Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/compat/linuxkpi/common/src/linux_compat.c
39586 views
1
/*-
2
* Copyright (c) 2010 Isilon Systems, Inc.
3
* Copyright (c) 2010 iX Systems, Inc.
4
* Copyright (c) 2010 Panasas, Inc.
5
* Copyright (c) 2013-2021 Mellanox Technologies, Ltd.
6
* All rights reserved.
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice unmodified, this list of conditions, and the following
13
* disclaimer.
14
* 2. Redistributions in binary form must reproduce the above copyright
15
* notice, this list of conditions and the following disclaimer in the
16
* documentation and/or other materials provided with the distribution.
17
*
18
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
*/
29
30
#include <sys/cdefs.h>
31
#include "opt_global.h"
32
#include "opt_stack.h"
33
34
#include <sys/param.h>
35
#include <sys/systm.h>
36
#include <sys/malloc.h>
37
#include <sys/kernel.h>
38
#include <sys/sysctl.h>
39
#include <sys/proc.h>
40
#include <sys/sglist.h>
41
#include <sys/sleepqueue.h>
42
#include <sys/refcount.h>
43
#include <sys/lock.h>
44
#include <sys/mutex.h>
45
#include <sys/bus.h>
46
#include <sys/eventhandler.h>
47
#include <sys/fcntl.h>
48
#include <sys/file.h>
49
#include <sys/filio.h>
50
#include <sys/rwlock.h>
51
#include <sys/mman.h>
52
#include <sys/stack.h>
53
#include <sys/stdarg.h>
54
#include <sys/sysent.h>
55
#include <sys/time.h>
56
#include <sys/user.h>
57
58
#include <vm/vm.h>
59
#include <vm/pmap.h>
60
#include <vm/vm_object.h>
61
#include <vm/vm_page.h>
62
#include <vm/vm_pager.h>
63
#include <vm/vm_radix.h>
64
65
#if defined(__i386__) || defined(__amd64__)
66
#include <machine/cputypes.h>
67
#include <machine/md_var.h>
68
#endif
69
70
#include <linux/kobject.h>
71
#include <linux/cpu.h>
72
#include <linux/device.h>
73
#include <linux/slab.h>
74
#include <linux/module.h>
75
#include <linux/moduleparam.h>
76
#include <linux/cdev.h>
77
#include <linux/file.h>
78
#include <linux/fs.h>
79
#include <linux/sysfs.h>
80
#include <linux/mm.h>
81
#include <linux/io.h>
82
#include <linux/vmalloc.h>
83
#include <linux/netdevice.h>
84
#include <linux/timer.h>
85
#include <linux/interrupt.h>
86
#include <linux/uaccess.h>
87
#include <linux/utsname.h>
88
#include <linux/list.h>
89
#include <linux/kthread.h>
90
#include <linux/kernel.h>
91
#include <linux/compat.h>
92
#include <linux/io-mapping.h>
93
#include <linux/poll.h>
94
#include <linux/smp.h>
95
#include <linux/wait_bit.h>
96
#include <linux/rcupdate.h>
97
#include <linux/interval_tree.h>
98
#include <linux/interval_tree_generic.h>
99
#include <linux/printk.h>
100
#include <linux/seq_file.h>
101
102
#if defined(__i386__) || defined(__amd64__)
103
#include <asm/smp.h>
104
#include <asm/processor.h>
105
#endif
106
107
#include <xen/xen.h>
108
#ifdef XENHVM
109
#undef xen_pv_domain
110
#undef xen_initial_domain
111
/* xen/xen-os.h redefines __must_check */
112
#undef __must_check
113
#include <xen/xen-os.h>
114
#endif
115
116
SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
117
"LinuxKPI parameters");
118
119
int linuxkpi_debug;
120
SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
121
&linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
122
123
int linuxkpi_rcu_debug;
124
SYSCTL_INT(_compat_linuxkpi, OID_AUTO, rcu_debug, CTLFLAG_RWTUN,
125
&linuxkpi_rcu_debug, 0, "Set to enable RCU warning. Clear to disable.");
126
127
int linuxkpi_warn_dump_stack = 0;
128
SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN,
129
&linuxkpi_warn_dump_stack, 0,
130
"Set to enable stack traces from WARN_ON(). Clear to disable.");
131
132
static struct timeval lkpi_net_lastlog;
133
static int lkpi_net_curpps;
134
static int lkpi_net_maxpps = 99;
135
SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN,
136
&lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second.");
137
138
MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat");
139
140
#include <linux/rbtree.h>
141
/* Undo Linux compat changes. */
