Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/compat/linux/linux_misc.c
101262 views
1
/*-
2
* SPDX-License-Identifier: BSD-3-Clause
3
*
4
* Copyright (c) 2002 Doug Rabson
5
* Copyright (c) 1994-1995 Søren Schmidt
6
* All rights reserved.
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice, this list of conditions and the following disclaimer
13
* in this position and unchanged.
14
* 2. Redistributions in binary form must reproduce the above copyright
15
* notice, this list of conditions and the following disclaimer in the
16
* documentation and/or other materials provided with the distribution.
17
* 3. The name of the author may not be used to endorse or promote products
18
* derived from this software without specific prior written permission
19
*
20
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
*/
31
32
#include <sys/param.h>
33
#include <sys/fcntl.h>
34
#include <sys/jail.h>
35
#include <sys/imgact.h>
36
#include <sys/limits.h>
37
#include <sys/lock.h>
38
#include <sys/msgbuf.h>
39
#include <sys/mqueue.h>
40
#include <sys/mutex.h>
41
#include <sys/poll.h>
42
#include <sys/priv.h>
43
#include <sys/proc.h>
44
#include <sys/procctl.h>
45
#include <sys/reboot.h>
46
#include <sys/random.h>
47
#include <sys/resourcevar.h>
48
#include <sys/rtprio.h>
49
#include <sys/sched.h>
50
#include <sys/smp.h>
51
#include <sys/stat.h>
52
#include <sys/syscallsubr.h>
53
#include <sys/sysctl.h>
54
#include <sys/sysent.h>
55
#include <sys/sysproto.h>
56
#include <sys/time.h>
57
#include <sys/unistd.h>
58
#include <sys/vmmeter.h>
59
#include <sys/vnode.h>
60
61
#include <security/audit/audit.h>
62
#include <security/mac/mac_framework.h>
63
64
#include <vm/pmap.h>
65
#include <vm/vm_map.h>
66
#include <vm/swap_pager.h>
67
68
#ifdef COMPAT_LINUX32
69
#include <machine/../linux32/linux.h>
70
#include <machine/../linux32/linux32_proto.h>
71
#else
72
#include <machine/../linux/linux.h>
73
#include <machine/../linux/linux_proto.h>
74
#endif
75
76
#include <compat/linux/linux_common.h>
77
#include <compat/linux/linux_dtrace.h>
78
#include <compat/linux/linux_file.h>
79
#include <compat/linux/linux_mib.h>
80
#include <compat/linux/linux_mmap.h>
81
#include <compat/linux/linux_signal.h>
82
#include <compat/linux/linux_time.h>
83
#include <compat/linux/linux_util.h>
84
#include <compat/linux/linux_emul.h>
85
#include <compat/linux/linux_misc.h>
86
87
int stclohz; /* Statistics clock frequency */
88
89
static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
90
RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
91
RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
92
RLIMIT_MEMLOCK, RLIMIT_AS
93
};
94
95
struct l_sysinfo {
96
l_long uptime; /* Seconds since boot */
97
l_ulong loads[3]; /* 1, 5, and 15 minute load averages */
98
#define LINUX_SYSINFO_LOADS_SCALE 65536
99
l_ulong totalram; /* Total usable main memory size */
100
l_ulong freeram; /* Available memory size */
101
l_ulong sharedram; /* Amount of shared memory */
102
l_ulong bufferram; /* Memory used by buffers */
103
l_ulong totalswap; /* Total swap space size */
104
l_ulong freeswap; /* swap space still available */
105
l_ushort procs; /* Number of current processes */
106
l_ushort pads;
107
l_ulong totalhigh;
108
l_ulong freehigh;
109
l_uint mem_unit;
110
char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */
111
};
112
113
struct l_pselect6arg {
114
l_uintptr_t ss;
115
l_size_t ss_len;
116
};
117
118
static int linux_utimensat_lts_to_ts(struct l_timespec *,
119
struct timespec *);
120
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
121
static int linux_utimensat_lts64_to_ts(struct l_timespec64 *,
122
struct timespec *);
123
#endif
124
static int linux_common_utimensat(struct thread *, int,
125
const char *, struct timespec *, int);
126
static int linux_common_pselect6(struct thread *, l_int,
127
l_fd_set *, l_fd_set *, l_fd_set *,
128
struct timespec *, l_uintptr_t *);
129
static int linux_common_ppoll(struct thread *, struct pollfd *,
130
uint32_t, struct timespec *, l_sigset_t *,
131
l_size_t);
132
static int linux_pollin(struct thread *, struct pollfd *,
133
struct pollfd *, u_int);
134
static int linux_pollout(struct thread *, struct pollfd *,
135
struct pollfd *, u_int);
136
137
int
138
linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
139
{
140
struct l_sysinfo sysinfo;
141
int i, j;
142
struct timespec ts;
143
144
bzero(&sysinfo, sizeof(sysinfo));
145
getnanouptime(&ts);
146
if (ts.tv_nsec != 0)
147
ts.tv_sec++;
148
sysinfo.uptime = ts.tv_sec;
149
150
/* Use the information from the mib to get our load averages */
151
for (i = 0; i < 3; i++)
152
sysinfo.loads[i] = averunnable.ldavg[i] *
153
LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
154
155
sysinfo.totalram = physmem * PAGE_SIZE;
156
sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE;
157
158
/*
159
* sharedram counts pages allocated to named, swap-backed objects such
160
* as shared memory segments and tmpfs files. There is no cheap way to
161
* compute this, so just leave the field unpopulated. Linux itself only
162
* started setting this field in the 3.x timeframe.
163
*/
164
sysinfo.sharedram = 0;
165
sysinfo.bufferram = 0;
166
167
swap_pager_status(&i, &j);
168
sysinfo.totalswap = i * PAGE_SIZE;
169
sysinfo.freeswap = (i - j) * PAGE_SIZE;
170
171
sysinfo.procs = nprocs;
172
173
/*
174
* Platforms supported by the emulation layer do not have a notion of
175
* high memory.
176
*/
177
sysinfo.totalhigh = 0;
178
sysinfo.freehigh = 0;
179
180
sysinfo.mem_unit = 1;
181
182
return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
183
}
184
185
#ifdef LINUX_LEGACY_SYSCALLS
186
int
187
linux_alarm(struct thread *td, struct linux_alarm_args *args)
188
{
189
struct itimerval it, old_it;
190
u_int secs;
191
int error __diagused;
192
193
secs = args->secs;
194
/*
195
* Linux alarm() is always successful. Limit secs to INT32_MAX / 2
196
* to match kern_setitimer()'s limit to avoid error from it.
197
*
198
* XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
199
* platforms.
200
*/
201
if (secs > INT32_MAX / 2)
202
secs = INT32_MAX / 2;
203
204
it.it_value.tv_sec = secs;
205
it.it_value.tv_usec = 0;
206
timevalclear(&it.it_interval);
207
error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
208
KASSERT(error == 0, ("kern_setitimer returns %d", error));
209
210
if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
211
old_it.it_value.tv_usec >= 500000)
212
old_it.it_value.tv_sec++;
213
td->td_retval[0] = old_it.it_value.tv_sec;
214
return (0);
215
}
216
#endif
217
218
int
219
linux_brk(struct thread *td, struct linux_brk_args *args)
220
{
221
struct vmspace *vm = td->td_proc->p_vmspace;
222
uintptr_t new, old;
223
224
old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
225
new = (uintptr_t)args->dsend;
226
if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
227
td->td_retval[0] = (register_t)new;
228
else
229
td->td_retval[0] = (register_t)old;
230
231
return (0);
232
}
233
234
#ifdef LINUX_LEGACY_SYSCALLS
235
int
236
linux_select(struct thread *td, struct linux_select_args *args)
237
{
238
l_timeval ltv;
239
struct timeval tv0, tv1, utv, *tvp;
240
int error;
241
242
/*
243
* Store current time for computation of the amount of
244
* time left.
245
*/
246
if (args->timeout) {
247
if ((error = copyin(args->timeout, &ltv, sizeof(ltv))))
248
goto select_out;
249
utv.tv_sec = ltv.tv_sec;
250
utv.tv_usec = ltv.tv_usec;
251
252
if (itimerfix(&utv)) {
253
/*
254
* The timeval was invalid. Convert it to something
255
* valid that will act as it does under Linux.
256
*/
257
utv.tv_sec += utv.tv_usec / 1000000;
258
utv.tv_usec %= 1000000;
259
if (utv.tv_usec < 0) {
260
utv.tv_sec -= 1;
261
utv.tv_usec += 1000000;
262
}
263
if (utv.tv_sec < 0)
264
timevalclear(&utv);
265
}
266
microtime(&tv0);
267
tvp = &utv;
268
} else
269
tvp = NULL;
270
271
error = kern_select(td, args->nfds, args->readfds, args->writefds,
272
args->exceptfds, tvp, LINUX_NFDBITS);
273
if (error)
274
goto select_out;
275
276
if (args->timeout) {
277
if (td->td_retval[0]) {
278
/*
279
* Compute how much time was left of the timeout,
280
* by subtracting the current time and the time
281
* before we started the call, and subtracting
282
* that result from the user-supplied value.
283
*/
284
microtime(&tv1);
285
timevalsub(&tv1, &tv0);
286
timevalsub(&utv, &tv1);
287
if (utv.tv_sec < 0)
288
timevalclear(&utv);
289
} else
290
timevalclear(&utv);
291
ltv.tv_sec = utv.tv_sec;
292
ltv.tv_usec = utv.tv_usec;
293
if ((error = copyout(&ltv, args->timeout, sizeof(ltv))))
294
goto select_out;
295
}
296
297
select_out:
298
return (error);
299
}
300
#endif
301
302
int
303
linux_mremap(struct thread *td, struct linux_mremap_args *args)
304
{
305
uintptr_t addr;
306
size_t len;
307
int error = 0;
308
309
if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
310
td->td_retval[0] = 0;
311
return (EINVAL);
312
}
313
314
/*
315
* Check for the page alignment.
316
* Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
317
*/
318
if (args->addr & PAGE_MASK) {
319
td->td_retval[0] = 0;
320
return (EINVAL);
321
}
322
323
args->new_len = round_page(args->new_len);
324
args->old_len = round_page(args->old_len);
325
326
if (args->new_len > args->old_len) {
327
td->td_retval[0] = 0;
328
return (ENOMEM);
329
}
330
331
if (args->new_len < args->old_len) {
332
addr = args->addr + args->new_len;
333
len = args->old_len - args->new_len;
334
error = kern_munmap(td, addr, len);
335
}
336
337
td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
338
return (error);
339
}
340
341
#define LINUX_MS_ASYNC 0x0001
342
#define LINUX_MS_INVALIDATE 0x0002
343
#define LINUX_MS_SYNC 0x0004
344
345
int
346
linux_msync(struct thread *td, struct linux_msync_args *args)
347
{
348
349
return (kern_msync(td, args->addr, args->len,
350
args->fl & ~LINUX_MS_SYNC));
351
}
352
353
int
354
linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
355
{
356
357
return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len,
358
uap->prot));
359
}
360
361
int
362
linux_madvise(struct thread *td, struct linux_madvise_args *uap)
363
{
364
365
return (linux_madvise_common(td, PTROUT(uap->addr), uap->len,
366
uap->behav));
367
}
368
369
int
370
linux_mmap2(struct thread *td, struct linux_mmap2_args *uap)
371
{
372
#if defined(LINUX_ARCHWANT_MMAP2PGOFF)
373
/*
374
* For architectures with sizeof (off_t) < sizeof (loff_t) mmap is
375
* implemented with mmap2 syscall and the offset is represented in
376
* multiples of page size.
