Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/compat/linux/linux_misc.c
39507 views
1
/*-
2
* SPDX-License-Identifier: BSD-3-Clause
3
*
4
* Copyright (c) 2002 Doug Rabson
5
* Copyright (c) 1994-1995 Søren Schmidt
6
* All rights reserved.
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice, this list of conditions and the following disclaimer
13
* in this position and unchanged.
14
* 2. Redistributions in binary form must reproduce the above copyright
15
* notice, this list of conditions and the following disclaimer in the
16
* documentation and/or other materials provided with the distribution.
17
* 3. The name of the author may not be used to endorse or promote products
18
* derived from this software without specific prior written permission
19
*
20
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
*/
31
32
#include <sys/param.h>
33
#include <sys/fcntl.h>
34
#include <sys/jail.h>
35
#include <sys/imgact.h>
36
#include <sys/limits.h>
37
#include <sys/lock.h>
38
#include <sys/msgbuf.h>
39
#include <sys/mqueue.h>
40
#include <sys/mutex.h>
41
#include <sys/poll.h>
42
#include <sys/priv.h>
43
#include <sys/proc.h>
44
#include <sys/procctl.h>
45
#include <sys/reboot.h>
46
#include <sys/random.h>
47
#include <sys/resourcevar.h>
48
#include <sys/rtprio.h>
49
#include <sys/sched.h>
50
#include <sys/smp.h>
51
#include <sys/stat.h>
52
#include <sys/syscallsubr.h>
53
#include <sys/sysctl.h>
54
#include <sys/sysent.h>
55
#include <sys/sysproto.h>
56
#include <sys/time.h>
57
#include <sys/vmmeter.h>
58
#include <sys/vnode.h>
59
60
#include <security/audit/audit.h>
61
#include <security/mac/mac_framework.h>
62
63
#include <vm/pmap.h>
64
#include <vm/vm_map.h>
65
#include <vm/swap_pager.h>
66
67
#ifdef COMPAT_LINUX32
68
#include <machine/../linux32/linux.h>
69
#include <machine/../linux32/linux32_proto.h>
70
#else
71
#include <machine/../linux/linux.h>
72
#include <machine/../linux/linux_proto.h>
73
#endif
74
75
#include <compat/linux/linux_common.h>
76
#include <compat/linux/linux_dtrace.h>
77
#include <compat/linux/linux_file.h>
78
#include <compat/linux/linux_mib.h>
79
#include <compat/linux/linux_mmap.h>
80
#include <compat/linux/linux_signal.h>
81
#include <compat/linux/linux_time.h>
82
#include <compat/linux/linux_util.h>
83
#include <compat/linux/linux_emul.h>
84
#include <compat/linux/linux_misc.h>
85
86
int stclohz; /* Statistics clock frequency */
87
88
static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
89
RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
90
RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
91
RLIMIT_MEMLOCK, RLIMIT_AS
92
};
93
94
struct l_sysinfo {
95
l_long uptime; /* Seconds since boot */
96
l_ulong loads[3]; /* 1, 5, and 15 minute load averages */
97
#define LINUX_SYSINFO_LOADS_SCALE 65536
98
l_ulong totalram; /* Total usable main memory size */
99
l_ulong freeram; /* Available memory size */
100
l_ulong sharedram; /* Amount of shared memory */
101
l_ulong bufferram; /* Memory used by buffers */
102
l_ulong totalswap; /* Total swap space size */
103
l_ulong freeswap; /* swap space still available */
104
l_ushort procs; /* Number of current processes */
105
l_ushort pads;
106
l_ulong totalhigh;
107
l_ulong freehigh;
108
l_uint mem_unit;
109
char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */
110
};
111
112
struct l_pselect6arg {
113
l_uintptr_t ss;
114
l_size_t ss_len;
115
};
116
117
static int linux_utimensat_lts_to_ts(struct l_timespec *,
118
struct timespec *);
119
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
120
static int linux_utimensat_lts64_to_ts(struct l_timespec64 *,
121
struct timespec *);
122
#endif
123
static int linux_common_utimensat(struct thread *, int,
124
const char *, struct timespec *, int);
125
static int linux_common_pselect6(struct thread *, l_int,
126
l_fd_set *, l_fd_set *, l_fd_set *,
127
struct timespec *, l_uintptr_t *);
128
static int linux_common_ppoll(struct thread *, struct pollfd *,
129
uint32_t, struct timespec *, l_sigset_t *,
130
l_size_t);
131
static int linux_pollin(struct thread *, struct pollfd *,
132
struct pollfd *, u_int);
133
static int linux_pollout(struct thread *, struct pollfd *,
134
struct pollfd *, u_int);
135
136
int
137
linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
138
{
139
struct l_sysinfo sysinfo;
140
int i, j;
141
struct timespec ts;
142
143
bzero(&sysinfo, sizeof(sysinfo));
144
getnanouptime(&ts);
145
if (ts.tv_nsec != 0)
146
ts.tv_sec++;
147
sysinfo.uptime = ts.tv_sec;
148
149
/* Use the information from the mib to get our load averages */
150
for (i = 0; i < 3; i++)
151
sysinfo.loads[i] = averunnable.ldavg[i] *
152
LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
153
154
sysinfo.totalram = physmem * PAGE_SIZE;
155
sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE;
156
157
/*
158
* sharedram counts pages allocated to named, swap-backed objects such
159
* as shared memory segments and tmpfs files. There is no cheap way to
160
* compute this, so just leave the field unpopulated. Linux itself only
161
* started setting this field in the 3.x timeframe.
162
*/
163
sysinfo.sharedram = 0;
164
sysinfo.bufferram = 0;
165
166
swap_pager_status(&i, &j);
167
sysinfo.totalswap = i * PAGE_SIZE;
168
sysinfo.freeswap = (i - j) * PAGE_SIZE;
169
170
sysinfo.procs = nprocs;
171
172
/*
173
* Platforms supported by the emulation layer do not have a notion of
174
* high memory.
175
*/
176
sysinfo.totalhigh = 0;
177
sysinfo.freehigh = 0;
178
179
sysinfo.mem_unit = 1;
180
181
return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
182
}
183
184
#ifdef LINUX_LEGACY_SYSCALLS
185
int
186
linux_alarm(struct thread *td, struct linux_alarm_args *args)
187
{
188
struct itimerval it, old_it;
189
u_int secs;
190
int error __diagused;
191
192
secs = args->secs;
193
/*
194
* Linux alarm() is always successful. Limit secs to INT32_MAX / 2
195
* to match kern_setitimer()'s limit to avoid error from it.
196
*
197
* XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
198
* platforms.
199
*/
200
if (secs > INT32_MAX / 2)
201
secs = INT32_MAX / 2;
202
203
it.it_value.tv_sec = secs;
204
it.it_value.tv_usec = 0;
205
timevalclear(&it.it_interval);
206
error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
207
KASSERT(error == 0, ("kern_setitimer returns %d", error));
208
209
if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
210
old_it.it_value.tv_usec >= 500000)
211
old_it.it_value.tv_sec++;
212
td->td_retval[0] = old_it.it_value.tv_sec;
213
return (0);
214
}
215
#endif
216
217
int
218
linux_brk(struct thread *td, struct linux_brk_args *args)
219
{
220
struct vmspace *vm = td->td_proc->p_vmspace;
221
uintptr_t new, old;
222
223
old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
224
new = (uintptr_t)args->dsend;
225
if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
226
td->td_retval[0] = (register_t)new;
227
else
228
td->td_retval[0] = (register_t)old;
229
230
return (0);
231
}
232
233
#ifdef LINUX_LEGACY_SYSCALLS
234
int
235
linux_select(struct thread *td, struct linux_select_args *args)
236
{
237
l_timeval ltv;
238
struct timeval tv0, tv1, utv, *tvp;
239
int error;
240
241
/*
242
* Store current time for computation of the amount of
243
* time left.
244
*/
245
if (args->timeout) {
246
if ((error = copyin(args->timeout, &ltv, sizeof(ltv))))
247
goto select_out;
248
utv.tv_sec = ltv.tv_sec;
249
utv.tv_usec = ltv.tv_usec;
250
251
if (itimerfix(&utv)) {
252
/*
253
* The timeval was invalid. Convert it to something
254
* valid that will act as it does under Linux.
255
*/
256
utv.tv_sec += utv.tv_usec / 1000000;
257
utv.tv_usec %= 1000000;
258
if (utv.tv_usec < 0) {
259
utv.tv_sec -= 1;
260
utv.tv_usec += 1000000;
261
}
262
if (utv.tv_sec < 0)
263
timevalclear(&utv);
264
}
265
microtime(&tv0);
266
tvp = &utv;
267
} else
268
tvp = NULL;
269
270
error = kern_select(td, args->nfds, args->readfds, args->writefds,
271
args->exceptfds, tvp, LINUX_NFDBITS);
272
if (error)
273
goto select_out;
274
275
if (args->timeout) {
276
if (td->td_retval[0]) {
277
/*
278
* Compute how much time was left of the timeout,
279
* by subtracting the current time and the time
280
* before we started the call, and subtracting
281
* that result from the user-supplied value.
282
*/
283
microtime(&tv1);
284
timevalsub(&tv1, &tv0);
285
timevalsub(&utv, &tv1);
286
if (utv.tv_sec < 0)
287
timevalclear(&utv);
288
} else
289
timevalclear(&utv);
290
ltv.tv_sec = utv.tv_sec;
291
ltv.tv_usec = utv.tv_usec;
292
if ((error = copyout(&ltv, args->timeout, sizeof(ltv))))
293
goto select_out;
294
}
295
296
select_out:
297
return (error);
298
}
299
#endif
300
301
int
302
linux_mremap(struct thread *td, struct linux_mremap_args *args)
303
{
304
uintptr_t addr;
305
size_t len;
306
int error = 0;
307
308
if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
309
td->td_retval[0] = 0;
310
return (EINVAL);
311
}
312
313
/*
314
* Check for the page alignment.
315
* Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
316
*/
317
if (args->addr & PAGE_MASK) {
318
td->td_retval[0] = 0;
319
return (EINVAL);
320
}
321
322
args->new_len = round_page(args->new_len);
323
args->old_len = round_page(args->old_len);
324
325
if (args->new_len > args->old_len) {
326
td->td_retval[0] = 0;
327
return (ENOMEM);
328
}
329
330
if (args->new_len < args->old_len) {
331
addr = args->addr + args->new_len;
332
len = args->old_len - args->new_len;
333
error = kern_munmap(td, addr, len);
334
}
335
336
td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
337
return (error);
338
}
339
340
#define LINUX_MS_ASYNC 0x0001
341
#define LINUX_MS_INVALIDATE 0x0002
342
#define LINUX_MS_SYNC 0x0004
343
344
int
345
linux_msync(struct thread *td, struct linux_msync_args *args)
346
{
347
348
return (kern_msync(td, args->addr, args->len,
349
args->fl & ~LINUX_MS_SYNC));
350
}
351
352
int
353
linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
354
{
355
356
return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len,
357
uap->prot));
358
}
359
360
int
361
linux_madvise(struct thread *td, struct linux_madvise_args *uap)
362
{
363
364
return (linux_madvise_common(td, PTROUT(uap->addr), uap->len,
365
uap->behav));
366
}
367
368
int
369
linux_mmap2(struct thread *td, struct linux_mmap2_args *uap)
370
{
371
#if defined(LINUX_ARCHWANT_MMAP2PGOFF)
372
/*
373
* For architectures with sizeof (off_t) < sizeof (loff_t) mmap is
374
* implemented with mmap2 syscall and the offset is represented in
375
* multiples of page size.
