Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/compat/freebsd32/freebsd32_misc.c
107074 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2002 Doug Rabson
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26
* SUCH DAMAGE.
27
*/
28
29
#include <sys/cdefs.h>
30
#include "opt_ffclock.h"
31
#include "opt_inet.h"
32
#include "opt_inet6.h"
33
#include "opt_ktrace.h"
34
35
#define __ELF_WORD_SIZE 32
36
37
#ifdef COMPAT_FREEBSD11
38
#define _WANT_FREEBSD11_KEVENT
39
#endif
40
41
#include <sys/param.h>
42
#include <sys/bus.h>
43
#include <sys/capsicum.h>
44
#include <sys/clock.h>
45
#include <sys/exec.h>
46
#include <sys/fcntl.h>
47
#include <sys/filedesc.h>
48
#include <sys/imgact.h>
49
#include <sys/jail.h>
50
#include <sys/kernel.h>
51
#include <sys/limits.h>
52
#include <sys/linker.h>
53
#include <sys/lock.h>
54
#include <sys/malloc.h>
55
#include <sys/file.h> /* Must come after sys/malloc.h */
56
#include <sys/imgact.h>
57
#include <sys/mbuf.h>
58
#include <sys/mman.h>
59
#include <sys/module.h>
60
#include <sys/mount.h>
61
#include <sys/mutex.h>
62
#include <sys/namei.h>
63
#include <sys/priv.h>
64
#include <sys/proc.h>
65
#include <sys/procctl.h>
66
#include <sys/ptrace.h>
67
#include <sys/reboot.h>
68
#include <sys/resource.h>
69
#include <sys/resourcevar.h>
70
#include <sys/selinfo.h>
71
#include <sys/eventvar.h> /* Must come after sys/selinfo.h */
72
#include <sys/pipe.h> /* Must come after sys/selinfo.h */
73
#include <sys/signal.h>
74
#include <sys/signalvar.h>
75
#include <sys/socket.h>
76
#include <sys/socketvar.h>
77
#include <sys/stat.h>
78
#include <sys/syscall.h>
79
#include <sys/syscallsubr.h>
80
#include <sys/sysctl.h>
81
#include <sys/sysent.h>
82
#include <sys/sysproto.h>
83
#include <sys/systm.h>
84
#include <sys/thr.h>
85
#include <sys/timerfd.h>
86
#include <sys/timex.h>
87
#include <sys/unistd.h>
88
#include <sys/ucontext.h>
89
#include <sys/ucred.h>
90
#include <sys/vnode.h>
91
#include <sys/wait.h>
92
#include <sys/ipc.h>
93
#include <sys/msg.h>
94
#include <sys/sem.h>
95
#include <sys/shm.h>
96
#include <sys/timeffc.h>
97
#ifdef KTRACE
98
#include <sys/ktrace.h>
99
#endif
100
101
#ifdef INET
102
#include <netinet/in.h>
103
#endif
104
105
#include <vm/vm.h>
106
#include <vm/vm_param.h>
107
#include <vm/pmap.h>
108
#include <vm/vm_map.h>
109
#include <vm/vm_object.h>
110
#include <vm/vm_extern.h>
111
112
#include <machine/cpu.h>
113
#include <machine/elf.h>
114
#ifdef __amd64__
115
#include <machine/md_var.h>
116
#endif
117
118
#include <security/audit/audit.h>
119
#include <security/mac/mac_syscalls.h>
120
121
#include <compat/freebsd32/freebsd32_util.h>
122
#include <compat/freebsd32/freebsd32.h>
123
#include <compat/freebsd32/freebsd32_ipc.h>
124
#include <compat/freebsd32/freebsd32_misc.h>
125
#include <compat/freebsd32/freebsd32_signal.h>
126
#include <compat/freebsd32/freebsd32_proto.h>
127
128
int compat_freebsd_32bit = 1;
129
130
static void
131
register_compat32_feature(void *arg)
132
{
133
if (!compat_freebsd_32bit)
134
return;
135
136
FEATURE_ADD("compat_freebsd32", "Compatible with 32-bit FreeBSD");
137
FEATURE_ADD("compat_freebsd_32bit",
138
"Compatible with 32-bit FreeBSD (legacy feature name)");
139
}
140
SYSINIT(freebsd32, SI_SUB_EXEC, SI_ORDER_ANY, register_compat32_feature,
141
NULL);
142
143
struct ptrace_io_desc32 {
144
int piod_op;
145
uint32_t piod_offs;
146
uint32_t piod_addr;
147
uint32_t piod_len;
148
};
149
150
struct ptrace_vm_entry32 {
151
int pve_entry;
152
int pve_timestamp;
153
uint32_t pve_start;
154
uint32_t pve_end;
155
uint32_t pve_offset;
156
u_int pve_prot;
157
u_int pve_pathlen;
158
int32_t pve_fileid;
159
u_int pve_fsid;
160
uint32_t pve_path;
161
};
162
163
#ifdef __amd64__
164
CTASSERT(sizeof(struct timeval32) == 8);
165
CTASSERT(sizeof(struct timespec32) == 8);
166
CTASSERT(sizeof(struct itimerval32) == 16);
167
CTASSERT(sizeof(struct bintime32) == 12);
168
#else
169
CTASSERT(sizeof(struct timeval32) == 16);
170
CTASSERT(sizeof(struct timespec32) == 16);
171
CTASSERT(sizeof(struct itimerval32) == 32);
172
CTASSERT(sizeof(struct bintime32) == 16);
173
#endif
174
CTASSERT(sizeof(struct ostatfs32) == 256);
175
#ifdef __amd64__
176
CTASSERT(sizeof(struct rusage32) == 72);
177
#else
178
CTASSERT(sizeof(struct rusage32) == 88);
179
#endif
180
CTASSERT(sizeof(struct sigaltstack32) == 12);
181
#ifdef __amd64__
182
CTASSERT(sizeof(struct kevent32) == 56);
183
#else
184
CTASSERT(sizeof(struct kevent32) == 64);
185
#endif
186
CTASSERT(sizeof(struct iovec32) == 8);
187
CTASSERT(sizeof(struct msghdr32) == 28);
188
#ifdef __amd64__
189
CTASSERT(sizeof(struct stat32) == 208);
190
CTASSERT(sizeof(struct freebsd11_stat32) == 96);
191
#else
192
CTASSERT(sizeof(struct stat32) == 224);
193
CTASSERT(sizeof(struct freebsd11_stat32) == 120);
194
#endif
195
CTASSERT(sizeof(struct sigaction32) == 24);
196
197
static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
198
static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
199
static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
200
int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
201
202
void
203
freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
204
{
205
206
bzero(s32, sizeof(*s32));
207
TV_CP(*s, *s32, ru_utime);
208
TV_CP(*s, *s32, ru_stime);
209
CP(*s, *s32, ru_maxrss);
210
CP(*s, *s32, ru_ixrss);
211
CP(*s, *s32, ru_idrss);
212
CP(*s, *s32, ru_isrss);
213
CP(*s, *s32, ru_minflt);
214
CP(*s, *s32, ru_majflt);
215
CP(*s, *s32, ru_nswap);
216
CP(*s, *s32, ru_inblock);
217
CP(*s, *s32, ru_oublock);
218
CP(*s, *s32, ru_msgsnd);
219
CP(*s, *s32, ru_msgrcv);
220
CP(*s, *s32, ru_nsignals);
221
CP(*s, *s32, ru_nvcsw);
222
CP(*s, *s32, ru_nivcsw);
223
}
224
225
int
226
freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
227
{
228
int error, status;
229
struct rusage32 ru32;
230
struct rusage ru, *rup;
231
232
if (uap->rusage != NULL)
233
rup = &ru;
234
else
235
rup = NULL;
236
error = kern_wait(td, uap->pid, &status, uap->options, rup);
237
if (error)
238
return (error);
239
if (uap->status != NULL)
240
error = copyout(&status, uap->status, sizeof(status));
241
if (uap->rusage != NULL && error == 0) {
242
freebsd32_rusage_out(&ru, &ru32);
243
error = copyout(&ru32, uap->rusage, sizeof(ru32));
244
}
245
return (error);
246
}
247
248
int
249
freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
250
{
251
struct __wrusage32 wru32;
252
struct __wrusage wru, *wrup;
253
struct __siginfo32 si32;
254
struct __siginfo si, *sip;
255
int error, status;
256
257
if (uap->wrusage != NULL)
258
wrup = &wru;
259
else
260
wrup = NULL;
261
if (uap->info != NULL) {
262
sip = &si;
263
bzero(sip, sizeof(*sip));
264
} else
265
sip = NULL;
266
error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
267
&status, uap->options, wrup, sip);
268
if (error != 0)
269
return (error);
270
if (uap->status != NULL)
271
error = copyout(&status, uap->status, sizeof(status));
272
if (uap->wrusage != NULL && error == 0) {
273
freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
274
freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
275
error = copyout(&wru32, uap->wrusage, sizeof(wru32));
276
}
277
if (uap->info != NULL && error == 0) {
278
siginfo_to_siginfo32 (&si, &si32);
279
error = copyout(&si32, uap->info, sizeof(si32));
280
}
281
return (error);
282
}
283
284
int
285
freebsd32_pdwait(struct thread *td, struct freebsd32_pdwait_args *uap)
286
{
287
struct __wrusage32 wru32;
288
struct __wrusage wru, *wrup;
289
struct __siginfo32 si32;
290
struct __siginfo si, *sip;
291
int error, status;
292
293
wrup = uap->wrusage != NULL ? &wru : NULL;
294
if (uap->info != NULL) {
295
sip = &si;
296
bzero(sip, sizeof(*sip));
297
} else {
298
sip = NULL;
299
}
300
error = kern_pdwait(td, uap->fd, &status, uap->options, wrup, sip);
301
if (uap->status != NULL && error == 0)
302
error = copyout(&status, uap->status, sizeof(status));
303
if (uap->wrusage != NULL && error == 0) {
304
freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
305
freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
306
error = copyout(&wru32, uap->wrusage, sizeof(wru32));
307
}
308
if (uap->info != NULL && error == 0) {
309
siginfo_to_siginfo32 (&si, &si32);
310
error = copyout(&si32, uap->info, sizeof(si32));
311
}
312
return (error);
313
}
314
315
#ifdef COMPAT_FREEBSD4
316
static void
317
copy_statfs(struct statfs *in, struct ostatfs32 *out)
318
{
319
320
statfs_scale_blocks(in, INT32_MAX);
321
bzero(out, sizeof(*out));
322
CP(*in, *out, f_bsize);
323
out->f_iosize = MIN(in->f_iosize, INT32_MAX);
324
CP(*in, *out, f_blocks);
325
CP(*in, *out, f_bfree);
326
CP(*in, *out, f_bavail);
327
out->f_files = MIN(in->f_files, INT32_MAX);
328
out->f_ffree = MIN(in->f_ffree, INT32_MAX);
329
CP(*in, *out, f_fsid);
330
CP(*in, *out, f_owner);
331
CP(*in, *out, f_type);
332
CP(*in, *out, f_flags);
333
out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
334
out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
335
strlcpy(out->f_fstypename,
336
in->f_fstypename, MFSNAMELEN);
337
strlcpy(out->f_mntonname,
338
in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN));
339
out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
340
out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
341
strlcpy(out->f_mntfromname,
342
in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN));
343
}
344
#endif
345
346
int
347
freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap)
348
{
349
size_t count;
350
int error;
351
352
if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX)
353
return (EINVAL);
354
error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count,
355
UIO_USERSPACE, uap->mode);
356
if (error == 0)
357
td->td_retval[0] = count;
358
return (error);
359
}
360
361
#ifdef COMPAT_FREEBSD4
362
int
363
freebsd4_freebsd32_getfsstat(struct thread *td,
364
struct freebsd4_freebsd32_getfsstat_args *uap)
365
{
366
struct statfs *buf, *sp;
367
struct ostatfs32 stat32;
368
size_t count, size, copycount;
369
int error;
370
371
count = uap->bufsize / sizeof(struct ostatfs32);
372
size = count * sizeof(struct statfs);
373
error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
374
if (size > 0) {
375
sp = buf;
376
copycount = count;
377
while (copycount > 0 && error == 0) {
378
copy_statfs(sp, &stat32);
379
error = copyout(&stat32, uap->buf, sizeof(stat32));
380
sp++;
381
uap->buf++;
382
copycount--;
383
}
384
free(buf, M_STATFS);
385
}
386
if (error == 0)
387
td->td_retval[0] = count;
388
return (error);
389
}
390
#endif
391
392
#ifdef COMPAT_FREEBSD11
393
int
394
freebsd11_freebsd32_getfsstat(struct thread *td,
395
struct freebsd11_freebsd32_getfsstat_args *uap)
396
{
397
return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize,
398
uap->mode));
399
}
400
#endif
401
402
int
403
freebsd32_sigaltstack(struct thread *td,
404
struct freebsd32_sigaltstack_args *uap)
405
{
406
struct sigaltstack32 s32;
407
struct sigaltstack ss, oss, *ssp;
408
int error;
409
410
if (uap->ss != NULL) {
411
error = copyin(uap->ss, &s32, sizeof(s32));
412
if (error)
413
return (error);
414
PTRIN_CP(s32, ss, ss_sp);
415
CP(s32, ss, ss_size);
416
CP(s32, ss, ss_flags);
417
ssp = &ss;
418
} else
419
ssp = NULL;
420
error = kern_sigaltstack(td, ssp, &oss);
421
if (error == 0 && uap->oss != NULL) {
422
PTROUT_CP(oss, s32, ss_sp);
423
CP(oss, s32, ss_size);
424
CP(oss, s32, ss_flags);
425
error = copyout(&s32, uap->oss, sizeof(s32));
426
}
427
return (error);
428
}
429
430
/*
431
* Custom version of exec_copyin_args() so that we can translate
432
* the pointers.
433
*/
434
int
435
freebsd32_exec_copyin_args(struct image_args *args, const char *fname,
436
uint32_t *argv, uint32_t *envv)
437
{
438
char *argp, *envp;
439
uint32_t *p32, arg;
440
int error;
441
442
bzero(args, sizeof(*args));
443
if (argv == NULL)
444
return (EFAULT);
445
446
/*
447
* Allocate demand-paged memory for the file name, argument, and
448
* environment strings.
449
*/
450
error = exec_alloc_args(args);
451
if (error != 0)
452
return (error);
453
454
/*
455
* Copy the file name.
