}
2518
TS_CP(*in, *out, st_atim);
2519
TS_CP(*in, *out, st_mtim);
2520
TS_CP(*in, *out, st_ctim);
2521
CP(*in, *out, st_size);
2522
CP(*in, *out, st_blocks);
2523
CP(*in, *out, st_blksize);
2524
CP(*in, *out, st_flags);
2525
CP(*in, *out, st_gen);
2526
TS_CP(*in, *out, st_birthtim);
2527
out->st_lspare = 0;
2528
bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2529
sizeof(*out) - offsetof(struct freebsd11_stat32,
2530
st_birthtim) - sizeof(out->st_birthtim));
2531
return (0);
2532
}
2533
2534
int
2535
freebsd11_freebsd32_stat(struct thread *td,
2536
struct freebsd11_freebsd32_stat_args *uap)
2537
{
2538
struct stat sb;
2539
struct freebsd11_stat32 sb32;
2540
int error;
2541
2542
error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2543
if (error != 0)
2544
return (error);
2545
error = freebsd11_cvtstat32(&sb, &sb32);
2546
if (error == 0)
2547
error = copyout(&sb32, uap->ub, sizeof (sb32));
2548
return (error);
2549
}
2550
2551
int
2552
freebsd11_freebsd32_fstat(struct thread *td,
2553
struct freebsd11_freebsd32_fstat_args *uap)
2554
{
2555
struct stat sb;
2556
struct freebsd11_stat32 sb32;
2557
int error;
2558
2559
error = kern_fstat(td, uap->fd, &sb);
2560
if (error != 0)
2561
return (error);
2562
error = freebsd11_cvtstat32(&sb, &sb32);
2563
if (error == 0)
2564
error = copyout(&sb32, uap->sb, sizeof (sb32));
2565
return (error);
2566
}
2567
2568
int
2569
freebsd11_freebsd32_fstatat(struct thread *td,
2570
struct freebsd11_freebsd32_fstatat_args *uap)
2571
{
2572
struct stat sb;
2573
struct freebsd11_stat32 sb32;
2574
int error;
2575
2576
error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2577
&sb);
2578
if (error != 0)
2579
return (error);
2580
error = freebsd11_cvtstat32(&sb, &sb32);
2581
if (error == 0)
2582
error = copyout(&sb32, uap->buf, sizeof (sb32));
2583
return (error);
2584
}
2585
2586
int
2587
freebsd11_freebsd32_lstat(struct thread *td,
2588
struct freebsd11_freebsd32_lstat_args *uap)
2589
{
2590
struct stat sb;
2591
struct freebsd11_stat32 sb32;
2592
int error;
2593
2594
error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2595
UIO_USERSPACE, &sb);
2596
if (error != 0)
2597
return (error);
2598
error = freebsd11_cvtstat32(&sb, &sb32);
2599
if (error == 0)
2600
error = copyout(&sb32, uap->ub, sizeof (sb32));
2601
return (error);
2602
}
2603
2604
int
2605
freebsd11_freebsd32_fhstat(struct thread *td,
2606
struct freebsd11_freebsd32_fhstat_args *uap)
2607
{
2608
struct stat sb;
2609
struct freebsd11_stat32 sb32;
2610
struct fhandle fh;
2611
int error;
2612
2613
error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2614
if (error != 0)
2615
return (error);
2616
error = kern_fhstat(td, fh, &sb);
2617
if (error != 0)
2618
return (error);
2619
error = freebsd11_cvtstat32(&sb, &sb32);
2620
if (error == 0)
2621
error = copyout(&sb32, uap->sb, sizeof (sb32));
2622
return (error);
2623
}
2624
2625
static int
2626
freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32)
2627
{
2628
struct nstat nsb;
2629
int error;
2630
2631
error = freebsd11_cvtnstat(sb, &nsb);
2632
if (error != 0)
2633
return (error);
2634
2635
bzero(nsb32, sizeof(*nsb32));
2636
CP(nsb, *nsb32, st_dev);
2637
CP(nsb, *nsb32, st_ino);
2638
CP(nsb, *nsb32, st_mode);
2639
CP(nsb, *nsb32, st_nlink);
2640
CP(nsb, *nsb32, st_uid);
2641
CP(nsb, *nsb32, st_gid);
2642
CP(nsb, *nsb32, st_rdev);
2643
CP(nsb, *nsb32, st_atim.tv_sec);
2644
CP(nsb, *nsb32, st_atim.tv_nsec);
2645
CP(nsb, *nsb32, st_mtim.tv_sec);
2646
CP(nsb, *nsb32, st_mtim.tv_nsec);
2647
CP(nsb, *nsb32, st_ctim.tv_sec);
2648
CP(nsb, *nsb32, st_ctim.tv_nsec);
2649
CP(nsb, *nsb32, st_size);
2650
CP(nsb, *nsb32, st_blocks);
2651
CP(nsb, *nsb32, st_blksize);
2652
CP(nsb, *nsb32, st_flags);
2653
CP(nsb, *nsb32, st_gen);
2654
CP(nsb, *nsb32, st_birthtim.tv_sec);
2655
CP(nsb, *nsb32, st_birthtim.tv_nsec);
2656
return (0);
2657
}
2658
2659
int
2660
freebsd11_freebsd32_nstat(struct thread *td,
2661
struct freebsd11_freebsd32_nstat_args *uap)
2662
{
2663
struct stat sb;
2664
struct nstat32 nsb;
2665
int error;
2666
2667
error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2668
if (error != 0)
2669
return (error);
2670
error = freebsd11_cvtnstat32(&sb, &nsb);
2671
if (error != 0)
2672
error = copyout(&nsb, uap->ub, sizeof (nsb));
2673
return (error);
2674
}
2675
2676
int
2677
freebsd11_freebsd32_nlstat(struct thread *td,
2678
struct freebsd11_freebsd32_nlstat_args *uap)
2679
{
2680
struct stat sb;
2681
struct nstat32 nsb;
2682
int error;
2683
2684
error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2685
UIO_USERSPACE, &sb);
2686
if (error != 0)
2687
return (error);
2688
error = freebsd11_cvtnstat32(&sb, &nsb);
2689
if (error == 0)
2690
error = copyout(&nsb, uap->ub, sizeof (nsb));
2691
return (error);
2692
}
2693
2694
int
2695
freebsd11_freebsd32_nfstat(struct thread *td,
2696
struct freebsd11_freebsd32_nfstat_args *uap)
2697
{
2698
struct nstat32 nub;
2699
struct stat ub;
2700
int error;
2701
2702
error = kern_fstat(td, uap->fd, &ub);
2703
if (error != 0)
2704
return (error);
2705
error = freebsd11_cvtnstat32(&ub, &nub);
2706
if (error == 0)
2707
error = copyout(&nub, uap->sb, sizeof(nub));
2708
return (error);
2709
}
2710
#endif
2711
2712
int
2713
freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap)
2714
{
2715
int error, name[CTL_MAXNAME];
2716
size_t j, oldlen;
2717
uint32_t tmp;
2718
2719
if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2720
return (EINVAL);
2721
error = copyin(uap->name, name, uap->namelen * sizeof(int));
2722
if (error)
2723
return (error);
2724
if (uap->oldlenp) {
2725
error = fueword32(uap->oldlenp, &tmp);
2726
oldlen = tmp;
2727
} else {
2728
oldlen = 0;
2729
}