376
*/
377
return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot,
378
uap->flags, uap->fd, (uint64_t)(uint32_t)uap->pgoff * PAGE_SIZE));
379
#else
380
return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot,
381
uap->flags, uap->fd, uap->pgoff));
382
#endif
383
}
384
385
#ifdef LINUX_LEGACY_SYSCALLS
386
int
387
linux_time(struct thread *td, struct linux_time_args *args)
388
{
389
struct timeval tv;
390
l_time_t tm;
391
int error;
392
393
microtime(&tv);
394
tm = tv.tv_sec;
395
if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
396
return (error);
397
td->td_retval[0] = tm;
398
return (0);
399
}
400
#endif
401
402
struct l_times_argv {
403
l_clock_t tms_utime;
404
l_clock_t tms_stime;
405
l_clock_t tms_cutime;
406
l_clock_t tms_cstime;
407
};
408
409
/*
410
* Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
411
* Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
412
* auxiliary vector entry.
413
*/
414
#define CLK_TCK 100
415
416
#define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
417
#define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
418
419
#define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER(2,4,0) ? \
420
CONVNTCK(r) : CONVOTCK(r))
421
422
int
423
linux_times(struct thread *td, struct linux_times_args *args)
424
{
425
struct timeval tv, utime, stime, cutime, cstime;
426
struct l_times_argv tms;
427
struct proc *p;
428
int error;
429
430
if (args->buf != NULL) {
431
p = td->td_proc;
432
PROC_LOCK(p);
433
PROC_STATLOCK(p);
434
calcru(p, &utime, &stime);
435
PROC_STATUNLOCK(p);
436
calccru(p, &cutime, &cstime);
437
PROC_UNLOCK(p);
438
439
tms.tms_utime = CONVTCK(utime);
440
tms.tms_stime = CONVTCK(stime);
441
442
tms.tms_cutime = CONVTCK(cutime);
443
tms.tms_cstime = CONVTCK(cstime);
444
445
if ((error = copyout(&tms, args->buf, sizeof(tms))))
446
return (error);
447
}
448
449
microuptime(&tv);
450
td->td_retval[0] = (int)CONVTCK(tv);
451
return (0);
452
}
453
454
int
455
linux_newuname(struct thread *td, struct linux_newuname_args *args)
456
{
457
struct l_new_utsname utsname;
458
char osname[LINUX_MAX_UTSNAME];
459
char osrelease[LINUX_MAX_UTSNAME];
460
char *p;
461
462
linux_get_osname(td, osname);
463
linux_get_osrelease(td, osrelease);
464
465
bzero(&utsname, sizeof(utsname));
466
strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
467
getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
468
getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
469
strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
470
strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
471
for (p = utsname.version; *p != '\0'; ++p)
472
if (*p == '\n') {
473
*p = '\0';
474
break;
475
}
476
#if defined(__amd64__)
477
/*
478
* On amd64, Linux uname(2) needs to return "x86_64"
479
* for both 64-bit and 32-bit applications. On 32-bit,
480
* the string returned by getauxval(AT_PLATFORM) needs
481
* to remain "i686", though.
482
*/
483
#if defined(COMPAT_LINUX32)
484
if (linux32_emulate_i386)
485
strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
486
else
487
#endif
488
strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME);
489
#elif defined(__aarch64__)
490
strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME);
491
#elif defined(__i386__)
492
strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
493
#endif
494
495
return (copyout(&utsname, args->buf, sizeof(utsname)));
496
}
497
498
struct l_utimbuf {
499
l_time_t l_actime;
500
l_time_t l_modtime;
501
};
502
503
#ifdef LINUX_LEGACY_SYSCALLS
504
int
505
linux_utime(struct thread *td, struct linux_utime_args *args)
506
{
507
struct timeval tv[2], *tvp;
508
struct l_utimbuf lut;
509
int error;
510
511
if (args->times) {
512
if ((error = copyin(args->times, &lut, sizeof lut)) != 0)
513
return (error);
514
tv[0].tv_sec = lut.l_actime;
515
tv[0].tv_usec = 0;
516
tv[1].tv_sec = lut.l_modtime;
517
tv[1].tv_usec = 0;
518
tvp = tv;
519
} else
520
tvp = NULL;
521
522
return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
523
tvp, UIO_SYSSPACE));
524
}
525
#endif
526
527
#ifdef LINUX_LEGACY_SYSCALLS
528
int
529
linux_utimes(struct thread *td, struct linux_utimes_args *args)
530
{
531
l_timeval ltv[2];
532
struct timeval tv[2], *tvp = NULL;
533
int error;
534
535
if (args->tptr != NULL) {
536
if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0)
537
return (error);
538
tv[0].tv_sec = ltv[0].tv_sec;
539
tv[0].tv_usec = ltv[0].tv_usec;
540
tv[1].tv_sec = ltv[1].tv_sec;
541
tv[1].tv_usec = ltv[1].tv_usec;
542
tvp = tv;
543
}
544
545
return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
546
tvp, UIO_SYSSPACE));
547
}
548
#endif
549
550
static int
551
linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times)
552
{
553
554
if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
555
l_times->tv_nsec != LINUX_UTIME_NOW &&
556
(l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
557
return (EINVAL);
558
559
times->tv_sec = l_times->tv_sec;
560
switch (l_times->tv_nsec)
561
{
562
case LINUX_UTIME_OMIT:
563
times->tv_nsec = UTIME_OMIT;
564
break;
565
case LINUX_UTIME_NOW:
566
times->tv_nsec = UTIME_NOW;
567
break;
568
default:
569
times->tv_nsec = l_times->tv_nsec;
570
}
571
572
return (0);
573
}
574
575
static int
576
linux_common_utimensat(struct thread *td, int ldfd, const char *pathname,
577
struct timespec *timesp, int lflags)
578
{
579
int dfd, flags = 0;
580
581
dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd;
582
583
if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH))
584
return (EINVAL);
585
586
if (timesp != NULL) {
587
/* This breaks POSIX, but is what the Linux kernel does
588
* _on purpose_ (documented in the man page for utimensat(2)),
589
* so we must follow that behaviour. */
590
if (timesp[0].tv_nsec == UTIME_OMIT &&
591
timesp[1].tv_nsec == UTIME_OMIT)
592
return (0);
593
}
594
595
if (lflags & LINUX_AT_SYMLINK_NOFOLLOW)
596
flags |= AT_SYMLINK_NOFOLLOW;
597
if (lflags & LINUX_AT_EMPTY_PATH)
598
flags |= AT_EMPTY_PATH;
599
600
if (pathname != NULL)
601
return (kern_utimensat(td, dfd, pathname,
602
UIO_USERSPACE, timesp, UIO_SYSSPACE, flags));
603
604
if (lflags != 0)
605
return (EINVAL);
606
607
return (kern_futimens(td, dfd, timesp, UIO_SYSSPACE));
608
}
609
610
int
611
linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
612
{
613
struct l_timespec l_times[2];
614
struct timespec times[2], *timesp;
615
int error;
616
617
if (args->times != NULL) {
618
error = copyin(args->times, l_times, sizeof(l_times));
619
if (error != 0)
620
return (error);
621
622
error = linux_utimensat_lts_to_ts(&l_times[0], &times[0]);
623
if (error != 0)
624
return (error);
625
error = linux_utimensat_lts_to_ts(&l_times[1], &times[1]);
626
if (error != 0)
627
return (error);
628
timesp = times;
629
} else
630
timesp = NULL;
631
632
return (linux_common_utimensat(td, args->dfd, args->pathname,
633
timesp, args->flags));
634
}
635
636
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
637
static int
638
linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times)
639
{
640
641
/* Zero out the padding in compat mode. */
642
l_times->tv_nsec &= 0xFFFFFFFFUL;
643
644
if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
645
l_times->tv_nsec != LINUX_UTIME_NOW &&
646
(l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
647
return (EINVAL);
648
649
times->tv_sec = l_times->tv_sec;
650
switch (l_times->tv_nsec)
651
{
652
case LINUX_UTIME_OMIT:
653
times->tv_nsec = UTIME_OMIT;
654
break;
655
case LINUX_UTIME_NOW:
656
times->tv_nsec = UTIME_NOW;
657
break;
658
default:
659
times->tv_nsec = l_times->tv_nsec;
660
}
661
662
return (0);
663
}
664
665
int
666
linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args)
667
{
668
struct l_timespec64 l_times[2];
669
struct timespec times[2], *timesp;
670
int error;
671
672
if (args->times64 != NULL) {
673
error = copyin(args->times64, l_times, sizeof(l_times));
674
if (error != 0)
675
return (error);
676
677
error = linux_utimensat_lts64_to_ts(&l_times[0], &times[0]);
678
if (error != 0)
679
return (error);
680
error = linux_utimensat_lts64_to_ts(&l_times[1], &times[1]);
681
if (error != 0)
682
return (error);
683
timesp = times;
684
} else
685
timesp = NULL;
686
687
return (linux_common_utimensat(td, args->dfd, args->pathname,
688
timesp, args->flags));
689
}
690
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
691
692
#ifdef LINUX_LEGACY_SYSCALLS
693
int
694
linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
695
{
696
l_timeval ltv[2];
697
struct timeval tv[2], *tvp = NULL;
698
int error, dfd;
699
700
dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
701
702
if (args->utimes != NULL) {
703
if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0)
704
return (error);
705
tv[0].tv_sec = ltv[0].tv_sec;
706
tv[0].tv_usec = ltv[0].tv_usec;
707
tv[1].tv_sec = ltv[1].tv_sec;
708
tv[1].tv_usec = ltv[1].tv_usec;
709
tvp = tv;
710
}
711
712
return (kern_utimesat(td, dfd, args->filename, UIO_USERSPACE,
713
tvp, UIO_SYSSPACE));
714
}
715
#endif
716
717
static int
718
linux_common_wait(struct thread *td, idtype_t idtype, int id, int *statusp,
719
int options, void *rup, l_siginfo_t *infop)
720
{
721
l_siginfo_t lsi;
722
siginfo_t siginfo;
723
struct __wrusage wru;
724
int error, status, tmpstat, sig;
725
726
error = kern_wait6(td, idtype, id, &status, options,
727
rup != NULL ? &wru : NULL, &siginfo);
728
729
if (error == 0 && statusp) {
730
tmpstat = status & 0xffff;
731
if (WIFSIGNALED(tmpstat)) {
732
tmpstat = (tmpstat & 0xffffff80) |
733
bsd_to_linux_signal(WTERMSIG(tmpstat));
734
} else if (WIFSTOPPED(tmpstat)) {
735
tmpstat = (tmpstat & 0xffff00ff) |
736
(bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
737
#if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32))
738
if (WSTOPSIG(status) == SIGTRAP) {
739
tmpstat = linux_ptrace_status(td,
740
siginfo.si_pid, tmpstat);
741
}
742
#endif
743
} else if (WIFCONTINUED(tmpstat)) {
744
tmpstat = 0xffff;
745
}
746
error = copyout(&tmpstat, statusp, sizeof(int));
747
}
748
if (error == 0 && rup != NULL)
749
error = linux_copyout_rusage(&wru.wru_self, rup);
750
if (error == 0 && infop != NULL && td->td_retval[0] != 0) {
751
sig = bsd_to_linux_signal(siginfo.si_signo);
752
siginfo_to_lsiginfo(&siginfo, &lsi, sig);
753
error = copyout(&lsi, infop, sizeof(lsi));
754
}
755
756
return (error);
757
}
758
759
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
760
int
761
linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
762
{
763
struct linux_wait4_args wait4_args = {
764
.pid = args->pid,
765
.status = args->status,
766
.options = args->options,
767
.rusage = NULL,
768
};
769
770
return (linux_wait4(td, &wait4_args));
771
}
772
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
773
774
int
775
linux_wait4(struct thread *td, struct linux_wait4_args *args)
776
{
777
struct proc *p;
778
int options, id, idtype;
779
780
if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
781
LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
782
return (EINVAL);
783
784
/* -INT_MIN is not defined. */
785
if (args->pid == INT_MIN)
786
return (ESRCH);
787
788
options = 0;
789
linux_to_bsd_waitopts(args->options, &options);
790
791
/*
792
* For backward compatibility we implicitly add flags WEXITED
793
* and WTRAPPED here.