456
*/
457
error = exec_args_add_fname(args, fname, UIO_USERSPACE);
458
if (error != 0)
459
goto err_exit;
460
461
/*
462
* extract arguments first
463
*/
464
p32 = argv;
465
for (;;) {
466
error = copyin(p32++, &arg, sizeof(arg));
467
if (error)
468
goto err_exit;
469
if (arg == 0)
470
break;
471
argp = PTRIN(arg);
472
error = exec_args_add_arg(args, argp, UIO_USERSPACE);
473
if (error != 0)
474
goto err_exit;
475
}
476
477
/*
478
* extract environment strings
479
*/
480
if (envv) {
481
p32 = envv;
482
for (;;) {
483
error = copyin(p32++, &arg, sizeof(arg));
484
if (error)
485
goto err_exit;
486
if (arg == 0)
487
break;
488
envp = PTRIN(arg);
489
error = exec_args_add_env(args, envp, UIO_USERSPACE);
490
if (error != 0)
491
goto err_exit;
492
}
493
}
494
495
return (0);
496
497
err_exit:
498
exec_free_args(args);
499
return (error);
500
}
501
502
int
503
freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
504
{
505
struct image_args eargs;
506
struct vmspace *oldvmspace;
507
int error;
508
509
error = pre_execve(td, &oldvmspace);
510
if (error != 0)
511
return (error);
512
error = freebsd32_exec_copyin_args(&eargs, uap->fname, uap->argv,
513
uap->envv);
514
if (error == 0)
515
error = kern_execve(td, &eargs, NULL, oldvmspace);
516
post_execve(td, error, oldvmspace);
517
AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
518
return (error);
519
}
520
521
int
522
freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
523
{
524
struct image_args eargs;
525
struct vmspace *oldvmspace;
526
int error;
527
528
error = pre_execve(td, &oldvmspace);
529
if (error != 0)
530
return (error);
531
error = freebsd32_exec_copyin_args(&eargs, NULL, uap->argv, uap->envv);
532
if (error == 0) {
533
eargs.fd = uap->fd;
534
error = kern_execve(td, &eargs, NULL, oldvmspace);
535
}
536
post_execve(td, error, oldvmspace);
537
AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
538
return (error);
539
}
540
541
int
542
freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap)
543
{
544
545
return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE,
546
uap->mode, PAIR32TO64(dev_t, uap->dev)));
547
}
548
549
int
550
freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
551
{
552
int prot;
553
554
prot = uap->prot;
555
#if defined(__amd64__)
556
if (i386_read_exec && (prot & PROT_READ) != 0)
557
prot |= PROT_EXEC;
558
#endif
559
return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
560
prot, 0));
561
}
562
563
int
564
freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
565
{
566
int prot;
567
568
prot = uap->prot;
569
#if defined(__amd64__)
570
if (i386_read_exec && (prot & PROT_READ))
571
prot |= PROT_EXEC;
572
#endif
573
574
return (kern_mmap(td, &(struct mmap_req){
575
.mr_hint = (uintptr_t)uap->addr,
576
.mr_len = uap->len,
577
.mr_prot = prot,
578
.mr_flags = uap->flags,
579
.mr_fd = uap->fd,
580
.mr_pos = PAIR32TO64(off_t, uap->pos),
581
}));
582
}
583
584
#ifdef COMPAT_FREEBSD6
585
int
586
freebsd6_freebsd32_mmap(struct thread *td,
587
struct freebsd6_freebsd32_mmap_args *uap)
588
{
589
int prot;
590
591
prot = uap->prot;
592
#if defined(__amd64__)
593
if (i386_read_exec && (prot & PROT_READ))
594
prot |= PROT_EXEC;
595
#endif
596
597
return (kern_mmap(td, &(struct mmap_req){
598
.mr_hint = (uintptr_t)uap->addr,
599
.mr_len = uap->len,
600
.mr_prot = prot,
601
.mr_flags = uap->flags,
602
.mr_fd = uap->fd,
603
.mr_pos = PAIR32TO64(off_t, uap->pos),
604
}));
605
}
606
#endif
607
608
#ifdef COMPAT_43
609
int
610
ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap)
611
{
612
return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot,
613
uap->flags, uap->fd, uap->pos));
614
}
615
#endif
616
617
int
618
freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
619
{
620
struct itimerval itv, oitv, *itvp;
621
struct itimerval32 i32;
622
int error;
623
624
if (uap->itv != NULL) {
625
error = copyin(uap->itv, &i32, sizeof(i32));
626
if (error)
627
return (error);
628
TV_CP(i32, itv, it_interval);
629
TV_CP(i32, itv, it_value);
630
itvp = &itv;
631
} else
632
itvp = NULL;
633
error = kern_setitimer(td, uap->which, itvp, &oitv);
634
if (error || uap->oitv == NULL)
635
return (error);
636
TV_CP(oitv, i32, it_interval);
637
TV_CP(oitv, i32, it_value);
638
return (copyout(&i32, uap->oitv, sizeof(i32)));
639
}
640
641
int
642
freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
643
{
644
struct itimerval itv;
645
struct itimerval32 i32;
646
int error;
647
648
error = kern_getitimer(td, uap->which, &itv);
649
if (error || uap->itv == NULL)
650
return (error);
651
TV_CP(itv, i32, it_interval);
652
TV_CP(itv, i32, it_value);
653
return (copyout(&i32, uap->itv, sizeof(i32)));
654
}
655
656
int
657
freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
658
{
659
struct timeval32 tv32;
660
struct timeval tv, *tvp;
661
int error;
662
663
if (uap->tv != NULL) {
664
error = copyin(uap->tv, &tv32, sizeof(tv32));
665
if (error)
666
return (error);
667
CP(tv32, tv, tv_sec);
668
CP(tv32, tv, tv_usec);
669
tvp = &tv;
670
} else
671
tvp = NULL;
672
/*
673
* XXX Do pointers need PTRIN()?
674
*/
675
return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
676
sizeof(int32_t) * 8));
677
}
678
679
int
680
freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
681
{
682
struct timespec32 ts32;
683
struct timespec ts;
684
struct timeval tv, *tvp;
685
sigset_t set, *uset;
686
int error;
687
688
if (uap->ts != NULL) {
689
error = copyin(uap->ts, &ts32, sizeof(ts32));
690
if (error != 0)
691
return (error);
692
CP(ts32, ts, tv_sec);
693
CP(ts32, ts, tv_nsec);
694
TIMESPEC_TO_TIMEVAL(&tv, &ts);
695
tvp = &tv;
696
} else
697
tvp = NULL;
698
if (uap->sm != NULL) {
699
error = copyin(uap->sm, &set, sizeof(set));
700
if (error != 0)
701
return (error);
702
uset = &set;
703
} else
704
uset = NULL;
705
/*
706
* XXX Do pointers need PTRIN()?
707
*/
708
error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
709
uset, sizeof(int32_t) * 8);
710
return (error);
711
}
712
713
static void
714
freebsd32_kevent_to_kevent32(const struct kevent *kevp, struct kevent32 *ks32)
715
{
716
int j;
717
718
CP(*kevp, *ks32, ident);
719
CP(*kevp, *ks32, filter);
720
CP(*kevp, *ks32, flags);
721
CP(*kevp, *ks32, fflags);
722
FU64_CP(*kevp, *ks32, data);
723
PTROUT_CP(*kevp, *ks32, udata);
724
for (j = 0; j < nitems(kevp->ext); j++)
725
FU64_CP(*kevp, *ks32, ext[j]);
726
}
727
728
void
729
freebsd32_kinfo_knote_to_32(const struct kinfo_knote *kin,
730
struct kinfo_knote32 *kin32)
731
{
732
memset(kin32, 0, sizeof(*kin32));
733
CP(*kin, *kin32, knt_kq_fd);
734
freebsd32_kevent_to_kevent32(&kin->knt_event, &kin32->knt_event);
735
CP(*kin, *kin32, knt_status);
736
CP(*kin, *kin32, knt_extdata);
737
switch (kin->knt_extdata) {
738
case KNOTE_EXTDATA_NONE:
739
break;
740
case KNOTE_EXTDATA_VNODE:
741
CP(*kin, *kin32, knt_vnode.knt_vnode_type);
742
FU64_CP(*kin, *kin32, knt_vnode.knt_vnode_fsid);
743
FU64_CP(*kin, *kin32, knt_vnode.knt_vnode_fileid);
744
memcpy(kin32->knt_vnode.knt_vnode_fullpath,
745
kin->knt_vnode.knt_vnode_fullpath, PATH_MAX);
746
break;
747
case KNOTE_EXTDATA_PIPE:
748
FU64_CP(*kin, *kin32, knt_pipe.knt_pipe_ino);
749
break;
750
}
751
}
752
753
/*
754
* Copy 'count' items into the destination list pointed to by uap->eventlist.
755
*/
756
static int
757
freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
758
{
759
struct freebsd32_kevent_args *uap;
760
struct kevent32 ks32[KQ_NEVENTS];
761
int i, error;
762
763
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
764
uap = (struct freebsd32_kevent_args *)arg;
765
766
for (i = 0; i < count; i++)
767
freebsd32_kevent_to_kevent32(&kevp[i], &ks32[i]);
768
error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
769
if (error == 0)
770
uap->eventlist += count;
771
return (error);
772
}
773
774
/*
775
* Copy 'count' items from the list pointed to by uap->changelist.
776
*/
777
static int
778
freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
779
{
780
struct freebsd32_kevent_args *uap;
781
struct kevent32 ks32[KQ_NEVENTS];
782
int i, j, error;
783
784
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
785
uap = (struct freebsd32_kevent_args *)arg;
786
787
error = copyin(uap->changelist, ks32, count * sizeof *ks32);
788
if (error)
789
goto done;
790
uap->changelist += count;
791
792
for (i = 0; i < count; i++) {
793
CP(ks32[i], kevp[i], ident);
794
CP(ks32[i], kevp[i], filter);
795
CP(ks32[i], kevp[i], flags);
796
CP(ks32[i], kevp[i], fflags);
797
FU64_CP(ks32[i], kevp[i], data);
798
PTRIN_CP(ks32[i], kevp[i], udata);
799
for (j = 0; j < nitems(kevp->ext); j++)
800
FU64_CP(ks32[i], kevp[i], ext[j]);
801
}
802
done:
803
return (error);
804
}
805
806
int
807
freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
808
{
809
struct timespec32 ts32;
810
struct timespec ts, *tsp;
811
struct kevent_copyops k_ops = {
812
.arg = uap,
813
.k_copyout = freebsd32_kevent_copyout,
814
.k_copyin = freebsd32_kevent_copyin,
815
};
816
#ifdef KTRACE
817
struct kevent32 *eventlist = uap->eventlist;
818
#endif
819
int error;
820
821
if (uap->timeout) {
822
error = copyin(uap->timeout, &ts32, sizeof(ts32));
823
if (error)
824
return (error);
825
CP(ts32, ts, tv_sec);
826
CP(ts32, ts, tv_nsec);
827
tsp = &ts;
828
} else
829
tsp = NULL;
830
#ifdef KTRACE
831
if (KTRPOINT(td, KTR_STRUCT_ARRAY))
832
ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist,
833
uap->nchanges, sizeof(struct kevent32));
834
#endif
835
error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
836
&k_ops, tsp);
837
#ifdef KTRACE
838
if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
839
ktrstructarray("kevent32", UIO_USERSPACE, eventlist,
840
td->td_retval[0], sizeof(struct kevent32));
841
#endif
842
return (error);
843
}
844
845
#ifdef COMPAT_FREEBSD11
846
static int
847
freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
848
{
849
struct freebsd11_freebsd32_kevent_args *uap;
850
struct freebsd11_kevent32 ks32[KQ_NEVENTS];
851
int i, error;
852
853
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
854
uap = (struct freebsd11_freebsd32_kevent_args *)arg;
855
856
for (i = 0; i < count; i++) {
857
CP(kevp[i], ks32[i], ident);
858
CP(kevp[i], ks32[i], filter);
859
CP(kevp[i], ks32[i], flags);
860
CP(kevp[i], ks32[i], fflags);
861
CP(kevp[i], ks32[i], data);
862
PTROUT_CP(kevp[i], ks32[i], udata);
863
}
864
error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
865
if (error == 0)
866
uap->eventlist += count;
867
return (error);
868
}
869
870
/*
871
* Copy 'count' items from the list pointed to by uap->changelist.
872
*/
873
static int
874
freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
875
{
876
struct freebsd11_freebsd32_kevent_args *uap;
877
struct freebsd11_kevent32 ks32[KQ_NEVENTS];
878
int i, j, error;
879
880
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
881
uap = (struct freebsd11_freebsd32_kevent_args *)arg;
882
883
error = copyin(uap->changelist, ks32, count * sizeof *ks32);
884
if (error)
885
goto done;
886
uap->changelist += count;
887
888
for (i = 0; i < count; i++) {
889
CP(ks32[i], kevp[i], ident);
890
CP(ks32[i], kevp[i], filter);
891
CP(ks32[i], kevp[i], flags);
892
CP(ks32[i], kevp[i], fflags);
893
CP(ks32[i], kevp[i], data);
894
PTRIN_CP(ks32[i], kevp[i], udata);
895
for (j = 0; j < nitems(kevp->ext); j++)
896
kevp[i].ext[j] = 0;
897
}
898
done:
899
return (error);
900
}
901
902
int
903
freebsd11_freebsd32_kevent(struct thread *td,
904
struct freebsd11_freebsd32_kevent_args *uap)
905
{
906
struct timespec32 ts32;
907
struct timespec ts, *tsp;
908
struct kevent_copyops k_ops = {
909
.arg = uap,
910
.k_copyout = freebsd32_kevent11_copyout,
911
.k_copyin = freebsd32_kevent11_copyin,
912
};
913
#ifdef KTRACE
914
struct freebsd11_kevent32 *eventlist = uap->eventlist;
915
#endif
916
int error;
917
918
if (uap->timeout) {
919
error = copyin(uap->timeout, &ts32, sizeof(ts32));
920
if (error)
921
return (error);
922
CP(ts32, ts, tv_sec);
923
CP(ts32, ts, tv_nsec);
924
tsp = &ts;
925
} else
926
tsp = NULL;
927
#ifdef KTRACE
928
if (KTRPOINT(td, KTR_STRUCT_ARRAY))
929
ktrstructarray("freebsd11_kevent32", UIO_USERSPACE,
930
uap->changelist, uap->nchanges,
931
sizeof(struct freebsd11_kevent32));
932
#endif
933
error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
934
&k_ops, tsp);
935
#ifdef KTRACE
936
if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
937
ktrstructarray("freebsd11_kevent32", UIO_USERSPACE,
938
eventlist, td->td_retval[0],
939
sizeof(struct freebsd11_kevent32));
940
#endif
941
return (error);
942
}
943
#endif
944
945
int
946
freebsd32_gettimeofday(struct thread *td,
947
struct freebsd32_gettimeofday_args *uap)
948
{
949
struct timeval atv;
950
struct timeval32 atv32;
951
struct timezone rtz;
952
int error = 0;
953
954
if (uap->tp) {
955
microtime(&atv);
956
CP(atv, atv32, tv_sec);
957
CP(atv, atv32, tv_usec);
958
error = copyout(&atv32, uap->tp, sizeof (atv32));
959
}
960
if (error == 0 && uap->tzp != NULL) {
961
rtz.tz_minuteswest = 0;
962
rtz.tz_dsttime = 0;
963
error = copyout(&rtz, uap->tzp, sizeof (rtz));
964
}
965
return (error);
966
}
967
968
int
969
freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
970
{
971
struct rusage32 s32;
972
struct rusage s;
973
int error;
974
975
error = kern_getrusage(td, uap->who, &s);
976
if (error == 0) {
977
freebsd32_rusage_out(&s, &s32);
978
error = copyout(&s32, uap->rusage, sizeof(s32));
979
}
980
return (error);
981
}
982
983
static void
984
ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
985
struct ptrace_lwpinfo32 *pl32)
986
{
987
988
bzero(pl32, sizeof(*pl32));
989
pl32->pl_lwpid = pl->pl_lwpid;
990
pl32->pl_event = pl->pl_event;
991
pl32->pl_flags = pl->pl_flags;
992
pl32->pl_sigmask = pl->pl_sigmask;
993
pl32->pl_siglist = pl->pl_siglist;
994
siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
995
strcpy(pl32->pl_tdname, pl->pl_tdname);
996
pl32->pl_child_pid = pl->pl_child_pid;
997
pl32->pl_syscall_code = pl->pl_syscall_code;
998
pl32->pl_syscall_narg = pl->pl_syscall_narg;
999
}
1000
1001
static void
1002
ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr,
1003
struct ptrace_sc_ret32 *psr32)
1004
{
1005
1006
bzero(psr32, sizeof(*psr32));
1007
psr32->sr_retval[0] = psr->sr_retval[0];
1008
psr32->sr_retval[1] = psr->sr_retval[1];
1009
psr32->sr_error = psr->sr_error;
1010
}
1011
1012
int
1013
freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap)
1014
{
1015
union {
1016
struct ptrace_io_desc piod;
1017
struct ptrace_lwpinfo pl;
1018
struct ptrace_vm_entry pve;
1019
struct ptrace_coredump pc;
1020
struct ptrace_sc_remote sr;
1021
struct dbreg32 dbreg;
1022
struct fpreg32 fpreg;
1023
struct reg32 reg;
1024
struct iovec vec;
1025
register_t args[nitems(td->td_sa.args)];
1026
struct ptrace_sc_ret psr;
1027
int ptevents;
1028
} r;
1029
union {
1030
struct ptrace_io_desc32 piod;
1031
struct ptrace_lwpinfo32 pl;
1032
struct ptrace_vm_entry32 pve;
1033
struct ptrace_coredump32 pc;
1034
struct ptrace_sc_remote32 sr;
1035
uint32_t args[nitems(td->td_sa.args)];
1036
struct ptrace_sc_ret32 psr;
1037
struct iovec32 vec;
1038
} r32;
1039
syscallarg_t pscr_args[nitems(td->td_sa.args)];
1040
u_int pscr_args32[nitems(td->td_sa.args)];
1041
void *addr;
1042
int data, error, i;
1043
1044
if (!allow_ptrace)
1045
return (ENOSYS);
1046
error = 0;
1047
1048
AUDIT_ARG_PID(uap->pid);
1049
AUDIT_ARG_CMD(uap->req);
1050
AUDIT_ARG_VALUE(uap->data);
1051
addr = &r;
1052
data = uap->data;
1053
switch (uap->req) {
1054
case PT_GET_EVENT_MASK:
1055
case PT_GET_SC_ARGS:
1056
case PT_GET_SC_RET:
1057
break;
1058
case PT_LWPINFO:
1059
if (uap->data > sizeof(r32.pl))
1060
return (EINVAL);
1061
1062
/*
1063
* Pass size of native structure in 'data'. Truncate
1064
* if necessary to avoid siginfo.