142
#undef RB_ROOT
143
#undef file
144
#undef cdev
145
#define RB_ROOT(head) (head)->rbh_root
146
147
static void linux_destroy_dev(struct linux_cdev *);
148
static void linux_cdev_deref(struct linux_cdev *ldev);
149
static struct vm_area_struct *linux_cdev_handle_find(void *handle);
150
151
cpumask_t cpu_online_mask;
152
static cpumask_t **static_single_cpu_mask;
153
static cpumask_t *static_single_cpu_mask_lcs;
154
struct kobject linux_class_root;
155
struct device linux_root_device;
156
struct class linux_class_misc;
157
struct list_head pci_drivers;
158
struct list_head pci_devices;
159
spinlock_t pci_lock;
160
struct uts_namespace init_uts_ns;
161
162
unsigned long linux_timer_hz_mask;
163
164
wait_queue_head_t linux_bit_waitq;
165
wait_queue_head_t linux_var_waitq;
166
167
int
168
panic_cmp(struct rb_node *one, struct rb_node *two)
169
{
170
panic("no cmp");
171
}
172
173
RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
174
175
#define START(node) ((node)->start)
176
#define LAST(node) ((node)->last)
177
178
INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START,
179
LAST,, lkpi_interval_tree)
180
181
static void
182
linux_device_release(struct device *dev)
183
{
184
pr_debug("linux_device_release: %s\n", dev_name(dev));
185
kfree(dev);
186
}
187
188
static ssize_t
189
linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
190
{
191
struct class_attribute *dattr;
192
ssize_t error;
193
194
dattr = container_of(attr, struct class_attribute, attr);
195
error = -EIO;
196
if (dattr->show)
197
error = dattr->show(container_of(kobj, struct class, kobj),
198
dattr, buf);
199
return (error);
200
}
201
202
static ssize_t
203
linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
204
size_t count)
205
{
206
struct class_attribute *dattr;
207
ssize_t error;
208
209
dattr = container_of(attr, struct class_attribute, attr);
210
error = -EIO;
211
if (dattr->store)
212
error = dattr->store(container_of(kobj, struct class, kobj),
213
dattr, buf, count);
214
return (error);
215
}
216
217
static void
218
linux_class_release(struct kobject *kobj)
219
{
220
struct class *class;
221
222
class = container_of(kobj, struct class, kobj);
223
if (class->class_release)
224
class->class_release(class);
225
}
226
227
static const struct sysfs_ops linux_class_sysfs = {
228
.show = linux_class_show,
229
.store = linux_class_store,
230
};
231
232
const struct kobj_type linux_class_ktype = {
233
.release = linux_class_release,
234
.sysfs_ops = &linux_class_sysfs
235
};
236
237
static void
238
linux_dev_release(struct kobject *kobj)
239
{
240
struct device *dev;
241
242
dev = container_of(kobj, struct device, kobj);
243
/* This is the precedence defined by linux. */
244
if (dev->release)
245
dev->release(dev);
246
else if (dev->class && dev->class->dev_release)
247
dev->class->dev_release(dev);
248
}
249
250
static ssize_t
251
linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
252
{
253
struct device_attribute *dattr;
254
ssize_t error;
255
256
dattr = container_of(attr, struct device_attribute, attr);
257
error = -EIO;
258
if (dattr->show)
259
error = dattr->show(container_of(kobj, struct device, kobj),
260
dattr, buf);
261
return (error);
262
}
263
264
static ssize_t
265
linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
266
size_t count)
267
{
268
struct device_attribute *dattr;
269
ssize_t error;
270
271
dattr = container_of(attr, struct device_attribute, attr);
272
error = -EIO;
273
if (dattr->store)
274
error = dattr->store(container_of(kobj, struct device, kobj),
275
dattr, buf, count);
276
return (error);
277
}
278
279
static const struct sysfs_ops linux_dev_sysfs = {
280
.show = linux_dev_show,
281
.store = linux_dev_store,
282
};
283
284
const struct kobj_type linux_dev_ktype = {
285
.release = linux_dev_release,
286
.sysfs_ops = &linux_dev_sysfs
287
};
288
289
struct device *
290
device_create(struct class *class, struct device *parent, dev_t devt,
291
void *drvdata, const char *fmt, ...)