794
*/
795
options |= WEXITED | WTRAPPED;
796
797
if (args->pid == WAIT_ANY) {
798
idtype = P_ALL;
799
id = 0;
800
} else if (args->pid < 0) {
801
idtype = P_PGID;
802
id = (id_t)-args->pid;
803
} else if (args->pid == 0) {
804
idtype = P_PGID;
805
p = td->td_proc;
806
PROC_LOCK(p);
807
id = p->p_pgid;
808
PROC_UNLOCK(p);
809
} else {
810
idtype = P_PID;
811
id = (id_t)args->pid;
812
}
813
814
return (linux_common_wait(td, idtype, id, args->status, options,
815
args->rusage, NULL));
816
}
817
818
int
819
linux_waitid(struct thread *td, struct linux_waitid_args *args)
820
{
821
idtype_t idtype;
822
int error, options;
823
struct proc *p;
824
pid_t id;
825
826
if (args->options & ~(LINUX_WNOHANG | LINUX_WNOWAIT | LINUX_WEXITED |
827
LINUX_WSTOPPED | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
828
return (EINVAL);
829
830
options = 0;
831
linux_to_bsd_waitopts(args->options, &options);
832
833
id = args->id;
834
switch (args->idtype) {
835
case LINUX_P_ALL:
836
idtype = P_ALL;
837
break;
838
case LINUX_P_PID:
839
if (args->id <= 0)
840
return (EINVAL);
841
idtype = P_PID;
842
break;
843
case LINUX_P_PGID:
844
if (linux_kernver(td) >= LINUX_KERNVER(5,4,0) && args->id == 0) {
845
p = td->td_proc;
846
PROC_LOCK(p);
847
id = p->p_pgid;
848
PROC_UNLOCK(p);
849
} else if (args->id <= 0)
850
return (EINVAL);
851
idtype = P_PGID;
852
break;
853
case LINUX_P_PIDFD:
854
LINUX_RATELIMIT_MSG("unsupported waitid P_PIDFD idtype");
855
return (ENOSYS);
856
default:
857
return (EINVAL);
858
}
859
860
error = linux_common_wait(td, idtype, id, NULL, options,
861
args->rusage, args->info);
862
td->td_retval[0] = 0;
863
864
return (error);
865
}
866
867
#ifdef LINUX_LEGACY_SYSCALLS
868
int
869
linux_mknod(struct thread *td, struct linux_mknod_args *args)
870
{
871
int error;
872
873
switch (args->mode & S_IFMT) {
874
case S_IFIFO:
875
case S_IFSOCK:
876
error = kern_mkfifoat(td, AT_FDCWD, args->path, UIO_USERSPACE,
877
args->mode);
878
break;
879
880
case S_IFCHR:
881
case S_IFBLK:
882
error = kern_mknodat(td, AT_FDCWD, args->path, UIO_USERSPACE,
883
args->mode, linux_decode_dev(args->dev));
884
break;
885
886
case S_IFDIR:
887
error = EPERM;
888
break;
889
890
case 0:
891
args->mode |= S_IFREG;
892
/* FALLTHROUGH */
893
case S_IFREG:
894
error = kern_openat(td, AT_FDCWD, args->path, UIO_USERSPACE,
895
O_WRONLY | O_CREAT | O_TRUNC, args->mode);
896
if (error == 0)
897
kern_close(td, td->td_retval[0]);
898
break;
899
900
default:
901
error = EINVAL;
902
break;
903
}
904
return (error);
905
}
906
#endif
907
908
int
909
linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
910
{
911
int error, dfd;
912
913
dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
914
915
switch (args->mode & S_IFMT) {
916
case S_IFIFO:
917
case S_IFSOCK:
918
error = kern_mkfifoat(td, dfd, args->filename, UIO_USERSPACE,
919
args->mode);
920
break;
921
922
case S_IFCHR:
923
case S_IFBLK:
924
error = kern_mknodat(td, dfd, args->filename, UIO_USERSPACE,
925
args->mode, linux_decode_dev(args->dev));
926
break;
927
928
case S_IFDIR:
929
error = EPERM;
930
break;
931
932
case 0:
933
args->mode |= S_IFREG;
934
/* FALLTHROUGH */
935
case S_IFREG:
936
error = kern_openat(td, dfd, args->filename, UIO_USERSPACE,
937
O_WRONLY | O_CREAT | O_TRUNC, args->mode);
938
if (error == 0)
939
kern_close(td, td->td_retval[0]);
940
break;
941
942
default:
943
error = EINVAL;
944
break;
945
}
946
return (error);
947
}
948
949
/*
950
* UGH! This is just about the dumbest idea I've ever heard!!
951
*/
952
int
953
linux_personality(struct thread *td, struct linux_personality_args *args)
954
{
955
struct linux_pemuldata *pem;
956
struct proc *p = td->td_proc;
957
uint32_t old;
958
959
PROC_LOCK(p);
960
pem = pem_find(p);
961
old = pem->persona;
962
if (args->per != 0xffffffff)
963
pem->persona = args->per;
964
PROC_UNLOCK(p);
965
966
td->td_retval[0] = old;
967
return (0);
968
}
969
970
struct l_itimerval {
971
l_timeval it_interval;
972
l_timeval it_value;
973
};
974
975
#define B2L_ITIMERVAL(bip, lip) \
976
(bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \
977
(bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \
978
(bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \
979
(bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
980
981
int
982
linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
983
{
984
int error;
985
struct l_itimerval ls;
986
struct itimerval aitv, oitv;
987
988
if (uap->itv == NULL) {
989
uap->itv = uap->oitv;
990
return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
991
}
992
993
error = copyin(uap->itv, &ls, sizeof(ls));
994
if (error != 0)
995
return (error);
996
B2L_ITIMERVAL(&aitv, &ls);
997
error = kern_setitimer(td, uap->which, &aitv, &oitv);
998
if (error != 0 || uap->oitv == NULL)
999
return (error);
1000
B2L_ITIMERVAL(&ls, &oitv);
1001
1002
return (copyout(&ls, uap->oitv, sizeof(ls)));
1003
}
1004
1005
int
1006
linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
1007
{
1008
int error;
1009
struct l_itimerval ls;
1010
struct itimerval aitv;
1011
1012
error = kern_getitimer(td, uap->which, &aitv);
1013
if (error != 0)
1014
return (error);
1015
B2L_ITIMERVAL(&ls, &aitv);
1016
return (copyout(&ls, uap->itv, sizeof(ls)));
1017
}
1018
1019
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1020
int
1021
linux_nice(struct thread *td, struct linux_nice_args *args)
1022
{
1023
1024
return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc));
1025
}
1026
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1027
1028
int
1029
linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
1030
{
1031
const int ngrp = args->gidsetsize;
1032
struct ucred *newcred, *oldcred;
1033
l_gid_t *linux_gidset;
1034
int error;
1035
struct proc *p;
1036
1037
if (ngrp < 0 || ngrp > ngroups_max)
1038
return (EINVAL);
1039
linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1040
error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
1041
if (error)
1042
goto out;
1043
1044
newcred = crget();
1045
crextend(newcred, ngrp);
1046
p = td->td_proc;
1047
PROC_LOCK(p);
1048
oldcred = crcopysafe(p, newcred);
1049
1050
if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) {
1051
PROC_UNLOCK(p);
1052
crfree(newcred);
1053
goto out;
1054
}
1055
1056
newcred->cr_ngroups = ngrp;
1057
for (int i = 0; i < ngrp; i++)
1058
newcred->cr_groups[i] = linux_gidset[i];
1059
newcred->cr_flags |= CRED_FLAG_GROUPSET;
1060
1061
setsugid(p);
1062
proc_set_cred(p, newcred);
1063
PROC_UNLOCK(p);
1064
crfree(oldcred);
1065
error = 0;
1066
out:
1067
free(linux_gidset, M_LINUX);
1068
return (error);
1069
}
1070
1071
int
1072
linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
1073
{
1074
const struct ucred *const cred = td->td_ucred;
1075
l_gid_t *linux_gidset;
1076
int ngrp, error;
1077
1078
ngrp = args->gidsetsize;
1079
1080
if (ngrp == 0) {
1081
td->td_retval[0] = cred->cr_ngroups;
1082
return (0);
1083
}
1084
if (ngrp < cred->cr_ngroups)
1085
return (EINVAL);
1086
1087
ngrp = cred->cr_ngroups;
1088
1089
linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1090
for (int i = 0; i < ngrp; ++i)
1091
linux_gidset[i] = cred->cr_groups[i];
1092
1093
error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
1094
free(linux_gidset, M_LINUX);
1095
1096
if (error != 0)
1097
return (error);
1098
1099
td->td_retval[0] = ngrp;
1100
return (0);
1101
}
1102
1103
static bool
1104
linux_get_dummy_limit(struct thread *td, l_uint resource, struct rlimit *rlim)
1105
{
1106
ssize_t size;
1107
int res, error;
1108
1109
if (linux_dummy_rlimits == 0)
1110
return (false);
1111
1112
switch (resource) {
1113
case LINUX_RLIMIT_LOCKS:
1114
case LINUX_RLIMIT_RTTIME:
1115
rlim->rlim_cur = LINUX_RLIM_INFINITY;
1116
rlim->rlim_max = LINUX_RLIM_INFINITY;
1117
return (true);
1118
case LINUX_RLIMIT_NICE:
1119
case LINUX_RLIMIT_RTPRIO:
1120
rlim->rlim_cur = 0;
1121
rlim->rlim_max = 0;
1122
return (true);
1123
case LINUX_RLIMIT_SIGPENDING:
1124
error = kernel_sysctlbyname(td,
1125
"kern.sigqueue.max_pending_per_proc",
1126
&res, &size, 0, 0, 0, 0);
1127
if (error != 0)
1128
return (false);
1129
rlim->rlim_cur = res;
1130
rlim->rlim_max = res;
1131
return (true);
1132
case LINUX_RLIMIT_MSGQUEUE:
1133
error = kernel_sysctlbyname(td,
1134
"kern.ipc.msgmnb", &res, &size, 0, 0, 0, 0);
1135
if (error != 0)
1136
return (false);
1137
rlim->rlim_cur = res;
1138
rlim->rlim_max = res;
1139
return (true);
1140
default:
1141
return (false);
1142
}
1143
}
1144
1145
int
1146
linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
1147
{
1148
struct rlimit bsd_rlim;
1149
struct l_rlimit rlim;
1150
u_int which;
1151
int error;
1152
1153
if (args->resource >= LINUX_RLIM_NLIMITS)
1154
return (EINVAL);
1155
1156
which = linux_to_bsd_resource[args->resource];
1157
if (which == -1)
1158
return (EINVAL);
1159
1160
error = copyin(args->rlim, &rlim, sizeof(rlim));
1161
if (error)
1162
return (error);
1163
1164
bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
1165
bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
1166
return (kern_setrlimit(td, which, &bsd_rlim));
1167
}
1168
1169
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1170
int
1171
linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
1172
{
1173
struct l_rlimit rlim;
1174
struct rlimit bsd_rlim;
1175
u_int which;
1176
1177
if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) {
1178
rlim.rlim_cur = bsd_rlim.rlim_cur;
1179
rlim.rlim_max = bsd_rlim.rlim_max;
1180
return (copyout(&rlim, args->rlim, sizeof(rlim)));
1181
}
1182
1183
if (args->resource >= LINUX_RLIM_NLIMITS)
1184
return (EINVAL);
1185
1186
which = linux_to_bsd_resource[args->resource];
1187
if (which == -1)
1188
return (EINVAL);
1189
1190
lim_rlimit(td, which, &bsd_rlim);
1191
1192
#ifdef COMPAT_LINUX32
1193
rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
1194
if (rlim.rlim_cur == UINT_MAX)
1195
rlim.rlim_cur = INT_MAX;
1196
rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
1197
if (rlim.rlim_max == UINT_MAX)
1198
rlim.rlim_max = INT_MAX;
1199
#else
1200
rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
1201
if (rlim.rlim_cur == ULONG_MAX)
1202
rlim.rlim_cur = LONG_MAX;
1203
rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
1204
if (rlim.rlim_max == ULONG_MAX)
1205
rlim.rlim_max = LONG_MAX;
1206
#endif
1207
return (copyout(&rlim, args->rlim, sizeof(rlim)));
1208
}
1209
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1210
1211
int
1212
linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
1213
{
1214
struct l_rlimit rlim;
1215
struct rlimit bsd_rlim;
1216
u_int which;
1217
1218
if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) {
1219
rlim.rlim_cur = bsd_rlim.rlim_cur;
1220
rlim.rlim_max = bsd_rlim.rlim_max;
1221
return (copyout(&rlim, args->rlim, sizeof(rlim)));
1222
}
1223
1224
if (args->resource >= LINUX_RLIM_NLIMITS)
1225
return (EINVAL);
1226
1227
which = linux_to_bsd_resource[args->resource];
1228
if (which == -1)
1229
return (EINVAL);
1230
1231
lim_rlimit(td, which, &bsd_rlim);
1232
1233
rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
1234
rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
1235
return (copyout(&rlim, args->rlim, sizeof(rlim)));
1236
}
1237
1238
int
1239
linux_sched_setscheduler(struct thread *td,
1240
struct linux_sched_setscheduler_args *args)
1241
{
1242
struct sched_param sched_param;
1243
struct thread *tdt;
1244
int error, policy;
1245
1246
switch (args->policy) {
1247
case LINUX_SCHED_OTHER:
1248
policy = SCHED_OTHER;
1249
break;
1250
case LINUX_SCHED_FIFO:
1251
policy = SCHED_FIFO;
1252
break;
1253
case LINUX_SCHED_RR:
1254
policy = SCHED_RR;
1255
break;
1256
default:
1257
return (EINVAL);
1258
}
1259
1260
error = copyin(args->param, &sched_param, sizeof(sched_param));
1261
if (error)
1262
return (error);
1263
1264
if (linux_map_sched_prio) {
1265
switch (policy) {
1266
case SCHED_OTHER:
1267
if (sched_param.sched_priority != 0)
1268
return (EINVAL);
1269
1270
sched_param.sched_priority =
1271
PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1272
break;
1273
case SCHED_FIFO:
1274
case SCHED_RR:
1275
if (sched_param.sched_priority < 1 ||
1276
sched_param.sched_priority >= LINUX_MAX_RT_PRIO)
1277
return (EINVAL);
1278
1279
/*
1280
* Map [1, LINUX_MAX_RT_PRIO - 1] to
1281
* [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1282
*/
1283
sched_param.sched_priority =
1284
(sched_param.sched_priority - 1) *
1285
(RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1286
(LINUX_MAX_RT_PRIO - 1);
1287
break;
1288
}
1289
}
1290
1291
tdt = linux_tdfind(td, args->pid, -1);
1292
if (tdt == NULL)
1293
return (ESRCH);
1294
1295
error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
1296
PROC_UNLOCK(tdt->td_proc);
1297
return (error);
1298
}
1299
1300
int
1301
linux_sched_getscheduler(struct thread *td,
1302
struct linux_sched_getscheduler_args *args)
1303
{
1304
struct thread *tdt;
1305
int error, policy;
1306
1307
tdt = linux_tdfind(td, args->pid, -1);
1308
if (tdt == NULL)
1309
return (ESRCH);
1310
1311
error = kern_sched_getscheduler(td, tdt, &policy);
1312
PROC_UNLOCK(tdt->td_proc);
1313
1314
switch (policy) {
1315
case SCHED_OTHER:
1316
td->td_retval[0] = LINUX_SCHED_OTHER;
1317
break;
1318
case SCHED_FIFO:
1319
td->td_retval[0] = LINUX_SCHED_FIFO;
1320
break;
1321
case SCHED_RR:
1322
td->td_retval[0] = LINUX_SCHED_RR;
1323
break;
1324
}
1325
return (error);
1326
}
1327
1328
int
1329
linux_sched_get_priority_max(struct thread *td,
1330
struct linux_sched_get_priority_max_args *args)
1331
{
1332
struct sched_get_priority_max_args bsd;
1333
1334
if (linux_map_sched_prio) {
1335
switch (args->policy) {
1336
case LINUX_SCHED_OTHER:
1337
td->td_retval[0] = 0;
1338
return (0);
1339
case LINUX_SCHED_FIFO:
1340
case LINUX_SCHED_RR:
1341
td->td_retval[0] = LINUX_MAX_RT_PRIO - 1;
1342
return (0);
1343
default:
1344
return (EINVAL);
1345
}
1346
}
1347
1348
switch (args->policy) {
1349
case LINUX_SCHED_OTHER:
1350
bsd.policy = SCHED_OTHER;
1351
break;
1352
case LINUX_SCHED_FIFO:
1353
bsd.policy = SCHED_FIFO;
1354
break;
1355
case LINUX_SCHED_RR:
1356
bsd.policy = SCHED_RR;
1357
break;
1358
default:
1359
return (EINVAL);
1360
}
1361
return (sys_sched_get_priority_max(td, &bsd));
1362
}
1363
1364
int
1365
linux_sched_get_priority_min(struct thread *td,
1366
struct linux_sched_get_priority_min_args *args)
1367
{
1368
struct sched_get_priority_min_args bsd;
1369
1370
if (linux_map_sched_prio) {
1371
switch (args->policy) {
1372
case LINUX_SCHED_OTHER:
1373
td->td_retval[0] = 0;
1374
return (0);
1375
case LINUX_SCHED_FIFO:
1376
case LINUX_SCHED_RR:
1377
td->td_retval[0] = 1;
1378
return (0);
1379
default:
1380
return (EINVAL);
1381
}
1382
}
1383
1384
switch (args->policy) {
1385
case LINUX_SCHED_OTHER:
1386
bsd.policy = SCHED_OTHER;
1387
break;
1388
case LINUX_SCHED_FIFO:
1389
bsd.policy = SCHED_FIFO;
1390
break;
1391
case LINUX_SCHED_RR:
1392
bsd.policy = SCHED_RR;
1393
break;
1394
default:
1395
return (EINVAL);
1396
}
1397
return (sys_sched_get_priority_min(td, &bsd));
1398
}
1399
1400
#define REBOOT_CAD_ON 0x89abcdef
1401
#define REBOOT_CAD_OFF 0
1402
#define REBOOT_HALT 0xcdef0123
1403
#define REBOOT_RESTART 0x01234567
1404
#define REBOOT_RESTART2 0xA1B2C3D4
1405
#define REBOOT_POWEROFF 0x4321FEDC
1406
#define REBOOT_MAGIC1 0xfee1dead
1407
#define REBOOT_MAGIC2 0x28121969
1408
#define REBOOT_MAGIC2A 0x05121996
1409
#define REBOOT_MAGIC2B 0x16041998
1410
1411
int
1412
linux_reboot(struct thread *td, struct linux_reboot_args *args)
1413
{
1414
struct reboot_args bsd_args;
1415
1416
if (args->magic1 != REBOOT_MAGIC1)
1417
return (EINVAL);
1418
1419
switch (args->magic2) {
1420
case REBOOT_MAGIC2:
1421
case REBOOT_MAGIC2A:
1422
case REBOOT_MAGIC2B:
1423
break;
1424
default:
1425
return (EINVAL);
1426
}
1427
1428
switch (args->cmd) {
1429
case REBOOT_CAD_ON:
1430
case REBOOT_CAD_OFF:
1431
return (priv_check(td, PRIV_REBOOT));
1432
case REBOOT_HALT:
1433
bsd_args.opt = RB_HALT;
1434
break;
1435
case REBOOT_RESTART:
1436
case REBOOT_RESTART2:
1437
bsd_args.opt = 0;
1438
break;
1439
case REBOOT_POWEROFF:
1440
bsd_args.opt = RB_POWEROFF;
1441
break;
1442
default:
1443
return (EINVAL);
1444
}
1445
return (sys_reboot(td, &bsd_args));
1446
}
1447
1448
int
1449
linux_getpid(struct thread *td, struct linux_getpid_args *args)
1450
{
1451
1452
td->td_retval[0] = td->td_proc->p_pid;
1453
1454
return (0);
1455
}
1456
1457
int
1458
linux_gettid(struct thread *td, struct linux_gettid_args *args)
1459
{
1460
struct linux_emuldata *em;
1461
1462
em = em_find(td);
1463
KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
1464
1465
td->td_retval[0] = em->em_tid;
1466
1467
return (0);
1468
}
1469
1470
int
1471
linux_getppid(struct thread *td, struct linux_getppid_args *args)
1472
{
1473
1474
td->td_retval[0] = kern_getppid(td);
1475
return (0);
1476
}
1477
1478
int
1479
linux_getgid(struct thread *td, struct linux_getgid_args *args)
1480
{
1481
1482
td->td_retval[0] = td->td_ucred->cr_rgid;
1483
return (0);
1484
}
1485
1486
int
1487
linux_getuid(struct thread *td, struct linux_getuid_args *args)
1488
{
1489
1490
td->td_retval[0] = td->td_ucred->cr_ruid;
1491
return (0);
1492
}
1493
1494
int
1495
linux_getsid(struct thread *td, struct linux_getsid_args *args)
1496
{
1497
1498
return (kern_getsid(td, args->pid));
1499
}
1500
1501
int
1502
linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
1503
{
1504
int error;
1505
1506
error = kern_getpriority(td, args->which, args->who);
1507
td->td_retval[0] = 20 - td->td_retval[0];
1508
return (error);
1509
}
1510
1511
int
1512
linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
1513
{
1514
int name[2];
1515
1516
name[0] = CTL_KERN;
1517
name[1] = KERN_HOSTNAME;
1518
return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
1519
args->len, 0, 0));
1520
}
1521
1522
int
1523
linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
1524
{
1525
int name[2];
1526
1527
name[0] = CTL_KERN;
1528
name[1] = KERN_NISDOMAINNAME;
1529
return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
1530
args->len, 0, 0));
1531
}
1532
1533
int
1534
linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
1535
{
1536
1537
LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
1538
args->error_code);
1539
1540
/*
1541
* XXX: we should send a signal to the parent if
1542
* SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
1543
* as it doesnt occur often.
1544
*/
1545
exit1(td, args->error_code, 0);
1546
/* NOTREACHED */
1547
}
1548
1549
#define _LINUX_CAPABILITY_VERSION_1 0x19980330
1550
#define _LINUX_CAPABILITY_VERSION_2 0x20071026
1551
#define _LINUX_CAPABILITY_VERSION_3 0x20080522
1552
1553
struct l_user_cap_header {
1554
l_int version;
1555
l_int pid;
1556
};
1557
1558
struct l_user_cap_data {
1559
l_int effective;
1560
l_int permitted;
1561
l_int inheritable;
1562
};
1563
1564
int
1565
linux_capget(struct thread *td, struct linux_capget_args *uap)
1566
{
1567
struct l_user_cap_header luch;
1568
struct l_user_cap_data lucd[2];
1569
int error, u32s;
1570
1571
if (uap->hdrp == NULL)
1572
return (EFAULT);
1573
1574
error = copyin(uap->hdrp, &luch, sizeof(luch));
1575
if (error != 0)
1576
return (error);
1577
1578
switch (luch.version) {
1579
case _LINUX_CAPABILITY_VERSION_1:
1580
u32s = 1;
1581
break;
1582
case _LINUX_CAPABILITY_VERSION_2:
1583
case _LINUX_CAPABILITY_VERSION_3:
1584
u32s = 2;
1585
break;
1586
default:
1587
luch.version = _LINUX_CAPABILITY_VERSION_1;
1588
error = copyout(&luch, uap->hdrp, sizeof(luch));
1589
if (error)
1590
return (error);
1591
return (EINVAL);
1592
}
1593
1594
if (luch.pid)
1595
return (EPERM);
1596
1597
if (uap->datap) {
1598
/*
1599
* The current implementation doesn't support setting
1600
* a capability (it's essentially a stub) so indicate
1601
* that no capabilities are currently set or available
1602
* to request.