1065
*/
1066
data = sizeof(r.pl);
1067
if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) +
1068
sizeof(struct __siginfo32))
1069
data = offsetof(struct ptrace_lwpinfo, pl_siginfo);
1070
break;
1071
case PT_GETREGS:
1072
bzero(&r.reg, sizeof(r.reg));
1073
break;
1074
case PT_GETFPREGS:
1075
bzero(&r.fpreg, sizeof(r.fpreg));
1076
break;
1077
case PT_GETDBREGS:
1078
bzero(&r.dbreg, sizeof(r.dbreg));
1079
break;
1080
case PT_SETREGS:
1081
error = copyin(uap->addr, &r.reg, sizeof(r.reg));
1082
break;
1083
case PT_SETFPREGS:
1084
error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
1085
break;
1086
case PT_SETDBREGS:
1087
error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
1088
break;
1089
case PT_GETREGSET:
1090
case PT_SETREGSET:
1091
error = copyin(uap->addr, &r32.vec, sizeof(r32.vec));
1092
if (error != 0)
1093
break;
1094
1095
r.vec.iov_len = r32.vec.iov_len;
1096
r.vec.iov_base = PTRIN(r32.vec.iov_base);
1097
break;
1098
case PT_SET_EVENT_MASK:
1099
if (uap->data != sizeof(r.ptevents))
1100
error = EINVAL;
1101
else
1102
error = copyin(uap->addr, &r.ptevents, uap->data);
1103
break;
1104
case PT_IO:
1105
error = copyin(uap->addr, &r32.piod, sizeof(r32.piod));
1106
if (error)
1107
break;
1108
CP(r32.piod, r.piod, piod_op);
1109
PTRIN_CP(r32.piod, r.piod, piod_offs);
1110
PTRIN_CP(r32.piod, r.piod, piod_addr);
1111
CP(r32.piod, r.piod, piod_len);
1112
break;
1113
case PT_VM_ENTRY:
1114
error = copyin(uap->addr, &r32.pve, sizeof(r32.pve));
1115
if (error)
1116
break;
1117
1118
CP(r32.pve, r.pve, pve_entry);
1119
CP(r32.pve, r.pve, pve_timestamp);
1120
CP(r32.pve, r.pve, pve_start);
1121
CP(r32.pve, r.pve, pve_end);
1122
CP(r32.pve, r.pve, pve_offset);
1123
CP(r32.pve, r.pve, pve_prot);
1124
CP(r32.pve, r.pve, pve_pathlen);
1125
CP(r32.pve, r.pve, pve_fileid);
1126
CP(r32.pve, r.pve, pve_fsid);
1127
PTRIN_CP(r32.pve, r.pve, pve_path);
1128
break;
1129
case PT_COREDUMP:
1130
if (uap->data != sizeof(r32.pc))
1131
error = EINVAL;
1132
else
1133
error = copyin(uap->addr, &r32.pc, uap->data);
1134
CP(r32.pc, r.pc, pc_fd);
1135
CP(r32.pc, r.pc, pc_flags);
1136
r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit);
1137
data = sizeof(r.pc);
1138
break;
1139
case PT_SC_REMOTE:
1140
if (uap->data != sizeof(r32.sr)) {
1141
error = EINVAL;
1142
break;
1143
}
1144
error = copyin(uap->addr, &r32.sr, uap->data);
1145
if (error != 0)
1146
break;
1147
CP(r32.sr, r.sr, pscr_syscall);
1148
CP(r32.sr, r.sr, pscr_nargs);
1149
if (r.sr.pscr_nargs > nitems(td->td_sa.args)) {
1150
error = EINVAL;
1151
break;
1152
}
1153
error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32,
1154
sizeof(u_int) * r32.sr.pscr_nargs);
1155
if (error != 0)
1156
break;
1157
for (i = 0; i < r32.sr.pscr_nargs; i++)
1158
pscr_args[i] = pscr_args32[i];
1159
r.sr.pscr_args = pscr_args;
1160
break;
1161
case PTINTERNAL_FIRST ... PTINTERNAL_LAST:
1162
error = EINVAL;
1163
break;
1164
default:
1165
addr = uap->addr;
1166
break;
1167
}
1168
if (error)
1169
return (error);
1170
1171
error = kern_ptrace(td, uap->req, uap->pid, addr, data);
1172
if (error)
1173
return (error);
1174
1175
switch (uap->req) {
1176
case PT_VM_ENTRY:
1177
CP(r.pve, r32.pve, pve_entry);
1178
CP(r.pve, r32.pve, pve_timestamp);
1179
CP(r.pve, r32.pve, pve_start);
1180
CP(r.pve, r32.pve, pve_end);
1181
CP(r.pve, r32.pve, pve_offset);
1182
CP(r.pve, r32.pve, pve_prot);
1183
CP(r.pve, r32.pve, pve_pathlen);
1184
CP(r.pve, r32.pve, pve_fileid);
1185
CP(r.pve, r32.pve, pve_fsid);
1186
error = copyout(&r32.pve, uap->addr, sizeof(r32.pve));
1187
break;
1188
case PT_IO:
1189
CP(r.piod, r32.piod, piod_len);
1190
error = copyout(&r32.piod, uap->addr, sizeof(r32.piod));
1191
break;
1192
case PT_GETREGS:
1193
error = copyout(&r.reg, uap->addr, sizeof(r.reg));
1194
break;
1195
case PT_GETFPREGS:
1196
error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
1197
break;
1198
case PT_GETDBREGS:
1199
error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
1200
break;
1201
case PT_GETREGSET:
1202
r32.vec.iov_len = r.vec.iov_len;
1203
error = copyout(&r32.vec, uap->addr, sizeof(r32.vec));
1204
break;
1205
case PT_GET_EVENT_MASK:
1206
/* NB: The size in uap->data is validated in kern_ptrace(). */
1207
error = copyout(&r.ptevents, uap->addr, uap->data);
1208
break;
1209
case PT_LWPINFO:
1210
ptrace_lwpinfo_to32(&r.pl, &r32.pl);
1211
error = copyout(&r32.pl, uap->addr, uap->data);
1212
break;
1213
case PT_GET_SC_ARGS:
1214
for (i = 0; i < nitems(r.args); i++)
1215
r32.args[i] = (uint32_t)r.args[i];
1216
error = copyout(r32.args, uap->addr, MIN(uap->data,
1217
sizeof(r32.args)));
1218
break;
1219
case PT_GET_SC_RET:
1220
ptrace_sc_ret_to32(&r.psr, &r32.psr);
1221
error = copyout(&r32.psr, uap->addr, MIN(uap->data,
1222
sizeof(r32.psr)));
1223
break;
1224
case PT_SC_REMOTE:
1225
ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret);
1226
error = copyout(&r32.sr.pscr_ret, uap->addr +
1227
offsetof(struct ptrace_sc_remote32, pscr_ret),
1228
sizeof(r32.psr));
1229
break;
1230
}
1231
1232
return (error);
1233
}
1234
1235
int
1236
freebsd32_copyinuio(const struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
1237
{
1238
struct iovec32 iov32;
1239
struct iovec *iov;
1240
struct uio *uio;
1241
int error, i;
1242
1243
*uiop = NULL;
1244
if (iovcnt > UIO_MAXIOV)
1245
return (EINVAL);
1246
uio = allocuio(iovcnt);
1247
iov = uio->uio_iov;
1248
for (i = 0; i < iovcnt; i++) {
1249
error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
1250
if (error) {
1251
freeuio(uio);
1252
return (error);
1253
}
1254
iov[i].iov_base = PTRIN(iov32.iov_base);
1255
iov[i].iov_len = iov32.iov_len;
1256
}
1257
uio->uio_iovcnt = iovcnt;
1258
uio->uio_segflg = UIO_USERSPACE;
1259
uio->uio_offset = -1;
1260
uio->uio_resid = 0;
1261
for (i = 0; i < iovcnt; i++) {
1262
if (iov->iov_len > INT_MAX - uio->uio_resid) {
1263
freeuio(uio);
1264
return (EINVAL);
1265
}
1266
uio->uio_resid += iov->iov_len;
1267
iov++;
1268
}
1269
*uiop = uio;
1270
return (0);
1271
}
1272
1273
int
1274
freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
1275
{
1276
struct uio *auio;
1277
int error;
1278
1279
error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1280
if (error)
1281
return (error);
1282
error = kern_readv(td, uap->fd, auio);
1283
freeuio(auio);
1284
return (error);
1285
}
1286
1287
int
1288
freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
1289
{
1290
struct uio *auio;
1291
int error;
1292
1293
error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1294
if (error)
1295
return (error);
1296
error = kern_writev(td, uap->fd, auio);
1297
freeuio(auio);
1298
return (error);
1299
}
1300
1301
int
1302
freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
1303
{
1304
struct uio *auio;
1305
int error;
1306
1307
error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1308
if (error)
1309
return (error);
1310
error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1311
freeuio(auio);
1312
return (error);
1313
}
1314
1315
int
1316
freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
1317
{
1318
struct uio *auio;
1319
int error;
1320
1321
error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1322
if (error)
1323
return (error);
1324
error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1325
freeuio(auio);
1326
return (error);
1327
}
1328
1329
int
1330
freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
1331
int error)
1332
{
1333
struct iovec32 iov32;
1334
struct iovec *iov;
1335
u_int iovlen;
1336
int i;
1337
1338
*iovp = NULL;
1339
if (iovcnt > UIO_MAXIOV)
1340
return (error);
1341
iovlen = iovcnt * sizeof(struct iovec);
1342
iov = malloc(iovlen, M_IOV, M_WAITOK);
1343
for (i = 0; i < iovcnt; i++) {
1344
error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
1345
if (error) {
1346
free(iov, M_IOV);
1347
return (error);
1348
}
1349
iov[i].iov_base = PTRIN(iov32.iov_base);
1350
iov[i].iov_len = iov32.iov_len;
1351
}
1352
*iovp = iov;
1353
return (0);
1354
}
1355
1356
static int
1357
freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg)
1358
{
1359
struct msghdr32 m32;
1360
int error;
1361
1362
error = copyin(msg32, &m32, sizeof(m32));
1363
if (error)
1364
return (error);
1365
msg->msg_name = PTRIN(m32.msg_name);
1366
msg->msg_namelen = m32.msg_namelen;
1367
msg->msg_iov = PTRIN(m32.msg_iov);
1368
msg->msg_iovlen = m32.msg_iovlen;
1369
msg->msg_control = PTRIN(m32.msg_control);
1370
msg->msg_controllen = m32.msg_controllen;
1371
msg->msg_flags = m32.msg_flags;
1372
return (0);
1373
}
1374
1375
static int
1376
freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1377
{
1378
struct msghdr32 m32;
1379
int error;
1380
1381
m32.msg_name = PTROUT(msg->msg_name);
1382
m32.msg_namelen = msg->msg_namelen;
1383
m32.msg_iov = PTROUT(msg->msg_iov);
1384
m32.msg_iovlen = msg->msg_iovlen;
1385
m32.msg_control = PTROUT(msg->msg_control);
1386
m32.msg_controllen = msg->msg_controllen;
1387
m32.msg_flags = msg->msg_flags;
1388
error = copyout(&m32, msg32, sizeof(m32));
1389
return (error);
1390
}
1391
1392
#define FREEBSD32_ALIGNBYTES (sizeof(int) - 1)
1393
#define FREEBSD32_ALIGN(p) \
1394
(((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1395
#define FREEBSD32_CMSG_SPACE(l) \
1396
(FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1397
1398
#define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \
1399
FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1400
1401
static size_t
1402
freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen)
1403
{
1404
size_t copylen;
1405
union {
1406
struct timespec32 ts;
1407
struct timeval32 tv;
1408
struct bintime32 bt;
1409
} tmp32;
1410
1411
union {
1412
struct timespec ts;
1413
struct timeval tv;
1414
struct bintime bt;
1415
} *in;
1416
1417
in = data;
1418
copylen = 0;
1419
switch (cm->cmsg_level) {
1420
case SOL_SOCKET:
1421
switch (cm->cmsg_type) {
1422
case SCM_TIMESTAMP:
1423
TV_CP(*in, tmp32, tv);
1424
copylen = sizeof(tmp32.tv);
1425
break;
1426
1427
case SCM_BINTIME:
1428
BT_CP(*in, tmp32, bt);
1429
copylen = sizeof(tmp32.bt);
1430
break;
1431
1432
case SCM_REALTIME:
1433
case SCM_MONOTONIC:
1434
TS_CP(*in, tmp32, ts);
1435
copylen = sizeof(tmp32.ts);
1436
break;
1437
1438
default:
1439
break;
1440
}
1441
1442
default:
1443
break;
1444
}
1445
1446
if (copylen == 0)
1447
return (datalen);
1448
1449
KASSERT((datalen >= copylen), ("corrupted cmsghdr"));
1450
1451
bcopy(&tmp32, data, copylen);
1452
return (copylen);
1453
}
1454
1455
static int
1456
freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1457
{
1458
struct cmsghdr *cm;
1459
void *data;
1460
socklen_t clen, datalen, datalen_out, oldclen;
1461
int error;
1462
caddr_t ctlbuf;
1463
int len, copylen;
1464
struct mbuf *m;
1465
error = 0;
1466
1467
len = msg->msg_controllen;
1468
msg->msg_controllen = 0;
1469
1470
ctlbuf = msg->msg_control;
1471
for (m = control; m != NULL && len > 0; m = m->m_next) {
1472
cm = mtod(m, struct cmsghdr *);
1473
clen = m->m_len;
1474
while (cm != NULL) {
1475
if (sizeof(struct cmsghdr) > clen ||
1476
cm->cmsg_len > clen) {
1477
error = EINVAL;
1478
break;
1479
}
1480
1481
data = CMSG_DATA(cm);
1482
datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1483
datalen_out = freebsd32_cmsg_convert(cm, data, datalen);
1484
1485
/*
1486
* Copy out the message header. Preserve the native
1487
* message size in case we need to inspect the message
1488
* contents later.
1489
*/
1490
copylen = sizeof(struct cmsghdr);
1491
if (len < copylen) {
1492
msg->msg_flags |= MSG_CTRUNC;
1493
m_dispose_extcontrolm(m);
1494
goto exit;
1495
}
1496
oldclen = cm->cmsg_len;
1497
cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1498
datalen_out;
1499
error = copyout(cm, ctlbuf, copylen);
1500
cm->cmsg_len = oldclen;
1501
if (error != 0)
1502
goto exit;
1503
1504
ctlbuf += FREEBSD32_ALIGN(copylen);
1505
len -= FREEBSD32_ALIGN(copylen);
1506
1507
copylen = datalen_out;
1508
if (len < copylen) {
1509
msg->msg_flags |= MSG_CTRUNC;
1510
m_dispose_extcontrolm(m);
1511
break;
1512
}
1513
1514
/* Copy out the message data. */
1515
error = copyout(data, ctlbuf, copylen);
1516
if (error)
1517
goto exit;
1518
1519
ctlbuf += FREEBSD32_ALIGN(copylen);
1520
len -= FREEBSD32_ALIGN(copylen);
1521
1522
if (CMSG_SPACE(datalen) < clen) {
1523
clen -= CMSG_SPACE(datalen);
1524
cm = (struct cmsghdr *)
1525
((caddr_t)cm + CMSG_SPACE(datalen));
1526
} else {
1527
clen = 0;
1528
cm = NULL;
1529
}
1530
1531
msg->msg_controllen +=
1532
FREEBSD32_CMSG_SPACE(datalen_out);
1533
}
1534
}
1535
if (len == 0 && m != NULL) {
1536
msg->msg_flags |= MSG_CTRUNC;
1537
m_dispose_extcontrolm(m);
1538
}
1539
1540
exit:
1541
return (error);
1542
}
1543
1544
int
1545
freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap)
1546
{
1547
struct msghdr msg;
1548
struct iovec *uiov, *iov;
1549
struct mbuf *control = NULL;
1550
struct mbuf **controlp;
1551
int error;
1552
1553
error = freebsd32_copyinmsghdr(uap->msg, &msg);
1554
if (error)
1555
return (error);
1556
error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1557
EMSGSIZE);
1558
if (error)
1559
return (error);
1560
msg.msg_flags = uap->flags;
1561
uiov = msg.msg_iov;
1562
msg.msg_iov = iov;
1563
1564
controlp = (msg.msg_control != NULL) ? &control : NULL;
1565
error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1566
if (error == 0) {
1567
msg.msg_iov = uiov;
1568
1569
if (control != NULL)
1570
error = freebsd32_copy_msg_out(&msg, control);
1571
else
1572
msg.msg_controllen = 0;
1573
1574
if (error == 0)
1575
error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1576
}
1577
free(iov, M_IOV);
1578
1579
if (control != NULL) {
1580
if (error != 0)
1581
m_dispose_extcontrolm(control);
1582
m_freem(control);
1583
}
1584
1585
return (error);
1586
}
1587
1588
#ifdef COMPAT_43
1589
int
1590
ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap)
1591
{
1592
return (ENOSYS);
1593
}
1594
#endif
1595
1596
/*
1597
* Copy-in the array of control messages constructed using alignment
1598
* and padding suitable for a 32-bit environment and construct an
1599
* mbuf using alignment and padding suitable for a 64-bit kernel.