377
*/
378
return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot,
379
uap->flags, uap->fd, (uint64_t)(uint32_t)uap->pgoff * PAGE_SIZE));
380
#else
381
return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot,
382
uap->flags, uap->fd, uap->pgoff));
383
#endif
384
}
385
386
#ifdef LINUX_LEGACY_SYSCALLS
387
int
388
linux_time(struct thread *td, struct linux_time_args *args)
389
{
390
struct timeval tv;
391
l_time_t tm;
392
int error;
393
394
microtime(&tv);
395
tm = tv.tv_sec;
396
if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
397
return (error);
398
td->td_retval[0] = tm;
399
return (0);
400
}
401
#endif
402
403
struct l_times_argv {
404
l_clock_t tms_utime;
405
l_clock_t tms_stime;
406
l_clock_t tms_cutime;
407
l_clock_t tms_cstime;
408
};
409
410
/*
411
* Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
412
* Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
413
* auxiliary vector entry.
414
*/
415
#define CLK_TCK 100
416
417
#define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
418
#define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
419
420
#define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER(2,4,0) ? \
421
CONVNTCK(r) : CONVOTCK(r))
422
423
int
424
linux_times(struct thread *td, struct linux_times_args *args)
425
{
426
struct timeval tv, utime, stime, cutime, cstime;
427
struct l_times_argv tms;
428
struct proc *p;
429
int error;
430
431
if (args->buf != NULL) {
432
p = td->td_proc;
433
PROC_LOCK(p);
434
PROC_STATLOCK(p);
435
calcru(p, &utime, &stime);
436
PROC_STATUNLOCK(p);
437
calccru(p, &cutime, &cstime);
438
PROC_UNLOCK(p);
439
440
tms.tms_utime = CONVTCK(utime);
441
tms.tms_stime = CONVTCK(stime);
442
443
tms.tms_cutime = CONVTCK(cutime);
444
tms.tms_cstime = CONVTCK(cstime);
445
446
if ((error = copyout(&tms, args->buf, sizeof(tms))))
447
return (error);
448
}
449
450
microuptime(&tv);
451
td->td_retval[0] = (int)CONVTCK(tv);
452
return (0);
453
}
454
455
int
456
linux_newuname(struct thread *td, struct linux_newuname_args *args)
457
{
458
struct l_new_utsname utsname;
459
char osname[LINUX_MAX_UTSNAME];
460
char osrelease[LINUX_MAX_UTSNAME];
461
char *p;
462
463
linux_get_osname(td, osname);
464
linux_get_osrelease(td, osrelease);
465
466
bzero(&utsname, sizeof(utsname));
467
strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
468
getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
469
getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
470
strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
471
strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
472
for (p = utsname.version; *p != '\0'; ++p)
473
if (*p == '\n') {
474
*p = '\0';
475
break;
476
}
477
#if defined(__amd64__)
478
/*
479
* On amd64, Linux uname(2) needs to return "x86_64"
480
* for both 64-bit and 32-bit applications. On 32-bit,
481
* the string returned by getauxval(AT_PLATFORM) needs
482
* to remain "i686", though.
483
*/
484
#if defined(COMPAT_LINUX32)
485
if (linux32_emulate_i386)
486
strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
487
else
488
#endif
489
strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME);
490
#elif defined(__aarch64__)
491
strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME);
492
#elif defined(__i386__)
493
strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
494
#endif
495
496
return (copyout(&utsname, args->buf, sizeof(utsname)));
497
}
498
499
struct l_utimbuf {
500
l_time_t l_actime;
501
l_time_t l_modtime;
502
};
503
504
#ifdef LINUX_LEGACY_SYSCALLS
505
int
506
linux_utime(struct thread *td, struct linux_utime_args *args)
507
{
508
struct timeval tv[2], *tvp;
509
struct l_utimbuf lut;
510
int error;
511
512
if (args->times) {
513
if ((error = copyin(args->times, &lut, sizeof lut)) != 0)
514
return (error);
515
tv[0].tv_sec = lut.l_actime;
516
tv[0].tv_usec = 0;
517
tv[1].tv_sec = lut.l_modtime;
518
tv[1].tv_usec = 0;
519
tvp = tv;
520
} else
521
tvp = NULL;
522
523
return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
524
tvp, UIO_SYSSPACE));
525
}
526
#endif
527
528
#ifdef LINUX_LEGACY_SYSCALLS
529
int
530
linux_utimes(struct thread *td, struct linux_utimes_args *args)
531
{
532
l_timeval ltv[2];
533
struct timeval tv[2], *tvp = NULL;
534
int error;
535
536
if (args->tptr != NULL) {
537
if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0)
538
return (error);
539
tv[0].tv_sec = ltv[0].tv_sec;
540
tv[0].tv_usec = ltv[0].tv_usec;
541
tv[1].tv_sec = ltv[1].tv_sec;
542
tv[1].tv_usec = ltv[1].tv_usec;
543
tvp = tv;
544
}
545
546
return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
547
tvp, UIO_SYSSPACE));
548
}
549
#endif
550
551
static int
552
linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times)
553
{
554
555
if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
556
l_times->tv_nsec != LINUX_UTIME_NOW &&
557
(l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
558
return (EINVAL);
559
560
times->tv_sec = l_times->tv_sec;
561
switch (l_times->tv_nsec)
562
{
563
case LINUX_UTIME_OMIT:
564
times->tv_nsec = UTIME_OMIT;
565
break;
566
case LINUX_UTIME_NOW:
567
times->tv_nsec = UTIME_NOW;
568
break;
569
default:
570
times->tv_nsec = l_times->tv_nsec;
571
}
572
573
return (0);
574
}
575
576
static int
577
linux_common_utimensat(struct thread *td, int ldfd, const char *pathname,
578
struct timespec *timesp, int lflags)
579
{
580
int dfd, flags = 0;
581
582
dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd;
583
584
if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH))
585
return (EINVAL);
586
587
if (timesp != NULL) {
588
/* This breaks POSIX, but is what the Linux kernel does
589
* _on purpose_ (documented in the man page for utimensat(2)),
590
* so we must follow that behaviour. */
591
if (timesp[0].tv_nsec == UTIME_OMIT &&
592
timesp[1].tv_nsec == UTIME_OMIT)
593
return (0);
594
}
595
596
if (lflags & LINUX_AT_SYMLINK_NOFOLLOW)
597
flags |= AT_SYMLINK_NOFOLLOW;
598
if (lflags & LINUX_AT_EMPTY_PATH)
599
flags |= AT_EMPTY_PATH;
600
601
if (pathname != NULL)
602
return (kern_utimensat(td, dfd, pathname,
603
UIO_USERSPACE, timesp, UIO_SYSSPACE, flags));
604
605
if (lflags != 0)
606
return (EINVAL);
607
608
return (kern_futimens(td, dfd, timesp, UIO_SYSSPACE));
609
}
610
611
int
612
linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
613
{
614
struct l_timespec l_times[2];
615
struct timespec times[2], *timesp;
616
int error;
617
618
if (args->times != NULL) {
619
error = copyin(args->times, l_times, sizeof(l_times));
620
if (error != 0)
621
return (error);
622
623
error = linux_utimensat_lts_to_ts(&l_times[0], &times[0]);
624
if (error != 0)
625
return (error);
626
error = linux_utimensat_lts_to_ts(&l_times[1], &times[1]);
627
if (error != 0)
628
return (error);
629
timesp = times;
630
} else
631
timesp = NULL;
632
633
return (linux_common_utimensat(td, args->dfd, args->pathname,
634
timesp, args->flags));
635
}
636
637
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
638
static int
639
linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times)
640
{
641
642
/* Zero out the padding in compat mode. */
643
l_times->tv_nsec &= 0xFFFFFFFFUL;
644
645
if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
646
l_times->tv_nsec != LINUX_UTIME_NOW &&
647
(l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
648
return (EINVAL);
649
650
times->tv_sec = l_times->tv_sec;
651
switch (l_times->tv_nsec)
652
{
653
case LINUX_UTIME_OMIT:
654
times->tv_nsec = UTIME_OMIT;
655
break;
656
case LINUX_UTIME_NOW:
657
times->tv_nsec = UTIME_NOW;
658
break;
659
default:
660
times->tv_nsec = l_times->tv_nsec;
661
}
662
663
return (0);
664
}
665
666
int
667
linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args)
668
{
669
struct l_timespec64 l_times[2];
670
struct timespec times[2], *timesp;
671
int error;
672
673
if (args->times64 != NULL) {
674
error = copyin(args->times64, l_times, sizeof(l_times));
675
if (error != 0)
676
return (error);
677
678
error = linux_utimensat_lts64_to_ts(&l_times[0], &times[0]);
679
if (error != 0)
680
return (error);
681
error = linux_utimensat_lts64_to_ts(&l_times[1], &times[1]);
682
if (error != 0)
683
return (error);
684
timesp = times;
685
} else
686
timesp = NULL;
687
688
return (linux_common_utimensat(td, args->dfd, args->pathname,
689
timesp, args->flags));
690
}
691
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
692
693
#ifdef LINUX_LEGACY_SYSCALLS
694
int
695
linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
696
{
697
l_timeval ltv[2];
698
struct timeval tv[2], *tvp = NULL;
699
int error, dfd;
700
701
dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
702
703
if (args->utimes != NULL) {
704
if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0)
705
return (error);
706
tv[0].tv_sec = ltv[0].tv_sec;
707
tv[0].tv_usec = ltv[0].tv_usec;
708
tv[1].tv_sec = ltv[1].tv_sec;
709
tv[1].tv_usec = ltv[1].tv_usec;
710
tvp = tv;
711
}
712
713
return (kern_utimesat(td, dfd, args->filename, UIO_USERSPACE,
714
tvp, UIO_SYSSPACE));
715
}
716
#endif
717
718
static int
719
linux_common_wait(struct thread *td, idtype_t idtype, int id, int *statusp,
720
int options, void *rup, l_siginfo_t *infop)
721
{
722
l_siginfo_t lsi;
723
siginfo_t siginfo;
724
struct __wrusage wru;
725
int error, status, tmpstat, sig;
726
727
error = kern_wait6(td, idtype, id, &status, options,
728
rup != NULL ? &wru : NULL, &siginfo);
729
730
if (error == 0 && statusp) {
731
tmpstat = status & 0xffff;
732
if (WIFSIGNALED(tmpstat)) {
733
tmpstat = (tmpstat & 0xffffff80) |
734
bsd_to_linux_signal(WTERMSIG(tmpstat));
735
} else if (WIFSTOPPED(tmpstat)) {
736
tmpstat = (tmpstat & 0xffff00ff) |
737
(bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
738
#if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32))
739
if (WSTOPSIG(status) == SIGTRAP) {
740
tmpstat = linux_ptrace_status(td,
741
siginfo.si_pid, tmpstat);
742
}
743
#endif
744
} else if (WIFCONTINUED(tmpstat)) {
745
tmpstat = 0xffff;
746
}
747
error = copyout(&tmpstat, statusp, sizeof(int));
748
}
749
if (error == 0 && rup != NULL)
750
error = linux_copyout_rusage(&wru.wru_self, rup);
751
if (error == 0 && infop != NULL && td->td_retval[0] != 0) {
752
sig = bsd_to_linux_signal(siginfo.si_signo);
753
siginfo_to_lsiginfo(&siginfo, &lsi, sig);
754
error = copyout(&lsi, infop, sizeof(lsi));
755
}
756
757
return (error);
758
}
759
760
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
761
int
762
linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
763
{
764
struct linux_wait4_args wait4_args = {
765
.pid = args->pid,
766
.status = args->status,
767
.options = args->options,
768
.rusage = NULL,
769
};
770
771
return (linux_wait4(td, &wait4_args));
772
}
773
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
774
775
int
776
linux_wait4(struct thread *td, struct linux_wait4_args *args)
777
{
778
struct proc *p;
779
int options, id, idtype;
780
781
if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
782
LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
783
return (EINVAL);
784
785
/* -INT_MIN is not defined. */
786
if (args->pid == INT_MIN)
787
return (ESRCH);
788
789
options = 0;
790
linux_to_bsd_waitopts(args->options, &options);
791
792
/*
793
* For backward compatibility we implicitly add flags WEXITED
794
* and WTRAPPED here.