2730
if (error != 0)
2731
return (EFAULT);
2732
error = userland_sysctl(td, name, uap->namelen,
2733
uap->old, &oldlen, 1,
2734
uap->new, uap->newlen, &j, SCTL_MASK32);
2735
if (error)
2736
return (error);
2737
if (uap->oldlenp != NULL && suword32(uap->oldlenp, j) != 0)
2738
error = EFAULT;
2739
return (error);
2740
}
2741
2742
int
2743
freebsd32___sysctlbyname(struct thread *td,
2744
struct freebsd32___sysctlbyname_args *uap)
2745
{
2746
size_t oldlen, rv;
2747
int error;
2748
uint32_t tmp;
2749
2750
if (uap->oldlenp != NULL) {
2751
error = fueword32(uap->oldlenp, &tmp);
2752
oldlen = tmp;
2753
} else {
2754
error = oldlen = 0;
2755
}
2756
if (error != 0)
2757
return (EFAULT);
2758
error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old,
2759
&oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1);
2760
if (error != 0)
2761
return (error);
2762
if (uap->oldlenp != NULL && suword32(uap->oldlenp, rv) != 0)
2763
error = EFAULT;
2764
return (error);
2765
}
2766
2767
int
2768
freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2769
{
2770
uint32_t version;
2771
int error;
2772
struct jail j;
2773
2774
error = copyin(uap->jail, &version, sizeof(uint32_t));
2775
if (error)
2776
return (error);
2777
2778
switch (version) {
2779
case 0:
2780
{
2781
/* FreeBSD single IPv4 jails. */
2782
struct jail32_v0 j32_v0;
2783
2784
bzero(&j, sizeof(struct jail));
2785
error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2786
if (error)
2787
return (error);
2788
CP(j32_v0, j, version);
2789
PTRIN_CP(j32_v0, j, path);
2790
PTRIN_CP(j32_v0, j, hostname);
2791
j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */
2792
break;
2793
}
2794
2795
case 1:
2796
/*
2797
* Version 1 was used by multi-IPv4 jail implementations
2798
* that never made it into the official kernel.
2799
*/
2800
return (EINVAL);
2801
2802
case 2: /* JAIL_API_VERSION */
2803
{
2804
/* FreeBSD multi-IPv4/IPv6,noIP jails. */
2805
struct jail32 j32;
2806
2807
error = copyin(uap->jail, &j32, sizeof(struct jail32));
2808
if (error)
2809
return (error);
2810
CP(j32, j, version);
2811
PTRIN_CP(j32, j, path);
2812
PTRIN_CP(j32, j, hostname);
2813
PTRIN_CP(j32, j, jailname);
2814
CP(j32, j, ip4s);
2815
CP(j32, j, ip6s);
2816
PTRIN_CP(j32, j, ip4);
2817
PTRIN_CP(j32, j, ip6);
2818
break;
2819
}
2820
2821
default:
2822
/* Sci-Fi jails are not supported, sorry. */
2823
return (EINVAL);
2824
}
2825
return (kern_jail(td, &j));
2826
}
2827
2828
int
2829
freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2830
{
2831
struct uio *auio;
2832
int error;
2833
2834
/* Check that we have an even number of iovecs. */
2835
if (uap->iovcnt & 1)
2836
return (EINVAL);
2837
2838
error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2839
if (error)
2840
return (error);
2841
error = kern_jail_set(td, auio, uap->flags);
2842
freeuio(auio);
2843
return (error);
2844
}
2845
2846
int
2847
freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2848
{
2849
struct iovec32 iov32;
2850
struct uio *auio;
2851
int error, i;
2852
2853
/* Check that we have an even number of iovecs. */
2854
if (uap->iovcnt & 1)
2855
return (EINVAL);
2856
2857
error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2858
if (error)
2859
return (error);
2860
error = kern_jail_get(td, auio, uap->flags);
2861
if (error == 0)
2862
for (i = 0; i < uap->iovcnt; i++) {
2863
PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2864
CP(auio->uio_iov[i], iov32, iov_len);
2865
error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2866
if (error != 0)
2867
break;
2868
}
2869
freeuio(auio);
2870
return (error);
2871
}
2872
2873
int
2874
freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2875
{
2876
struct sigaction32 s32;
2877
struct sigaction sa, osa, *sap;
2878
int error;
2879
2880
if (uap->act) {
2881
error = copyin(uap->act, &s32, sizeof(s32));
2882
if (error)
2883
return (error);
2884
sa.sa_handler = PTRIN(s32.sa_u);
2885
CP(s32, sa, sa_flags);
2886
CP(s32, sa, sa_mask);
2887
sap = &sa;
2888
} else
2889
sap = NULL;
2890
error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2891
if (error == 0 && uap->oact != NULL) {
2892
s32.sa_u = PTROUT(osa.sa_handler);
2893
CP(osa, s32, sa_flags);
2894
CP(osa, s32, sa_mask);
2895
error = copyout(&s32, uap->oact, sizeof(s32));
2896
}
2897
return (error);
2898
}
2899
2900
#ifdef COMPAT_FREEBSD4
2901
int
2902
freebsd4_freebsd32_sigaction(struct thread *td,
2903
struct freebsd4_freebsd32_sigaction_args *uap)
2904
{
2905
struct sigaction32 s32;
2906
struct sigaction sa, osa, *sap;
2907
int error;
2908
2909
if (uap->act) {
2910
error = copyin(uap->act, &s32, sizeof(s32));
2911
if (error)
2912
return (error);
2913
sa.sa_handler = PTRIN(s32.sa_u);
2914
CP(s32, sa, sa_flags);
2915
CP(s32, sa, sa_mask);
2916
sap = &sa;
2917
} else
2918
sap = NULL;
2919
error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2920
if (error == 0 && uap->oact != NULL) {
2921
s32.sa_u = PTROUT(osa.sa_handler);
2922
CP(osa, s32, sa_flags);
2923
CP(osa, s32, sa_mask);
2924
error = copyout(&s32, uap->oact, sizeof(s32));
2925
}
2926
return (error);
2927
}
2928
#endif
2929
2930
#ifdef COMPAT_43
2931
struct osigaction32 {
2932
uint32_t sa_u;
2933
osigset_t sa_mask;
2934
int sa_flags;
2935
};
2936
2937
#define ONSIG 32
2938
2939
int
2940
ofreebsd32_sigaction(struct thread *td,
2941
struct ofreebsd32_sigaction_args *uap)
2942
{
2943
struct osigaction32 s32;
2944
struct sigaction sa, osa, *sap;
2945
int error;
2946
2947
if (uap->signum <= 0 || uap->signum >= ONSIG)
2948
return (EINVAL);
2949
2950
if (uap->nsa) {
2951
error = copyin(uap->nsa, &s32, sizeof(s32));
2952
if (error)
2953
return (error);
2954
sa.sa_handler = PTRIN(s32.sa_u);