1603
*/
1604
memset(&lucd, 0, u32s * sizeof(lucd[0]));
1605
error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
1606
}
1607
1608
return (error);
1609
}
1610
1611
int
1612
linux_capset(struct thread *td, struct linux_capset_args *uap)
1613
{
1614
struct l_user_cap_header luch;
1615
struct l_user_cap_data lucd[2];
1616
int error, i, u32s;
1617
1618
if (uap->hdrp == NULL || uap->datap == NULL)
1619
return (EFAULT);
1620
1621
error = copyin(uap->hdrp, &luch, sizeof(luch));
1622
if (error != 0)
1623
return (error);
1624
1625
switch (luch.version) {
1626
case _LINUX_CAPABILITY_VERSION_1:
1627
u32s = 1;
1628
break;
1629
case _LINUX_CAPABILITY_VERSION_2:
1630
case _LINUX_CAPABILITY_VERSION_3:
1631
u32s = 2;
1632
break;
1633
default:
1634
luch.version = _LINUX_CAPABILITY_VERSION_1;
1635
error = copyout(&luch, uap->hdrp, sizeof(luch));
1636
if (error)
1637
return (error);
1638
return (EINVAL);
1639
}
1640
1641
if (luch.pid)
1642
return (EPERM);
1643
1644
error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
1645
if (error != 0)
1646
return (error);
1647
1648
/* We currently don't support setting any capabilities. */
1649
for (i = 0; i < u32s; i++) {
1650
if (lucd[i].effective || lucd[i].permitted ||
1651
lucd[i].inheritable) {
1652
linux_msg(td,
1653
"capset[%d] effective=0x%x, permitted=0x%x, "
1654
"inheritable=0x%x is not implemented", i,
1655
(int)lucd[i].effective, (int)lucd[i].permitted,
1656
(int)lucd[i].inheritable);
1657
return (EPERM);
1658
}
1659
}
1660
1661
return (0);
1662
}
1663
1664
int
1665
linux_prctl(struct thread *td, struct linux_prctl_args *args)
1666
{
1667
int error = 0, max_size, arg;
1668
struct proc *p = td->td_proc;
1669
char comm[LINUX_MAX_COMM_LEN];
1670
int pdeath_signal, trace_state;
1671
1672
switch (args->option) {
1673
case LINUX_PR_SET_PDEATHSIG:
1674
if (!LINUX_SIG_VALID(args->arg2))
1675
return (EINVAL);
1676
pdeath_signal = linux_to_bsd_signal(args->arg2);
1677
return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL,
1678
&pdeath_signal));
1679
case LINUX_PR_GET_PDEATHSIG:
1680
error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS,
1681
&pdeath_signal);
1682
if (error != 0)
1683
return (error);
1684
pdeath_signal = bsd_to_linux_signal(pdeath_signal);
1685
return (copyout(&pdeath_signal,
1686
(void *)(register_t)args->arg2,
1687
sizeof(pdeath_signal)));
1688
/*
1689
* In Linux, this flag controls if set[gu]id processes can coredump.
1690
* There are additional semantics imposed on processes that cannot
1691
* coredump:
1692
* - Such processes can not be ptraced.
1693
* - There are some semantics around ownership of process-related files
1694
* in the /proc namespace.
1695
*
1696
* In FreeBSD, we can (and by default, do) disable setuid coredump
1697
* system-wide with 'sugid_coredump.' We control tracability on a
1698
* per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag).
1699
* By happy coincidence, P2_NOTRACE also prevents coredumping. So the
1700
* procctl is roughly analogous to Linux's DUMPABLE.
1701
*
1702
* So, proxy these knobs to the corresponding PROC_TRACE setting.
1703
*/
1704
case LINUX_PR_GET_DUMPABLE:
1705
error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS,
1706
&trace_state);
1707
if (error != 0)
1708
return (error);
1709
td->td_retval[0] = (trace_state != -1);
1710
return (0);
1711
case LINUX_PR_SET_DUMPABLE:
1712
/*
1713
* It is only valid for userspace to set one of these two
1714
* flags, and only one at a time.
1715
*/
1716
switch (args->arg2) {
1717
case LINUX_SUID_DUMP_DISABLE:
1718
trace_state = PROC_TRACE_CTL_DISABLE_EXEC;
1719
break;
1720
case LINUX_SUID_DUMP_USER:
1721
trace_state = PROC_TRACE_CTL_ENABLE;
1722
break;
1723
default:
1724
return (EINVAL);
1725
}
1726
return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL,
1727
&trace_state));
1728
case LINUX_PR_GET_KEEPCAPS:
1729
/*
1730
* Indicate that we always clear the effective and
1731
* permitted capability sets when the user id becomes
1732
* non-zero (actually the capability sets are simply
1733
* always zero in the current implementation).
1734
*/
1735
td->td_retval[0] = 0;
1736
break;
1737
case LINUX_PR_SET_KEEPCAPS:
1738
/*
1739
* Ignore requests to keep the effective and permitted
1740
* capability sets when the user id becomes non-zero.
1741
*/
1742
break;
1743
case LINUX_PR_SET_NAME:
1744
/*
1745
* To be on the safe side we need to make sure to not
1746
* overflow the size a Linux program expects. We already
1747
* do this here in the copyin, so that we don't need to
1748
* check on copyout.
1749
*/
1750
max_size = MIN(sizeof(comm), sizeof(p->p_comm));
1751
error = copyinstr((void *)(register_t)args->arg2, comm,
1752
max_size, NULL);
1753
1754
/* Linux silently truncates the name if it is too long. */
1755
if (error == ENAMETOOLONG) {
1756
/*
1757
* XXX: copyinstr() isn't documented to populate the
1758
* array completely, so do a copyin() to be on the
1759
* safe side. This should be changed in case
1760
* copyinstr() is changed to guarantee this.
1761
*/
1762
error = copyin((void *)(register_t)args->arg2, comm,
1763
max_size - 1);
1764
comm[max_size - 1] = '\0';
1765
}
1766
if (error)
1767
return (error);
1768
1769
PROC_LOCK(p);
1770
strlcpy(p->p_comm, comm, sizeof(p->p_comm));
1771
PROC_UNLOCK(p);
1772
break;
1773
case LINUX_PR_GET_NAME:
1774
PROC_LOCK(p);
1775
strlcpy(comm, p->p_comm, sizeof(comm));
1776
PROC_UNLOCK(p);
1777
error = copyout(comm, (void *)(register_t)args->arg2,
1778
strlen(comm) + 1);
1779
break;
1780
case LINUX_PR_GET_SECCOMP:
1781
case LINUX_PR_SET_SECCOMP:
1782
/*
1783
* Same as returned by Linux without CONFIG_SECCOMP enabled.
1784
*/
1785
error = EINVAL;
1786
break;
1787
case LINUX_PR_CAPBSET_READ:
1788
#if 0
1789
/*
1790
* This makes too much noise with Ubuntu Focal.
1791
*/
1792
linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d",
1793
(int)args->arg2);
1794
#endif
1795
error = EINVAL;
1796
break;
1797
case LINUX_PR_SET_CHILD_SUBREAPER:
1798
if (args->arg2 == 0) {
1799
return (kern_procctl(td, P_PID, 0, PROC_REAP_RELEASE,
1800
NULL));
1801
}
1802
1803
return (kern_procctl(td, P_PID, 0, PROC_REAP_ACQUIRE,
1804
NULL));
1805
case LINUX_PR_SET_NO_NEW_PRIVS:
1806
arg = args->arg2 == 1 ?
1807
PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE;
1808
error = kern_procctl(td, P_PID, p->p_pid,
1809
PROC_NO_NEW_PRIVS_CTL, &arg);
1810
break;
1811
case LINUX_PR_SET_PTRACER:
1812
linux_msg(td, "unsupported prctl PR_SET_PTRACER");
1813
error = EINVAL;
1814
break;
1815
default:
1816
linux_msg(td, "unsupported prctl option %d", args->option);
1817
error = EINVAL;
1818
break;
1819
}
1820
1821
return (error);
1822
}
1823
1824
int
1825
linux_sched_setparam(struct thread *td,
1826
struct linux_sched_setparam_args *uap)
1827
{
1828
struct sched_param sched_param;
1829
struct thread *tdt;
1830
int error, policy;
1831
1832
error = copyin(uap->param, &sched_param, sizeof(sched_param));
1833
if (error)
1834
return (error);
1835
1836
tdt = linux_tdfind(td, uap->pid, -1);
1837
if (tdt == NULL)
1838
return (ESRCH);
1839
1840
if (linux_map_sched_prio) {
1841
error = kern_sched_getscheduler(td, tdt, &policy);
1842
if (error)
1843
goto out;
1844
1845
switch (policy) {
1846
case SCHED_OTHER:
1847
if (sched_param.sched_priority != 0) {
1848
error = EINVAL;
1849
goto out;
1850
}
1851
sched_param.sched_priority =
1852
PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1853
break;
1854
case SCHED_FIFO:
1855
case SCHED_RR:
1856
if (sched_param.sched_priority < 1 ||
1857
sched_param.sched_priority >= LINUX_MAX_RT_PRIO) {
1858
error = EINVAL;
1859
goto out;
1860
}
1861
/*
1862
* Map [1, LINUX_MAX_RT_PRIO - 1] to
1863
* [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1864
*/
1865
sched_param.sched_priority =
1866
(sched_param.sched_priority - 1) *
1867
(RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1868
(LINUX_MAX_RT_PRIO - 1);
1869
break;
1870
}
1871
}
1872
1873
error = kern_sched_setparam(td, tdt, &sched_param);
1874
out: PROC_UNLOCK(tdt->td_proc);
1875
return (error);
1876
}
1877
1878
int
1879
linux_sched_getparam(struct thread *td,
1880
struct linux_sched_getparam_args *uap)
1881
{
1882
struct sched_param sched_param;
1883
struct thread *tdt;
1884
int error, policy;
1885
1886
tdt = linux_tdfind(td, uap->pid, -1);
1887
if (tdt == NULL)
1888
return (ESRCH);
1889
1890
error = kern_sched_getparam(td, tdt, &sched_param);
1891
if (error) {
1892
PROC_UNLOCK(tdt->td_proc);
1893
return (error);
1894
}
1895
1896
if (linux_map_sched_prio) {
1897
error = kern_sched_getscheduler(td, tdt, &policy);
1898
PROC_UNLOCK(tdt->td_proc);
1899
if (error)
1900
return (error);
1901
1902
switch (policy) {
1903
case SCHED_OTHER:
1904
sched_param.sched_priority = 0;
1905
break;
1906
case SCHED_FIFO:
1907
case SCHED_RR:
1908
/*
1909
* Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to
1910
* [1, LINUX_MAX_RT_PRIO - 1] (rounding up).
1911
*/
1912
sched_param.sched_priority =
1913
(sched_param.sched_priority *
1914
(LINUX_MAX_RT_PRIO - 1) +
1915
(RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) /
1916
(RTP_PRIO_MAX - RTP_PRIO_MIN) + 1;
1917
break;
1918
}
1919
} else
1920
PROC_UNLOCK(tdt->td_proc);
1921
1922
error = copyout(&sched_param, uap->param, sizeof(sched_param));
1923
return (error);
1924
}
1925
1926
/*
1927
* Get affinity of a process.
1928
*/
1929
int
1930
linux_sched_getaffinity(struct thread *td,
1931
struct linux_sched_getaffinity_args *args)
1932
{
1933
struct thread *tdt;
1934
cpuset_t *mask;
1935
size_t size;
1936
int error;
1937
id_t tid;
1938
1939
tdt = linux_tdfind(td, args->pid, -1);
1940
if (tdt == NULL)
1941
return (ESRCH);
1942
tid = tdt->td_tid;
1943
PROC_UNLOCK(tdt->td_proc);
1944
1945
mask = malloc(sizeof(cpuset_t), M_LINUX, M_WAITOK | M_ZERO);
1946
size = min(args->len, sizeof(cpuset_t));
1947
error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
1948
tid, size, mask);
1949
if (error == ERANGE)
1950
error = EINVAL;
1951
if (error == 0)
1952
error = copyout(mask, args->user_mask_ptr, size);
1953
if (error == 0)
1954
td->td_retval[0] = size;
1955
free(mask, M_LINUX);
1956
return (error);
1957
}
1958
1959
/*
1960
* Set affinity of a process.