795
*/
796
options |= WEXITED | WTRAPPED;
797
798
if (args->pid == WAIT_ANY) {
799
idtype = P_ALL;
800
id = 0;
801
} else if (args->pid < 0) {
802
idtype = P_PGID;
803
id = (id_t)-args->pid;
804
} else if (args->pid == 0) {
805
idtype = P_PGID;
806
p = td->td_proc;
807
PROC_LOCK(p);
808
id = p->p_pgid;
809
PROC_UNLOCK(p);
810
} else {
811
idtype = P_PID;
812
id = (id_t)args->pid;
813
}
814
815
return (linux_common_wait(td, idtype, id, args->status, options,
816
args->rusage, NULL));
817
}
818
819
int
820
linux_waitid(struct thread *td, struct linux_waitid_args *args)
821
{
822
idtype_t idtype;
823
int error, options;
824
struct proc *p;
825
pid_t id;
826
827
if (args->options & ~(LINUX_WNOHANG | LINUX_WNOWAIT | LINUX_WEXITED |
828
LINUX_WSTOPPED | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
829
return (EINVAL);
830
831
options = 0;
832
linux_to_bsd_waitopts(args->options, &options);
833
834
id = args->id;
835
switch (args->idtype) {
836
case LINUX_P_ALL:
837
idtype = P_ALL;
838
break;
839
case LINUX_P_PID:
840
if (args->id <= 0)
841
return (EINVAL);
842
idtype = P_PID;
843
break;
844
case LINUX_P_PGID:
845
if (linux_kernver(td) >= LINUX_KERNVER(5,4,0) && args->id == 0) {
846
p = td->td_proc;
847
PROC_LOCK(p);
848
id = p->p_pgid;
849
PROC_UNLOCK(p);
850
} else if (args->id <= 0)
851
return (EINVAL);
852
idtype = P_PGID;
853
break;
854
case LINUX_P_PIDFD:
855
LINUX_RATELIMIT_MSG("unsupported waitid P_PIDFD idtype");
856
return (ENOSYS);
857
default:
858
return (EINVAL);
859
}
860
861
error = linux_common_wait(td, idtype, id, NULL, options,
862
args->rusage, args->info);
863
td->td_retval[0] = 0;
864
865
return (error);
866
}
867
868
#ifdef LINUX_LEGACY_SYSCALLS
869
int
870
linux_mknod(struct thread *td, struct linux_mknod_args *args)
871
{
872
int error;
873
874
switch (args->mode & S_IFMT) {
875
case S_IFIFO:
876
case S_IFSOCK:
877
error = kern_mkfifoat(td, AT_FDCWD, args->path, UIO_USERSPACE,
878
args->mode);
879
break;
880
881
case S_IFCHR:
882
case S_IFBLK:
883
error = kern_mknodat(td, AT_FDCWD, args->path, UIO_USERSPACE,
884
args->mode, linux_decode_dev(args->dev));
885
break;
886
887
case S_IFDIR:
888
error = EPERM;
889
break;
890
891
case 0:
892
args->mode |= S_IFREG;
893
/* FALLTHROUGH */
894
case S_IFREG:
895
error = kern_openat(td, AT_FDCWD, args->path, UIO_USERSPACE,
896
O_WRONLY | O_CREAT | O_TRUNC, args->mode);
897
if (error == 0)
898
kern_close(td, td->td_retval[0]);
899
break;
900
901
default:
902
error = EINVAL;
903
break;
904
}
905
return (error);
906
}
907
#endif
908
909
int
910
linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
911
{
912
int error, dfd;
913
914
dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
915
916
switch (args->mode & S_IFMT) {
917
case S_IFIFO:
918
case S_IFSOCK:
919
error = kern_mkfifoat(td, dfd, args->filename, UIO_USERSPACE,
920
args->mode);
921
break;
922
923
case S_IFCHR:
924
case S_IFBLK:
925
error = kern_mknodat(td, dfd, args->filename, UIO_USERSPACE,
926
args->mode, linux_decode_dev(args->dev));
927
break;
928
929
case S_IFDIR:
930
error = EPERM;
931
break;
932
933
case 0:
934
args->mode |= S_IFREG;
935
/* FALLTHROUGH */
936
case S_IFREG:
937
error = kern_openat(td, dfd, args->filename, UIO_USERSPACE,
938
O_WRONLY | O_CREAT | O_TRUNC, args->mode);
939
if (error == 0)
940
kern_close(td, td->td_retval[0]);
941
break;
942
943
default:
944
error = EINVAL;
945
break;
946
}
947
return (error);
948
}
949
950
/*
951
* UGH! This is just about the dumbest idea I've ever heard!!
952
*/
953
int
954
linux_personality(struct thread *td, struct linux_personality_args *args)
955
{
956
struct linux_pemuldata *pem;
957
struct proc *p = td->td_proc;
958
uint32_t old;
959
960
PROC_LOCK(p);
961
pem = pem_find(p);
962
old = pem->persona;
963
if (args->per != 0xffffffff)
964
pem->persona = args->per;
965
PROC_UNLOCK(p);
966
967
td->td_retval[0] = old;
968
return (0);
969
}
970
971
struct l_itimerval {
972
l_timeval it_interval;
973
l_timeval it_value;
974
};
975
976
#define B2L_ITIMERVAL(bip, lip) \
977
(bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \
978
(bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \
979
(bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \
980
(bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
981
982
int
983
linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
984
{
985
int error;
986
struct l_itimerval ls;
987
struct itimerval aitv, oitv;
988
989
if (uap->itv == NULL) {
990
uap->itv = uap->oitv;
991
return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
992
}
993
994
error = copyin(uap->itv, &ls, sizeof(ls));
995
if (error != 0)
996
return (error);
997
B2L_ITIMERVAL(&aitv, &ls);
998
error = kern_setitimer(td, uap->which, &aitv, &oitv);
999
if (error != 0 || uap->oitv == NULL)
1000
return (error);
1001
B2L_ITIMERVAL(&ls, &oitv);
1002
1003
return (copyout(&ls, uap->oitv, sizeof(ls)));
1004
}
1005
1006
int
1007
linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
1008
{
1009
int error;
1010
struct l_itimerval ls;
1011
struct itimerval aitv;
1012
1013
error = kern_getitimer(td, uap->which, &aitv);
1014
if (error != 0)
1015
return (error);
1016
B2L_ITIMERVAL(&ls, &aitv);
1017
return (copyout(&ls, uap->itv, sizeof(ls)));
1018
}
1019
1020
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1021
int
1022
linux_nice(struct thread *td, struct linux_nice_args *args)
1023
{
1024
1025
return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc));
1026
}
1027
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1028
1029
int
1030
linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
1031
{
1032
const int ngrp = args->gidsetsize;
1033
struct ucred *newcred, *oldcred;
1034
l_gid_t *linux_gidset;
1035
int error;
1036
struct proc *p;
1037
1038
if (ngrp < 0 || ngrp > ngroups_max)
1039
return (EINVAL);
1040
linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1041
error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
1042
if (error)
1043
goto out;
1044
1045
newcred = crget();
1046
crextend(newcred, ngrp);
1047
p = td->td_proc;
1048
PROC_LOCK(p);
1049
oldcred = crcopysafe(p, newcred);
1050
1051
if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) {
1052
PROC_UNLOCK(p);
1053
crfree(newcred);
1054
goto out;
1055
}
1056
1057
newcred->cr_ngroups = ngrp;
1058
for (int i = 0; i < ngrp; i++)
1059
newcred->cr_groups[i] = linux_gidset[i];
1060
newcred->cr_flags |= CRED_FLAG_GROUPSET;
1061
1062
setsugid(p);
1063
proc_set_cred(p, newcred);
1064
PROC_UNLOCK(p);
1065
crfree(oldcred);
1066
error = 0;
1067
out:
1068
free(linux_gidset, M_LINUX);
1069
return (error);
1070
}
1071
1072
int
1073
linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
1074
{
1075
const struct ucred *const cred = td->td_ucred;
1076
l_gid_t *linux_gidset;
1077
int ngrp, error;
1078
1079
ngrp = args->gidsetsize;
1080
1081
if (ngrp == 0) {
1082
td->td_retval[0] = cred->cr_ngroups;
1083
return (0);
1084
}
1085
if (ngrp < cred->cr_ngroups)
1086
return (EINVAL);
1087
1088
ngrp = cred->cr_ngroups;
1089
1090
linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1091
for (int i = 0; i < ngrp; ++i)
1092
linux_gidset[i] = cred->cr_groups[i];
1093
1094
error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
1095
free(linux_gidset, M_LINUX);
1096
1097
if (error != 0)
1098
return (error);
1099
1100
td->td_retval[0] = ngrp;
1101
return (0);
1102
}
1103
1104
static bool
1105
linux_get_dummy_limit(struct thread *td, l_uint resource, struct rlimit *rlim)
1106
{
1107
ssize_t size;
1108
int res, error;
1109
1110
if (linux_dummy_rlimits == 0)
1111
return (false);
1112
1113
switch (resource) {
1114
case LINUX_RLIMIT_LOCKS:
1115
case LINUX_RLIMIT_RTTIME:
1116
rlim->rlim_cur = LINUX_RLIM_INFINITY;
1117
rlim->rlim_max = LINUX_RLIM_INFINITY;
1118
return (true);
1119
case LINUX_RLIMIT_NICE:
1120
case LINUX_RLIMIT_RTPRIO:
1121
rlim->rlim_cur = 0;
1122
rlim->rlim_max = 0;
1123
return (true);
1124
case LINUX_RLIMIT_SIGPENDING:
1125
error = kernel_sysctlbyname(td,
1126
"kern.sigqueue.max_pending_per_proc",
1127
&res, &size, 0, 0, 0, 0);
1128
if (error != 0)
1129
return (false);
1130
rlim->rlim_cur = res;
1131
rlim->rlim_max = res;
1132
return (true);
1133
case LINUX_RLIMIT_MSGQUEUE:
1134
error = kernel_sysctlbyname(td,
1135
"kern.ipc.msgmnb", &res, &size, 0, 0, 0, 0);
1136
if (error != 0)
1137
return (false);
1138
rlim->rlim_cur = res;
1139
rlim->rlim_max = res;
1140
return (true);
1141
default:
1142
return (false);
1143
}
1144
}
1145
1146
int
1147
linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
1148
{
1149
struct rlimit bsd_rlim;
1150
struct l_rlimit rlim;
1151
u_int which;
1152
int error;
1153
1154
if (args->resource >= LINUX_RLIM_NLIMITS)
1155
return (EINVAL);
1156
1157
which = linux_to_bsd_resource[args->resource];
1158
if (which == -1)
1159
return (EINVAL);
1160
1161
error = copyin(args->rlim, &rlim, sizeof(rlim));
1162
if (error)
1163
return (error);
1164
1165
bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
1166
bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
1167
return (kern_setrlimit(td, which, &bsd_rlim));
1168
}
1169
1170
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1171
int
1172
linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
1173
{
1174
struct l_rlimit rlim;
1175
struct rlimit bsd_rlim;
1176
u_int which;
1177
1178
if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) {
1179
rlim.rlim_cur = bsd_rlim.rlim_cur;
1180
rlim.rlim_max = bsd_rlim.rlim_max;
1181
return (copyout(&rlim, args->rlim, sizeof(rlim)));
1182
}
1183
1184
if (args->resource >= LINUX_RLIM_NLIMITS)
1185
return (EINVAL);
1186
1187
which = linux_to_bsd_resource[args->resource];
1188
if (which == -1)
1189
return (EINVAL);
1190
1191
lim_rlimit(td, which, &bsd_rlim);
1192
1193
#ifdef COMPAT_LINUX32
1194
rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
1195
if (rlim.rlim_cur == UINT_MAX)
1196
rlim.rlim_cur = INT_MAX;
1197
rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
1198
if (rlim.rlim_max == UINT_MAX)
1199
rlim.rlim_max = INT_MAX;
1200
#else
1201
rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
1202
if (rlim.rlim_cur == ULONG_MAX)
1203
rlim.rlim_cur = LONG_MAX;
1204
rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
1205
if (rlim.rlim_max == ULONG_MAX)
1206
rlim.rlim_max = LONG_MAX;
1207
#endif
1208
return (copyout(&rlim, args->rlim, sizeof(rlim)));
1209
}
1210
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1211
1212
int
1213
linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
1214
{
1215
struct l_rlimit rlim;
1216
struct rlimit bsd_rlim;
1217
u_int which;
1218
1219
if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) {
1220
rlim.rlim_cur = bsd_rlim.rlim_cur;
1221
rlim.rlim_max = bsd_rlim.rlim_max;
1222
return (copyout(&rlim, args->rlim, sizeof(rlim)));
1223
}
1224
1225
if (args->resource >= LINUX_RLIM_NLIMITS)
1226
return (EINVAL);
1227
1228
which = linux_to_bsd_resource[args->resource];
1229
if (which == -1)
1230
return (EINVAL);
1231
1232
lim_rlimit(td, which, &bsd_rlim);
1233
1234
rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
1235
rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
1236
return (copyout(&rlim, args->rlim, sizeof(rlim)));
1237
}
1238
1239
int
1240
linux_sched_setscheduler(struct thread *td,
1241
struct linux_sched_setscheduler_args *args)
1242
{
1243
struct sched_param sched_param;
1244
struct thread *tdt;
1245
int error, policy;
1246
1247
switch (args->policy) {
1248
case LINUX_SCHED_OTHER:
1249
policy = SCHED_OTHER;
1250
break;
1251
case LINUX_SCHED_FIFO:
1252
policy = SCHED_FIFO;
1253
break;
1254
case LINUX_SCHED_RR:
1255
policy = SCHED_RR;
1256
break;
1257
default:
1258
return (EINVAL);
1259
}
1260
1261
error = copyin(args->param, &sched_param, sizeof(sched_param));
1262
if (error)
1263
return (error);
1264
1265
if (linux_map_sched_prio) {
1266
switch (policy) {
1267
case SCHED_OTHER:
1268
if (sched_param.sched_priority != 0)
1269
return (EINVAL);
1270
1271
sched_param.sched_priority =
1272
PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1273
break;
1274
case SCHED_FIFO:
1275
case SCHED_RR:
1276
if (sched_param.sched_priority < 1 ||
1277
sched_param.sched_priority >= LINUX_MAX_RT_PRIO)
1278
return (EINVAL);
1279
1280
/*
1281
* Map [1, LINUX_MAX_RT_PRIO - 1] to
1282
* [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1283
*/
1284
sched_param.sched_priority =
1285
(sched_param.sched_priority - 1) *
1286
(RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1287
(LINUX_MAX_RT_PRIO - 1);
1288
break;
1289
}
1290
}
1291
1292
tdt = linux_tdfind(td, args->pid, -1);
1293
if (tdt == NULL)
1294
return (ESRCH);
1295
1296
error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
1297
PROC_UNLOCK(tdt->td_proc);
1298
return (error);
1299
}
1300
1301
int
1302
linux_sched_getscheduler(struct thread *td,
1303
struct linux_sched_getscheduler_args *args)
1304
{
1305
struct thread *tdt;
1306
int error, policy;
1307
1308
tdt = linux_tdfind(td, args->pid, -1);
1309
if (tdt == NULL)
1310
return (ESRCH);
1311
1312
error = kern_sched_getscheduler(td, tdt, &policy);
1313
PROC_UNLOCK(tdt->td_proc);
1314
1315
switch (policy) {
1316
case SCHED_OTHER:
1317
td->td_retval[0] = LINUX_SCHED_OTHER;
1318
break;
1319
case SCHED_FIFO:
1320
td->td_retval[0] = LINUX_SCHED_FIFO;
1321
break;
1322
case SCHED_RR:
1323
td->td_retval[0] = LINUX_SCHED_RR;
1324
break;
1325
}
1326
return (error);
1327
}
1328
1329
int
1330
linux_sched_get_priority_max(struct thread *td,
1331
struct linux_sched_get_priority_max_args *args)
1332
{
1333
struct sched_get_priority_max_args bsd;
1334
1335
if (linux_map_sched_prio) {
1336
switch (args->policy) {
1337
case LINUX_SCHED_OTHER:
1338
td->td_retval[0] = 0;
1339
return (0);
1340
case LINUX_SCHED_FIFO:
1341
case LINUX_SCHED_RR:
1342
td->td_retval[0] = LINUX_MAX_RT_PRIO - 1;
1343
return (0);
1344
default:
1345
return (EINVAL);
1346
}
1347
}
1348
1349
switch (args->policy) {
1350
case LINUX_SCHED_OTHER:
1351
bsd.policy = SCHED_OTHER;
1352
break;
1353
case LINUX_SCHED_FIFO:
1354
bsd.policy = SCHED_FIFO;
1355
break;
1356
case LINUX_SCHED_RR:
1357
bsd.policy = SCHED_RR;
1358
break;
1359
default:
1360
return (EINVAL);
1361
}
1362
return (sys_sched_get_priority_max(td, &bsd));
1363
}
1364
1365
int
1366
linux_sched_get_priority_min(struct thread *td,
1367
struct linux_sched_get_priority_min_args *args)
1368
{
1369
struct sched_get_priority_min_args bsd;
1370
1371
if (linux_map_sched_prio) {
1372
switch (args->policy) {
1373
case LINUX_SCHED_OTHER:
1374
td->td_retval[0] = 0;
1375
return (0);
1376
case LINUX_SCHED_FIFO:
1377
case LINUX_SCHED_RR:
1378
td->td_retval[0] = 1;
1379
return (0);
1380
default:
1381
return (EINVAL);
1382
}
1383
}
1384
1385
switch (args->policy) {
1386
case LINUX_SCHED_OTHER:
1387
bsd.policy = SCHED_OTHER;
1388
break;
1389
case LINUX_SCHED_FIFO:
1390
bsd.policy = SCHED_FIFO;
1391
break;
1392
case LINUX_SCHED_RR:
1393
bsd.policy = SCHED_RR;
1394
break;
1395
default:
1396
return (EINVAL);
1397
}
1398
return (sys_sched_get_priority_min(td, &bsd));
1399
}
1400
1401
#define REBOOT_CAD_ON 0x89abcdef
1402
#define REBOOT_CAD_OFF 0
1403
#define REBOOT_HALT 0xcdef0123
1404
#define REBOOT_RESTART 0x01234567
1405
#define REBOOT_RESTART2 0xA1B2C3D4
1406
#define REBOOT_POWEROFF 0x4321FEDC
1407
#define REBOOT_MAGIC1 0xfee1dead
1408
#define REBOOT_MAGIC2 0x28121969
1409
#define REBOOT_MAGIC2A 0x05121996
1410
#define REBOOT_MAGIC2B 0x16041998
1411
1412
int
1413
linux_reboot(struct thread *td, struct linux_reboot_args *args)
1414
{
1415
struct reboot_args bsd_args;
1416
1417
if (args->magic1 != REBOOT_MAGIC1)
1418
return (EINVAL);
1419
1420
switch (args->magic2) {
1421
case REBOOT_MAGIC2:
1422
case REBOOT_MAGIC2A:
1423
case REBOOT_MAGIC2B:
1424
break;
1425
default:
1426
return (EINVAL);
1427
}
1428
1429
switch (args->cmd) {
1430
case REBOOT_CAD_ON:
1431
case REBOOT_CAD_OFF:
1432
return (priv_check(td, PRIV_REBOOT));
1433
case REBOOT_HALT:
1434
bsd_args.opt = RB_HALT;
1435
break;
1436
case REBOOT_RESTART:
1437
case REBOOT_RESTART2:
1438
bsd_args.opt = 0;
1439
break;
1440
case REBOOT_POWEROFF:
1441
bsd_args.opt = RB_POWEROFF;
1442
break;
1443
default:
1444
return (EINVAL);
1445
}
1446
return (sys_reboot(td, &bsd_args));
1447
}
1448
1449
int
1450
linux_getpid(struct thread *td, struct linux_getpid_args *args)
1451
{
1452
1453
td->td_retval[0] = td->td_proc->p_pid;
1454
1455
return (0);
1456
}
1457
1458
int
1459
linux_gettid(struct thread *td, struct linux_gettid_args *args)
1460
{
1461
struct linux_emuldata *em;
1462
1463
em = em_find(td);
1464
KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
1465
1466
td->td_retval[0] = em->em_tid;
1467
1468
return (0);
1469
}
1470
1471
int
1472
linux_getppid(struct thread *td, struct linux_getppid_args *args)
1473
{
1474
1475
td->td_retval[0] = kern_getppid(td);
1476
return (0);
1477
}
1478
1479
int
1480
linux_getgid(struct thread *td, struct linux_getgid_args *args)
1481
{
1482
1483
td->td_retval[0] = td->td_ucred->cr_rgid;
1484
return (0);
1485
}
1486
1487
int
1488
linux_getuid(struct thread *td, struct linux_getuid_args *args)
1489
{
1490
1491
td->td_retval[0] = td->td_ucred->cr_ruid;
1492
return (0);
1493
}
1494
1495
int
1496
linux_getsid(struct thread *td, struct linux_getsid_args *args)
1497
{
1498
1499
return (kern_getsid(td, args->pid));
1500
}
1501
1502
int
1503
linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
1504
{
1505
int error;
1506
1507
error = kern_getpriority(td, args->which, args->who);
1508
td->td_retval[0] = 20 - td->td_retval[0];
1509
return (error);
1510
}
1511
1512
int
1513
linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
1514
{
1515
int name[2];
1516
1517
name[0] = CTL_KERN;
1518
name[1] = KERN_HOSTNAME;
1519
return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
1520
args->len, 0, 0));
1521
}
1522
1523
int
1524
linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
1525
{
1526
int name[2];
1527
1528
name[0] = CTL_KERN;
1529
name[1] = KERN_NISDOMAINNAME;
1530
return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
1531
args->len, 0, 0));
1532
}
1533
1534
int
1535
linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
1536
{
1537
1538
LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
1539
args->error_code);
1540
1541
/*
1542
* XXX: we should send a signal to the parent if
1543
* SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
1544
* as it doesnt occur often.
1545
*/
1546
exit1(td, args->error_code, 0);
1547
/* NOTREACHED */
1548
}
1549
1550
#define _LINUX_CAPABILITY_VERSION_1 0x19980330
1551
#define _LINUX_CAPABILITY_VERSION_2 0x20071026
1552
#define _LINUX_CAPABILITY_VERSION_3 0x20080522
1553
1554
struct l_user_cap_header {
1555
l_int version;
1556
l_int pid;
1557
};
1558
1559
struct l_user_cap_data {
1560
l_int effective;
1561
l_int permitted;
1562
l_int inheritable;
1563
};
1564
1565
int
1566
linux_capget(struct thread *td, struct linux_capget_args *uap)
1567
{
1568
struct l_user_cap_header luch;
1569
struct l_user_cap_data lucd[2];
1570
int error, u32s;
1571
1572
if (uap->hdrp == NULL)
1573
return (EFAULT);
1574
1575
error = copyin(uap->hdrp, &luch, sizeof(luch));
1576
if (error != 0)
1577
return (error);
1578
1579
switch (luch.version) {
1580
case _LINUX_CAPABILITY_VERSION_1:
1581
u32s = 1;
1582
break;
1583
case _LINUX_CAPABILITY_VERSION_2:
1584
case _LINUX_CAPABILITY_VERSION_3:
1585
u32s = 2;
1586
break;
1587
default:
1588
luch.version = _LINUX_CAPABILITY_VERSION_1;
1589
error = copyout(&luch, uap->hdrp, sizeof(luch));
1590
if (error)
1591
return (error);
1592
return (EINVAL);
1593
}
1594
1595
if (luch.pid)
1596
return (EPERM);
1597
1598
if (uap->datap) {
1599
/*
1600
* The current implementation doesn't support setting
1601
* a capability (it's essentially a stub) so indicate
1602
* that no capabilities are currently set or available
1603
* to request.