2955
CP(s32, sa, sa_flags);
2956
OSIG2SIG(s32.sa_mask, sa.sa_mask);
2957
sap = &sa;
2958
} else
2959
sap = NULL;
2960
error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2961
if (error == 0 && uap->osa != NULL) {
2962
s32.sa_u = PTROUT(osa.sa_handler);
2963
CP(osa, s32, sa_flags);
2964
SIG2OSIG(osa.sa_mask, s32.sa_mask);
2965
error = copyout(&s32, uap->osa, sizeof(s32));
2966
}
2967
return (error);
2968
}
2969
2970
struct sigvec32 {
2971
uint32_t sv_handler;
2972
int sv_mask;
2973
int sv_flags;
2974
};
2975
2976
int
2977
ofreebsd32_sigvec(struct thread *td,
2978
struct ofreebsd32_sigvec_args *uap)
2979
{
2980
struct sigvec32 vec;
2981
struct sigaction sa, osa, *sap;
2982
int error;
2983
2984
if (uap->signum <= 0 || uap->signum >= ONSIG)
2985
return (EINVAL);
2986
2987
if (uap->nsv) {
2988
error = copyin(uap->nsv, &vec, sizeof(vec));
2989
if (error)
2990
return (error);
2991
sa.sa_handler = PTRIN(vec.sv_handler);
2992
OSIG2SIG(vec.sv_mask, sa.sa_mask);
2993
sa.sa_flags = vec.sv_flags;
2994
sa.sa_flags ^= SA_RESTART;
2995
sap = &sa;
2996
} else
2997
sap = NULL;
2998
error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2999
if (error == 0 && uap->osv != NULL) {
3000
vec.sv_handler = PTROUT(osa.sa_handler);
3001
SIG2OSIG(osa.sa_mask, vec.sv_mask);
3002
vec.sv_flags = osa.sa_flags;
3003
vec.sv_flags &= ~SA_NOCLDWAIT;
3004
vec.sv_flags ^= SA_RESTART;
3005
error = copyout(&vec, uap->osv, sizeof(vec));
3006
}
3007
return (error);
3008
}
3009
3010
struct sigstack32 {
3011
uint32_t ss_sp;
3012
int ss_onstack;
3013
};
3014
3015
int
3016
ofreebsd32_sigstack(struct thread *td,
3017
struct ofreebsd32_sigstack_args *uap)
3018
{
3019
struct sigstack32 s32;
3020
struct sigstack nss, oss;
3021
int error = 0, unss;
3022
3023
if (uap->nss != NULL) {
3024
error = copyin(uap->nss, &s32, sizeof(s32));
3025
if (error)
3026
return (error);
3027
nss.ss_sp = PTRIN(s32.ss_sp);
3028
CP(s32, nss, ss_onstack);
3029
unss = 1;
3030
} else {
3031
unss = 0;
3032
}
3033
oss.ss_sp = td->td_sigstk.ss_sp;
3034
oss.ss_onstack = sigonstack(cpu_getstack(td));
3035
if (unss) {
3036
td->td_sigstk.ss_sp = nss.ss_sp;
3037
td->td_sigstk.ss_size = 0;
3038
td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
3039
td->td_pflags |= TDP_ALTSTACK;
3040
}
3041
if (uap->oss != NULL) {
3042
s32.ss_sp = PTROUT(oss.ss_sp);
3043
CP(oss, s32, ss_onstack);
3044
error = copyout(&s32, uap->oss, sizeof(s32));
3045
}
3046
return (error);
3047
}
3048
#endif
3049
3050
int
3051
freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
3052
{
3053
3054
return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
3055
TIMER_RELTIME, uap->rqtp, uap->rmtp));
3056
}
3057
3058
int
3059
freebsd32_clock_nanosleep(struct thread *td,
3060
struct freebsd32_clock_nanosleep_args *uap)
3061
{
3062
int error;
3063
3064
error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
3065
uap->rqtp, uap->rmtp);
3066
return (kern_posix_error(td, error));
3067
}
3068
3069
static int
3070
freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
3071
int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
3072
{
3073
struct timespec32 rmt32, rqt32;
3074
struct timespec rmt, rqt;
3075
int error, error2;
3076
3077
error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
3078
if (error)
3079
return (error);
3080
3081
CP(rqt32, rqt, tv_sec);
3082
CP(rqt32, rqt, tv_nsec);
3083
3084
error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
3085
if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
3086
CP(rmt, rmt32, tv_sec);
3087
CP(rmt, rmt32, tv_nsec);
3088
3089
error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
3090
if (error2 != 0)
3091
error = error2;
3092
}
3093
return (error);
3094
}
3095
3096
int
3097
freebsd32_clock_gettime(struct thread *td,
3098
struct freebsd32_clock_gettime_args *uap)
3099
{
3100
struct timespec ats;
3101
struct timespec32 ats32;
3102
int error;
3103
3104
error = kern_clock_gettime(td, uap->clock_id, &ats);
3105
if (error == 0) {
3106
CP(ats, ats32, tv_sec);
3107
CP(ats, ats32, tv_nsec);
3108
error = copyout(&ats32, uap->tp, sizeof(ats32));
3109
}
3110
return (error);
3111
}
3112
3113
int
3114
freebsd32_clock_settime(struct thread *td,
3115
struct freebsd32_clock_settime_args *uap)
3116
{
3117
struct timespec ats;
3118
struct timespec32 ats32;
3119
int error;
3120
3121
error = copyin(uap->tp, &ats32, sizeof(ats32));
3122
if (error)
3123
return (error);
3124
CP(ats32, ats, tv_sec);
3125
CP(ats32, ats, tv_nsec);
3126
3127
return (kern_clock_settime(td, uap->clock_id, &ats));
3128
}
3129
3130
int
3131
freebsd32_clock_getres(struct thread *td,
3132
struct freebsd32_clock_getres_args *uap)
3133
{
3134
struct timespec ts;
3135
struct timespec32 ts32;
3136
int error;
3137
3138
if (uap->tp == NULL)
3139
return (0);
3140
error = kern_clock_getres(td, uap->clock_id, &ts);
3141
if (error == 0) {
3142
CP(ts, ts32, tv_sec);
3143
CP(ts, ts32, tv_nsec);
3144
error = copyout(&ts32, uap->tp, sizeof(ts32));
3145
}
3146
return (error);
3147
}
3148
3149
int freebsd32_ktimer_create(struct thread *td,
3150
struct freebsd32_ktimer_create_args *uap)
3151
{
3152
struct sigevent32 ev32;
3153
struct sigevent ev, *evp;
3154
int error, id;
3155
3156
if (uap->evp == NULL) {
3157
evp = NULL;
3158
} else {
3159
evp = &ev;
3160
error = copyin(uap->evp, &ev32, sizeof(ev32));
3161
if (error != 0)
3162
return (error);
3163
error = convert_sigevent32(&ev32, &ev);
3164
if (error != 0)
3165
return (error);
3166
}
3167
error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
3168
if (error == 0) {
3169
error = copyout(&id, uap->timerid, sizeof(int));
3170
if (error != 0)
3171
kern_ktimer_delete(td, id);
3172
}
3173
return (error);
3174