1600
* The alignment and padding are defined indirectly by CMSG_DATA(),
1601
* CMSG_SPACE() and CMSG_LEN().
1602
*/
1603
static int
1604
freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1605
{
1606
struct cmsghdr *cm;
1607
struct mbuf *m;
1608
void *in, *in1, *md;
1609
u_int msglen, outlen;
1610
int error;
1611
1612
/* Enforce the size limit of the native implementation. */
1613
if (buflen > MCLBYTES)
1614
return (EINVAL);
1615
1616
in = malloc(buflen, M_TEMP, M_WAITOK);
1617
error = copyin(buf, in, buflen);
1618
if (error != 0)
1619
goto out;
1620
1621
/*
1622
* Make a pass over the input buffer to determine the amount of space
1623
* required for 64 bit-aligned copies of the control messages.
1624
*/
1625
in1 = in;
1626
outlen = 0;
1627
while (buflen > 0) {
1628
if (buflen < sizeof(*cm)) {
1629
error = EINVAL;
1630
break;
1631
}
1632
cm = (struct cmsghdr *)in1;
1633
if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) ||
1634
cm->cmsg_len > buflen) {
1635
error = EINVAL;
1636
break;
1637
}
1638
msglen = FREEBSD32_ALIGN(cm->cmsg_len);
1639
if (msglen < cm->cmsg_len) {
1640
error = EINVAL;
1641
break;
1642
}
1643
/* The native ABI permits the final padding to be omitted. */
1644
if (msglen > buflen)
1645
msglen = buflen;
1646
buflen -= msglen;
1647
1648
in1 = (char *)in1 + msglen;
1649
outlen += CMSG_ALIGN(sizeof(*cm)) +
1650
CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm)));
1651
}
1652
if (error != 0)
1653
goto out;
1654
1655
/*
1656
* Allocate up to MJUMPAGESIZE space for the re-aligned and
1657
* re-padded control messages. This allows a full MCLBYTES of
1658
* 32-bit sized and aligned messages to fit and avoids an ABI
1659
* mismatch with the native implementation.
1660
*/
1661
m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0);
1662
if (m == NULL) {
1663
error = EINVAL;
1664
goto out;
1665
}
1666
m->m_len = outlen;
1667
md = mtod(m, void *);
1668
1669
/*
1670
* Make a second pass over input messages, copying them into the output
1671
* buffer.
1672
*/
1673
in1 = in;
1674
while (outlen > 0) {
1675
/* Copy the message header and align the length field. */
1676
cm = md;
1677
memcpy(cm, in1, sizeof(*cm));
1678
msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm));
1679
cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen;
1680
1681
/* Copy the message body. */
1682
in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm));
1683
md = (char *)md + CMSG_ALIGN(sizeof(*cm));
1684
memcpy(md, in1, msglen);
1685
in1 = (char *)in1 + FREEBSD32_ALIGN(msglen);
1686
md = (char *)md + CMSG_ALIGN(msglen);
1687
KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen),
1688
("outlen %u underflow, msglen %u", outlen, msglen));
1689
outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen);
1690
}
1691
1692
*mp = m;
1693
out:
1694
free(in, M_TEMP);
1695
return (error);
1696
}
1697
1698
int
1699
freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap)
1700
{
1701
struct msghdr msg;
1702
struct iovec *iov;
1703
struct mbuf *control = NULL;
1704
struct sockaddr *to = NULL;
1705
int error;
1706
1707
error = freebsd32_copyinmsghdr(uap->msg, &msg);
1708
if (error)
1709
return (error);
1710
error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1711
EMSGSIZE);
1712
if (error)
1713
return (error);
1714
msg.msg_iov = iov;
1715
if (msg.msg_name != NULL) {
1716
error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1717
if (error) {
1718
to = NULL;
1719
goto out;
1720
}
1721
msg.msg_name = to;
1722
}
1723
1724
if (msg.msg_control) {
1725
if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1726
error = EINVAL;
1727
goto out;
1728
}
1729
1730
error = freebsd32_copyin_control(&control, msg.msg_control,
1731
msg.msg_controllen);
1732
if (error)
1733
goto out;
1734
1735
msg.msg_control = NULL;
1736
msg.msg_controllen = 0;
1737
}
1738
1739
error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1740
UIO_USERSPACE);
1741
1742
out:
1743
free(iov, M_IOV);
1744
if (to)
1745
free(to, M_SONAME);
1746
return (error);
1747
}
1748
1749
#ifdef COMPAT_43
1750
int
1751
ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap)
1752
{
1753
return (ENOSYS);
1754
}
1755
#endif
1756
1757
1758
int
1759
freebsd32_settimeofday(struct thread *td,
1760
struct freebsd32_settimeofday_args *uap)
1761
{
1762
struct timeval32 tv32;
1763
struct timeval tv, *tvp;
1764
struct timezone tz, *tzp;
1765
int error;
1766
1767
if (uap->tv) {
1768
error = copyin(uap->tv, &tv32, sizeof(tv32));
1769
if (error)
1770
return (error);
1771
CP(tv32, tv, tv_sec);
1772
CP(tv32, tv, tv_usec);
1773
tvp = &tv;
1774
} else
1775
tvp = NULL;
1776
if (uap->tzp) {
1777
error = copyin(uap->tzp, &tz, sizeof(tz));
1778
if (error)
1779
return (error);
1780
tzp = &tz;
1781
} else
1782
tzp = NULL;
1783
return (kern_settimeofday(td, tvp, tzp));
1784
}
1785
1786
int
1787
freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1788
{
1789
struct timeval32 s32[2];
1790
struct timeval s[2], *sp;
1791
int error;
1792
1793
if (uap->tptr != NULL) {
1794
error = copyin(uap->tptr, s32, sizeof(s32));
1795
if (error)
1796
return (error);
1797
CP(s32[0], s[0], tv_sec);
1798
CP(s32[0], s[0], tv_usec);
1799
CP(s32[1], s[1], tv_sec);
1800
CP(s32[1], s[1], tv_usec);
1801
sp = s;
1802
} else
1803
sp = NULL;
1804
return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1805
sp, UIO_SYSSPACE));
1806
}
1807
1808
int
1809
freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1810
{
1811
struct timeval32 s32[2];
1812
struct timeval s[2], *sp;
1813
int error;
1814
1815
if (uap->tptr != NULL) {
1816
error = copyin(uap->tptr, s32, sizeof(s32));
1817
if (error)
1818
return (error);
1819
CP(s32[0], s[0], tv_sec);
1820
CP(s32[0], s[0], tv_usec);
1821
CP(s32[1], s[1], tv_sec);
1822
CP(s32[1], s[1], tv_usec);
1823
sp = s;
1824
} else
1825
sp = NULL;
1826
return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1827
}
1828
1829
int
1830
freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1831
{
1832
struct timeval32 s32[2];
1833
struct timeval s[2], *sp;
1834
int error;
1835
1836
if (uap->tptr != NULL) {
1837
error = copyin(uap->tptr, s32, sizeof(s32));
1838
if (error)
1839
return (error);
1840
CP(s32[0], s[0], tv_sec);
1841
CP(s32[0], s[0], tv_usec);
1842
CP(s32[1], s[1], tv_sec);
1843
CP(s32[1], s[1], tv_usec);
1844
sp = s;
1845
} else
1846
sp = NULL;
1847
return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1848
}
1849
1850
int
1851
freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1852
{
1853
struct timeval32 s32[2];
1854
struct timeval s[2], *sp;
1855
int error;
1856
1857
if (uap->times != NULL) {
1858
error = copyin(uap->times, s32, sizeof(s32));
1859
if (error)
1860
return (error);
1861
CP(s32[0], s[0], tv_sec);
1862
CP(s32[0], s[0], tv_usec);
1863
CP(s32[1], s[1], tv_sec);
1864
CP(s32[1], s[1], tv_usec);
1865
sp = s;
1866
} else
1867
sp = NULL;
1868
return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1869
sp, UIO_SYSSPACE));
1870
}
1871
1872
int
1873
freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1874
{
1875
struct timespec32 ts32[2];
1876
struct timespec ts[2], *tsp;
1877
int error;
1878
1879
if (uap->times != NULL) {
1880
error = copyin(uap->times, ts32, sizeof(ts32));
1881
if (error)
1882
return (error);
1883
CP(ts32[0], ts[0], tv_sec);
1884
CP(ts32[0], ts[0], tv_nsec);
1885
CP(ts32[1], ts[1], tv_sec);
1886
CP(ts32[1], ts[1], tv_nsec);
1887
tsp = ts;
1888
} else
1889
tsp = NULL;
1890
return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1891
}
1892
1893
int
1894
freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1895
{
1896
struct timespec32 ts32[2];
1897
struct timespec ts[2], *tsp;
1898
int error;
1899
1900
if (uap->times != NULL) {
1901
error = copyin(uap->times, ts32, sizeof(ts32));
1902
if (error)
1903
return (error);
1904
CP(ts32[0], ts[0], tv_sec);
1905
CP(ts32[0], ts[0], tv_nsec);
1906
CP(ts32[1], ts[1], tv_sec);
1907
CP(ts32[1], ts[1], tv_nsec);
1908
tsp = ts;
1909
} else
1910
tsp = NULL;
1911
return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1912
tsp, UIO_SYSSPACE, uap->flag));
1913
}
1914
1915
int
1916
freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1917
{
1918
struct timeval32 tv32;
1919
struct timeval delta, olddelta, *deltap;
1920
int error;
1921
1922
if (uap->delta) {
1923
error = copyin(uap->delta, &tv32, sizeof(tv32));
1924
if (error)
1925
return (error);
1926
CP(tv32, delta, tv_sec);
1927
CP(tv32, delta, tv_usec);
1928
deltap = &delta;
1929
} else
1930
deltap = NULL;
1931
error = kern_adjtime(td, deltap, &olddelta);
1932
if (uap->olddelta && error == 0) {
1933
CP(olddelta, tv32, tv_sec);
1934
CP(olddelta, tv32, tv_usec);
1935
error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1936
}
1937
return (error);
1938
}
1939
1940
#ifdef COMPAT_FREEBSD4
1941
int
1942
freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1943
{
1944
struct ostatfs32 s32;
1945
struct statfs *sp;
1946
int error;
1947
1948
sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1949
error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1950
if (error == 0) {
1951
copy_statfs(sp, &s32);
1952
error = copyout(&s32, uap->buf, sizeof(s32));
1953
}
1954
free(sp, M_STATFS);
1955
return (error);
1956
}
1957
#endif
1958
1959
#ifdef COMPAT_FREEBSD4
1960
int
1961
freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1962
{
1963
struct ostatfs32 s32;
1964
struct statfs *sp;
1965
int error;
1966
1967
sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1968
error = kern_fstatfs(td, uap->fd, sp);
1969
if (error == 0) {
1970
copy_statfs(sp, &s32);
1971
error = copyout(&s32, uap->buf, sizeof(s32));
1972
}
1973
free(sp, M_STATFS);
1974
return (error);
1975
}
1976
#endif
1977
1978
#ifdef COMPAT_FREEBSD4
1979
int
1980
freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1981
{
1982
struct ostatfs32 s32;
1983
struct statfs *sp;
1984
fhandle_t fh;
1985
int error;
1986
1987
if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1988
return (error);
1989
sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1990
error = kern_fhstatfs(td, fh, sp);
1991
if (error == 0) {
1992
copy_statfs(sp, &s32);
1993
error = copyout(&s32, uap->buf, sizeof(s32));
1994
}
1995
free(sp, M_STATFS);
1996
return (error);
1997
}
1998
#endif
1999
2000
int
2001
freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
2002
{
2003
2004
return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
2005
PAIR32TO64(off_t, uap->offset)));
2006
}
2007
2008
int
2009
freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
2010
{
2011
2012
return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
2013
PAIR32TO64(off_t, uap->offset)));
2014
}
2015
2016
#ifdef COMPAT_43
2017
int
2018
ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
2019
{
2020
2021
return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
2022
}
2023
#endif
2024
2025
int
2026
freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
2027
{
2028
int error;
2029
off_t pos;
2030
2031
error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2032
uap->whence);
2033
/* Expand the quad return into two parts for eax and edx */
2034
pos = td->td_uretoff.tdu_off;
2035
td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */
2036
td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */
2037
return error;
2038
}
2039
2040
int
2041
freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
2042
{
2043
2044
return (kern_truncate(td, uap->path, UIO_USERSPACE,
2045
PAIR32TO64(off_t, uap->length)));
2046
}
2047
2048
#ifdef COMPAT_43
2049
int
2050
ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap)
2051
{
2052
return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length));
2053
}
2054
#endif
2055
2056
int
2057
freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
2058
{
2059
2060
return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2061
}
2062
2063
#ifdef COMPAT_43
2064
int
2065
ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap)
2066
{
2067
return (kern_ftruncate(td, uap->fd, uap->length));
2068
}
2069
2070
int
2071
ofreebsd32_getdirentries(struct thread *td,
2072
struct ofreebsd32_getdirentries_args *uap)
2073
{
2074
struct ogetdirentries_args ap;
2075
int error;
2076
long loff;
2077
int32_t loff_cut;
2078
2079
ap.fd = uap->fd;
2080
ap.buf = uap->buf;
2081
ap.count = uap->count;
2082
ap.basep = NULL;
2083
error = kern_ogetdirentries(td, &ap, &loff);
2084
if (error == 0) {
2085
loff_cut = loff;
2086
error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
2087
}
2088
return (error);
2089
}
2090
#endif
2091
2092
#if defined(COMPAT_FREEBSD11)
2093
int
2094
freebsd11_freebsd32_getdirentries(struct thread *td,
2095
struct freebsd11_freebsd32_getdirentries_args *uap)
2096
{
2097
long base;
2098
int32_t base32;
2099
int error;
2100
2101
error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
2102
&base, NULL);
2103
if (error)
2104
return (error);
2105
if (uap->basep != NULL) {
2106
base32 = base;
2107
error = copyout(&base32, uap->basep, sizeof(int32_t));
2108
}
2109
return (error);
2110
}
2111
#endif /* COMPAT_FREEBSD11 */
2112
2113
#ifdef COMPAT_FREEBSD6
2114
/* versions with the 'int pad' argument */
2115
int
2116
freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
2117
{
2118
2119
return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
2120
PAIR32TO64(off_t, uap->offset)));
2121
}
2122
2123
int
2124
freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
2125
{
2126
2127
return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
2128
PAIR32TO64(off_t, uap->offset)));
2129
}
2130
2131
int
2132
freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
2133
{
2134
int error;
2135
off_t pos;
2136
2137
error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2138
uap->whence);
2139
/* Expand the quad return into two parts for eax and edx */
2140
pos = *(off_t *)(td->td_retval);
2141
td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */
2142
td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */
2143
return error;
2144
}
2145
2146
int
2147
freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
2148
{
2149
2150
return (kern_truncate(td, uap->path, UIO_USERSPACE,
2151
PAIR32TO64(off_t, uap->length)));
2152
}
2153
2154
int
2155
freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
2156
{
2157
2158
return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2159
}
2160
#endif /* COMPAT_FREEBSD6 */
2161
2162
struct sf_hdtr32 {
2163
uint32_t headers;
2164
int hdr_cnt;
2165
uint32_t trailers;
2166
int trl_cnt;
2167
};
2168
2169
static int
2170
freebsd32_do_sendfile(struct thread *td,
2171
struct freebsd32_sendfile_args *uap, int compat)
2172
{
2173
struct sf_hdtr32 hdtr32;
2174
struct sf_hdtr hdtr;
2175
struct uio *hdr_uio, *trl_uio;
2176
struct file *fp;
2177
cap_rights_t rights;
2178
struct iovec32 *iov32;
2179
off_t offset, sbytes;
2180
int error;
2181
2182
offset = PAIR32TO64(off_t, uap->offset);
2183
if (offset < 0)
2184
return (EINVAL);
2185
2186
hdr_uio = trl_uio = NULL;
2187
2188
if (uap->hdtr != NULL) {
2189
error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
2190
if (error)
2191
goto out;
2192
PTRIN_CP(hdtr32, hdtr, headers);
2193
CP(hdtr32, hdtr, hdr_cnt);
2194
PTRIN_CP(hdtr32, hdtr, trailers);
2195
CP(hdtr32, hdtr, trl_cnt);
2196
2197
if (hdtr.headers != NULL) {
2198
iov32 = PTRIN(hdtr32.headers);
2199
error = freebsd32_copyinuio(iov32,
2200
hdtr32.hdr_cnt, &hdr_uio);
2201
if (error)
2202
goto out;
2203
#ifdef COMPAT_FREEBSD4
2204
/*
2205
* In FreeBSD < 5.0 the nbytes to send also included
2206
* the header. If compat is specified subtract the
2207
* header size from nbytes.