1961
*/
1962
int
1963
linux_sched_setaffinity(struct thread *td,
1964
struct linux_sched_setaffinity_args *args)
1965
{
1966
struct thread *tdt;
1967
cpuset_t *mask;
1968
int cpu, error;
1969
size_t len;
1970
id_t tid;
1971
1972
tdt = linux_tdfind(td, args->pid, -1);
1973
if (tdt == NULL)
1974
return (ESRCH);
1975
tid = tdt->td_tid;
1976
PROC_UNLOCK(tdt->td_proc);
1977
1978
len = min(args->len, sizeof(cpuset_t));
1979
mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO);
1980
error = copyin(args->user_mask_ptr, mask, len);
1981
if (error != 0)
1982
goto out;
1983
/* Linux ignore high bits */
1984
CPU_FOREACH_ISSET(cpu, mask)
1985
if (cpu > mp_maxid)
1986
CPU_CLR(cpu, mask);
1987
1988
error = kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
1989
tid, mask);
1990
if (error == EDEADLK)
1991
error = EINVAL;
1992
out:
1993
free(mask, M_TEMP);
1994
return (error);
1995
}
1996
1997
struct linux_rlimit64 {
1998
uint64_t rlim_cur;
1999
uint64_t rlim_max;
2000
};
2001
2002
int
2003
linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
2004
{
2005
struct rlimit rlim, nrlim;
2006
struct linux_rlimit64 lrlim;
2007
struct proc *p;
2008
u_int which;
2009
int flags;
2010
int error;
2011
2012
if (args->new == NULL && args->old != NULL) {
2013
if (linux_get_dummy_limit(td, args->resource, &rlim)) {
2014
lrlim.rlim_cur = rlim.rlim_cur;
2015
lrlim.rlim_max = rlim.rlim_max;
2016
return (copyout(&lrlim, args->old, sizeof(lrlim)));
2017
}
2018
}
2019
2020
if (args->resource >= LINUX_RLIM_NLIMITS)
2021
return (EINVAL);
2022
2023
which = linux_to_bsd_resource[args->resource];
2024
if (which == -1)
2025
return (EINVAL);
2026
2027
if (args->new != NULL) {
2028
/*
2029
* Note. Unlike FreeBSD where rlim is signed 64-bit Linux
2030
* rlim is unsigned 64-bit. FreeBSD treats negative limits
2031
* as INFINITY so we do not need a conversion even.
2032
*/
2033
error = copyin(args->new, &nrlim, sizeof(nrlim));
2034
if (error != 0)
2035
return (error);
2036
}
2037
2038
flags = PGET_HOLD | PGET_NOTWEXIT;
2039
if (args->new != NULL)
2040
flags |= PGET_CANDEBUG;
2041
else
2042
flags |= PGET_CANSEE;
2043
if (args->pid == 0) {
2044
p = td->td_proc;
2045
PHOLD(p);
2046
} else {
2047
error = pget(args->pid, flags, &p);
2048
if (error != 0)
2049
return (error);
2050
}
2051
if (args->old != NULL) {
2052
PROC_LOCK(p);
2053
lim_rlimit_proc(p, which, &rlim);
2054
PROC_UNLOCK(p);
2055
if (rlim.rlim_cur == RLIM_INFINITY)
2056
lrlim.rlim_cur = LINUX_RLIM_INFINITY;
2057
else
2058
lrlim.rlim_cur = rlim.rlim_cur;
2059
if (rlim.rlim_max == RLIM_INFINITY)
2060
lrlim.rlim_max = LINUX_RLIM_INFINITY;
2061
else
2062
lrlim.rlim_max = rlim.rlim_max;
2063
error = copyout(&lrlim, args->old, sizeof(lrlim));
2064
if (error != 0)
2065
goto out;
2066
}
2067
2068
if (args->new != NULL)
2069
error = kern_proc_setrlimit(td, p, which, &nrlim);
2070
2071
out:
2072
PRELE(p);
2073
return (error);
2074
}
2075
2076
int
2077
linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
2078
{
2079
struct timespec ts, *tsp;
2080
int error;
2081
2082
if (args->tsp != NULL) {
2083
error = linux_get_timespec(&ts, args->tsp);
2084
if (error != 0)
2085
return (error);
2086
tsp = &ts;
2087
} else
2088
tsp = NULL;
2089
2090
error = linux_common_pselect6(td, args->nfds, args->readfds,
2091
args->writefds, args->exceptfds, tsp, args->sig);
2092
2093
if (args->tsp != NULL)
2094
linux_put_timespec(&ts, args->tsp);
2095
return (error);
2096
}
2097
2098
static int
2099
linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds,
2100
l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp,
2101
l_uintptr_t *sig)
2102
{
2103
struct timeval utv, tv0, tv1, *tvp;
2104
struct l_pselect6arg lpse6;
2105
sigset_t *ssp;
2106
sigset_t ss;
2107
int error;
2108
2109
ssp = NULL;
2110
if (sig != NULL) {
2111
error = copyin(sig, &lpse6, sizeof(lpse6));
2112
if (error != 0)
2113
return (error);
2114
error = linux_copyin_sigset(td, PTRIN(lpse6.ss),
2115
lpse6.ss_len, &ss, &ssp);
2116
if (error != 0)
2117
return (error);
2118
} else
2119
ssp = NULL;
2120
2121
/*
2122
* Currently glibc changes nanosecond number to microsecond.
2123
* This mean losing precision but for now it is hardly seen.
2124
*/
2125
if (tsp != NULL) {
2126
TIMESPEC_TO_TIMEVAL(&utv, tsp);
2127
if (itimerfix(&utv))
2128
return (EINVAL);
2129
2130
microtime(&tv0);
2131
tvp = &utv;
2132
} else
2133
tvp = NULL;
2134
2135
error = kern_pselect(td, nfds, readfds, writefds,
2136
exceptfds, tvp, ssp, LINUX_NFDBITS);
2137
2138
if (tsp != NULL) {
2139
/*
2140
* Compute how much time was left of the timeout,
2141
* by subtracting the current time and the time
2142
* before we started the call, and subtracting
2143
* that result from the user-supplied value.
2144
*/
2145
microtime(&tv1);
2146
timevalsub(&tv1, &tv0);
2147
timevalsub(&utv, &tv1);
2148
if (utv.tv_sec < 0)
2149
timevalclear(&utv);
2150
TIMEVAL_TO_TIMESPEC(&utv, tsp);
2151
}
2152
return (error);
2153
}
2154
2155
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2156
int
2157
linux_pselect6_time64(struct thread *td,
2158
struct linux_pselect6_time64_args *args)
2159
{
2160
struct timespec ts, *tsp;
2161
int error;
2162
2163
if (args->tsp != NULL) {
2164
error = linux_get_timespec64(&ts, args->tsp);
2165
if (error != 0)
2166
return (error);
2167
tsp = &ts;
2168
} else
2169
tsp = NULL;
2170
2171
error = linux_common_pselect6(td, args->nfds, args->readfds,
2172
args->writefds, args->exceptfds, tsp, args->sig);
2173
2174
if (args->tsp != NULL)
2175
linux_put_timespec64(&ts, args->tsp);
2176
return (error);
2177
}
2178
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2179
2180
int
2181
linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
2182
{
2183
struct timespec uts, *tsp;
2184
int error;
2185
2186
if (args->tsp != NULL) {
2187
error = linux_get_timespec(&uts, args->tsp);
2188
if (error != 0)
2189
return (error);
2190
tsp = &uts;
2191
} else
2192
tsp = NULL;
2193
2194
error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2195
args->sset, args->ssize);
2196
if (error == 0 && args->tsp != NULL)
2197
error = linux_put_timespec(&uts, args->tsp);
2198
return (error);
2199
}
2200
2201
static int
2202
linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds,
2203
struct timespec *tsp, l_sigset_t *sset, l_size_t ssize)
2204
{
2205
struct timespec ts0, ts1;
2206
struct pollfd stackfds[32];
2207
struct pollfd *kfds;
2208
sigset_t *ssp;
2209
sigset_t ss;
2210
int error;
2211
2212
if (kern_poll_maxfds(nfds))
2213
return (EINVAL);
2214
if (sset != NULL) {
2215
error = linux_copyin_sigset(td, sset, ssize, &ss, &ssp);
2216
if (error != 0)
2217
return (error);
2218
} else
2219
ssp = NULL;
2220
if (tsp != NULL)
2221
nanotime(&ts0);
2222
2223
if (nfds > nitems(stackfds))
2224
kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
2225
else
2226
kfds = stackfds;
2227
error = linux_pollin(td, kfds, fds, nfds);
2228
if (error != 0)
2229
goto out;
2230
2231
error = kern_poll_kfds(td, kfds, nfds, tsp, ssp);
2232
if (error == 0)
2233
error = linux_pollout(td, kfds, fds, nfds);
2234
2235
if (error == 0 && tsp != NULL) {
2236
if (td->td_retval[0]) {
2237
nanotime(&ts1);
2238
timespecsub(&ts1, &ts0, &ts1);
2239
timespecsub(tsp, &ts1, tsp);
2240
if (tsp->tv_sec < 0)
2241
timespecclear(tsp);
2242
} else
2243
timespecclear(tsp);
2244
}
2245
2246
out:
2247
if (nfds > nitems(stackfds))
2248
free(kfds, M_TEMP);
2249
return (error);
2250
}
2251
2252
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2253
int
2254
linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args)
2255
{
2256
struct timespec uts, *tsp;
2257
int error;
2258
2259
if (args->tsp != NULL) {
2260
error = linux_get_timespec64(&uts, args->tsp);
2261
if (error != 0)
2262
return (error);
2263
tsp = &uts;
2264
} else
2265
tsp = NULL;
2266
error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2267
args->sset, args->ssize);
2268
if (error == 0 && args->tsp != NULL)
2269
error = linux_put_timespec64(&uts, args->tsp);
2270
return (error);
2271
}
2272
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2273
2274
static int
2275
linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2276
{
2277
int error;
2278
u_int i;
2279
2280
error = copyin(ufds, fds, nfd * sizeof(*fds));
2281
if (error != 0)
2282
return (error);
2283
2284
for (i = 0; i < nfd; i++) {
2285
if (fds->events != 0)
2286
linux_to_bsd_poll_events(td, fds->fd,
2287
fds->events, &fds->events);
2288
fds++;
2289
}
2290
return (0);
2291
}
2292
2293
static int
2294
linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2295
{
2296
int error = 0;
2297
u_int i, n = 0;
2298
2299
for (i = 0; i < nfd; i++) {
2300
if (fds->revents != 0) {
2301
bsd_to_linux_poll_events(fds->revents,
2302
&fds->revents);
2303
n++;
2304
}
2305
error = copyout(&fds->revents, &ufds->revents,
2306
sizeof(ufds->revents));
2307
if (error)
2308
return (error);
2309
fds++;
2310
ufds++;
2311
}
2312
td->td_retval[0] = n;
2313
return (0);
2314
}
2315
2316
static int
2317
linux_sched_rr_get_interval_common(struct thread *td, pid_t pid,
2318
struct timespec *ts)
2319
{
2320
struct thread *tdt;
2321
int error;
2322
2323
/*
2324
* According to man in case the invalid pid specified
2325
* EINVAL should be returned.