1604
*/
1605
memset(&lucd, 0, u32s * sizeof(lucd[0]));
1606
error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
1607
}
1608
1609
return (error);
1610
}
1611
1612
int
1613
linux_capset(struct thread *td, struct linux_capset_args *uap)
1614
{
1615
struct l_user_cap_header luch;
1616
struct l_user_cap_data lucd[2];
1617
int error, i, u32s;
1618
1619
if (uap->hdrp == NULL || uap->datap == NULL)
1620
return (EFAULT);
1621
1622
error = copyin(uap->hdrp, &luch, sizeof(luch));
1623
if (error != 0)
1624
return (error);
1625
1626
switch (luch.version) {
1627
case _LINUX_CAPABILITY_VERSION_1:
1628
u32s = 1;
1629
break;
1630
case _LINUX_CAPABILITY_VERSION_2:
1631
case _LINUX_CAPABILITY_VERSION_3:
1632
u32s = 2;
1633
break;
1634
default:
1635
luch.version = _LINUX_CAPABILITY_VERSION_1;
1636
error = copyout(&luch, uap->hdrp, sizeof(luch));
1637
if (error)
1638
return (error);
1639
return (EINVAL);
1640
}
1641
1642
if (luch.pid)
1643
return (EPERM);
1644
1645
error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
1646
if (error != 0)
1647
return (error);
1648
1649
/* We currently don't support setting any capabilities. */
1650
for (i = 0; i < u32s; i++) {
1651
if (lucd[i].effective || lucd[i].permitted ||
1652
lucd[i].inheritable) {
1653
linux_msg(td,
1654
"capset[%d] effective=0x%x, permitted=0x%x, "
1655
"inheritable=0x%x is not implemented", i,
1656
(int)lucd[i].effective, (int)lucd[i].permitted,
1657
(int)lucd[i].inheritable);
1658
return (EPERM);
1659
}
1660
}
1661
1662
return (0);
1663
}
1664
1665
int
1666
linux_prctl(struct thread *td, struct linux_prctl_args *args)
1667
{
1668
int error = 0, max_size, arg;
1669
struct proc *p = td->td_proc;
1670
char comm[LINUX_MAX_COMM_LEN];
1671
int pdeath_signal, trace_state;
1672
1673
switch (args->option) {
1674
case LINUX_PR_SET_PDEATHSIG:
1675
if (!LINUX_SIG_VALID(args->arg2))
1676
return (EINVAL);
1677
pdeath_signal = linux_to_bsd_signal(args->arg2);
1678
return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL,
1679
&pdeath_signal));
1680
case LINUX_PR_GET_PDEATHSIG:
1681
error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS,
1682
&pdeath_signal);
1683
if (error != 0)
1684
return (error);
1685
pdeath_signal = bsd_to_linux_signal(pdeath_signal);
1686
return (copyout(&pdeath_signal,
1687
(void *)(register_t)args->arg2,
1688
sizeof(pdeath_signal)));
1689
/*
1690
* In Linux, this flag controls if set[gu]id processes can coredump.
1691
* There are additional semantics imposed on processes that cannot
1692
* coredump:
1693
* - Such processes can not be ptraced.
1694
* - There are some semantics around ownership of process-related files
1695
* in the /proc namespace.
1696
*
1697
* In FreeBSD, we can (and by default, do) disable setuid coredump
1698
* system-wide with 'sugid_coredump.' We control tracability on a
1699
* per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag).
1700
* By happy coincidence, P2_NOTRACE also prevents coredumping. So the
1701
* procctl is roughly analogous to Linux's DUMPABLE.
1702
*
1703
* So, proxy these knobs to the corresponding PROC_TRACE setting.
1704
*/
1705
case LINUX_PR_GET_DUMPABLE:
1706
error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS,
1707
&trace_state);
1708
if (error != 0)
1709
return (error);
1710
td->td_retval[0] = (trace_state != -1);
1711
return (0);
1712
case LINUX_PR_SET_DUMPABLE:
1713
/*
1714
* It is only valid for userspace to set one of these two
1715
* flags, and only one at a time.
1716
*/
1717
switch (args->arg2) {
1718
case LINUX_SUID_DUMP_DISABLE:
1719
trace_state = PROC_TRACE_CTL_DISABLE_EXEC;
1720
break;
1721
case LINUX_SUID_DUMP_USER:
1722
trace_state = PROC_TRACE_CTL_ENABLE;
1723
break;
1724
default:
1725
return (EINVAL);
1726
}
1727
return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL,
1728
&trace_state));
1729
case LINUX_PR_GET_KEEPCAPS:
1730
/*
1731
* Indicate that we always clear the effective and
1732
* permitted capability sets when the user id becomes
1733
* non-zero (actually the capability sets are simply
1734
* always zero in the current implementation).
1735
*/
1736
td->td_retval[0] = 0;
1737
break;
1738
case LINUX_PR_SET_KEEPCAPS:
1739
/*
1740
* Ignore requests to keep the effective and permitted
1741
* capability sets when the user id becomes non-zero.
1742
*/
1743
break;
1744
case LINUX_PR_SET_NAME:
1745
/*
1746
* To be on the safe side we need to make sure to not
1747
* overflow the size a Linux program expects. We already
1748
* do this here in the copyin, so that we don't need to
1749
* check on copyout.
1750
*/
1751
max_size = MIN(sizeof(comm), sizeof(p->p_comm));
1752
error = copyinstr((void *)(register_t)args->arg2, comm,
1753
max_size, NULL);
1754
1755
/* Linux silently truncates the name if it is too long. */
1756
if (error == ENAMETOOLONG) {
1757
/*
1758
* XXX: copyinstr() isn't documented to populate the
1759
* array completely, so do a copyin() to be on the
1760
* safe side. This should be changed in case
1761
* copyinstr() is changed to guarantee this.
1762
*/
1763
error = copyin((void *)(register_t)args->arg2, comm,
1764
max_size - 1);
1765
comm[max_size - 1] = '\0';
1766
}
1767
if (error)
1768
return (error);
1769
1770
PROC_LOCK(p);
1771
strlcpy(p->p_comm, comm, sizeof(p->p_comm));
1772
PROC_UNLOCK(p);
1773
break;
1774
case LINUX_PR_GET_NAME:
1775
PROC_LOCK(p);
1776
strlcpy(comm, p->p_comm, sizeof(comm));
1777
PROC_UNLOCK(p);
1778
error = copyout(comm, (void *)(register_t)args->arg2,
1779
strlen(comm) + 1);
1780
break;
1781
case LINUX_PR_GET_SECCOMP:
1782
case LINUX_PR_SET_SECCOMP:
1783
/*
1784
* Same as returned by Linux without CONFIG_SECCOMP enabled.
1785
*/
1786
error = EINVAL;
1787
break;
1788
case LINUX_PR_CAPBSET_READ:
1789
#if 0
1790
/*
1791
* This makes too much noise with Ubuntu Focal.
1792
*/
1793
linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d",
1794
(int)args->arg2);
1795
#endif
1796
error = EINVAL;
1797
break;
1798
case LINUX_PR_SET_CHILD_SUBREAPER:
1799
if (args->arg2 == 0) {
1800
return (kern_procctl(td, P_PID, 0, PROC_REAP_RELEASE,
1801
NULL));
1802
}
1803
1804
return (kern_procctl(td, P_PID, 0, PROC_REAP_ACQUIRE,
1805
NULL));
1806
case LINUX_PR_SET_NO_NEW_PRIVS:
1807
arg = args->arg2 == 1 ?
1808
PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE;
1809
error = kern_procctl(td, P_PID, p->p_pid,
1810
PROC_NO_NEW_PRIVS_CTL, &arg);
1811
break;
1812
case LINUX_PR_SET_PTRACER:
1813
linux_msg(td, "unsupported prctl PR_SET_PTRACER");
1814
error = EINVAL;
1815
break;
1816
default:
1817
linux_msg(td, "unsupported prctl option %d", args->option);
1818
error = EINVAL;
1819
break;
1820
}
1821
1822
return (error);
1823
}
1824
1825
int
1826
linux_sched_setparam(struct thread *td,
1827
struct linux_sched_setparam_args *uap)
1828
{
1829
struct sched_param sched_param;
1830
struct thread *tdt;
1831
int error, policy;
1832
1833
error = copyin(uap->param, &sched_param, sizeof(sched_param));
1834
if (error)
1835
return (error);
1836
1837
tdt = linux_tdfind(td, uap->pid, -1);
1838
if (tdt == NULL)
1839
return (ESRCH);
1840
1841
if (linux_map_sched_prio) {
1842
error = kern_sched_getscheduler(td, tdt, &policy);
1843
if (error)
1844
goto out;
1845
1846
switch (policy) {
1847
case SCHED_OTHER:
1848
if (sched_param.sched_priority != 0) {
1849
error = EINVAL;
1850
goto out;
1851
}
1852
sched_param.sched_priority =
1853
PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1854
break;
1855
case SCHED_FIFO:
1856
case SCHED_RR:
1857
if (sched_param.sched_priority < 1 ||
1858
sched_param.sched_priority >= LINUX_MAX_RT_PRIO) {
1859
error = EINVAL;
1860
goto out;
1861
}
1862
/*
1863
* Map [1, LINUX_MAX_RT_PRIO - 1] to
1864
* [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1865
*/
1866
sched_param.sched_priority =
1867
(sched_param.sched_priority - 1) *
1868
(RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1869
(LINUX_MAX_RT_PRIO - 1);
1870
break;
1871
}
1872
}
1873
1874
error = kern_sched_setparam(td, tdt, &sched_param);
1875
out: PROC_UNLOCK(tdt->td_proc);
1876
return (error);
1877
}
1878
1879
int
1880
linux_sched_getparam(struct thread *td,
1881
struct linux_sched_getparam_args *uap)
1882
{
1883
struct sched_param sched_param;
1884
struct thread *tdt;
1885
int error, policy;
1886
1887
tdt = linux_tdfind(td, uap->pid, -1);
1888
if (tdt == NULL)
1889
return (ESRCH);
1890
1891
error = kern_sched_getparam(td, tdt, &sched_param);
1892
if (error) {
1893
PROC_UNLOCK(tdt->td_proc);
1894
return (error);
1895
}
1896
1897
if (linux_map_sched_prio) {
1898
error = kern_sched_getscheduler(td, tdt, &policy);
1899
PROC_UNLOCK(tdt->td_proc);
1900
if (error)
1901
return (error);
1902
1903
switch (policy) {
1904
case SCHED_OTHER:
1905
sched_param.sched_priority = 0;
1906
break;
1907
case SCHED_FIFO:
1908
case SCHED_RR:
1909
/*
1910
* Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to
1911
* [1, LINUX_MAX_RT_PRIO - 1] (rounding up).
1912
*/
1913
sched_param.sched_priority =
1914
(sched_param.sched_priority *
1915
(LINUX_MAX_RT_PRIO - 1) +
1916
(RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) /
1917
(RTP_PRIO_MAX - RTP_PRIO_MIN) + 1;
1918
break;
1919
}
1920
} else
1921
PROC_UNLOCK(tdt->td_proc);
1922
1923
error = copyout(&sched_param, uap->param, sizeof(sched_param));
1924
return (error);
1925
}
1926
1927
/*
1928
* Get affinity of a process.
1929
*/
1930
int
1931
linux_sched_getaffinity(struct thread *td,
1932
struct linux_sched_getaffinity_args *args)
1933
{
1934
struct thread *tdt;
1935
cpuset_t *mask;
1936
size_t size;
1937
int error;
1938
id_t tid;
1939
1940
tdt = linux_tdfind(td, args->pid, -1);
1941
if (tdt == NULL)
1942
return (ESRCH);
1943
tid = tdt->td_tid;
1944
PROC_UNLOCK(tdt->td_proc);
1945
1946
mask = malloc(sizeof(cpuset_t), M_LINUX, M_WAITOK | M_ZERO);
1947
size = min(args->len, sizeof(cpuset_t));
1948
error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
1949
tid, size, mask);
1950
if (error == ERANGE)
1951
error = EINVAL;
1952
if (error == 0)
1953
error = copyout(mask, args->user_mask_ptr, size);
1954
if (error == 0)
1955
td->td_retval[0] = size;
1956
free(mask, M_LINUX);
1957
return (error);
1958
}
1959
1960
/*
1961
* Set affinity of a process.