}
3175
3176
int
3177
freebsd32_ktimer_settime(struct thread *td,
3178
struct freebsd32_ktimer_settime_args *uap)
3179
{
3180
struct itimerspec32 val32, oval32;
3181
struct itimerspec val, oval, *ovalp;
3182
int error;
3183
3184
error = copyin(uap->value, &val32, sizeof(val32));
3185
if (error != 0)
3186
return (error);
3187
ITS_CP(val32, val);
3188
ovalp = uap->ovalue != NULL ? &oval : NULL;
3189
error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
3190
if (error == 0 && uap->ovalue != NULL) {
3191
ITS_CP(oval, oval32);
3192
error = copyout(&oval32, uap->ovalue, sizeof(oval32));
3193
}
3194
return (error);
3195
}
3196
3197
int
3198
freebsd32_ktimer_gettime(struct thread *td,
3199
struct freebsd32_ktimer_gettime_args *uap)
3200
{
3201
struct itimerspec32 val32;
3202
struct itimerspec val;
3203
int error;
3204
3205
error = kern_ktimer_gettime(td, uap->timerid, &val);
3206
if (error == 0) {
3207
ITS_CP(val, val32);
3208
error = copyout(&val32, uap->value, sizeof(val32));
3209
}
3210
return (error);
3211
}
3212
3213
int
3214
freebsd32_timerfd_gettime(struct thread *td,
3215
struct freebsd32_timerfd_gettime_args *uap)
3216
{
3217
struct itimerspec curr_value;
3218
struct itimerspec32 curr_value32;
3219
int error;
3220
3221
error = kern_timerfd_gettime(td, uap->fd, &curr_value);
3222
if (error == 0) {
3223
CP(curr_value, curr_value32, it_value.tv_sec);
3224
CP(curr_value, curr_value32, it_value.tv_nsec);
3225
CP(curr_value, curr_value32, it_interval.tv_sec);
3226
CP(curr_value, curr_value32, it_interval.tv_nsec);
3227
error = copyout(&curr_value32, uap->curr_value,
3228
sizeof(curr_value32));
3229
}
3230
3231
return (error);
3232
}
3233
3234
int
3235
freebsd32_timerfd_settime(struct thread *td,
3236
struct freebsd32_timerfd_settime_args *uap)
3237
{
3238
struct itimerspec new_value, old_value;
3239
struct itimerspec32 new_value32, old_value32;
3240
int error;
3241
3242
error = copyin(uap->new_value, &new_value32, sizeof(new_value32));
3243
if (error != 0)
3244
return (error);
3245
CP(new_value32, new_value, it_value.tv_sec);
3246
CP(new_value32, new_value, it_value.tv_nsec);
3247
CP(new_value32, new_value, it_interval.tv_sec);
3248
CP(new_value32, new_value, it_interval.tv_nsec);
3249
if (uap->old_value == NULL) {
3250
error = kern_timerfd_settime(td, uap->fd, uap->flags,
3251
&new_value, NULL);
3252
} else {
3253
error = kern_timerfd_settime(td, uap->fd, uap->flags,
3254
&new_value, &old_value);
3255
if (error == 0) {
3256
CP(old_value, old_value32, it_value.tv_sec);
3257
CP(old_value, old_value32, it_value.tv_nsec);
3258
CP(old_value, old_value32, it_interval.tv_sec);
3259
CP(old_value, old_value32, it_interval.tv_nsec);
3260
error = copyout(&old_value32, uap->old_value,
3261
sizeof(old_value32));
3262
}
3263
}
3264
return (error);
3265
}
3266
3267
int
3268
freebsd32_clock_getcpuclockid2(struct thread *td,
3269
struct freebsd32_clock_getcpuclockid2_args *uap)
3270
{
3271
clockid_t clk_id;
3272
int error;
3273
3274
error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
3275
uap->which, &clk_id);
3276
if (error == 0)
3277
error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
3278
return (error);
3279
}
3280
3281
int
3282
freebsd32_thr_new(struct thread *td,
3283
struct freebsd32_thr_new_args *uap)
3284
{
3285
struct thr_param32 param32;
3286
struct thr_param param;
3287
int error;
3288
3289
if (uap->param_size < 0 ||
3290
uap->param_size > sizeof(struct thr_param32))
3291
return (EINVAL);
3292
bzero(&param, sizeof(struct thr_param));
3293
bzero(&param32, sizeof(struct thr_param32));
3294
error = copyin(uap->param, &param32, uap->param_size);
3295
if (error != 0)
3296
return (error);
3297
param.start_func = PTRIN(param32.start_func);
3298
param.arg = PTRIN(param32.arg);
3299
param.stack_base = PTRIN(param32.stack_base);
3300
param.stack_size = param32.stack_size;
3301
param.tls_base = PTRIN(param32.tls_base);
3302
param.tls_size = param32.tls_size;
3303
param.child_tid = PTRIN(param32.child_tid);
3304
param.parent_tid = PTRIN(param32.parent_tid);
3305
param.flags = param32.flags;
3306
param.rtp = PTRIN(param32.rtp);
3307
param.spare[0] = PTRIN(param32.spare[0]);
3308
param.spare[1] = PTRIN(param32.spare[1]);
3309
param.spare[2] = PTRIN(param32.spare[2]);
3310
3311
return (kern_thr_new(td, &param));
3312
}
3313
3314
int
3315
freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
3316
{
3317
struct timespec32 ts32;
3318
struct timespec ts, *tsp;
3319
int error;
3320
3321
error = 0;
3322
tsp = NULL;
3323
if (uap->timeout != NULL) {
3324
error = copyin((const void *)uap->timeout, (void *)&ts32,
3325
sizeof(struct timespec32));
3326
if (error != 0)
3327
return (error);
3328
ts.tv_sec = ts32.tv_sec;
3329
ts.tv_nsec = ts32.tv_nsec;
3330
tsp = &ts;
3331
}
3332
return (kern_thr_suspend(td, tsp));
3333
}
3334
3335
void
3336
siginfo_to_siginfo32(const siginfo_t *src, struct __siginfo32 *dst)
3337
{
3338
bzero(dst, sizeof(*dst));
3339
dst->si_signo = src->si_signo;
3340
dst->si_errno = src->si_errno;
3341
dst->si_code = src->si_code;
3342
dst->si_pid = src->si_pid;
3343
dst->si_uid = src->si_uid;
3344
dst->si_status = src->si_status;
3345
dst->si_addr = (uintptr_t)src->si_addr;
3346
dst->si_value.sival_int = src->si_value.sival_int;
3347
dst->si_timerid = src->si_timerid;
3348
dst->si_overrun = src->si_overrun;
3349
}
3350
3351
#ifndef _FREEBSD32_SYSPROTO_H_
3352
struct freebsd32_sigqueue_args {
3353
pid_t pid;
3354
int signum;
3355
/* union sigval32 */ int value;
3356
};
3357
#endif
3358
int
3359
freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
3360
{
3361
union sigval sv;
3362
3363
/*
3364
* On 32-bit ABIs, sival_int and sival_ptr are the same.