2326
*/
2327
if (pid < 0)
2328
return (EINVAL);
2329
2330
tdt = linux_tdfind(td, pid, -1);
2331
if (tdt == NULL)
2332
return (ESRCH);
2333
2334
error = kern_sched_rr_get_interval_td(td, tdt, ts);
2335
PROC_UNLOCK(tdt->td_proc);
2336
return (error);
2337
}
2338
2339
int
2340
linux_sched_rr_get_interval(struct thread *td,
2341
struct linux_sched_rr_get_interval_args *uap)
2342
{
2343
struct timespec ts;
2344
int error;
2345
2346
error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
2347
if (error != 0)
2348
return (error);
2349
return (linux_put_timespec(&ts, uap->interval));
2350
}
2351
2352
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2353
int
2354
linux_sched_rr_get_interval_time64(struct thread *td,
2355
struct linux_sched_rr_get_interval_time64_args *uap)
2356
{
2357
struct timespec ts;
2358
int error;
2359
2360
error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
2361
if (error != 0)
2362
return (error);
2363
return (linux_put_timespec64(&ts, uap->interval));
2364
}
2365
#endif
2366
2367
/*
2368
* In case when the Linux thread is the initial thread in
2369
* the thread group thread id is equal to the process id.
2370
* Glibc depends on this magic (assert in pthread_getattr_np.c).
2371
*/
2372
struct thread *
2373
linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
2374
{
2375
struct linux_emuldata *em;
2376
struct thread *tdt;
2377
struct proc *p;
2378
2379
tdt = NULL;
2380
if (tid == 0 || tid == td->td_tid) {
2381
if (pid != -1 && td->td_proc->p_pid != pid)
2382
return (NULL);
2383
PROC_LOCK(td->td_proc);
2384
return (td);
2385
} else if (tid > PID_MAX)
2386
return (tdfind(tid, pid));
2387
2388
/*
2389
* Initial thread where the tid equal to the pid.
2390
*/
2391
p = pfind(tid);
2392
if (p != NULL) {
2393
if (SV_PROC_ABI(p) != SV_ABI_LINUX ||
2394
(pid != -1 && tid != pid)) {
2395
/*
2396
* p is not a Linuxulator process.
2397
*/
2398
PROC_UNLOCK(p);
2399
return (NULL);
2400
}
2401
FOREACH_THREAD_IN_PROC(p, tdt) {
2402
em = em_find(tdt);
2403
if (tid == em->em_tid)
2404
return (tdt);
2405
}
2406
PROC_UNLOCK(p);
2407
}
2408
return (NULL);
2409
}
2410
2411
void
2412
linux_to_bsd_waitopts(int options, int *bsdopts)
2413
{
2414
2415
if (options & LINUX_WNOHANG)
2416
*bsdopts |= WNOHANG;
2417
if (options & LINUX_WUNTRACED)
2418
*bsdopts |= WUNTRACED;
2419
if (options & LINUX_WEXITED)
2420
*bsdopts |= WEXITED;
2421
if (options & LINUX_WCONTINUED)
2422
*bsdopts |= WCONTINUED;
2423
if (options & LINUX_WNOWAIT)
2424
*bsdopts |= WNOWAIT;
2425
2426
if (options & __WCLONE)
2427
*bsdopts |= WLINUXCLONE;
2428
}
2429
2430
int
2431
linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
2432
{
2433
struct uio uio;
2434
struct iovec iov;
2435
int error;
2436
2437
if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
2438
return (EINVAL);
2439
if (args->count > INT_MAX)
2440
args->count = INT_MAX;
2441
2442
iov.iov_base = args->buf;
2443
iov.iov_len = args->count;
2444
2445
uio.uio_iov = &iov;
2446
uio.uio_iovcnt = 1;
2447
uio.uio_resid = iov.iov_len;
2448
uio.uio_segflg = UIO_USERSPACE;
2449
uio.uio_rw = UIO_READ;
2450
uio.uio_td = td;
2451
2452
error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
2453
if (error == 0)
2454
td->td_retval[0] = args->count - uio.uio_resid;
2455
return (error);
2456
}
2457
2458
int
2459
linux_mincore(struct thread *td, struct linux_mincore_args *args)
2460
{
2461
2462
/* Needs to be page-aligned */
2463
if (args->start & PAGE_MASK)
2464
return (EINVAL);
2465
return (kern_mincore(td, args->start, args->len, args->vec));
2466
}
2467
2468
#define SYSLOG_TAG "<6>"
2469
2470
int
2471
linux_syslog(struct thread *td, struct linux_syslog_args *args)
2472
{
2473
char buf[128], *src, *dst;
2474
u_int seq;
2475
int buflen, error;
2476
2477
if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) {
2478
linux_msg(td, "syslog unsupported type 0x%x", args->type);
2479
return (EINVAL);
2480
}
2481
2482
if (args->len < 6) {
2483
td->td_retval[0] = 0;
2484
return (0);
2485
}
2486
2487
error = priv_check(td, PRIV_MSGBUF);
2488
if (error)
2489
return (error);
2490
2491
mtx_lock(&msgbuf_lock);
2492
msgbuf_peekbytes(msgbufp, NULL, 0, &seq);
2493
mtx_unlock(&msgbuf_lock);
2494
2495
dst = args->buf;
2496
error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG));
2497
/* The -1 is to skip the trailing '\0'. */
2498
dst += sizeof(SYSLOG_TAG) - 1;
2499
2500
while (error == 0) {
2501
mtx_lock(&msgbuf_lock);
2502
buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq);
2503
mtx_unlock(&msgbuf_lock);
2504
2505
if (buflen == 0)
2506
break;
2507
2508
for (src = buf; src < buf + buflen && error == 0; src++) {
2509
if (*src == '\0')
2510
continue;
2511
2512
if (dst >= args->buf + args->len)
2513
goto out;
2514
2515
error = copyout(src, dst, 1);
2516
dst++;
2517
2518
if (*src == '\n' && *(src + 1) != '<' &&
2519
dst + sizeof(SYSLOG_TAG) < args->buf + args->len) {
2520
error = copyout(&SYSLOG_TAG,
2521
dst, sizeof(SYSLOG_TAG));
2522
dst += sizeof(SYSLOG_TAG) - 1;
2523
}
2524
}
2525
}
2526
out:
2527
td->td_retval[0] = dst - args->buf;
2528
return (error);
2529
}
2530
2531
int
2532
linux_getcpu(struct thread *td, struct linux_getcpu_args *args)
2533
{
2534
int cpu, error, node;
2535
2536
cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */
2537
error = 0;
2538
node = cpuid_to_pcpu[cpu]->pc_domain;
2539
2540
if (args->cpu != NULL)
2541
error = copyout(&cpu, args->cpu, sizeof(l_int));
2542
if (args->node != NULL)
2543
error = copyout(&node, args->node, sizeof(l_int));
2544
return (error);
2545
}
2546
2547
#if defined(__i386__) || defined(__amd64__)
2548
int
2549
linux_poll(struct thread *td, struct linux_poll_args *args)
2550
{
2551
struct timespec ts, *tsp;
2552
2553
if (args->timeout != INFTIM) {
2554
if (args->timeout < 0)
2555
return (EINVAL);
2556
ts.tv_sec = args->timeout / 1000;
2557
ts.tv_nsec = (args->timeout % 1000) * 1000000;
2558
tsp = &ts;
2559
} else
2560
tsp = NULL;
2561
2562
return (linux_common_ppoll(td, args->fds, args->nfds,
2563
tsp, NULL, 0));
2564
}
2565
#endif /* __i386__ || __amd64__ */
2566
2567
int
2568
linux_seccomp(struct thread *td, struct linux_seccomp_args *args)
2569
{
2570
2571
switch (args->op) {
2572
case LINUX_SECCOMP_GET_ACTION_AVAIL:
2573
return (EOPNOTSUPP);
2574
default:
2575
/*
2576
* Ignore unknown operations, just like Linux kernel built
2577
* without CONFIG_SECCOMP.
2578
*/
2579
return (EINVAL);
2580
}
2581
}
2582
2583
/*
2584
* Custom version of exec_copyin_args(), to copy out argument and environment
2585
* strings from the old process address space into the temporary string buffer.
2586
* Based on freebsd32_exec_copyin_args.
2587
*/
2588
static int
2589
linux_exec_copyin_args(struct image_args *args, const char *fname,
2590
l_uintptr_t *argv, l_uintptr_t *envv)
2591
{
2592
char *argp, *envp;
2593
l_uintptr_t *ptr, arg;
2594
int error;
2595
2596
bzero(args, sizeof(*args));
2597
if (argv == NULL)
2598
return (EFAULT);
2599
2600
/*
2601
* Allocate demand-paged memory for the file name, argument, and
2602
* environment strings.
2603
*/
2604
error = exec_alloc_args(args);
2605
if (error != 0)
2606
return (error);
2607
2608
/*
2609
* Copy the file name.
2610
*/
2611
error = exec_args_add_fname(args, fname, UIO_USERSPACE);
2612
if (error != 0)
2613
goto err_exit;
2614
2615
/*
2616
* extract arguments first
2617
*/
2618
ptr = argv;
2619
for (;;) {
2620
error = copyin(ptr++, &arg, sizeof(arg));
2621
if (error)
2622
goto err_exit;
2623
if (arg == 0)
2624
break;
2625
argp = PTRIN(arg);
2626
error = exec_args_add_arg(args, argp, UIO_USERSPACE);
2627
if (error != 0)
2628
goto err_exit;
2629
}
2630
2631
/*
2632
* This comment is from Linux do_execveat_common:
2633
* When argv is empty, add an empty string ("") as argv[0] to
2634
* ensure confused userspace programs that start processing
2635
* from argv[1] won't end up walking envp.