1962
*/
1963
int
1964
linux_sched_setaffinity(struct thread *td,
1965
struct linux_sched_setaffinity_args *args)
1966
{
1967
struct thread *tdt;
1968
cpuset_t *mask;
1969
int cpu, error;
1970
size_t len;
1971
id_t tid;
1972
1973
tdt = linux_tdfind(td, args->pid, -1);
1974
if (tdt == NULL)
1975
return (ESRCH);
1976
tid = tdt->td_tid;
1977
PROC_UNLOCK(tdt->td_proc);
1978
1979
len = min(args->len, sizeof(cpuset_t));
1980
mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO);
1981
error = copyin(args->user_mask_ptr, mask, len);
1982
if (error != 0)
1983
goto out;
1984
/* Linux ignore high bits */
1985
CPU_FOREACH_ISSET(cpu, mask)
1986
if (cpu > mp_maxid)
1987
CPU_CLR(cpu, mask);
1988
1989
error = kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
1990
tid, mask);
1991
if (error == EDEADLK)
1992
error = EINVAL;
1993
out:
1994
free(mask, M_TEMP);
1995
return (error);
1996
}
1997
1998
struct linux_rlimit64 {
1999
uint64_t rlim_cur;
2000
uint64_t rlim_max;
2001
};
2002
2003
int
2004
linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
2005
{
2006
struct rlimit rlim, nrlim;
2007
struct linux_rlimit64 lrlim;
2008
struct proc *p;
2009
u_int which;
2010
int flags;
2011
int error;
2012
2013
if (args->new == NULL && args->old != NULL) {
2014
if (linux_get_dummy_limit(td, args->resource, &rlim)) {
2015
lrlim.rlim_cur = rlim.rlim_cur;
2016
lrlim.rlim_max = rlim.rlim_max;
2017
return (copyout(&lrlim, args->old, sizeof(lrlim)));
2018
}
2019
}
2020
2021
if (args->resource >= LINUX_RLIM_NLIMITS)
2022
return (EINVAL);
2023
2024
which = linux_to_bsd_resource[args->resource];
2025
if (which == -1)
2026
return (EINVAL);
2027
2028
if (args->new != NULL) {
2029
/*
2030
* Note. Unlike FreeBSD where rlim is signed 64-bit Linux
2031
* rlim is unsigned 64-bit. FreeBSD treats negative limits
2032
* as INFINITY so we do not need a conversion even.
2033
*/
2034
error = copyin(args->new, &nrlim, sizeof(nrlim));
2035
if (error != 0)
2036
return (error);
2037
}
2038
2039
flags = PGET_HOLD | PGET_NOTWEXIT;
2040
if (args->new != NULL)
2041
flags |= PGET_CANDEBUG;
2042
else
2043
flags |= PGET_CANSEE;
2044
if (args->pid == 0) {
2045
p = td->td_proc;
2046
PHOLD(p);
2047
} else {
2048
error = pget(args->pid, flags, &p);
2049
if (error != 0)
2050
return (error);
2051
}
2052
if (args->old != NULL) {
2053
PROC_LOCK(p);
2054
lim_rlimit_proc(p, which, &rlim);
2055
PROC_UNLOCK(p);
2056
if (rlim.rlim_cur == RLIM_INFINITY)
2057
lrlim.rlim_cur = LINUX_RLIM_INFINITY;
2058
else
2059
lrlim.rlim_cur = rlim.rlim_cur;
2060
if (rlim.rlim_max == RLIM_INFINITY)
2061
lrlim.rlim_max = LINUX_RLIM_INFINITY;
2062
else
2063
lrlim.rlim_max = rlim.rlim_max;
2064
error = copyout(&lrlim, args->old, sizeof(lrlim));
2065
if (error != 0)
2066
goto out;
2067
}
2068
2069
if (args->new != NULL)
2070
error = kern_proc_setrlimit(td, p, which, &nrlim);
2071
2072
out:
2073
PRELE(p);
2074
return (error);
2075
}
2076
2077
int
2078
linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
2079
{
2080
struct timespec ts, *tsp;
2081
int error;
2082
2083
if (args->tsp != NULL) {
2084
error = linux_get_timespec(&ts, args->tsp);
2085
if (error != 0)
2086
return (error);
2087
tsp = &ts;
2088
} else
2089
tsp = NULL;
2090
2091
error = linux_common_pselect6(td, args->nfds, args->readfds,
2092
args->writefds, args->exceptfds, tsp, args->sig);
2093
2094
if (args->tsp != NULL)
2095
linux_put_timespec(&ts, args->tsp);
2096
return (error);
2097
}
2098
2099
static int
2100
linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds,
2101
l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp,
2102
l_uintptr_t *sig)
2103
{
2104
struct timeval utv, tv0, tv1, *tvp;
2105
struct l_pselect6arg lpse6;
2106
sigset_t *ssp;
2107
sigset_t ss;
2108
int error;
2109
2110
ssp = NULL;
2111
if (sig != NULL) {
2112
error = copyin(sig, &lpse6, sizeof(lpse6));
2113
if (error != 0)
2114
return (error);
2115
error = linux_copyin_sigset(td, PTRIN(lpse6.ss),
2116
lpse6.ss_len, &ss, &ssp);
2117
if (error != 0)
2118
return (error);
2119
} else
2120
ssp = NULL;
2121
2122
/*
2123
* Currently glibc changes nanosecond number to microsecond.
2124
* This mean losing precision but for now it is hardly seen.
2125
*/
2126
if (tsp != NULL) {
2127
TIMESPEC_TO_TIMEVAL(&utv, tsp);
2128
if (itimerfix(&utv))
2129
return (EINVAL);
2130
2131
microtime(&tv0);
2132
tvp = &utv;
2133
} else
2134
tvp = NULL;
2135
2136
error = kern_pselect(td, nfds, readfds, writefds,
2137
exceptfds, tvp, ssp, LINUX_NFDBITS);
2138
2139
if (tsp != NULL) {
2140
/*
2141
* Compute how much time was left of the timeout,
2142
* by subtracting the current time and the time
2143
* before we started the call, and subtracting
2144
* that result from the user-supplied value.
2145
*/
2146
microtime(&tv1);
2147
timevalsub(&tv1, &tv0);
2148
timevalsub(&utv, &tv1);
2149
if (utv.tv_sec < 0)
2150
timevalclear(&utv);
2151
TIMEVAL_TO_TIMESPEC(&utv, tsp);
2152
}
2153
return (error);
2154
}
2155
2156
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2157
int
2158
linux_pselect6_time64(struct thread *td,
2159
struct linux_pselect6_time64_args *args)
2160
{
2161
struct timespec ts, *tsp;
2162
int error;
2163
2164
if (args->tsp != NULL) {
2165
error = linux_get_timespec64(&ts, args->tsp);
2166
if (error != 0)
2167
return (error);
2168
tsp = &ts;
2169
} else
2170
tsp = NULL;
2171
2172
error = linux_common_pselect6(td, args->nfds, args->readfds,
2173
args->writefds, args->exceptfds, tsp, args->sig);
2174
2175
if (args->tsp != NULL)
2176
linux_put_timespec64(&ts, args->tsp);
2177
return (error);
2178
}
2179
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2180
2181
int
2182
linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
2183
{
2184
struct timespec uts, *tsp;
2185
int error;
2186
2187
if (args->tsp != NULL) {
2188
error = linux_get_timespec(&uts, args->tsp);
2189
if (error != 0)
2190
return (error);
2191
tsp = &uts;
2192
} else
2193
tsp = NULL;
2194
2195
error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2196
args->sset, args->ssize);
2197
if (error == 0 && args->tsp != NULL)
2198
error = linux_put_timespec(&uts, args->tsp);
2199
return (error);
2200
}
2201
2202
static int
2203
linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds,
2204
struct timespec *tsp, l_sigset_t *sset, l_size_t ssize)
2205
{
2206
struct timespec ts0, ts1;
2207
struct pollfd stackfds[32];
2208
struct pollfd *kfds;
2209
sigset_t *ssp;
2210
sigset_t ss;
2211
int error;
2212
2213
if (kern_poll_maxfds(nfds))
2214
return (EINVAL);
2215
if (sset != NULL) {
2216
error = linux_copyin_sigset(td, sset, ssize, &ss, &ssp);
2217
if (error != 0)
2218
return (error);
2219
} else
2220
ssp = NULL;
2221
if (tsp != NULL)
2222
nanotime(&ts0);
2223
2224
if (nfds > nitems(stackfds))
2225
kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
2226
else
2227
kfds = stackfds;
2228
error = linux_pollin(td, kfds, fds, nfds);
2229
if (error != 0)
2230
goto out;
2231
2232
error = kern_poll_kfds(td, kfds, nfds, tsp, ssp);
2233
if (error == 0)
2234
error = linux_pollout(td, kfds, fds, nfds);
2235
2236
if (error == 0 && tsp != NULL) {
2237
if (td->td_retval[0]) {
2238
nanotime(&ts1);
2239
timespecsub(&ts1, &ts0, &ts1);
2240
timespecsub(tsp, &ts1, tsp);
2241
if (tsp->tv_sec < 0)
2242
timespecclear(tsp);
2243
} else
2244
timespecclear(tsp);
2245
}
2246
2247
out:
2248
if (nfds > nitems(stackfds))
2249
free(kfds, M_TEMP);
2250
return (error);
2251
}
2252
2253
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2254
int
2255
linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args)
2256
{
2257
struct timespec uts, *tsp;
2258
int error;
2259
2260
if (args->tsp != NULL) {
2261
error = linux_get_timespec64(&uts, args->tsp);
2262
if (error != 0)
2263
return (error);
2264
tsp = &uts;
2265
} else
2266
tsp = NULL;
2267
error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2268
args->sset, args->ssize);
2269
if (error == 0 && args->tsp != NULL)
2270
error = linux_put_timespec64(&uts, args->tsp);
2271
return (error);
2272
}
2273
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2274
2275
static int
2276
linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2277
{
2278
int error;
2279
u_int i;
2280
2281
error = copyin(ufds, fds, nfd * sizeof(*fds));
2282
if (error != 0)
2283
return (error);
2284
2285
for (i = 0; i < nfd; i++) {
2286
if (fds->events != 0)
2287
linux_to_bsd_poll_events(td, fds->fd,
2288
fds->events, &fds->events);
2289
fds++;
2290
}
2291
return (0);
2292
}
2293
2294
static int
2295
linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2296
{
2297
int error = 0;
2298
u_int i, n = 0;
2299
2300
for (i = 0; i < nfd; i++) {
2301
if (fds->revents != 0) {
2302
bsd_to_linux_poll_events(fds->revents,
2303
&fds->revents);
2304
n++;
2305
}
2306
error = copyout(&fds->revents, &ufds->revents,
2307
sizeof(ufds->revents));
2308
if (error)
2309
return (error);
2310
fds++;
2311
ufds++;
2312
}
2313
td->td_retval[0] = n;
2314
return (0);
2315
}
2316
2317
static int
2318
linux_sched_rr_get_interval_common(struct thread *td, pid_t pid,
2319
struct timespec *ts)
2320
{
2321
struct thread *tdt;
2322
int error;
2323
2324
/*
2325
* According to man in case the invalid pid specified
2326
* EINVAL should be returned.
2327
*/
2328
if (pid < 0)
2329
return (EINVAL);
2330
2331
tdt = linux_tdfind(td, pid, -1);
2332
if (tdt == NULL)
2333
return (ESRCH);
2334
2335
error = kern_sched_rr_get_interval_td(td, tdt, ts);
2336
PROC_UNLOCK(tdt->td_proc);
2337
return (error);
2338
}
2339
2340
int
2341
linux_sched_rr_get_interval(struct thread *td,
2342
struct linux_sched_rr_get_interval_args *uap)
2343
{
2344
struct timespec ts;
2345
int error;
2346
2347
error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
2348
if (error != 0)
2349
return (error);
2350
return (linux_put_timespec(&ts, uap->interval));
2351
}
2352
2353
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2354
int
2355
linux_sched_rr_get_interval_time64(struct thread *td,
2356
struct linux_sched_rr_get_interval_time64_args *uap)
2357
{
2358
struct timespec ts;
2359
int error;
2360
2361
error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
2362
if (error != 0)
2363
return (error);
2364
return (linux_put_timespec64(&ts, uap->interval));
2365
}
2366
#endif
2367
2368
/*
2369
* In case when the Linux thread is the initial thread in
2370
* the thread group thread id is equal to the process id.