2208
*/
2209
if (compat) {
2210
if (uap->nbytes > hdr_uio->uio_resid)
2211
uap->nbytes -= hdr_uio->uio_resid;
2212
else
2213
uap->nbytes = 0;
2214
}
2215
#endif
2216
}
2217
if (hdtr.trailers != NULL) {
2218
iov32 = PTRIN(hdtr32.trailers);
2219
error = freebsd32_copyinuio(iov32,
2220
hdtr32.trl_cnt, &trl_uio);
2221
if (error)
2222
goto out;
2223
}
2224
}
2225
2226
AUDIT_ARG_FD(uap->fd);
2227
2228
if ((error = fget_read(td, uap->fd,
2229
cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0)
2230
goto out;
2231
2232
error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
2233
uap->nbytes, &sbytes, uap->flags, td);
2234
fdrop(fp, td);
2235
2236
if (uap->sbytes != NULL)
2237
(void)copyout(&sbytes, uap->sbytes, sizeof(off_t));
2238
2239
out:
2240
if (hdr_uio)
2241
freeuio(hdr_uio);
2242
if (trl_uio)
2243
freeuio(trl_uio);
2244
return (error);
2245
}
2246
2247
#ifdef COMPAT_FREEBSD4
2248
int
2249
freebsd4_freebsd32_sendfile(struct thread *td,
2250
struct freebsd4_freebsd32_sendfile_args *uap)
2251
{
2252
return (freebsd32_do_sendfile(td,
2253
(struct freebsd32_sendfile_args *)uap, 1));
2254
}
2255
#endif
2256
2257
int
2258
freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
2259
{
2260
2261
return (freebsd32_do_sendfile(td, uap, 0));
2262
}
2263
2264
static void
2265
copy_stat(struct stat *in, struct stat32 *out)
2266
{
2267
2268
#ifndef __amd64__
2269
/*
2270
* 32-bit architectures other than i386 have 64-bit time_t. This
2271
* results in struct timespec32 with 12 bytes for tv_sec and tv_nsec,
2272
* and 4 bytes of padding. Zero the padding holes in struct stat32.
2273
*/
2274
bzero(&out->st_atim, sizeof(out->st_atim));
2275
bzero(&out->st_mtim, sizeof(out->st_mtim));
2276
bzero(&out->st_ctim, sizeof(out->st_ctim));
2277
bzero(&out->st_birthtim, sizeof(out->st_birthtim));
2278
#endif
2279
CP(*in, *out, st_dev);
2280
CP(*in, *out, st_ino);
2281
CP(*in, *out, st_mode);
2282
CP(*in, *out, st_nlink);
2283
CP(*in, *out, st_uid);
2284
CP(*in, *out, st_gid);
2285
CP(*in, *out, st_rdev);
2286
TS_CP(*in, *out, st_atim);
2287
TS_CP(*in, *out, st_mtim);
2288
TS_CP(*in, *out, st_ctim);
2289
CP(*in, *out, st_size);
2290
FU64_CP(*in, *out, st_blocks);
2291
CP(*in, *out, st_blksize);
2292
CP(*in, *out, st_flags);
2293
FU64_CP(*in, *out, st_gen);
2294
FU64_CP(*in, *out, st_filerev);
2295
CP(*in, *out, st_bsdflags);
2296
TS_CP(*in, *out, st_birthtim);
2297
out->st_padding1 = 0;
2298
#ifdef __STAT32_TIME_T_EXT
2299
out->st_atim_ext = 0;
2300
out->st_mtim_ext = 0;
2301
out->st_ctim_ext = 0;
2302
out->st_btim_ext = 0;
2303
#endif
2304
bzero(out->st_spare, sizeof(out->st_spare));
2305
}
2306
2307
#ifdef COMPAT_43
2308
static void
2309
copy_ostat(struct stat *in, struct ostat32 *out)
2310
{
2311
2312
bzero(out, sizeof(*out));
2313
CP(*in, *out, st_dev);
2314
CP(*in, *out, st_ino);
2315
CP(*in, *out, st_mode);
2316
CP(*in, *out, st_nlink);
2317
CP(*in, *out, st_uid);
2318
CP(*in, *out, st_gid);
2319
CP(*in, *out, st_rdev);
2320
out->st_size = MIN(in->st_size, INT32_MAX);
2321
TS_CP(*in, *out, st_atim);
2322
TS_CP(*in, *out, st_mtim);
2323
TS_CP(*in, *out, st_ctim);
2324
CP(*in, *out, st_blksize);
2325
CP(*in, *out, st_blocks);
2326
CP(*in, *out, st_flags);
2327
CP(*in, *out, st_gen);
2328
}
2329
#endif
2330
2331
#ifdef COMPAT_43
2332
int
2333
ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
2334
{
2335
struct stat sb;
2336
struct ostat32 sb32;
2337
int error;
2338
2339
error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2340
if (error)
2341
return (error);
2342
copy_ostat(&sb, &sb32);
2343
error = copyout(&sb32, uap->ub, sizeof (sb32));
2344
return (error);
2345
}
2346
#endif
2347
2348
int
2349
freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
2350
{
2351
struct stat ub;
2352
struct stat32 ub32;
2353
int error;
2354
2355
error = kern_fstat(td, uap->fd, &ub);
2356
if (error)
2357
return (error);
2358
copy_stat(&ub, &ub32);
2359
error = copyout(&ub32, uap->sb, sizeof(ub32));
2360
return (error);
2361
}
2362
2363
#ifdef COMPAT_43
2364
int
2365
ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
2366
{
2367
struct stat ub;
2368
struct ostat32 ub32;
2369
int error;
2370
2371
error = kern_fstat(td, uap->fd, &ub);
2372
if (error)
2373
return (error);
2374
copy_ostat(&ub, &ub32);
2375
error = copyout(&ub32, uap->sb, sizeof(ub32));
2376
return (error);
2377
}
2378
#endif
2379
2380
int
2381
freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
2382
{
2383
struct stat ub;
2384
struct stat32 ub32;
2385
int error;
2386
2387
error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2388
&ub);
2389
if (error)
2390
return (error);
2391
copy_stat(&ub, &ub32);
2392
error = copyout(&ub32, uap->buf, sizeof(ub32));
2393
return (error);
2394
}
2395
2396
#ifdef COMPAT_43
2397
int
2398
ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
2399
{
2400
struct stat sb;
2401
struct ostat32 sb32;
2402
int error;
2403
2404
error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2405
UIO_USERSPACE, &sb);
2406
if (error)
2407
return (error);
2408
copy_ostat(&sb, &sb32);
2409
error = copyout(&sb32, uap->ub, sizeof (sb32));
2410
return (error);
2411
}
2412
#endif
2413
2414
int
2415
freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2416
{
2417
struct stat sb;
2418
struct stat32 sb32;
2419
struct fhandle fh;
2420
int error;
2421
2422
error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2423
if (error != 0)
2424
return (error);
2425
error = kern_fhstat(td, fh, &sb);
2426
if (error != 0)
2427
return (error);
2428
copy_stat(&sb, &sb32);
2429
error = copyout(&sb32, uap->sb, sizeof (sb32));
2430
return (error);
2431
}
2432
2433
#if defined(COMPAT_FREEBSD11)
2434
extern int ino64_trunc_error;
2435
2436
static int
2437
freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2438
{
2439
2440
#ifndef __amd64__
2441
/*
2442
* 32-bit architectures other than i386 have 64-bit time_t. This
2443
* results in struct timespec32 with 12 bytes for tv_sec and tv_nsec,
2444
* and 4 bytes of padding. Zero the padding holes in freebsd11_stat32.
2445
*/
2446
bzero(&out->st_atim, sizeof(out->st_atim));
2447
bzero(&out->st_mtim, sizeof(out->st_mtim));
2448
bzero(&out->st_ctim, sizeof(out->st_ctim));
2449
bzero(&out->st_birthtim, sizeof(out->st_birthtim));
2450
#endif
2451
2452
CP(*in, *out, st_ino);
2453
if (in->st_ino != out->st_ino) {
2454
switch (ino64_trunc_error) {
2455
default:
2456
case 0:
2457
break;
2458
case 1:
2459
return (EOVERFLOW);
2460
case 2:
2461
out->st_ino = UINT32_MAX;
2462
break;
2463
}
2464
}
2465
CP(*in, *out, st_nlink);
2466
if (in->st_nlink != out->st_nlink) {
2467
switch (ino64_trunc_error) {
2468
default:
2469
case 0:
2470
break;
2471
case 1:
2472
return (EOVERFLOW);
2473
case 2:
2474
out->st_nlink = UINT16_MAX;
2475
break;
2476
}
2477
}
2478
out->st_dev = in->st_dev;
2479
if (out->st_dev != in->st_dev) {
2480
switch (ino64_trunc_error) {
2481
default:
2482
break;
2483
case 1:
2484
return (EOVERFLOW);
2485
}
2486
}
2487
CP(*in, *out, st_mode);
2488
CP(*in, *out, st_uid);
2489
CP(*in, *out, st_gid);
2490
out->st_rdev = in->st_rdev;
2491
if (out->st_rdev != in->st_rdev) {
2492
switch (ino64_trunc_error) {
2493
default:
2494
break;
2495
case 1:
2496
return (EOVERFLOW);
2497
}
2498
}
2499
TS_CP(*in, *out, st_atim);
2500
TS_CP(*in, *out, st_mtim);
2501
TS_CP(*in, *out, st_ctim);
2502
CP(*in, *out, st_size);
2503
FU64_CP(*in, *out, st_blocks);
2504
CP(*in, *out, st_blksize);
2505
CP(*in, *out, st_flags);
2506
CP(*in, *out, st_gen);
2507
TS_CP(*in, *out, st_birthtim);
2508
out->st_lspare = 0;
2509
bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2510
sizeof(*out) - offsetof(struct freebsd11_stat32,
2511
st_birthtim) - sizeof(out->st_birthtim));
2512
return (0);
2513
}
2514
2515
int
2516
freebsd11_freebsd32_stat(struct thread *td,
2517
struct freebsd11_freebsd32_stat_args *uap)
2518
{
2519
struct stat sb;
2520
struct freebsd11_stat32 sb32;
2521
int error;
2522
2523
error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2524
if (error != 0)
2525
return (error);
2526
error = freebsd11_cvtstat32(&sb, &sb32);
2527
if (error == 0)
2528
error = copyout(&sb32, uap->ub, sizeof (sb32));
2529
return (error);
2530
}
2531
2532
int
2533
freebsd11_freebsd32_fstat(struct thread *td,
2534
struct freebsd11_freebsd32_fstat_args *uap)
2535
{
2536
struct stat sb;
2537
struct freebsd11_stat32 sb32;
2538
int error;
2539
2540
error = kern_fstat(td, uap->fd, &sb);
2541
if (error != 0)
2542
return (error);
2543
error = freebsd11_cvtstat32(&sb, &sb32);
2544
if (error == 0)
2545
error = copyout(&sb32, uap->sb, sizeof (sb32));
2546
return (error);
2547
}
2548
2549
int
2550
freebsd11_freebsd32_fstatat(struct thread *td,
2551
struct freebsd11_freebsd32_fstatat_args *uap)
2552
{
2553
struct stat sb;
2554
struct freebsd11_stat32 sb32;
2555
int error;
2556
2557
error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2558
&sb);
2559
if (error != 0)
2560
return (error);
2561
error = freebsd11_cvtstat32(&sb, &sb32);
2562
if (error == 0)
2563
error = copyout(&sb32, uap->buf, sizeof (sb32));
2564
return (error);
2565
}
2566
2567
int
2568
freebsd11_freebsd32_lstat(struct thread *td,
2569
struct freebsd11_freebsd32_lstat_args *uap)
2570
{
2571
struct stat sb;
2572
struct freebsd11_stat32 sb32;
2573
int error;
2574
2575
error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2576
UIO_USERSPACE, &sb);
2577
if (error != 0)
2578
return (error);
2579
error = freebsd11_cvtstat32(&sb, &sb32);
2580
if (error == 0)
2581
error = copyout(&sb32, uap->ub, sizeof (sb32));
2582
return (error);
2583
}
2584
2585
int
2586
freebsd11_freebsd32_fhstat(struct thread *td,
2587
struct freebsd11_freebsd32_fhstat_args *uap)
2588
{
2589
struct stat sb;
2590
struct freebsd11_stat32 sb32;
2591
struct fhandle fh;
2592
int error;
2593
2594
error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2595
if (error != 0)
2596
return (error);
2597
error = kern_fhstat(td, fh, &sb);
2598
if (error != 0)
2599
return (error);
2600
error = freebsd11_cvtstat32(&sb, &sb32);
2601
if (error == 0)
2602
error = copyout(&sb32, uap->sb, sizeof (sb32));
2603
return (error);
2604
}
2605
2606
static int
2607
freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32)
2608
{
2609
struct nstat nsb;
2610
int error;
2611
2612
error = freebsd11_cvtnstat(sb, &nsb);
2613
if (error != 0)
2614
return (error);
2615
2616
bzero(nsb32, sizeof(*nsb32));
2617
CP(nsb, *nsb32, st_dev);
2618
CP(nsb, *nsb32, st_ino);
2619
CP(nsb, *nsb32, st_mode);
2620
CP(nsb, *nsb32, st_nlink);
2621
CP(nsb, *nsb32, st_uid);
2622
CP(nsb, *nsb32, st_gid);
2623
CP(nsb, *nsb32, st_rdev);
2624
CP(nsb, *nsb32, st_atim.tv_sec);
2625
CP(nsb, *nsb32, st_atim.tv_nsec);
2626
CP(nsb, *nsb32, st_mtim.tv_sec);
2627
CP(nsb, *nsb32, st_mtim.tv_nsec);
2628
CP(nsb, *nsb32, st_ctim.tv_sec);
2629
CP(nsb, *nsb32, st_ctim.tv_nsec);
2630
CP(nsb, *nsb32, st_size);
2631
CP(nsb, *nsb32, st_blocks);
2632
CP(nsb, *nsb32, st_blksize);
2633
CP(nsb, *nsb32, st_flags);
2634
CP(nsb, *nsb32, st_gen);
2635
CP(nsb, *nsb32, st_birthtim.tv_sec);
2636
CP(nsb, *nsb32, st_birthtim.tv_nsec);
2637
return (0);
2638
}
2639
2640
int
2641
freebsd11_freebsd32_nstat(struct thread *td,
2642
struct freebsd11_freebsd32_nstat_args *uap)
2643
{
2644
struct stat sb;
2645
struct nstat32 nsb;
2646
int error;
2647
2648
error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2649
if (error != 0)
2650
return (error);
2651
error = freebsd11_cvtnstat32(&sb, &nsb);
2652
if (error != 0)
2653
error = copyout(&nsb, uap->ub, sizeof (nsb));
2654
return (error);
2655
}
2656
2657
int
2658
freebsd11_freebsd32_nlstat(struct thread *td,
2659
struct freebsd11_freebsd32_nlstat_args *uap)
2660
{
2661
struct stat sb;
2662
struct nstat32 nsb;
2663
int error;
2664
2665
error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2666
UIO_USERSPACE, &sb);
2667
if (error != 0)
2668
return (error);
2669
error = freebsd11_cvtnstat32(&sb, &nsb);
2670
if (error == 0)
2671
error = copyout(&nsb, uap->ub, sizeof (nsb));
2672
return (error);
2673
}
2674
2675
int
2676
freebsd11_freebsd32_nfstat(struct thread *td,
2677
struct freebsd11_freebsd32_nfstat_args *uap)
2678
{
2679
struct nstat32 nub;
2680
struct stat ub;
2681
int error;
2682
2683
error = kern_fstat(td, uap->fd, &ub);
2684
if (error != 0)
2685
return (error);
2686
error = freebsd11_cvtnstat32(&ub, &nub);
2687
if (error == 0)
2688
error = copyout(&nub, uap->sb, sizeof(nub));
2689
return (error);
2690
}
2691
#endif
2692
2693
int
2694
freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap)
2695
{
2696
int error, name[CTL_MAXNAME];
2697
size_t j, oldlen;
2698
uint32_t tmp;
2699
2700
if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2701
return (EINVAL);
2702
error = copyin(uap->name, name, uap->namelen * sizeof(int));
2703
if (error)
2704
return (error);
2705
if (uap->oldlenp) {
2706
error = fueword32(uap->oldlenp, &tmp);
2707
oldlen = tmp;
2708
} else {
2709
oldlen = 0;
2710
}
2711
if (error != 0)
2712
return (EFAULT);
2713
error = userland_sysctl(td, name, uap->namelen,
2714
uap->old, &oldlen, 1,
2715
uap->new, uap->newlen, &j, SCTL_MASK32);
2716
if (error)
2717
return (error);
2718
if (uap->oldlenp != NULL && suword32(uap->oldlenp, j) != 0)
2719
error = EFAULT;
2720
return (error);
2721
}
2722
2723
int
2724
freebsd32___sysctlbyname(struct thread *td,
2725
struct freebsd32___sysctlbyname_args *uap)
2726
{
2727
size_t oldlen, rv;
2728
int error;
2729
uint32_t tmp;
2730
2731
if (uap->oldlenp != NULL) {
2732
error = fueword32(uap->oldlenp, &tmp);
2733
oldlen = tmp;
2734
} else {
2735
error = oldlen = 0;
2736
}
2737
if (error != 0)
2738
return (EFAULT);
2739
error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old,
2740
&oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1);
2741
if (error != 0)
2742
return (error);
2743
if (uap->oldlenp != NULL && suword32(uap->oldlenp, rv) != 0)
2744
error = EFAULT;
2745
return (error);
2746
}
2747
2748
int
2749
freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2750
{
2751
uint32_t version;
2752
int error;
2753
struct jail j;
2754
2755
error = copyin(uap->jail, &version, sizeof(uint32_t));
2756
if (error)
2757
return (error);
2758
2759
switch (version) {
2760
case 0:
2761
{
2762
/* FreeBSD single IPv4 jails. */
2763
struct jail32_v0 j32_v0;
2764
2765
bzero(&j, sizeof(struct jail));
2766
error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2767
if (error)
2768
return (error);
2769
CP(j32_v0, j, version);
2770
PTRIN_CP(j32_v0, j, path);
2771
PTRIN_CP(j32_v0, j, hostname);
2772
j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */
2773
break;
2774
}
2775
2776
case 1:
2777
/*
2778
* Version 1 was used by multi-IPv4 jail implementations
2779
* that never made it into the official kernel.