2636
*/
2637
if (args->argc == 0 &&
2638
(error = exec_args_add_arg(args, "", UIO_SYSSPACE) != 0))
2639
goto err_exit;
2640
2641
/*
2642
* extract environment strings
2643
*/
2644
if (envv) {
2645
ptr = envv;
2646
for (;;) {
2647
error = copyin(ptr++, &arg, sizeof(arg));
2648
if (error)
2649
goto err_exit;
2650
if (arg == 0)
2651
break;
2652
envp = PTRIN(arg);
2653
error = exec_args_add_env(args, envp, UIO_USERSPACE);
2654
if (error != 0)
2655
goto err_exit;
2656
}
2657
}
2658
2659
return (0);
2660
2661
err_exit:
2662
exec_free_args(args);
2663
return (error);
2664
}
2665
2666
int
2667
linux_execve(struct thread *td, struct linux_execve_args *args)
2668
{
2669
struct image_args eargs;
2670
int error;
2671
2672
LINUX_CTR(execve);
2673
2674
error = linux_exec_copyin_args(&eargs, args->path, args->argp,
2675
args->envp);
2676
if (error == 0)
2677
error = linux_common_execve(td, &eargs);
2678
AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
2679
return (error);
2680
}
2681
2682
static void
2683
linux_up_rtprio_if(struct thread *td1, struct rtprio *rtp)
2684
{
2685
struct rtprio rtp2;
2686
2687
pri_to_rtp(td1, &rtp2);
2688
if (rtp2.type < rtp->type ||
2689
(rtp2.type == rtp->type &&
2690
rtp2.prio < rtp->prio)) {
2691
rtp->type = rtp2.type;
2692
rtp->prio = rtp2.prio;
2693
}
2694
}
2695
2696
#define LINUX_PRIO_DIVIDER RTP_PRIO_MAX / LINUX_IOPRIO_MAX
2697
2698
static int
2699
linux_rtprio2ioprio(struct rtprio *rtp)
2700
{
2701
int ioprio, prio;
2702
2703
switch (rtp->type) {
2704
case RTP_PRIO_IDLE:
2705
prio = RTP_PRIO_MIN;
2706
ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_IDLE, prio);
2707
break;
2708
case RTP_PRIO_NORMAL:
2709
prio = rtp->prio / LINUX_PRIO_DIVIDER;
2710
ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_BE, prio);
2711
break;
2712
case RTP_PRIO_REALTIME:
2713
prio = rtp->prio / LINUX_PRIO_DIVIDER;
2714
ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_RT, prio);
2715
break;
2716
default:
2717
prio = RTP_PRIO_MIN;
2718
ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_NONE, prio);
2719
break;
2720
}
2721
return (ioprio);
2722
}
2723
2724
static int
2725
linux_ioprio2rtprio(int ioprio, struct rtprio *rtp)
2726
{
2727
2728
switch (LINUX_IOPRIO_PRIO_CLASS(ioprio)) {
2729
case LINUX_IOPRIO_CLASS_IDLE:
2730
rtp->prio = RTP_PRIO_MIN;
2731
rtp->type = RTP_PRIO_IDLE;
2732
break;
2733
case LINUX_IOPRIO_CLASS_BE:
2734
rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER;
2735
rtp->type = RTP_PRIO_NORMAL;
2736
break;
2737
case LINUX_IOPRIO_CLASS_RT:
2738
rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER;
2739
rtp->type = RTP_PRIO_REALTIME;
2740
break;
2741
default:
2742
return (EINVAL);
2743
}
2744
return (0);
2745
}
2746
#undef LINUX_PRIO_DIVIDER
2747
2748
int
2749
linux_ioprio_get(struct thread *td, struct linux_ioprio_get_args *args)
2750
{
2751
struct thread *td1;
2752
struct rtprio rtp;
2753
struct pgrp *pg;
2754
struct proc *p;
2755
int error, found;
2756
2757
p = NULL;
2758
td1 = NULL;
2759
error = 0;
2760
found = 0;
2761
rtp.type = RTP_PRIO_IDLE;
2762
rtp.prio = RTP_PRIO_MAX;
2763
switch (args->which) {
2764
case LINUX_IOPRIO_WHO_PROCESS:
2765
if (args->who == 0) {
2766
td1 = td;
2767
p = td1->td_proc;
2768
PROC_LOCK(p);
2769
} else if (args->who > PID_MAX) {
2770
td1 = linux_tdfind(td, args->who, -1);
2771
if (td1 != NULL)
2772
p = td1->td_proc;
2773
} else
2774
p = pfind(args->who);
2775
if (p == NULL)
2776
return (ESRCH);
2777
if ((error = p_cansee(td, p))) {
2778
PROC_UNLOCK(p);
2779
break;
2780
}
2781
if (td1 != NULL) {
2782
pri_to_rtp(td1, &rtp);
2783
} else {
2784
FOREACH_THREAD_IN_PROC(p, td1) {
2785
linux_up_rtprio_if(td1, &rtp);
2786
}
2787
}
2788
found++;
2789
PROC_UNLOCK(p);
2790
break;
2791
case LINUX_IOPRIO_WHO_PGRP:
2792
sx_slock(&proctree_lock);
2793
if (args->who == 0) {
2794
pg = td->td_proc->p_pgrp;
2795
PGRP_LOCK(pg);
2796
} else {
2797
pg = pgfind(args->who);
2798
if (pg == NULL) {
2799
sx_sunlock(&proctree_lock);
2800
error = ESRCH;
2801
break;
2802
}
2803
}
2804
sx_sunlock(&proctree_lock);
2805
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2806
PROC_LOCK(p);
2807
if (p->p_state == PRS_NORMAL &&
2808
p_cansee(td, p) == 0) {
2809
FOREACH_THREAD_IN_PROC(p, td1) {
2810
linux_up_rtprio_if(td1, &rtp);
2811
found++;
2812
}
2813
}
2814
PROC_UNLOCK(p);
2815
}
2816
PGRP_UNLOCK(pg);
2817
break;
2818
case LINUX_IOPRIO_WHO_USER:
2819
if (args->who == 0)
2820
args->who = td->td_ucred->cr_uid;
2821
sx_slock(&allproc_lock);
2822
FOREACH_PROC_IN_SYSTEM(p) {
2823
PROC_LOCK(p);
2824
if (p->p_state == PRS_NORMAL &&
2825
p->p_ucred->cr_uid == args->who &&
2826
p_cansee(td, p) == 0) {
2827
FOREACH_THREAD_IN_PROC(p, td1) {
2828
linux_up_rtprio_if(td1, &rtp);
2829
found++;
2830
}
2831
}
2832
PROC_UNLOCK(p);
2833
}
2834
sx_sunlock(&allproc_lock);
2835
break;
2836
default:
2837
error = EINVAL;
2838
break;
2839
}
2840
if (error == 0) {
2841
if (found != 0)
2842
td->td_retval[0] = linux_rtprio2ioprio(&rtp);
2843
else
2844
error = ESRCH;
2845
}
2846
return (error);
2847
}
2848
2849
int
2850
linux_ioprio_set(struct thread *td, struct linux_ioprio_set_args *args)
2851
{
2852
struct thread *td1;
2853
struct rtprio rtp;
2854
struct pgrp *pg;
2855
struct proc *p;
2856
int error;
2857
2858
if ((error = linux_ioprio2rtprio(args->ioprio, &rtp)) != 0)
2859
return (error);
2860
/* Attempts to set high priorities (REALTIME) require su privileges. */
2861
if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME &&
2862
(error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0)
2863
return (error);
2864
2865
p = NULL;
2866
td1 = NULL;
2867
switch (args->which) {
2868
case LINUX_IOPRIO_WHO_PROCESS:
2869
if (args->who == 0) {
2870
td1 = td;
2871
p = td1->td_proc;
2872
PROC_LOCK(p);
2873
} else if (args->who > PID_MAX) {
2874
td1 = linux_tdfind(td, args->who, -1);
2875
if (td1 != NULL)
2876
p = td1->td_proc;
2877
} else
2878
p = pfind(args->who);
2879
if (p == NULL)
2880
return (ESRCH);
2881
if ((error = p_cansched(td, p))) {
2882
PROC_UNLOCK(p);
2883
break;
2884
}
2885
if (td1 != NULL) {
2886
error = rtp_to_pri(&rtp, td1);
2887
} else {
2888
FOREACH_THREAD_IN_PROC(p, td1) {
2889
if ((error = rtp_to_pri(&rtp, td1)) != 0)
2890
break;
2891
}
2892
}
2893
PROC_UNLOCK(p);
2894
break;
2895
case LINUX_IOPRIO_WHO_PGRP:
2896
sx_slock(&proctree_lock);
2897
if (args->who == 0) {
2898
pg = td->td_proc->p_pgrp;
2899
PGRP_LOCK(pg);
2900
} else {
2901
pg = pgfind(args->who);
2902
if (pg == NULL) {
2903
sx_sunlock(&proctree_lock);
2904
error = ESRCH;
2905
break;
2906
}
2907
}
2908
sx_sunlock(&proctree_lock);
2909
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2910
PROC_LOCK(p);
2911
if (p->p_state == PRS_NORMAL &&
2912
p_cansched(td, p) == 0) {
2913
FOREACH_THREAD_IN_PROC(p, td1) {
2914
if ((error = rtp_to_pri(&rtp, td1)) != 0)
2915
break;
2916
}
2917
}
2918
PROC_UNLOCK(p);
2919
if (error != 0)
2920
break;
2921
}
2922
PGRP_UNLOCK(pg);
2923
break;
2924
case LINUX_IOPRIO_WHO_USER:
2925
if (args->who == 0)
2926
args->who = td->td_ucred->cr_uid;
2927
sx_slock(&allproc_lock);
2928
FOREACH_PROC_IN_SYSTEM(p) {
2929
PROC_LOCK(p);
2930
if (p->p_state == PRS_NORMAL &&
2931
p->p_ucred->cr_uid == args->who &&
2932
p_cansched(td, p) == 0) {
2933
FOREACH_THREAD_IN_PROC(p, td1) {
2934
if ((error = rtp_to_pri(&rtp, td1)) != 0)
2935
break;
2936
}
2937
}
2938
PROC_UNLOCK(p);
2939
if (error != 0)
2940
break;
2941
}
2942
sx_sunlock(&allproc_lock);
2943
break;
2944
default:
2945
error = EINVAL;
2946
break;
2947
}
2948
return (error);
2949
}
2950
2951
/* The only flag is O_NONBLOCK */
2952
#define B2L_MQ_FLAGS(bflags) ((bflags) != 0 ? LINUX_O_NONBLOCK : 0)
2953
#define L2B_MQ_FLAGS(lflags) ((lflags) != 0 ? O_NONBLOCK : 0)
2954
2955
int
2956
linux_mq_open(struct thread *td, struct linux_mq_open_args *args)
2957
{
2958
struct mq_attr attr;
2959
int error, flags;
2960
2961
flags = linux_common_openflags(args->oflag);
2962
if ((flags & O_ACCMODE) == O_ACCMODE || (flags & O_EXEC) != 0)
2963
return (EINVAL);
2964
flags = FFLAGS(flags);
2965
if ((flags & O_CREAT) != 0 && args->attr != NULL) {
2966
error = copyin(args->attr, &attr, sizeof(attr));
2967
if (error != 0)
2968
return (error);
2969
attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags);
2970
}
2971
2972
return (kern_kmq_open(td, args->name, flags, args->mode,
2973
args->attr != NULL ? &attr : NULL));
2974
}
2975
2976
int
2977
linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args)
2978
{
2979
struct kmq_unlink_args bsd_args = {
2980
.path = PTRIN(args->name)
2981
};
2982
2983
return (sys_kmq_unlink(td, &bsd_args));
2984
}
2985
2986
int
2987
linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args)
2988
{
2989
struct timespec ts, *abs_timeout;
2990
int error;
2991
2992
if (args->abs_timeout == NULL)
2993
abs_timeout = NULL;
2994
else {
2995
error = linux_get_timespec(&ts, args->abs_timeout);
2996
if (error != 0)
2997
return (error);
2998
abs_timeout = &ts;
2999
}
3000
3001
return (kern_kmq_timedsend(td, args->mqd, PTRIN(args->msg_ptr),
3002
args->msg_len, args->msg_prio, abs_timeout));
3003
}
3004
3005
int
3006
linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args)
3007
{
3008
struct timespec ts, *abs_timeout;
3009
int error;
3010
3011
if (args->abs_timeout == NULL)
3012
abs_timeout = NULL;
3013
else {
3014
error = linux_get_timespec(&ts, args->abs_timeout);
3015
if (error != 0)
3016
return (error);
3017
abs_timeout = &ts;
3018
}
3019
3020
return (kern_kmq_timedreceive(td, args->mqd, PTRIN(args->msg_ptr),
3021
args->msg_len, args->msg_prio, abs_timeout));
3022
}
3023
3024
int
3025
linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args)
3026
{
3027
struct sigevent ev, *evp;
3028
struct l_sigevent l_ev;
3029
int error;
3030
3031
if (args->sevp == NULL)
3032
evp = NULL;
3033
else {
3034
error = copyin(args->sevp, &l_ev, sizeof(l_ev));
3035
if (error != 0)
3036
return (error);
3037
error = linux_convert_l_sigevent(&l_ev, &ev);
3038
if (error != 0)
3039
return (error);
3040
evp = &ev;
3041
}
3042
3043
return (kern_kmq_notify(td, args->mqd, evp));
3044
}
3045
3046
int
3047
linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args)
3048
{
3049
struct mq_attr attr, oattr;
3050
int error;
3051
3052
if (args->attr != NULL) {
3053
error = copyin(args->attr, &attr, sizeof(attr));
3054
if (error != 0)
3055
return (error);
3056
attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags);
3057
}
3058
3059
error = kern_kmq_setattr(td, args->mqd, args->attr != NULL ? &attr : NULL,
3060
&oattr);
3061
if (error == 0 && args->oattr != NULL) {
3062
oattr.mq_flags = B2L_MQ_FLAGS(oattr.mq_flags);
3063
bzero(oattr.__reserved, sizeof(oattr.__reserved));
3064
error = copyout(&oattr, args->oattr, sizeof(oattr));
3065
}
3066
3067
return (error);
3068
}
3069
3070
MODULE_DEPEND(linux, mqueuefs, 1, 1, 1);
3071
3072