2371
* Glibc depends on this magic (assert in pthread_getattr_np.c).
2372
*/
2373
struct thread *
2374
linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
2375
{
2376
struct linux_emuldata *em;
2377
struct thread *tdt;
2378
struct proc *p;
2379
2380
tdt = NULL;
2381
if (tid == 0 || tid == td->td_tid) {
2382
if (pid != -1 && td->td_proc->p_pid != pid)
2383
return (NULL);
2384
PROC_LOCK(td->td_proc);
2385
return (td);
2386
} else if (tid > PID_MAX)
2387
return (tdfind(tid, pid));
2388
2389
/*
2390
* Initial thread where the tid equal to the pid.
2391
*/
2392
p = pfind(tid);
2393
if (p != NULL) {
2394
if (SV_PROC_ABI(p) != SV_ABI_LINUX ||
2395
(pid != -1 && tid != pid)) {
2396
/*
2397
* p is not a Linuxulator process.
2398
*/
2399
PROC_UNLOCK(p);
2400
return (NULL);
2401
}
2402
FOREACH_THREAD_IN_PROC(p, tdt) {
2403
em = em_find(tdt);
2404
if (tid == em->em_tid)
2405
return (tdt);
2406
}
2407
PROC_UNLOCK(p);
2408
}
2409
return (NULL);
2410
}
2411
2412
void
2413
linux_to_bsd_waitopts(int options, int *bsdopts)
2414
{
2415
2416
if (options & LINUX_WNOHANG)
2417
*bsdopts |= WNOHANG;
2418
if (options & LINUX_WUNTRACED)
2419
*bsdopts |= WUNTRACED;
2420
if (options & LINUX_WEXITED)
2421
*bsdopts |= WEXITED;
2422
if (options & LINUX_WCONTINUED)
2423
*bsdopts |= WCONTINUED;
2424
if (options & LINUX_WNOWAIT)
2425
*bsdopts |= WNOWAIT;
2426
2427
if (options & __WCLONE)
2428
*bsdopts |= WLINUXCLONE;
2429
}
2430
2431
int
2432
linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
2433
{
2434
struct uio uio;
2435
struct iovec iov;
2436
int error;
2437
2438
if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
2439
return (EINVAL);
2440
if (args->count > INT_MAX)
2441
args->count = INT_MAX;
2442
2443
iov.iov_base = args->buf;
2444
iov.iov_len = args->count;
2445
2446
uio.uio_iov = &iov;
2447
uio.uio_iovcnt = 1;
2448
uio.uio_resid = iov.iov_len;
2449
uio.uio_segflg = UIO_USERSPACE;
2450
uio.uio_rw = UIO_READ;
2451
uio.uio_td = td;
2452
2453
error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
2454
if (error == 0)
2455
td->td_retval[0] = args->count - uio.uio_resid;
2456
return (error);
2457
}
2458
2459
int
2460
linux_mincore(struct thread *td, struct linux_mincore_args *args)
2461
{
2462
2463
/* Needs to be page-aligned */
2464
if (args->start & PAGE_MASK)
2465
return (EINVAL);
2466
return (kern_mincore(td, args->start, args->len, args->vec));
2467
}
2468
2469
#define SYSLOG_TAG "<6>"
2470
2471
int
2472
linux_syslog(struct thread *td, struct linux_syslog_args *args)
2473
{
2474
char buf[128], *src, *dst;
2475
u_int seq;
2476
int buflen, error;
2477
2478
if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) {
2479
linux_msg(td, "syslog unsupported type 0x%x", args->type);
2480
return (EINVAL);
2481
}
2482
2483
if (args->len < 6) {
2484
td->td_retval[0] = 0;
2485
return (0);
2486
}
2487
2488
error = priv_check(td, PRIV_MSGBUF);
2489
if (error)
2490
return (error);
2491
2492
mtx_lock(&msgbuf_lock);
2493
msgbuf_peekbytes(msgbufp, NULL, 0, &seq);
2494
mtx_unlock(&msgbuf_lock);
2495
2496
dst = args->buf;
2497
error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG));
2498
/* The -1 is to skip the trailing '\0'. */
2499
dst += sizeof(SYSLOG_TAG) - 1;
2500
2501
while (error == 0) {
2502
mtx_lock(&msgbuf_lock);
2503
buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq);
2504
mtx_unlock(&msgbuf_lock);
2505
2506
if (buflen == 0)
2507
break;
2508
2509
for (src = buf; src < buf + buflen && error == 0; src++) {
2510
if (*src == '\0')
2511
continue;
2512
2513
if (dst >= args->buf + args->len)
2514
goto out;
2515
2516
error = copyout(src, dst, 1);
2517
dst++;
2518
2519
if (*src == '\n' && *(src + 1) != '<' &&
2520
dst + sizeof(SYSLOG_TAG) < args->buf + args->len) {
2521
error = copyout(&SYSLOG_TAG,
2522
dst, sizeof(SYSLOG_TAG));
2523
dst += sizeof(SYSLOG_TAG) - 1;
2524
}
2525
}
2526
}
2527
out:
2528
td->td_retval[0] = dst - args->buf;
2529
return (error);
2530
}
2531
2532
int
2533
linux_getcpu(struct thread *td, struct linux_getcpu_args *args)
2534
{
2535
int cpu, error, node;
2536
2537
cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */
2538
error = 0;
2539
node = cpuid_to_pcpu[cpu]->pc_domain;
2540
2541
if (args->cpu != NULL)
2542
error = copyout(&cpu, args->cpu, sizeof(l_int));
2543
if (args->node != NULL)
2544
error = copyout(&node, args->node, sizeof(l_int));
2545
return (error);
2546
}
2547
2548
#if defined(__i386__) || defined(__amd64__)
2549
int
2550
linux_poll(struct thread *td, struct linux_poll_args *args)
2551
{
2552
struct timespec ts, *tsp;
2553
2554
if (args->timeout != INFTIM) {
2555
if (args->timeout < 0)
2556
return (EINVAL);
2557
ts.tv_sec = args->timeout / 1000;
2558
ts.tv_nsec = (args->timeout % 1000) * 1000000;
2559
tsp = &ts;
2560
} else
2561
tsp = NULL;
2562
2563
return (linux_common_ppoll(td, args->fds, args->nfds,
2564
tsp, NULL, 0));
2565
}
2566
#endif /* __i386__ || __amd64__ */
2567
2568
int
2569
linux_seccomp(struct thread *td, struct linux_seccomp_args *args)
2570
{
2571
2572
switch (args->op) {
2573
case LINUX_SECCOMP_GET_ACTION_AVAIL:
2574
return (EOPNOTSUPP);
2575
default:
2576
/*
2577
* Ignore unknown operations, just like Linux kernel built
2578
* without CONFIG_SECCOMP.
2579
*/
2580
return (EINVAL);
2581
}
2582
}
2583
2584
/*
2585
* Custom version of exec_copyin_args(), to copy out argument and environment
2586
* strings from the old process address space into the temporary string buffer.
2587
* Based on freebsd32_exec_copyin_args.
2588
*/
2589
static int
2590
linux_exec_copyin_args(struct image_args *args, const char *fname,
2591
l_uintptr_t *argv, l_uintptr_t *envv)
2592
{
2593
char *argp, *envp;
2594
l_uintptr_t *ptr, arg;
2595
int error;
2596
2597
bzero(args, sizeof(*args));
2598
if (argv == NULL)
2599
return (EFAULT);
2600
2601
/*
2602
* Allocate demand-paged memory for the file name, argument, and
2603
* environment strings.
2604
*/
2605
error = exec_alloc_args(args);
2606
if (error != 0)
2607
return (error);
2608
2609
/*
2610
* Copy the file name.
2611
*/
2612
error = exec_args_add_fname(args, fname, UIO_USERSPACE);
2613
if (error != 0)
2614
goto err_exit;
2615
2616
/*
2617
* extract arguments first
2618
*/
2619
ptr = argv;
2620
for (;;) {
2621
error = copyin(ptr++, &arg, sizeof(arg));
2622
if (error)
2623
goto err_exit;
2624
if (arg == 0)
2625
break;
2626
argp = PTRIN(arg);
2627
error = exec_args_add_arg(args, argp, UIO_USERSPACE);
2628
if (error != 0)
2629
goto err_exit;
2630
}
2631
2632
/*
2633
* This comment is from Linux do_execveat_common:
2634
* When argv is empty, add an empty string ("") as argv[0] to
2635
* ensure confused userspace programs that start processing
2636
* from argv[1] won't end up walking envp.