2780
*/
2781
return (EINVAL);
2782
2783
case 2: /* JAIL_API_VERSION */
2784
{
2785
/* FreeBSD multi-IPv4/IPv6,noIP jails. */
2786
struct jail32 j32;
2787
2788
error = copyin(uap->jail, &j32, sizeof(struct jail32));
2789
if (error)
2790
return (error);
2791
CP(j32, j, version);
2792
PTRIN_CP(j32, j, path);
2793
PTRIN_CP(j32, j, hostname);
2794
PTRIN_CP(j32, j, jailname);
2795
CP(j32, j, ip4s);
2796
CP(j32, j, ip6s);
2797
PTRIN_CP(j32, j, ip4);
2798
PTRIN_CP(j32, j, ip6);
2799
break;
2800
}
2801
2802
default:
2803
/* Sci-Fi jails are not supported, sorry. */
2804
return (EINVAL);
2805
}
2806
return (kern_jail(td, &j));
2807
}
2808
2809
int
2810
freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2811
{
2812
struct uio *auio;
2813
int error;
2814
2815
/* Check that we have an even number of iovecs. */
2816
if (uap->iovcnt & 1)
2817
return (EINVAL);
2818
2819
error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2820
if (error)
2821
return (error);
2822
error = kern_jail_set(td, auio, uap->flags);
2823
freeuio(auio);
2824
return (error);
2825
}
2826
2827
int
2828
freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2829
{
2830
struct iovec32 iov32;
2831
struct uio *auio;
2832
int error, i;
2833
2834
/* Check that we have an even number of iovecs. */
2835
if (uap->iovcnt & 1)
2836
return (EINVAL);
2837
2838
error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2839
if (error)
2840
return (error);
2841
error = kern_jail_get(td, auio, uap->flags);
2842
if (error == 0)
2843
for (i = 0; i < uap->iovcnt; i++) {
2844
PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2845
CP(auio->uio_iov[i], iov32, iov_len);
2846
error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2847
if (error != 0)
2848
break;
2849
}
2850
freeuio(auio);
2851
return (error);
2852
}
2853
2854
int
2855
freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2856
{
2857
struct sigaction32 s32;
2858
struct sigaction sa, osa, *sap;
2859
int error;
2860
2861
if (uap->act) {
2862
error = copyin(uap->act, &s32, sizeof(s32));
2863
if (error)
2864
return (error);
2865
sa.sa_handler = PTRIN(s32.sa_u);
2866
CP(s32, sa, sa_flags);
2867
CP(s32, sa, sa_mask);
2868
sap = &sa;
2869
} else
2870
sap = NULL;
2871
error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2872
if (error == 0 && uap->oact != NULL) {
2873
s32.sa_u = PTROUT(osa.sa_handler);
2874
CP(osa, s32, sa_flags);
2875
CP(osa, s32, sa_mask);
2876
error = copyout(&s32, uap->oact, sizeof(s32));
2877
}
2878
return (error);
2879
}
2880
2881
#ifdef COMPAT_FREEBSD4
2882
int
2883
freebsd4_freebsd32_sigaction(struct thread *td,
2884
struct freebsd4_freebsd32_sigaction_args *uap)
2885
{
2886
struct sigaction32 s32;
2887
struct sigaction sa, osa, *sap;
2888
int error;
2889
2890
if (uap->act) {
2891
error = copyin(uap->act, &s32, sizeof(s32));
2892
if (error)
2893
return (error);
2894
sa.sa_handler = PTRIN(s32.sa_u);
2895
CP(s32, sa, sa_flags);
2896
CP(s32, sa, sa_mask);
2897
sap = &sa;
2898
} else
2899
sap = NULL;
2900
error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2901
if (error == 0 && uap->oact != NULL) {
2902
s32.sa_u = PTROUT(osa.sa_handler);
2903
CP(osa, s32, sa_flags);
2904
CP(osa, s32, sa_mask);
2905
error = copyout(&s32, uap->oact, sizeof(s32));
2906
}
2907
return (error);
2908
}
2909
#endif
2910
2911
#ifdef COMPAT_43
2912
struct osigaction32 {
2913
uint32_t sa_u;
2914
osigset_t sa_mask;
2915
int sa_flags;
2916
};
2917
2918
#define ONSIG 32
2919
2920
int
2921
ofreebsd32_sigaction(struct thread *td,
2922
struct ofreebsd32_sigaction_args *uap)
2923
{
2924
struct osigaction32 s32;
2925
struct sigaction sa, osa, *sap;
2926
int error;
2927
2928
if (uap->signum <= 0 || uap->signum >= ONSIG)
2929
return (EINVAL);
2930
2931
if (uap->nsa) {
2932
error = copyin(uap->nsa, &s32, sizeof(s32));
2933
if (error)
2934
return (error);
2935
sa.sa_handler = PTRIN(s32.sa_u);
2936
CP(s32, sa, sa_flags);
2937
OSIG2SIG(s32.sa_mask, sa.sa_mask);
2938
sap = &sa;
2939
} else
2940
sap = NULL;
2941
error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2942
if (error == 0 && uap->osa != NULL) {
2943
s32.sa_u = PTROUT(osa.sa_handler);
2944
CP(osa, s32, sa_flags);
2945
SIG2OSIG(osa.sa_mask, s32.sa_mask);
2946
error = copyout(&s32, uap->osa, sizeof(s32));
2947
}
2948
return (error);
2949
}
2950
2951
struct sigvec32 {
2952
uint32_t sv_handler;
2953
int sv_mask;
2954
int sv_flags;
2955
};
2956
2957
int
2958
ofreebsd32_sigvec(struct thread *td,
2959
struct ofreebsd32_sigvec_args *uap)
2960
{
2961
struct sigvec32 vec;
2962
struct sigaction sa, osa, *sap;
2963
int error;
2964
2965
if (uap->signum <= 0 || uap->signum >= ONSIG)
2966
return (EINVAL);
2967
2968
if (uap->nsv) {
2969
error = copyin(uap->nsv, &vec, sizeof(vec));
2970
if (error)
2971
return (error);
2972
sa.sa_handler = PTRIN(vec.sv_handler);
2973
OSIG2SIG(vec.sv_mask, sa.sa_mask);
2974
sa.sa_flags = vec.sv_flags;
2975
sa.sa_flags ^= SA_RESTART;
2976
sap = &sa;
2977
} else
2978
sap = NULL;
2979
error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2980
if (error == 0 && uap->osv != NULL) {
2981
vec.sv_handler = PTROUT(osa.sa_handler);
2982
SIG2OSIG(osa.sa_mask, vec.sv_mask);
2983
vec.sv_flags = osa.sa_flags;
2984
vec.sv_flags &= ~SA_NOCLDWAIT;
2985
vec.sv_flags ^= SA_RESTART;
2986
error = copyout(&vec, uap->osv, sizeof(vec));
2987
}
2988
return (error);
2989
}
2990
2991
struct sigstack32 {
2992
uint32_t ss_sp;
2993
int ss_onstack;
2994
};
2995
2996
int
2997
ofreebsd32_sigstack(struct thread *td,
2998
struct ofreebsd32_sigstack_args *uap)
2999
{
3000
struct sigstack32 s32;
3001
struct sigstack nss, oss;
3002
int error = 0, unss;
3003
3004
if (uap->nss != NULL) {
3005
error = copyin(uap->nss, &s32, sizeof(s32));
3006
if (error)
3007
return (error);
3008
nss.ss_sp = PTRIN(s32.ss_sp);
3009
CP(s32, nss, ss_onstack);
3010
unss = 1;
3011
} else {
3012
unss = 0;
3013
}
3014
oss.ss_sp = td->td_sigstk.ss_sp;
3015
oss.ss_onstack = sigonstack(cpu_getstack(td));
3016
if (unss) {
3017
td->td_sigstk.ss_sp = nss.ss_sp;
3018
td->td_sigstk.ss_size = 0;
3019
td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
3020
td->td_pflags |= TDP_ALTSTACK;
3021
}
3022
if (uap->oss != NULL) {
3023
s32.ss_sp = PTROUT(oss.ss_sp);
3024
CP(oss, s32, ss_onstack);
3025
error = copyout(&s32, uap->oss, sizeof(s32));
3026
}
3027
return (error);
3028
}
3029
#endif
3030
3031
int
3032
freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
3033
{
3034
3035
return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
3036
TIMER_RELTIME, uap->rqtp, uap->rmtp));
3037
}
3038
3039
int
3040
freebsd32_clock_nanosleep(struct thread *td,
3041
struct freebsd32_clock_nanosleep_args *uap)
3042
{
3043
int error;
3044
3045
error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
3046
uap->rqtp, uap->rmtp);
3047
return (kern_posix_error(td, error));
3048
}
3049
3050
static int
3051
freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
3052
int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
3053
{
3054
struct timespec32 rmt32, rqt32;
3055
struct timespec rmt, rqt;
3056
int error, error2;
3057
3058
error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
3059
if (error)
3060
return (error);
3061
3062
CP(rqt32, rqt, tv_sec);
3063
CP(rqt32, rqt, tv_nsec);
3064
3065
error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
3066
if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
3067
CP(rmt, rmt32, tv_sec);
3068
CP(rmt, rmt32, tv_nsec);
3069
3070
error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
3071
if (error2 != 0)
3072
error = error2;
3073
}
3074
return (error);
3075
}
3076
3077
int
3078
freebsd32_clock_gettime(struct thread *td,
3079
struct freebsd32_clock_gettime_args *uap)
3080
{
3081
struct timespec ats;
3082
struct timespec32 ats32;
3083
int error;
3084
3085
error = kern_clock_gettime(td, uap->clock_id, &ats);
3086
if (error == 0) {
3087
CP(ats, ats32, tv_sec);
3088
CP(ats, ats32, tv_nsec);
3089
error = copyout(&ats32, uap->tp, sizeof(ats32));
3090
}
3091
return (error);
3092
}
3093
3094
int
3095
freebsd32_clock_settime(struct thread *td,
3096
struct freebsd32_clock_settime_args *uap)
3097
{
3098
struct timespec ats;
3099
struct timespec32 ats32;
3100
int error;
3101
3102
error = copyin(uap->tp, &ats32, sizeof(ats32));
3103
if (error)
3104
return (error);
3105
CP(ats32, ats, tv_sec);
3106
CP(ats32, ats, tv_nsec);
3107
3108
return (kern_clock_settime(td, uap->clock_id, &ats));
3109
}
3110
3111
int
3112
freebsd32_clock_getres(struct thread *td,
3113
struct freebsd32_clock_getres_args *uap)
3114
{
3115
struct timespec ts;
3116
struct timespec32 ts32;
3117
int error;
3118
3119
if (uap->tp == NULL)
3120
return (0);
3121
error = kern_clock_getres(td, uap->clock_id, &ts);
3122
if (error == 0) {
3123
CP(ts, ts32, tv_sec);
3124
CP(ts, ts32, tv_nsec);
3125
error = copyout(&ts32, uap->tp, sizeof(ts32));
3126
}
3127
return (error);
3128
}
3129
3130
int freebsd32_ktimer_create(struct thread *td,
3131
struct freebsd32_ktimer_create_args *uap)
3132
{
3133
struct sigevent32 ev32;
3134
struct sigevent ev, *evp;
3135
int error, id;
3136
3137
if (uap->evp == NULL) {
3138
evp = NULL;
3139
} else {
3140
evp = &ev;
3141
error = copyin(uap->evp, &ev32, sizeof(ev32));
3142
if (error != 0)
3143
return (error);
3144
error = convert_sigevent32(&ev32, &ev);
3145
if (error != 0)
3146
return (error);
3147
}
3148
error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
3149
if (error == 0) {
3150
error = copyout(&id, uap->timerid, sizeof(int));
3151
if (error != 0)
3152
kern_ktimer_delete(td, id);
3153
}
3154
return (error);
3155
}
3156
3157
int
3158
freebsd32_ktimer_settime(struct thread *td,
3159
struct freebsd32_ktimer_settime_args *uap)
3160
{
3161
struct itimerspec32 val32, oval32;
3162
struct itimerspec val, oval, *ovalp;
3163
int error;
3164
3165
error = copyin(uap->value, &val32, sizeof(val32));
3166
if (error != 0)
3167
return (error);
3168
ITS_CP(val32, val);
3169
ovalp = uap->ovalue != NULL ? &oval : NULL;
3170
error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
3171
if (error == 0 && uap->ovalue != NULL) {
3172
ITS_CP(oval, oval32);
3173
error = copyout(&oval32, uap->ovalue, sizeof(oval32));
3174
}
3175
return (error);
3176
}
3177
3178
int
3179
freebsd32_ktimer_gettime(struct thread *td,
3180
struct freebsd32_ktimer_gettime_args *uap)
3181
{
3182
struct itimerspec32 val32;
3183
struct itimerspec val;
3184
int error;
3185
3186
error = kern_ktimer_gettime(td, uap->timerid, &val);
3187
if (error == 0) {
3188
ITS_CP(val, val32);
3189
error = copyout(&val32, uap->value, sizeof(val32));
3190
}
3191
return (error);
3192
}
3193
3194
int
3195
freebsd32_timerfd_gettime(struct thread *td,
3196
struct freebsd32_timerfd_gettime_args *uap)
3197
{
3198
struct itimerspec curr_value;
3199
struct itimerspec32 curr_value32;
3200
int error;
3201
3202
error = kern_timerfd_gettime(td, uap->fd, &curr_value);
3203
if (error == 0) {
3204
CP(curr_value, curr_value32, it_value.tv_sec);
3205
CP(curr_value, curr_value32, it_value.tv_nsec);
3206
CP(curr_value, curr_value32, it_interval.tv_sec);
3207
CP(curr_value, curr_value32, it_interval.tv_nsec);
3208
error = copyout(&curr_value32, uap->curr_value,
3209
sizeof(curr_value32));
3210
}
3211
3212
return (error);
3213
}
3214
3215
int
3216
freebsd32_timerfd_settime(struct thread *td,
3217
struct freebsd32_timerfd_settime_args *uap)
3218
{
3219
struct itimerspec new_value, old_value;
3220
struct itimerspec32 new_value32, old_value32;
3221
int error;
3222
3223
error = copyin(uap->new_value, &new_value32, sizeof(new_value32));
3224
if (error != 0)
3225
return (error);
3226
CP(new_value32, new_value, it_value.tv_sec);
3227
CP(new_value32, new_value, it_value.tv_nsec);
3228
CP(new_value32, new_value, it_interval.tv_sec);
3229
CP(new_value32, new_value, it_interval.tv_nsec);
3230
if (uap->old_value == NULL) {
3231
error = kern_timerfd_settime(td, uap->fd, uap->flags,
3232
&new_value, NULL);
3233
} else {
3234
error = kern_timerfd_settime(td, uap->fd, uap->flags,
3235
&new_value, &old_value);
3236
if (error == 0) {
3237
CP(old_value, old_value32, it_value.tv_sec);
3238
CP(old_value, old_value32, it_value.tv_nsec);
3239
CP(old_value, old_value32, it_interval.tv_sec);
3240
CP(old_value, old_value32, it_interval.tv_nsec);
3241
error = copyout(&old_value32, uap->old_value,
3242
sizeof(old_value32));
3243
}
3244
}
3245
return (error);
3246
}
3247
3248
int
3249
freebsd32_clock_getcpuclockid2(struct thread *td,
3250
struct freebsd32_clock_getcpuclockid2_args *uap)
3251
{
3252
clockid_t clk_id;
3253
int error;
3254
3255
error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
3256
uap->which, &clk_id);
3257
if (error == 0)
3258
error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
3259
return (error);
3260
}
3261
3262
int
3263
freebsd32_thr_new(struct thread *td,
3264
struct freebsd32_thr_new_args *uap)
3265
{
3266
struct thr_param32 param32;
3267
struct thr_param param;
3268
int error;
3269
3270
if (uap->param_size < 0 ||
3271
uap->param_size > sizeof(struct thr_param32))
3272
return (EINVAL);
3273
bzero(&param, sizeof(struct thr_param));
3274
bzero(&param32, sizeof(struct thr_param32));
3275
error = copyin(uap->param, &param32, uap->param_size);
3276
if (error != 0)
3277
return (error);
3278
param.start_func = PTRIN(param32.start_func);
3279
param.arg = PTRIN(param32.arg);
3280
param.stack_base = PTRIN(param32.stack_base);
3281
param.stack_size = param32.stack_size;
3282
param.tls_base = PTRIN(param32.tls_base);
3283
param.tls_size = param32.tls_size;
3284
param.child_tid = PTRIN(param32.child_tid);
3285
param.parent_tid = PTRIN(param32.parent_tid);
3286
param.flags = param32.flags;
3287
param.rtp = PTRIN(param32.rtp);
3288
param.spare[0] = PTRIN(param32.spare[0]);
3289
param.spare[1] = PTRIN(param32.spare[1]);
3290
param.spare[2] = PTRIN(param32.spare[2]);
3291
3292
return (kern_thr_new(td, &param));
3293
}
3294
3295
int
3296
freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
3297
{
3298
struct timespec32 ts32;
3299
struct timespec ts, *tsp;
3300
int error;
3301
3302
error = 0;
3303
tsp = NULL;
3304
if (uap->timeout != NULL) {
3305
error = copyin((const void *)uap->timeout, (void *)&ts32,
3306
sizeof(struct timespec32));
3307
if (error != 0)
3308
return (error);
3309
ts.tv_sec = ts32.tv_sec;
3310
ts.tv_nsec = ts32.tv_nsec;
3311
tsp = &ts;
3312
}
3313
return (kern_thr_suspend(td, tsp));
3314
}
3315
3316
void
3317
siginfo_to_siginfo32(const siginfo_t *src, struct __siginfo32 *dst)
3318
{
3319
bzero(dst, sizeof(*dst));
3320
dst->si_signo = src->si_signo;
3321
dst->si_errno = src->si_errno;
3322
dst->si_code = src->si_code;
3323
dst->si_pid = src->si_pid;
3324
dst->si_uid = src->si_uid;
3325
dst->si_status = src->si_status;
3326
dst->si_addr = (uintptr_t)src->si_addr;
3327
dst->si_value.sival_int = src->si_value.sival_int;
3328
dst->si_timerid = src->si_timerid;
3329
dst->si_overrun = src->si_overrun;
3330
}
3331
3332
#ifndef _FREEBSD32_SYSPROTO_H_
3333
struct freebsd32_sigqueue_args {
3334
pid_t pid;
3335
int signum;
3336
/* union sigval32 */ int value;
3337
};
3338
#endif
3339
int
3340
freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
3341
{
3342
union sigval sv;
3343
3344
/*
3345
* On 32-bit ABIs, sival_int and sival_ptr are the same.