3365
* On 64-bit little-endian ABIs, the low bits are the same.
3366
* In 64-bit big-endian ABIs, sival_int overlaps with
3367
* sival_ptr's HIGH bits. We choose to support sival_int
3368
* rather than sival_ptr in this case as it seems to be
3369
* more common.
3370
*/
3371
bzero(&sv, sizeof(sv));
3372
sv.sival_int = (uint32_t)(uint64_t)uap->value;
3373
3374
return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
3375
}
3376
3377
int
3378
freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
3379
{
3380
struct timespec32 ts32;
3381
struct timespec ts;
3382
struct timespec *timeout;
3383
sigset_t set;
3384
ksiginfo_t ksi;
3385
struct __siginfo32 si32;
3386
int error;
3387
3388
if (uap->timeout) {
3389
error = copyin(uap->timeout, &ts32, sizeof(ts32));
3390
if (error)
3391
return (error);
3392
ts.tv_sec = ts32.tv_sec;
3393
ts.tv_nsec = ts32.tv_nsec;
3394
timeout = &ts;
3395
} else
3396
timeout = NULL;
3397
3398
error = copyin(uap->set, &set, sizeof(set));
3399
if (error)
3400
return (error);
3401
3402
error = kern_sigtimedwait(td, set, &ksi, timeout);
3403
if (error)
3404
return (error);
3405
3406
if (uap->info) {
3407
siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3408
error = copyout(&si32, uap->info, sizeof(struct __siginfo32));
3409
}
3410
3411
if (error == 0)
3412
td->td_retval[0] = ksi.ksi_signo;
3413
return (error);
3414
}
3415
3416
/*
3417
* MPSAFE
3418
*/
3419
int
3420
freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
3421
{
3422
ksiginfo_t ksi;
3423
struct __siginfo32 si32;
3424
sigset_t set;
3425
int error;
3426
3427
error = copyin(uap->set, &set, sizeof(set));
3428
if (error)
3429
return (error);
3430
3431
error = kern_sigtimedwait(td, set, &ksi, NULL);
3432
if (error)
3433
return (error);
3434
3435
if (uap->info) {
3436
siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3437
error = copyout(&si32, uap->info, sizeof(struct __siginfo32));
3438
}
3439
if (error == 0)
3440
td->td_retval[0] = ksi.ksi_signo;
3441
return (error);
3442
}
3443
3444
int
3445
freebsd32_cpuset_setid(struct thread *td,
3446
struct freebsd32_cpuset_setid_args *uap)
3447
{
3448
3449
return (kern_cpuset_setid(td, uap->which,
3450
PAIR32TO64(id_t, uap->id), uap->setid));
3451
}
3452
3453
int
3454
freebsd32_cpuset_getid(struct thread *td,
3455
struct freebsd32_cpuset_getid_args *uap)
3456
{
3457
3458
return (kern_cpuset_getid(td, uap->level, uap->which,
3459
PAIR32TO64(id_t, uap->id), uap->setid));
3460
}
3461
3462
static int
3463
copyin32_set(const void *u, void *k, size_t size)
3464
{
3465
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
3466
int rv;
3467
struct bitset *kb = k;
3468
int *p;
3469
3470
rv = copyin(u, k, size);
3471
if (rv != 0)
3472
return (rv);
3473
3474
p = (int *)kb->__bits;
3475
/* Loop through swapping words.
3476
* `size' is in bytes, we need bits. */
3477
for (int i = 0; i < __bitset_words(size * 8); i++) {
3478
int tmp = p[0];
3479
p[0] = p[1];
3480
p[1] = tmp;
3481
p += 2;
3482
}
3483
return (0);
3484
#else
3485
return (copyin(u, k, size));
3486
#endif
3487
}
3488
3489
static int
3490
copyout32_set(const void *k, void *u, size_t size)
3491
{
3492
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
3493
const struct bitset *kb = k;
3494
struct bitset *ub = u;
3495
const int *kp = (const int *)kb->__bits;
3496
int *up = (int *)ub->__bits;
3497
int rv;
3498
3499
for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) {
3500
/* `size' is in bytes, we need bits. */
3501
for (int i = 0; i < __bitset_words(size * 8); i++) {
3502
rv = suword32(up, kp[1]);
3503
if (rv == 0)
3504
rv = suword32(up + 1, kp[0]);
3505
if (rv != 0)
3506
return (EFAULT);
3507
}
3508
}
3509
return (0);
3510
#else
3511
return (copyout(k, u, size));
3512
#endif
3513
}
3514
3515
static const struct cpuset_copy_cb cpuset_copy32_cb = {
3516
.cpuset_copyin = copyin32_set,
3517
.cpuset_copyout = copyout32_set
3518
};
3519
3520
int
3521
freebsd32_cpuset_getaffinity(struct thread *td,
3522
struct freebsd32_cpuset_getaffinity_args *uap)
3523
{
3524
3525
return (user_cpuset_getaffinity(td, uap->level, uap->which,
3526
PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask,
3527
&cpuset_copy32_cb));
3528
}
3529
3530
int
3531
freebsd32_cpuset_setaffinity(struct thread *td,
3532
struct freebsd32_cpuset_setaffinity_args *uap)
3533
{
3534
3535
return (user_cpuset_setaffinity(td, uap->level, uap->which,
3536
PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask,
3537
&cpuset_copy32_cb));
3538
}
3539
3540
int
3541
freebsd32_cpuset_getdomain(struct thread *td,
3542
struct freebsd32_cpuset_getdomain_args *uap)
3543
{
3544
3545
return (kern_cpuset_getdomain(td, uap->level, uap->which,
3546
PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy,
3547
&cpuset_copy32_cb));
3548
}
3549
3550
int
3551
freebsd32_cpuset_setdomain(struct thread *td,
3552
struct freebsd32_cpuset_setdomain_args *uap)
3553
{
3554
3555
return (kern_cpuset_setdomain(td, uap->level, uap->which,
3556
PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy,
3557
&cpuset_copy32_cb));
3558
}
3559
3560
int
3561
freebsd32_nmount(struct thread *td,
3562
struct freebsd32_nmount_args /* {
3563
struct iovec *iovp;
3564
unsigned int iovcnt;
3565
int flags;
3566
} */ *uap)
3567
{
3568
struct uio *auio;
3569
uint64_t flags;
3570
int error;
3571
3572
/*
3573
* Mount flags are now 64-bits. On 32-bit archtectures only
3574
* 32-bits are passed in, but from here on everything handles
3575
* 64-bit flags correctly.
3576
*/
3577
flags = uap->flags;
3578
3579
AUDIT_ARG_FFLAGS(flags);
3580
3581
/*
3582
* Filter out MNT_ROOTFS. We do not want clients of nmount() in
3583
* userspace to set this flag, but we must filter it out if we want
3584
* MNT_UPDATE on the root file system to work.
3585
* MNT_ROOTFS should only be set by the kernel when mounting its
3586
* root file system.