2637
*/
2638
if (args->argc == 0 &&
2639
(error = exec_args_add_arg(args, "", UIO_SYSSPACE) != 0))
2640
goto err_exit;
2641
2642
/*
2643
* extract environment strings
2644
*/
2645
if (envv) {
2646
ptr = envv;
2647
for (;;) {
2648
error = copyin(ptr++, &arg, sizeof(arg));
2649
if (error)
2650
goto err_exit;
2651
if (arg == 0)
2652
break;
2653
envp = PTRIN(arg);
2654
error = exec_args_add_env(args, envp, UIO_USERSPACE);
2655
if (error != 0)
2656
goto err_exit;
2657
}
2658
}
2659
2660
return (0);
2661
2662
err_exit:
2663
exec_free_args(args);
2664
return (error);
2665
}
2666
2667
int
2668
linux_execve(struct thread *td, struct linux_execve_args *args)
2669
{
2670
struct image_args eargs;
2671
int error;
2672
2673
LINUX_CTR(execve);
2674
2675
error = linux_exec_copyin_args(&eargs, args->path, args->argp,
2676
args->envp);
2677
if (error == 0)
2678
error = linux_common_execve(td, &eargs);
2679
AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
2680
return (error);
2681
}
2682
2683
static void
2684
linux_up_rtprio_if(struct thread *td1, struct rtprio *rtp)
2685
{
2686
struct rtprio rtp2;
2687
2688
pri_to_rtp(td1, &rtp2);
2689
if (rtp2.type < rtp->type ||
2690
(rtp2.type == rtp->type &&
2691
rtp2.prio < rtp->prio)) {
2692
rtp->type = rtp2.type;
2693
rtp->prio = rtp2.prio;
2694
}
2695
}
2696
2697
#define LINUX_PRIO_DIVIDER RTP_PRIO_MAX / LINUX_IOPRIO_MAX
2698
2699
static int
2700
linux_rtprio2ioprio(struct rtprio *rtp)
2701
{
2702
int ioprio, prio;
2703
2704
switch (rtp->type) {
2705
case RTP_PRIO_IDLE:
2706
prio = RTP_PRIO_MIN;
2707
ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_IDLE, prio);
2708
break;
2709
case RTP_PRIO_NORMAL:
2710
prio = rtp->prio / LINUX_PRIO_DIVIDER;
2711
ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_BE, prio);
2712
break;
2713
case RTP_PRIO_REALTIME:
2714
prio = rtp->prio / LINUX_PRIO_DIVIDER;
2715
ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_RT, prio);
2716
break;
2717
default:
2718
prio = RTP_PRIO_MIN;
2719
ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_NONE, prio);
2720
break;
2721
}
2722
return (ioprio);
2723
}
2724
2725
static int
2726
linux_ioprio2rtprio(int ioprio, struct rtprio *rtp)
2727
{
2728
2729
switch (LINUX_IOPRIO_PRIO_CLASS(ioprio)) {
2730
case LINUX_IOPRIO_CLASS_IDLE:
2731
rtp->prio = RTP_PRIO_MIN;
2732
rtp->type = RTP_PRIO_IDLE;
2733
break;
2734
case LINUX_IOPRIO_CLASS_BE:
2735
rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER;
2736
rtp->type = RTP_PRIO_NORMAL;
2737
break;
2738
case LINUX_IOPRIO_CLASS_RT:
2739
rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER;
2740
rtp->type = RTP_PRIO_REALTIME;
2741
break;
2742
default:
2743
return (EINVAL);
2744
}
2745
return (0);
2746
}
2747
#undef LINUX_PRIO_DIVIDER
2748
2749
int
2750
linux_ioprio_get(struct thread *td, struct linux_ioprio_get_args *args)
2751
{
2752
struct thread *td1;
2753
struct rtprio rtp;
2754
struct pgrp *pg;
2755
struct proc *p;
2756
int error, found;
2757
2758
p = NULL;
2759
td1 = NULL;
2760
error = 0;
2761
found = 0;
2762
rtp.type = RTP_PRIO_IDLE;
2763
rtp.prio = RTP_PRIO_MAX;
2764
switch (args->which) {
2765
case LINUX_IOPRIO_WHO_PROCESS:
2766
if (args->who == 0) {
2767
td1 = td;
2768
p = td1->td_proc;
2769
PROC_LOCK(p);
2770
} else if (args->who > PID_MAX) {
2771
td1 = linux_tdfind(td, args->who, -1);
2772
if (td1 != NULL)
2773
p = td1->td_proc;
2774
} else
2775
p = pfind(args->who);
2776
if (p == NULL)
2777
return (ESRCH);
2778
if ((error = p_cansee(td, p))) {
2779
PROC_UNLOCK(p);
2780
break;
2781
}
2782
if (td1 != NULL) {
2783
pri_to_rtp(td1, &rtp);
2784
} else {
2785
FOREACH_THREAD_IN_PROC(p, td1) {
2786
linux_up_rtprio_if(td1, &rtp);
2787
}
2788
}
2789
found++;
2790
PROC_UNLOCK(p);
2791
break;
2792
case LINUX_IOPRIO_WHO_PGRP:
2793
sx_slock(&proctree_lock);
2794
if (args->who == 0) {
2795
pg = td->td_proc->p_pgrp;
2796
PGRP_LOCK(pg);
2797
} else {
2798
pg = pgfind(args->who);
2799
if (pg == NULL) {
2800
sx_sunlock(&proctree_lock);
2801
error = ESRCH;
2802
break;
2803
}
2804
}
2805
sx_sunlock(&proctree_lock);
2806
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2807
PROC_LOCK(p);
2808
if (p->p_state == PRS_NORMAL &&
2809
p_cansee(td, p) == 0) {
2810
FOREACH_THREAD_IN_PROC(p, td1) {
2811
linux_up_rtprio_if(td1, &rtp);
2812
found++;
2813
}
2814
}
2815
PROC_UNLOCK(p);
2816
}
2817
PGRP_UNLOCK(pg);
2818
break;
2819
case LINUX_IOPRIO_WHO_USER:
2820
if (args->who == 0)
2821
args->who = td->td_ucred->cr_uid;
2822
sx_slock(&allproc_lock);
2823
FOREACH_PROC_IN_SYSTEM(p) {
2824
PROC_LOCK(p);
2825
if (p->p_state == PRS_NORMAL &&
2826
p->p_ucred->cr_uid == args->who &&
2827
p_cansee(td, p) == 0) {
2828
FOREACH_THREAD_IN_PROC(p, td1) {
2829
linux_up_rtprio_if(td1, &rtp);
2830
found++;
2831
}
2832
}
2833
PROC_UNLOCK(p);
2834
}
2835
sx_sunlock(&allproc_lock);
2836
break;
2837
default:
2838
error = EINVAL;
2839
break;
2840
}
2841
if (error == 0) {
2842
if (found != 0)
2843
td->td_retval[0] = linux_rtprio2ioprio(&rtp);
2844
else
2845
error = ESRCH;
2846
}
2847
return (error);
2848
}
2849
2850
int
2851
linux_ioprio_set(struct thread *td, struct linux_ioprio_set_args *args)
2852
{
2853
struct thread *td1;
2854
struct rtprio rtp;
2855
struct pgrp *pg;
2856
struct proc *p;
2857
int error;
2858
2859
if ((error = linux_ioprio2rtprio(args->ioprio, &rtp)) != 0)
2860
return (error);
2861
/* Attempts to set high priorities (REALTIME) require su privileges. */
2862
if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME &&
2863
(error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0)
2864
return (error);
2865
2866
p = NULL;
2867
td1 = NULL;
2868
switch (args->which) {
2869
case LINUX_IOPRIO_WHO_PROCESS:
2870
if (args->who == 0) {
2871
td1 = td;
2872
p = td1->td_proc;
2873
PROC_LOCK(p);
2874
} else if (args->who > PID_MAX) {
2875
td1 = linux_tdfind(td, args->who, -1);
2876
if (td1 != NULL)
2877
p = td1->td_proc;
2878
} else
2879
p = pfind(args->who);
2880
if (p == NULL)
2881
return (ESRCH);
2882
if ((error = p_cansched(td, p))) {
2883
PROC_UNLOCK(p);
2884
break;
2885
}
2886
if (td1 != NULL) {
2887
error = rtp_to_pri(&rtp, td1);
2888
} else {
2889
FOREACH_THREAD_IN_PROC(p, td1) {
2890
if ((error = rtp_to_pri(&rtp, td1)) != 0)
2891
break;
2892
}
2893
}
2894
PROC_UNLOCK(p);
2895
break;
2896
case LINUX_IOPRIO_WHO_PGRP:
2897
sx_slock(&proctree_lock);
2898
if (args->who == 0) {
2899
pg = td->td_proc->p_pgrp;
2900
PGRP_LOCK(pg);
2901
} else {
2902
pg = pgfind(args->who);
2903
if (pg == NULL) {
2904
sx_sunlock(&proctree_lock);
2905
error = ESRCH;
2906
break;
2907
}
2908
}
2909
sx_sunlock(&proctree_lock);
2910
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2911
PROC_LOCK(p);
2912
if (p->p_state == PRS_NORMAL &&
2913
p_cansched(td, p) == 0) {
2914
FOREACH_THREAD_IN_PROC(p, td1) {
2915
if ((error = rtp_to_pri(&rtp, td1)) != 0)
2916
break;
2917
}
2918
}
2919
PROC_UNLOCK(p);
2920
if (error != 0)
2921
break;
2922
}
2923
PGRP_UNLOCK(pg);
2924
break;
2925
case LINUX_IOPRIO_WHO_USER:
2926
if (args->who == 0)
2927
args->who = td->td_ucred->cr_uid;
2928
sx_slock(&allproc_lock);
2929
FOREACH_PROC_IN_SYSTEM(p) {
2930
PROC_LOCK(p);
2931
if (p->p_state == PRS_NORMAL &&
2932
p->p_ucred->cr_uid == args->who &&
2933
p_cansched(td, p) == 0) {
2934
FOREACH_THREAD_IN_PROC(p, td1) {
2935
if ((error = rtp_to_pri(&rtp, td1)) != 0)
2936
break;
2937
}
2938
}
2939
PROC_UNLOCK(p);
2940
if (error != 0)
2941
break;
2942
}
2943
sx_sunlock(&allproc_lock);
2944
break;
2945
default:
2946
error = EINVAL;
2947
break;
2948
}
2949
return (error);
2950
}
2951
2952
/* The only flag is O_NONBLOCK */
2953
#define B2L_MQ_FLAGS(bflags) ((bflags) != 0 ? LINUX_O_NONBLOCK : 0)
2954
#define L2B_MQ_FLAGS(lflags) ((lflags) != 0 ? O_NONBLOCK : 0)
2955
2956
int
2957
linux_mq_open(struct thread *td, struct linux_mq_open_args *args)
2958
{
2959
struct mq_attr attr;
2960
int error, flags;
2961
2962
flags = linux_common_openflags(args->oflag);
2963
if ((flags & O_ACCMODE) == O_ACCMODE || (flags & O_EXEC) != 0)
2964
return (EINVAL);
2965
flags = FFLAGS(flags);
2966
if ((flags & O_CREAT) != 0 && args->attr != NULL) {
2967
error = copyin(args->attr, &attr, sizeof(attr));
2968
if (error != 0)
2969
return (error);
2970
attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags);
2971
}
2972
2973
return (kern_kmq_open(td, args->name, flags, args->mode,
2974
args->attr != NULL ? &attr : NULL));
2975
}
2976
2977
int
2978
linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args)
2979
{
2980
struct kmq_unlink_args bsd_args = {
2981
.path = PTRIN(args->name)
2982
};
2983
2984
return (sys_kmq_unlink(td, &bsd_args));
2985
}
2986
2987
int
2988
linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args)
2989
{
2990
struct timespec ts, *abs_timeout;
2991
int error;
2992
2993
if (args->abs_timeout == NULL)
2994
abs_timeout = NULL;
2995
else {
2996
error = linux_get_timespec(&ts, args->abs_timeout);
2997
if (error != 0)
2998
return (error);
2999
abs_timeout = &ts;
3000
}
3001
3002
return (kern_kmq_timedsend(td, args->mqd, PTRIN(args->msg_ptr),
3003
args->msg_len, args->msg_prio, abs_timeout));
3004
}
3005
3006
int
3007
linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args)
3008
{
3009
struct timespec ts, *abs_timeout;
3010
int error;
3011
3012
if (args->abs_timeout == NULL)
3013
abs_timeout = NULL;
3014
else {
3015
error = linux_get_timespec(&ts, args->abs_timeout);
3016
if (error != 0)
3017
return (error);
3018
abs_timeout = &ts;
3019
}
3020
3021
return (kern_kmq_timedreceive(td, args->mqd, PTRIN(args->msg_ptr),
3022
args->msg_len, args->msg_prio, abs_timeout));
3023
}
3024
3025
int
3026
linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args)
3027
{
3028
struct sigevent ev, *evp;
3029
struct l_sigevent l_ev;
3030
int error;
3031
3032
if (args->sevp == NULL)
3033
evp = NULL;
3034
else {
3035
error = copyin(args->sevp, &l_ev, sizeof(l_ev));
3036
if (error != 0)
3037
return (error);
3038
error = linux_convert_l_sigevent(&l_ev, &ev);
3039
if (error != 0)
3040
return (error);
3041
evp = &ev;
3042
}
3043
3044
return (kern_kmq_notify(td, args->mqd, evp));
3045
}
3046
3047
int
3048
linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args)
3049
{
3050
struct mq_attr attr, oattr;
3051
int error;
3052
3053
if (args->attr != NULL) {
3054
error = copyin(args->attr, &attr, sizeof(attr));
3055
if (error != 0)
3056
return (error);
3057
attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags);
3058
}
3059
3060
error = kern_kmq_setattr(td, args->mqd, args->attr != NULL ? &attr : NULL,
3061
&oattr);
3062
if (error == 0 && args->oattr != NULL) {
3063
oattr.mq_flags = B2L_MQ_FLAGS(oattr.mq_flags);
3064
bzero(oattr.__reserved, sizeof(oattr.__reserved));
3065
error = copyout(&oattr, args->oattr, sizeof(oattr));
3066
}
3067
3068
return (error);
3069
}
3070
3071
int
3072
linux_kcmp(struct thread *td, struct linux_kcmp_args *args)
3073
{
3074
int type;
3075
3076
switch (args->type) {
3077
case LINUX_KCMP_FILE:
3078
type = KCMP_FILE;
3079
break;
3080
case LINUX_KCMP_FILES:
3081
type = KCMP_FILES;
3082
break;
3083
case LINUX_KCMP_SIGHAND:
3084
type = KCMP_SIGHAND;
3085
break;
3086
case LINUX_KCMP_VM:
3087
type = KCMP_VM;
3088
break;
3089
default:
3090
return (EINVAL);
3091
}
3092
3093
return (kern_kcmp(td, args->pid1, args->pid2, type, args->idx1,
3094
args->idx));
3095
}
3096
3097
MODULE_DEPEND(linux, mqueuefs, 1, 1, 1);
3098
3099