3346
* On 64-bit little-endian ABIs, the low bits are the same.
3347
* In 64-bit big-endian ABIs, sival_int overlaps with
3348
* sival_ptr's HIGH bits. We choose to support sival_int
3349
* rather than sival_ptr in this case as it seems to be
3350
* more common.
3351
*/
3352
bzero(&sv, sizeof(sv));
3353
sv.sival_int = (uint32_t)(uint64_t)uap->value;
3354
3355
return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
3356
}
3357
3358
int
3359
freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
3360
{
3361
struct timespec32 ts32;
3362
struct timespec ts;
3363
struct timespec *timeout;
3364
sigset_t set;
3365
ksiginfo_t ksi;
3366
struct __siginfo32 si32;
3367
int error;
3368
3369
if (uap->timeout) {
3370
error = copyin(uap->timeout, &ts32, sizeof(ts32));
3371
if (error)
3372
return (error);
3373
ts.tv_sec = ts32.tv_sec;
3374
ts.tv_nsec = ts32.tv_nsec;
3375
timeout = &ts;
3376
} else
3377
timeout = NULL;
3378
3379
error = copyin(uap->set, &set, sizeof(set));
3380
if (error)
3381
return (error);
3382
3383
error = kern_sigtimedwait(td, set, &ksi, timeout);
3384
if (error)
3385
return (error);
3386
3387
if (uap->info) {
3388
siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3389
error = copyout(&si32, uap->info, sizeof(struct __siginfo32));
3390
}
3391
3392
if (error == 0)
3393
td->td_retval[0] = ksi.ksi_signo;
3394
return (error);
3395
}
3396
3397
/*
3398
* MPSAFE
3399
*/
3400
int
3401
freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
3402
{
3403
ksiginfo_t ksi;
3404
struct __siginfo32 si32;
3405
sigset_t set;
3406
int error;
3407
3408
error = copyin(uap->set, &set, sizeof(set));
3409
if (error)
3410
return (error);
3411
3412
error = kern_sigtimedwait(td, set, &ksi, NULL);
3413
if (error)
3414
return (error);
3415
3416
if (uap->info) {
3417
siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3418
error = copyout(&si32, uap->info, sizeof(struct __siginfo32));
3419
}
3420
if (error == 0)
3421
td->td_retval[0] = ksi.ksi_signo;
3422
return (error);
3423
}
3424
3425
int
3426
freebsd32_cpuset_setid(struct thread *td,
3427
struct freebsd32_cpuset_setid_args *uap)
3428
{
3429
3430
return (kern_cpuset_setid(td, uap->which,
3431
PAIR32TO64(id_t, uap->id), uap->setid));
3432
}
3433
3434
int
3435
freebsd32_cpuset_getid(struct thread *td,
3436
struct freebsd32_cpuset_getid_args *uap)
3437
{
3438
3439
return (kern_cpuset_getid(td, uap->level, uap->which,
3440
PAIR32TO64(id_t, uap->id), uap->setid));
3441
}
3442
3443
static int
3444
copyin32_set(const void *u, void *k, size_t size)
3445
{
3446
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
3447
int rv;
3448
struct bitset *kb = k;
3449
int *p;
3450
3451
rv = copyin(u, k, size);
3452
if (rv != 0)
3453
return (rv);
3454
3455
p = (int *)kb->__bits;
3456
/* Loop through swapping words.
3457
* `size' is in bytes, we need bits. */
3458
for (int i = 0; i < __bitset_words(size * 8); i++) {
3459
int tmp = p[0];
3460
p[0] = p[1];
3461
p[1] = tmp;
3462
p += 2;
3463
}
3464
return (0);
3465
#else
3466
return (copyin(u, k, size));
3467
#endif
3468
}
3469
3470
static int
3471
copyout32_set(const void *k, void *u, size_t size)
3472
{
3473
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
3474
const struct bitset *kb = k;
3475
struct bitset *ub = u;
3476
const int *kp = (const int *)kb->__bits;
3477
int *up = (int *)ub->__bits;
3478
int rv;
3479
3480
for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) {
3481
/* `size' is in bytes, we need bits. */
3482
for (int i = 0; i < __bitset_words(size * 8); i++) {
3483
rv = suword32(up, kp[1]);
3484
if (rv == 0)
3485
rv = suword32(up + 1, kp[0]);
3486
if (rv != 0)
3487
return (EFAULT);
3488
}
3489
}
3490
return (0);
3491
#else
3492
return (copyout(k, u, size));
3493
#endif
3494
}
3495
3496
static const struct cpuset_copy_cb cpuset_copy32_cb = {
3497
.cpuset_copyin = copyin32_set,
3498
.cpuset_copyout = copyout32_set
3499
};
3500
3501
int
3502
freebsd32_cpuset_getaffinity(struct thread *td,
3503
struct freebsd32_cpuset_getaffinity_args *uap)
3504
{
3505
3506
return (user_cpuset_getaffinity(td, uap->level, uap->which,
3507
PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask,
3508
&cpuset_copy32_cb));
3509
}
3510
3511
int
3512
freebsd32_cpuset_setaffinity(struct thread *td,
3513
struct freebsd32_cpuset_setaffinity_args *uap)
3514
{
3515
3516
return (user_cpuset_setaffinity(td, uap->level, uap->which,
3517
PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask,
3518
&cpuset_copy32_cb));
3519
}
3520
3521
int
3522
freebsd32_cpuset_getdomain(struct thread *td,
3523
struct freebsd32_cpuset_getdomain_args *uap)
3524
{
3525
3526
return (kern_cpuset_getdomain(td, uap->level, uap->which,
3527
PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy,
3528
&cpuset_copy32_cb));
3529
}
3530
3531
int
3532
freebsd32_cpuset_setdomain(struct thread *td,
3533
struct freebsd32_cpuset_setdomain_args *uap)
3534
{
3535
3536
return (kern_cpuset_setdomain(td, uap->level, uap->which,
3537
PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy,
3538
&cpuset_copy32_cb));
3539
}
3540
3541
int
3542
freebsd32_nmount(struct thread *td,
3543
struct freebsd32_nmount_args /* {
3544
struct iovec *iovp;
3545
unsigned int iovcnt;
3546
int flags;
3547
} */ *uap)
3548
{
3549
struct uio *auio;
3550
uint64_t flags;
3551
int error;
3552
3553
/*
3554
* Mount flags are now 64-bits. On 32-bit archtectures only
3555
* 32-bits are passed in, but from here on everything handles
3556
* 64-bit flags correctly.
3557
*/
3558
flags = uap->flags;
3559
3560
AUDIT_ARG_FFLAGS(flags);
3561
3562
/*
3563
* Filter out MNT_ROOTFS. We do not want clients of nmount() in
3564
* userspace to set this flag, but we must filter it out if we want
3565
* MNT_UPDATE on the root file system to work.
3566
* MNT_ROOTFS should only be set by the kernel when mounting its
3567
* root file system.
3568
*/
3569
flags &= ~MNT_ROOTFS;
3570
3571
/*
3572
* check that we have an even number of iovec's
3573
* and that we have at least two options.
3574
*/
3575
if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
3576
return (EINVAL);
3577
3578
error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
3579
if (error)
3580
return (error);
3581
error = vfs_donmount(td, flags, auio);
3582
3583
freeuio(auio);
3584
return error;
3585
}
3586
3587
#if 0
3588
int
3589
freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
3590
{
3591
struct yyy32 *p32, s32;
3592
struct yyy *p = NULL, s;
3593
struct xxx_arg ap;
3594
int error;
3595
3596
if (uap->zzz) {
3597
error = copyin(uap->zzz, &s32, sizeof(s32));
3598
if (error)
3599
return (error);
3600
/* translate in */
3601
p = &s;
3602
}
3603
error = kern_xxx(td, p);
3604
if (error)
3605
return (error);
3606
if (uap->zzz) {
3607
/* translate out */
3608
error = copyout(&s32, p32, sizeof(s32));
3609
}
3610
return (error);
3611
}
3612
#endif
3613
3614
int
3615
syscall32_module_handler(struct module *mod, int what, void *arg)
3616
{
3617
3618
return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg));
3619
}
3620
3621
int
3622
syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3623
{
3624
3625
return (kern_syscall_helper_register(freebsd32_sysent, sd, flags));
3626
}
3627
3628
int
3629
syscall32_helper_unregister(struct syscall_helper_data *sd)
3630
{
3631
3632
return (kern_syscall_helper_unregister(freebsd32_sysent, sd));
3633
}
3634
3635
int
3636
freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
3637
{
3638
struct sysentvec *sysent;
3639
int argc, envc, i;
3640
uint32_t *vectp;
3641
char *stringp;
3642
uintptr_t destp, ustringp;
3643
struct freebsd32_ps_strings *arginfo;
3644
char canary[sizeof(long) * 8];
3645
int32_t pagesizes32[MAXPAGESIZES];
3646
size_t execpath_len;
3647
int error, szsigcode;
3648
3649
sysent = imgp->sysent;
3650
3651
arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc);
3652
imgp->ps_strings = arginfo;
3653
destp = (uintptr_t)arginfo;
3654
3655
/*
3656
* Install sigcode.
3657
*/
3658
if (!PROC_HAS_SHP(imgp->proc)) {
3659
szsigcode = *sysent->sv_szsigcode;
3660
destp -= szsigcode;
3661
destp = rounddown2(destp, sizeof(uint32_t));
3662
error = copyout(sysent->sv_sigcode, (void *)destp,
3663
szsigcode);
3664
if (error != 0)
3665
return (error);
3666
}
3667
3668
/*
3669
* Copy the image path for the rtld.
3670
*/
3671
if (imgp->execpath != NULL && imgp->auxargs != NULL) {
3672
execpath_len = strlen(imgp->execpath) + 1;
3673
destp -= execpath_len;
3674
imgp->execpathp = (void *)destp;
3675
error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
3676
if (error != 0)
3677
return (error);
3678
}
3679
3680
/*
3681
* Prepare the canary for SSP.
3682
*/
3683
arc4rand(canary, sizeof(canary), 0);
3684
destp -= sizeof(canary);
3685
imgp->canary = (void *)destp;
3686
error = copyout(canary, imgp->canary, sizeof(canary));
3687
if (error != 0)
3688
return (error);
3689
imgp->canarylen = sizeof(canary);
3690
3691
/*
3692
* Prepare the pagesizes array.
3693
*/
3694
for (i = 0; i < MAXPAGESIZES; i++)
3695
pagesizes32[i] = (uint32_t)pagesizes[i];
3696
destp -= sizeof(pagesizes32);
3697
destp = rounddown2(destp, sizeof(uint32_t));
3698
imgp->pagesizes = (void *)destp;
3699
error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32));
3700
if (error != 0)
3701
return (error);
3702
imgp->pagesizeslen = sizeof(pagesizes32);
3703
3704
/*
3705
* Allocate room for the argument and environment strings.
3706
*/
3707
destp -= ARG_MAX - imgp->args->stringspace;
3708
destp = rounddown2(destp, sizeof(uint32_t));
3709
ustringp = destp;
3710
3711
if (imgp->auxargs) {
3712
/*
3713
* Allocate room on the stack for the ELF auxargs
3714
* array. It has up to AT_COUNT entries.
3715
*/
3716
destp -= AT_COUNT * sizeof(Elf32_Auxinfo);
3717
destp = rounddown2(destp, sizeof(uint32_t));
3718
}
3719
3720
vectp = (uint32_t *)destp;
3721
3722
/*
3723
* Allocate room for the argv[] and env vectors including the
3724
* terminating NULL pointers.
3725
*/
3726
vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
3727
3728
/*
3729
* vectp also becomes our initial stack base
3730
*/
3731
*stack_base = (uintptr_t)vectp;
3732
3733
stringp = imgp->args->begin_argv;
3734
argc = imgp->args->argc;
3735
envc = imgp->args->envc;
3736
/*
3737
* Copy out strings - arguments and environment.