3587
*/
3588
flags &= ~MNT_ROOTFS;
3589
3590
/*
3591
* check that we have an even number of iovec's
3592
* and that we have at least two options.
3593
*/
3594
if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
3595
return (EINVAL);
3596
3597
error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
3598
if (error)
3599
return (error);
3600
error = vfs_donmount(td, flags, auio);
3601
3602
freeuio(auio);
3603
return error;
3604
}
3605
3606
#if 0
3607
int
3608
freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
3609
{
3610
struct yyy32 *p32, s32;
3611
struct yyy *p = NULL, s;
3612
struct xxx_arg ap;
3613
int error;
3614
3615
if (uap->zzz) {
3616
error = copyin(uap->zzz, &s32, sizeof(s32));
3617
if (error)
3618
return (error);
3619
/* translate in */
3620
p = &s;
3621
}
3622
error = kern_xxx(td, p);
3623
if (error)
3624
return (error);
3625
if (uap->zzz) {
3626
/* translate out */
3627
error = copyout(&s32, p32, sizeof(s32));
3628
}
3629
return (error);
3630
}
3631
#endif
3632
3633
int
3634
syscall32_module_handler(struct module *mod, int what, void *arg)
3635
{
3636
3637
return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg));
3638
}
3639
3640
int
3641
syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3642
{
3643
3644
return (kern_syscall_helper_register(freebsd32_sysent, sd, flags));
3645
}
3646
3647
int
3648
syscall32_helper_unregister(struct syscall_helper_data *sd)
3649
{
3650
3651
return (kern_syscall_helper_unregister(freebsd32_sysent, sd));
3652
}
3653
3654
int
3655
freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
3656
{
3657
struct sysentvec *sysent;
3658
int argc, envc, i;
3659
uint32_t *vectp;
3660
char *stringp;
3661
uintptr_t destp, ustringp;
3662
struct freebsd32_ps_strings *arginfo;
3663
char canary[sizeof(long) * 8];
3664
int32_t pagesizes32[MAXPAGESIZES];
3665
size_t execpath_len;
3666
int error, szsigcode;
3667
3668
sysent = imgp->sysent;
3669
3670
arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc);
3671
imgp->ps_strings = arginfo;
3672
destp = (uintptr_t)arginfo;
3673
3674
/*
3675
* Install sigcode.
3676
*/
3677
if (!PROC_HAS_SHP(imgp->proc)) {
3678
szsigcode = *sysent->sv_szsigcode;
3679
destp -= szsigcode;
3680
destp = rounddown2(destp, sizeof(uint32_t));
3681
error = copyout(sysent->sv_sigcode, (void *)destp,
3682
szsigcode);
3683
if (error != 0)
3684
return (error);
3685
}
3686
3687
/*
3688
* Copy the image path for the rtld.
3689
*/
3690
if (imgp->execpath != NULL && imgp->auxargs != NULL) {
3691
execpath_len = strlen(imgp->execpath) + 1;
3692
destp -= execpath_len;
3693
imgp->execpathp = (void *)destp;
3694
error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
3695
if (error != 0)
3696
return (error);
3697
}
3698
3699
/*
3700
* Prepare the canary for SSP.
3701
*/
3702
arc4rand(canary, sizeof(canary), 0);
3703
destp -= sizeof(canary);
3704
imgp->canary = (void *)destp;
3705
error = copyout(canary, imgp->canary, sizeof(canary));
3706
if (error != 0)
3707
return (error);
3708
imgp->canarylen = sizeof(canary);
3709
3710
/*
3711
* Prepare the pagesizes array.
3712
*/
3713
for (i = 0; i < MAXPAGESIZES; i++)
3714
pagesizes32[i] = (uint32_t)pagesizes[i];
3715
destp -= sizeof(pagesizes32);
3716
destp = rounddown2(destp, sizeof(uint32_t));
3717
imgp->pagesizes = (void *)destp;
3718
error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32));
3719
if (error != 0)
3720
return (error);
3721
imgp->pagesizeslen = sizeof(pagesizes32);
3722
3723
/*
3724
* Allocate room for the argument and environment strings.
3725
*/
3726
destp -= ARG_MAX - imgp->args->stringspace;
3727
destp = rounddown2(destp, sizeof(uint32_t));
3728
ustringp = destp;
3729
3730
if (imgp->auxargs) {
3731
/*
3732
* Allocate room on the stack for the ELF auxargs
3733
* array. It has up to AT_COUNT entries.
3734
*/
3735
destp -= AT_COUNT * sizeof(Elf32_Auxinfo);
3736
destp = rounddown2(destp, sizeof(uint32_t));
3737
}
3738
3739
vectp = (uint32_t *)destp;
3740
3741
/*
3742
* Allocate room for the argv[] and env vectors including the
3743
* terminating NULL pointers.
3744
*/
3745
vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
3746
3747
/*
3748
* vectp also becomes our initial stack base
3749
*/
3750
*stack_base = (uintptr_t)vectp;
3751
3752
stringp = imgp->args->begin_argv;
3753
argc = imgp->args->argc;
3754
envc = imgp->args->envc;
3755
/*
3756
* Copy out strings - arguments and environment.
3757
*/
3758
error = copyout(stringp, (void *)ustringp,
3759
ARG_MAX - imgp->args->stringspace);
3760
if (error != 0)
3761
return (error);
3762
3763
/*
3764
* Fill in "ps_strings" struct for ps, w, etc.
3765
*/
3766
imgp->argv = vectp;
3767
if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 ||
3768
suword32(&arginfo->ps_nargvstr, argc) != 0)
3769
return (EFAULT);
3770
3771
/*
3772
* Fill in argument portion of vector table.
3773
*/
3774
for (; argc > 0; --argc) {
3775
if (suword32(vectp++, ustringp) != 0)
3776
return (EFAULT);
3777
while (*stringp++ != 0)
3778
ustringp++;
3779
ustringp++;
3780
}
3781
3782
/* a null vector table pointer separates the argp's from the envp's */
3783
if (suword32(vectp++, 0) != 0)
3784
return (EFAULT);
3785
3786
imgp->envv = vectp;
3787
if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 ||
3788
suword32(&arginfo->ps_nenvstr, envc) != 0)
3789
return (EFAULT);
3790
3791
/*
3792
* Fill in environment portion of vector table.
3793
*/
3794
for (; envc > 0; --envc) {
3795
if (suword32(vectp++, ustringp) != 0)
3796
return (EFAULT);
3797
while (*stringp++ != 0)
3798
ustringp++;
3799
ustringp++;
3800
}
3801
3802
/* end of vector table is a null pointer */
3803
if (suword32(vectp, 0) != 0)
3804
return (EFAULT);
3805
3806
if (imgp->auxargs) {
3807
vectp++;
3808
error = imgp->sysent->sv_copyout_auxargs(imgp,
3809
(uintptr_t)vectp);
3810
if (error != 0)
3811
return (error);
3812
}
3813
3814
return (0);
3815
}
3816
3817
int
3818
freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3819
{
3820
struct kld_file_stat *stat;
3821
struct kld_file_stat32 *stat32;
3822
int error, version;
3823
3824
if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3825
!= 0)
3826
return (error);
3827
if (version != sizeof(struct kld_file_stat_1_32) &&
3828
version != sizeof(struct kld_file_stat32))
3829
return (EINVAL);
3830
3831
stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO);
3832
stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO);
3833
error = kern_kldstat(td, uap->fileid, stat);
3834
if (error == 0) {
3835
bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name));
3836
CP(*stat, *stat32, refs);
3837
CP(*stat, *stat32, id);
3838
PTROUT_CP(*stat, *stat32, address);
3839
CP(*stat, *stat32, size);
3840
bcopy(&stat->pathname[0], &stat32->pathname[0],
3841
sizeof(stat->pathname));
3842
stat32->version = version;
3843
error = copyout(stat32, uap->stat, version);
3844
}
3845
free(stat, M_TEMP);
3846
free(stat32, M_TEMP);
3847
return (error);
3848
}
3849
3850
int
3851
freebsd32_posix_fallocate(struct thread *td,
3852
struct freebsd32_posix_fallocate_args *uap)
3853
{
3854
int error;
3855
3856
error = kern_posix_fallocate(td, uap->fd,
3857
PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3858
return (kern_posix_error(td, error));
3859
}
3860
3861
int
3862
freebsd32_posix_fadvise(struct thread *td,
3863
struct freebsd32_posix_fadvise_args *uap)
3864
{
3865
int error;
3866
3867
error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3868
PAIR32TO64(off_t, uap->len), uap->advice);
3869
return (kern_posix_error(td, error));
3870
}
3871
3872
int
3873
convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3874
{
3875
3876
CP(*sig32, *sig, sigev_notify);
3877
switch (sig->sigev_notify) {
3878
case SIGEV_NONE:
3879
break;
3880
case SIGEV_THREAD_ID:
3881
CP(*sig32, *sig, sigev_notify_thread_id);
3882
/* FALLTHROUGH */
3883
case SIGEV_SIGNAL:
3884
CP(*sig32, *sig, sigev_signo);
3885
PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3886
break;
3887
case SIGEV_KEVENT:
3888
CP(*sig32, *sig, sigev_notify_kqueue);
3889
CP(*sig32, *sig, sigev_notify_kevent_flags);
3890
PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3891
break;
3892
default:
3893
return (EINVAL);
3894
}
3895
return (0);
3896
}
3897
3898
int
3899
freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3900
{
3901
void *data;
3902
union {
3903
struct procctl_reaper_status rs;
3904
struct procctl_reaper_pids rp;
3905
struct procctl_reaper_kill rk;
3906
} x;
3907
union {
3908
struct procctl_reaper_pids32 rp;
3909
} x32;
3910
int error, error1, flags, signum;
3911
3912
if (uap->com >= PROC_PROCCTL_MD_MIN)
3913
return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3914
uap->com, PTRIN(uap->data)));
3915
3916
switch (uap->com) {
3917
case PROC_ASLR_CTL:
3918
case PROC_PROTMAX_CTL:
3919
case PROC_SPROTECT:
3920
case PROC_STACKGAP_CTL:
3921
case PROC_TRACE_CTL:
3922
case PROC_TRAPCAP_CTL:
3923
case PROC_NO_NEW_PRIVS_CTL:
3924
case PROC_WXMAP_CTL:
3925
case PROC_LOGSIGEXIT_CTL:
3926
error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3927
if (error != 0)
3928
return (error);
3929
data = &flags;
3930
break;
3931
case PROC_REAP_ACQUIRE:
3932
case PROC_REAP_RELEASE:
3933
if (uap->data != NULL)
3934
return (EINVAL);
3935
data = NULL;
3936
break;
3937
case PROC_REAP_STATUS:
3938
data = &x.rs;
3939
break;
3940
case PROC_REAP_GETPIDS:
3941
error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3942
if (error != 0)
3943
return (error);
3944
CP(x32.rp, x.rp, rp_count);
3945
PTRIN_CP(x32.rp, x.rp, rp_pids);
3946
data = &x.rp;
3947
break;
3948
case PROC_REAP_KILL:
3949
error = copyin(uap->data, &x.rk, sizeof(x.rk));
3950
if (error != 0)
3951
return (error);
3952
data = &x.rk;
3953
break;
3954
case PROC_ASLR_STATUS:
3955
case PROC_PROTMAX_STATUS:
3956
case PROC_STACKGAP_STATUS:
3957
case PROC_TRACE_STATUS:
3958
case PROC_TRAPCAP_STATUS:
3959
case PROC_NO_NEW_PRIVS_STATUS:
3960
case PROC_WXMAP_STATUS:
3961
case PROC_LOGSIGEXIT_STATUS:
3962
data = &flags;
3963
break;
3964
case PROC_PDEATHSIG_CTL:
3965
error = copyin(uap->data, &signum, sizeof(signum));
3966
if (error != 0)
3967
return (error);
3968
data = &signum;
3969
break;
3970
case PROC_PDEATHSIG_STATUS:
3971
data = &signum;
3972
break;
3973
default:
3974
return (EINVAL);
3975
}
3976
error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3977
uap->com, data);
3978
switch (uap->com) {
3979
case PROC_REAP_STATUS:
3980
if (error == 0)
3981
error = copyout(&x.rs, uap->data, sizeof(x.rs));
3982
break;
3983
case PROC_REAP_KILL:
3984
error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3985
if (error == 0)
3986
error = error1;
3987
break;
3988
case PROC_ASLR_STATUS:
3989
case PROC_PROTMAX_STATUS:
3990
case PROC_STACKGAP_STATUS:
3991
case PROC_TRACE_STATUS:
3992
case PROC_TRAPCAP_STATUS:
3993
case PROC_NO_NEW_PRIVS_STATUS:
3994
case PROC_WXMAP_STATUS:
3995
case PROC_LOGSIGEXIT_STATUS:
3996
if (error == 0)
3997
error = copyout(&flags, uap->data, sizeof(flags));
3998
break;
3999
case PROC_PDEATHSIG_STATUS:
4000
if (error == 0)
4001
error = copyout(&signum, uap->data, sizeof(signum));
4002
break;
4003
}
4004
return (error);
4005
}
4006
4007
int
4008
freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
4009
{
4010
intptr_t tmp;
4011
4012
switch (uap->cmd) {
4013
/*
4014
* Do unsigned conversion for arg when operation
4015
* interprets it as flags or pointer.