3738
*/
3739
error = copyout(stringp, (void *)ustringp,
3740
ARG_MAX - imgp->args->stringspace);
3741
if (error != 0)
3742
return (error);
3743
3744
/*
3745
* Fill in "ps_strings" struct for ps, w, etc.
3746
*/
3747
imgp->argv = vectp;
3748
if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 ||
3749
suword32(&arginfo->ps_nargvstr, argc) != 0)
3750
return (EFAULT);
3751
3752
/*
3753
* Fill in argument portion of vector table.
3754
*/
3755
for (; argc > 0; --argc) {
3756
if (suword32(vectp++, ustringp) != 0)
3757
return (EFAULT);
3758
while (*stringp++ != 0)
3759
ustringp++;
3760
ustringp++;
3761
}
3762
3763
/* a null vector table pointer separates the argp's from the envp's */
3764
if (suword32(vectp++, 0) != 0)
3765
return (EFAULT);
3766
3767
imgp->envv = vectp;
3768
if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 ||
3769
suword32(&arginfo->ps_nenvstr, envc) != 0)
3770
return (EFAULT);
3771
3772
/*
3773
* Fill in environment portion of vector table.
3774
*/
3775
for (; envc > 0; --envc) {
3776
if (suword32(vectp++, ustringp) != 0)
3777
return (EFAULT);
3778
while (*stringp++ != 0)
3779
ustringp++;
3780
ustringp++;
3781
}
3782
3783
/* end of vector table is a null pointer */
3784
if (suword32(vectp, 0) != 0)
3785
return (EFAULT);
3786
3787
if (imgp->auxargs) {
3788
vectp++;
3789
error = imgp->sysent->sv_copyout_auxargs(imgp,
3790
(uintptr_t)vectp);
3791
if (error != 0)
3792
return (error);
3793
}
3794
3795
return (0);
3796
}
3797
3798
int
3799
freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3800
{
3801
struct kld_file_stat *stat;
3802
struct kld_file_stat32 *stat32;
3803
int error, version;
3804
3805
if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3806
!= 0)
3807
return (error);
3808
if (version != sizeof(struct kld_file_stat_1_32) &&
3809
version != sizeof(struct kld_file_stat32))
3810
return (EINVAL);
3811
3812
stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO);
3813
stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO);
3814
error = kern_kldstat(td, uap->fileid, stat);
3815
if (error == 0) {
3816
bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name));
3817
CP(*stat, *stat32, refs);
3818
CP(*stat, *stat32, id);
3819
PTROUT_CP(*stat, *stat32, address);
3820
CP(*stat, *stat32, size);
3821
bcopy(&stat->pathname[0], &stat32->pathname[0],
3822
sizeof(stat->pathname));
3823
stat32->version = version;
3824
error = copyout(stat32, uap->stat, version);
3825
}
3826
free(stat, M_TEMP);
3827
free(stat32, M_TEMP);
3828
return (error);
3829
}
3830
3831
int
3832
freebsd32_posix_fallocate(struct thread *td,
3833
struct freebsd32_posix_fallocate_args *uap)
3834
{
3835
int error;
3836
3837
error = kern_posix_fallocate(td, uap->fd,
3838
PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3839
return (kern_posix_error(td, error));
3840
}
3841
3842
int
3843
freebsd32_posix_fadvise(struct thread *td,
3844
struct freebsd32_posix_fadvise_args *uap)
3845
{
3846
int error;
3847
3848
error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3849
PAIR32TO64(off_t, uap->len), uap->advice);
3850
return (kern_posix_error(td, error));
3851
}
3852
3853
int
3854
convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3855
{
3856
3857
CP(*sig32, *sig, sigev_notify);
3858
switch (sig->sigev_notify) {
3859
case SIGEV_NONE:
3860
break;
3861
case SIGEV_THREAD_ID:
3862
CP(*sig32, *sig, sigev_notify_thread_id);
3863
/* FALLTHROUGH */
3864
case SIGEV_SIGNAL:
3865
CP(*sig32, *sig, sigev_signo);
3866
PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3867
break;
3868
case SIGEV_KEVENT:
3869
CP(*sig32, *sig, sigev_notify_kqueue);
3870
CP(*sig32, *sig, sigev_notify_kevent_flags);
3871
PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3872
break;
3873
default:
3874
return (EINVAL);
3875
}
3876
return (0);
3877
}
3878
3879
int
3880
freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3881
{
3882
void *data;
3883
union {
3884
struct procctl_reaper_status rs;
3885
struct procctl_reaper_pids rp;
3886
struct procctl_reaper_kill rk;
3887
} x;
3888
union {
3889
struct procctl_reaper_pids32 rp;
3890
} x32;
3891
int error, error1, flags, signum;
3892
3893
if (uap->com >= PROC_PROCCTL_MD_MIN)
3894
return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3895
uap->com, PTRIN(uap->data)));
3896
3897
switch (uap->com) {
3898
case PROC_ASLR_CTL:
3899
case PROC_PROTMAX_CTL:
3900
case PROC_SPROTECT:
3901
case PROC_STACKGAP_CTL:
3902
case PROC_TRACE_CTL:
3903
case PROC_TRAPCAP_CTL:
3904
case PROC_NO_NEW_PRIVS_CTL:
3905
case PROC_WXMAP_CTL:
3906
case PROC_LOGSIGEXIT_CTL:
3907
error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3908
if (error != 0)
3909
return (error);
3910
data = &flags;
3911
break;
3912
case PROC_REAP_ACQUIRE:
3913
case PROC_REAP_RELEASE:
3914
if (uap->data != NULL)
3915
return (EINVAL);
3916
data = NULL;
3917
break;
3918
case PROC_REAP_STATUS:
3919
data = &x.rs;
3920
break;
3921
case PROC_REAP_GETPIDS:
3922
error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3923
if (error != 0)
3924
return (error);
3925
CP(x32.rp, x.rp, rp_count);
3926
PTRIN_CP(x32.rp, x.rp, rp_pids);
3927
data = &x.rp;
3928
break;
3929
case PROC_REAP_KILL:
3930
error = copyin(uap->data, &x.rk, sizeof(x.rk));
3931
if (error != 0)
3932
return (error);
3933
data = &x.rk;
3934
break;
3935
case PROC_ASLR_STATUS:
3936
case PROC_PROTMAX_STATUS:
3937
case PROC_STACKGAP_STATUS:
3938
case PROC_TRACE_STATUS:
3939
case PROC_TRAPCAP_STATUS:
3940
case PROC_NO_NEW_PRIVS_STATUS:
3941
case PROC_WXMAP_STATUS:
3942
case PROC_LOGSIGEXIT_STATUS:
3943
data = &flags;
3944
break;
3945
case PROC_PDEATHSIG_CTL:
3946
error = copyin(uap->data, &signum, sizeof(signum));
3947
if (error != 0)
3948
return (error);
3949
data = &signum;
3950
break;
3951
case PROC_PDEATHSIG_STATUS:
3952
data = &signum;
3953
break;
3954
default:
3955
return (EINVAL);
3956
}
3957
error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3958
uap->com, data);
3959
switch (uap->com) {
3960
case PROC_REAP_STATUS:
3961
if (error == 0)
3962
error = copyout(&x.rs, uap->data, sizeof(x.rs));
3963
break;
3964
case PROC_REAP_KILL:
3965
error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3966
if (error == 0)
3967
error = error1;
3968
break;
3969
case PROC_ASLR_STATUS:
3970
case PROC_PROTMAX_STATUS:
3971
case PROC_STACKGAP_STATUS:
3972
case PROC_TRACE_STATUS:
3973
case PROC_TRAPCAP_STATUS:
3974
case PROC_NO_NEW_PRIVS_STATUS:
3975
case PROC_WXMAP_STATUS:
3976
case PROC_LOGSIGEXIT_STATUS:
3977
if (error == 0)
3978
error = copyout(&flags, uap->data, sizeof(flags));
3979
break;
3980
case PROC_PDEATHSIG_STATUS:
3981
if (error == 0)
3982
error = copyout(&signum, uap->data, sizeof(signum));
3983
break;
3984
}
3985
return (error);
3986
}
3987
3988
int
3989
freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
3990
{
3991
intptr_t tmp;
3992
3993
switch (uap->cmd) {
3994
/*
3995
* Do unsigned conversion for arg when operation
3996
* interprets it as flags or pointer.
3997
*/
3998
case F_SETLK_REMOTE:
3999
case F_SETLKW:
4000
case F_SETLK:
4001
case F_GETLK:
4002
case F_SETFD:
4003
case F_SETFL:
4004
case F_OGETLK:
4005
case F_OSETLK:
4006
case F_OSETLKW:
4007
case F_KINFO:
4008
tmp = (unsigned int)(uap->arg);
4009
break;
4010
default:
4011
tmp = uap->arg;
4012
break;
4013
}
4014
return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
4015
}
4016
4017
int
4018
freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
4019
{
4020
struct timespec32 ts32;
4021
struct timespec ts, *tsp;
4022
sigset_t set, *ssp;
4023
int error;
4024
4025
if (uap->ts != NULL) {
4026
error = copyin(uap->ts, &ts32, sizeof(ts32));
4027
if (error != 0)
4028
return (error);
4029
CP(ts32, ts, tv_sec);
4030
CP(ts32, ts, tv_nsec);
4031
tsp = &ts;
4032
} else
4033
tsp = NULL;
4034
if (uap->set != NULL) {
4035
error = copyin(uap->set, &set, sizeof(set));
4036
if (error != 0)
4037
return (error);
4038
ssp = &set;
4039
} else
4040
ssp = NULL;
4041
4042
return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
4043
}
4044
4045
int
4046
freebsd32_sched_rr_get_interval(struct thread *td,
4047
struct freebsd32_sched_rr_get_interval_args *uap)
4048
{
4049
struct timespec ts;
4050
struct timespec32 ts32;
4051
int error;
4052
4053
error = kern_sched_rr_get_interval(td, uap->pid, &ts);
4054
if (error == 0) {
4055
CP(ts, ts32, tv_sec);
4056
CP(ts, ts32, tv_nsec);
4057
error = copyout(&ts32, uap->interval, sizeof(ts32));
4058
}
4059
return (error);
4060
}
4061
4062
static void
4063
timex_to_32(struct timex32 *dst, struct timex *src)
4064
{
4065
CP(*src, *dst, modes);
4066
CP(*src, *dst, offset);
4067
CP(*src, *dst, freq);
4068
CP(*src, *dst, maxerror);
4069
CP(*src, *dst, esterror);
4070
CP(*src, *dst, status);
4071
CP(*src, *dst, constant);
4072
CP(*src, *dst, precision);
4073
CP(*src, *dst, tolerance);
4074
CP(*src, *dst, ppsfreq);
4075
CP(*src, *dst, jitter);
4076
CP(*src, *dst, shift);
4077
CP(*src, *dst, stabil);
4078
CP(*src, *dst, jitcnt);
4079
CP(*src, *dst, calcnt);
4080
CP(*src, *dst, errcnt);
4081
CP(*src, *dst, stbcnt);
4082
}
4083
4084
static void
4085
timex_from_32(struct timex *dst, struct timex32 *src)
4086
{
4087
CP(*src, *dst, modes);
4088
CP(*src, *dst, offset);
4089
CP(*src, *dst, freq);
4090
CP(*src, *dst, maxerror);
4091
CP(*src, *dst, esterror);
4092
CP(*src, *dst, status);
4093
CP(*src, *dst, constant);
4094
CP(*src, *dst, precision);
4095
CP(*src, *dst, tolerance);
4096
CP(*src, *dst, ppsfreq);
4097
CP(*src, *dst, jitter);
4098
CP(*src, *dst, shift);
4099
CP(*src, *dst, stabil);
4100
CP(*src, *dst, jitcnt);
4101
CP(*src, *dst, calcnt);
4102
CP(*src, *dst, errcnt);
4103
CP(*src, *dst, stbcnt);
4104
}
4105
4106
int
4107
freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap)
4108
{
4109
struct timex tx;
4110
struct timex32 tx32;
4111
int error, retval;
4112
4113
error = copyin(uap->tp, &tx32, sizeof(tx32));
4114
if (error == 0) {
4115
timex_from_32(&tx, &tx32);
4116
error = kern_ntp_adjtime(td, &tx, &retval);
4117
if (error == 0) {
4118
timex_to_32(&tx32, &tx);
4119
error = copyout(&tx32, uap->tp, sizeof(tx32));
4120
if (error == 0)
4121
td->td_retval[0] = retval;
4122
}
4123
}
4124
return (error);
4125
}
4126
4127
#ifdef FFCLOCK
4128
extern struct mtx ffclock_mtx;
4129
extern struct ffclock_estimate ffclock_estimate;
4130
extern int8_t ffclock_updated;
4131
4132
int
4133
freebsd32_ffclock_setestimate(struct thread *td,
4134
struct freebsd32_ffclock_setestimate_args *uap)
4135
{
4136
struct ffclock_estimate cest;
4137
struct ffclock_estimate32 cest32;
4138
int error;
4139
4140
/* Reuse of PRIV_CLOCK_SETTIME. */
4141
if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
4142
return (error);
4143
4144
if ((error = copyin(uap->cest, &cest32,
4145
sizeof(struct ffclock_estimate32))) != 0)
4146
return (error);
4147
4148
CP(cest.update_time, cest32.update_time, sec);
4149
memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t));
4150
CP(cest, cest32, update_ffcount);
4151
CP(cest, cest32, leapsec_next);
4152
FU64_CP(cest, cest32, period);
4153
CP(cest, cest32, errb_abs);
4154
CP(cest, cest32, errb_rate);
4155
CP(cest, cest32, status);
4156
CP(cest, cest32, leapsec_total);
4157
CP(cest, cest32, leapsec);
4158
4159
mtx_lock(&ffclock_mtx);
4160
memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate));
4161
ffclock_updated++;
4162
mtx_unlock(&ffclock_mtx);
4163
return (error);
4164
}
4165
4166
int
4167
freebsd32_ffclock_getestimate(struct thread *td,
4168
struct freebsd32_ffclock_getestimate_args *uap)
4169
{
4170
struct ffclock_estimate cest;
4171
struct ffclock_estimate32 cest32;
4172
int error;
4173
4174
mtx_lock(&ffclock_mtx);
4175
memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
4176
mtx_unlock(&ffclock_mtx);
4177
4178
CP(cest32.update_time, cest.update_time, sec);
4179
memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t));
4180
CP(cest32, cest, update_ffcount);
4181
CP(cest32, cest, leapsec_next);
4182
FU64_CP(cest32, cest, period);
4183
CP(cest32, cest, errb_abs);
4184
CP(cest32, cest, errb_rate);
4185
CP(cest32, cest, status);
4186
CP(cest32, cest, leapsec_total);
4187
CP(cest32, cest, leapsec);
4188
4189
error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32));
4190
return (error);
4191
}
4192
#else /* !FFCLOCK */
4193
int
4194
freebsd32_ffclock_setestimate(struct thread *td,
4195
struct freebsd32_ffclock_setestimate_args *uap)
4196
{
4197
return (ENOSYS);
4198
}
4199
4200
int
4201
freebsd32_ffclock_getestimate(struct thread *td,
4202
struct freebsd32_ffclock_getestimate_args *uap)
4203
{
4204
return (ENOSYS);
4205
}
4206
#endif /* FFCLOCK */
4207
4208
#ifdef COMPAT_43
4209
int
4210
ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap)
4211
{
4212
int name[] = { CTL_KERN, KERN_HOSTID };
4213
long hostid;
4214
4215
hostid = uap->hostid;
4216
return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid,
4217
sizeof(hostid), NULL, 0));
4218
}
4219
#endif
4220
4221
int
4222
freebsd32_setcred(struct thread *td, struct freebsd32_setcred_args *uap)
4223
{
4224
struct setcred wcred;
4225
struct setcred32 wcred32;
4226
int error;
4227
4228
if (uap->size != sizeof(wcred32))
4229
return (EINVAL);
4230
error = copyin(uap->wcred, &wcred32, sizeof(wcred32));
4231
if (error != 0)
4232
return (error);
4233
memset(&wcred, 0, sizeof(wcred));
4234
CP(wcred32, wcred, sc_uid);
4235
CP(wcred32, wcred, sc_ruid);
4236
CP(wcred32, wcred, sc_svuid);
4237
CP(wcred32, wcred, sc_gid);
4238
CP(wcred32, wcred, sc_rgid);
4239
CP(wcred32, wcred, sc_svgid);
4240
CP(wcred32, wcred, sc_supp_groups_nb);
4241
PTRIN_CP(wcred32, wcred, sc_supp_groups);
4242
PTRIN_CP(wcred32, wcred, sc_label);
4243
return (user_setcred(td, uap->flags, &wcred));
4244
}
4245
4246