4016
*/
4017
case F_SETLK_REMOTE:
4018
case F_SETLKW:
4019
case F_SETLK:
4020
case F_GETLK:
4021
case F_SETFD:
4022
case F_SETFL:
4023
case F_OGETLK:
4024
case F_OSETLK:
4025
case F_OSETLKW:
4026
case F_KINFO:
4027
tmp = (unsigned int)(uap->arg);
4028
break;
4029
default:
4030
tmp = uap->arg;
4031
break;
4032
}
4033
return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
4034
}
4035
4036
int
4037
freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
4038
{
4039
struct timespec32 ts32;
4040
struct timespec ts, *tsp;
4041
sigset_t set, *ssp;
4042
int error;
4043
4044
if (uap->ts != NULL) {
4045
error = copyin(uap->ts, &ts32, sizeof(ts32));
4046
if (error != 0)
4047
return (error);
4048
CP(ts32, ts, tv_sec);
4049
CP(ts32, ts, tv_nsec);
4050
tsp = &ts;
4051
} else
4052
tsp = NULL;
4053
if (uap->set != NULL) {
4054
error = copyin(uap->set, &set, sizeof(set));
4055
if (error != 0)
4056
return (error);
4057
ssp = &set;
4058
} else
4059
ssp = NULL;
4060
4061
return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
4062
}
4063
4064
int
4065
freebsd32_sched_rr_get_interval(struct thread *td,
4066
struct freebsd32_sched_rr_get_interval_args *uap)
4067
{
4068
struct timespec ts;
4069
struct timespec32 ts32;
4070
int error;
4071
4072
error = kern_sched_rr_get_interval(td, uap->pid, &ts);
4073
if (error == 0) {
4074
CP(ts, ts32, tv_sec);
4075
CP(ts, ts32, tv_nsec);
4076
error = copyout(&ts32, uap->interval, sizeof(ts32));
4077
}
4078
return (error);
4079
}
4080
4081
static void
4082
timex_to_32(struct timex32 *dst, struct timex *src)
4083
{
4084
CP(*src, *dst, modes);
4085
CP(*src, *dst, offset);
4086
CP(*src, *dst, freq);
4087
CP(*src, *dst, maxerror);
4088
CP(*src, *dst, esterror);
4089
CP(*src, *dst, status);
4090
CP(*src, *dst, constant);
4091
CP(*src, *dst, precision);
4092
CP(*src, *dst, tolerance);
4093
CP(*src, *dst, ppsfreq);
4094
CP(*src, *dst, jitter);
4095
CP(*src, *dst, shift);
4096
CP(*src, *dst, stabil);
4097
CP(*src, *dst, jitcnt);
4098
CP(*src, *dst, calcnt);
4099
CP(*src, *dst, errcnt);
4100
CP(*src, *dst, stbcnt);
4101
}
4102
4103
static void
4104
timex_from_32(struct timex *dst, struct timex32 *src)
4105
{
4106
CP(*src, *dst, modes);
4107
CP(*src, *dst, offset);
4108
CP(*src, *dst, freq);
4109
CP(*src, *dst, maxerror);
4110
CP(*src, *dst, esterror);
4111
CP(*src, *dst, status);
4112
CP(*src, *dst, constant);
4113
CP(*src, *dst, precision);
4114
CP(*src, *dst, tolerance);
4115
CP(*src, *dst, ppsfreq);
4116
CP(*src, *dst, jitter);
4117
CP(*src, *dst, shift);
4118
CP(*src, *dst, stabil);
4119
CP(*src, *dst, jitcnt);
4120
CP(*src, *dst, calcnt);
4121
CP(*src, *dst, errcnt);
4122
CP(*src, *dst, stbcnt);
4123
}
4124
4125
int
4126
freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap)
4127
{
4128
struct timex tx;
4129
struct timex32 tx32;
4130
int error, retval;
4131
4132
error = copyin(uap->tp, &tx32, sizeof(tx32));
4133
if (error == 0) {
4134
timex_from_32(&tx, &tx32);
4135
error = kern_ntp_adjtime(td, &tx, &retval);
4136
if (error == 0) {
4137
timex_to_32(&tx32, &tx);
4138
error = copyout(&tx32, uap->tp, sizeof(tx32));
4139
if (error == 0)
4140
td->td_retval[0] = retval;
4141
}
4142
}
4143
return (error);
4144
}
4145
4146
#ifdef FFCLOCK
4147
extern struct mtx ffclock_mtx;
4148
extern struct ffclock_estimate ffclock_estimate;
4149
extern int8_t ffclock_updated;
4150
4151
int
4152
freebsd32_ffclock_setestimate(struct thread *td,
4153
struct freebsd32_ffclock_setestimate_args *uap)
4154
{
4155
struct ffclock_estimate cest;
4156
struct ffclock_estimate32 cest32;
4157
int error;
4158
4159
/* Reuse of PRIV_CLOCK_SETTIME. */
4160
if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
4161
return (error);
4162
4163
if ((error = copyin(uap->cest, &cest32,
4164
sizeof(struct ffclock_estimate32))) != 0)
4165
return (error);
4166
4167
CP(cest.update_time, cest32.update_time, sec);
4168
memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t));
4169
CP(cest, cest32, update_ffcount);
4170
CP(cest, cest32, leapsec_next);
4171
CP(cest, cest32, period);
4172
CP(cest, cest32, errb_abs);
4173
CP(cest, cest32, errb_rate);
4174
CP(cest, cest32, status);
4175
CP(cest, cest32, leapsec_total);
4176
CP(cest, cest32, leapsec);
4177
4178
mtx_lock(&ffclock_mtx);
4179
memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate));
4180
ffclock_updated++;
4181
mtx_unlock(&ffclock_mtx);
4182
return (error);
4183
}
4184
4185
int
4186
freebsd32_ffclock_getestimate(struct thread *td,
4187
struct freebsd32_ffclock_getestimate_args *uap)
4188
{
4189
struct ffclock_estimate cest;
4190
struct ffclock_estimate32 cest32;
4191
int error;
4192
4193
mtx_lock(&ffclock_mtx);
4194
memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
4195
mtx_unlock(&ffclock_mtx);
4196
4197
CP(cest32.update_time, cest.update_time, sec);
4198
memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t));
4199
CP(cest32, cest, update_ffcount);
4200
CP(cest32, cest, leapsec_next);
4201
CP(cest32, cest, period);
4202
CP(cest32, cest, errb_abs);
4203
CP(cest32, cest, errb_rate);
4204
CP(cest32, cest, status);
4205
CP(cest32, cest, leapsec_total);
4206
CP(cest32, cest, leapsec);
4207
4208
error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32));
4209
return (error);
4210
}
4211
#else /* !FFCLOCK */
4212
int
4213
freebsd32_ffclock_setestimate(struct thread *td,
4214
struct freebsd32_ffclock_setestimate_args *uap)
4215
{
4216
return (ENOSYS);
4217
}
4218
4219
int
4220
freebsd32_ffclock_getestimate(struct thread *td,
4221
struct freebsd32_ffclock_getestimate_args *uap)
4222
{
4223
return (ENOSYS);
4224
}
4225
#endif /* FFCLOCK */
4226
4227
#ifdef COMPAT_43
4228
int
4229
ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap)
4230
{
4231
int name[] = { CTL_KERN, KERN_HOSTID };
4232
long hostid;
4233
4234
hostid = uap->hostid;
4235
return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid,
4236
sizeof(hostid), NULL, 0));
4237
}
4238
#endif
4239
4240
int
4241
freebsd32_setcred(struct thread *td, struct freebsd32_setcred_args *uap)
4242
{
4243
/* Last argument is 'is_32bit'. */
4244
return (user_setcred(td, uap->flags, uap->wcred, uap->size, true));
4245
}
4246
4247