292
{
293
struct device *dev;
294
va_list args;
295
296
dev = kzalloc(sizeof(*dev), M_WAITOK);
297
dev->parent = parent;
298
dev->class = class;
299
dev->devt = devt;
300
dev->driver_data = drvdata;
301
dev->release = linux_device_release;
302
va_start(args, fmt);
303
kobject_set_name_vargs(&dev->kobj, fmt, args);
304
va_end(args);
305
device_register(dev);
306
307
return (dev);
308
}
309
310
struct device *
311
device_create_groups_vargs(struct class *class, struct device *parent,
312
dev_t devt, void *drvdata, const struct attribute_group **groups,
313
const char *fmt, va_list args)
314
{
315
struct device *dev = NULL;
316
int retval = -ENODEV;
317
318
if (class == NULL || IS_ERR(class))
319
goto error;
320
321
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
322
if (!dev) {
323
retval = -ENOMEM;
324
goto error;
325
}
326
327
dev->devt = devt;
328
dev->class = class;
329
dev->parent = parent;
330
dev->groups = groups;
331
dev->release = device_create_release;
332
/* device_initialize() needs the class and parent to be set */
333
device_initialize(dev);
334
dev_set_drvdata(dev, drvdata);
335
336
retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
337
if (retval)
338
goto error;
339
340
retval = device_add(dev);
341
if (retval)
342
goto error;
343
344
return dev;
345
346
error:
347
put_device(dev);
348
return ERR_PTR(retval);
349
}
350
351
struct class *
352
lkpi_class_create(const char *name)
353
{
354
struct class *class;
355
int error;
356
357
class = kzalloc(sizeof(*class), M_WAITOK);
358
class->name = name;
359
class->class_release = linux_class_kfree;
360
error = class_register(class);
361
if (error) {
362
kfree(class);
363
return (NULL);
364
}
365
366
return (class);
367
}
368
369
static void
370
linux_kq_lock(void *arg)
371
{
372
spinlock_t *s = arg;
373
374
spin_lock(s);
375
}
376
static void
377
linux_kq_unlock(void *arg)
378
{
379
spinlock_t *s = arg;
380
381
spin_unlock(s);
382
}
383
384
static void
385
linux_kq_assert_lock(void *arg, int what)
386
{
387
#ifdef INVARIANTS
388
spinlock_t *s = arg;
389
390
if (what == LA_LOCKED)
391
mtx_assert(s, MA_OWNED);
392
else
393
mtx_assert(s, MA_NOTOWNED);
394
#endif
395
}
396
397
static void
398
linux_file_kqfilter_poll(struct linux_file *, int);
399
400
struct linux_file *
401
linux_file_alloc(void)
402
{
403
struct linux_file *filp;
404
405
filp = kzalloc(sizeof(*filp), GFP_KERNEL);
406
407
/* set initial refcount */
408
filp->f_count = 1;
409
410
/* setup fields needed by kqueue support */
411
spin_lock_init(&filp->f_kqlock);
412
knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
413
linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock);
414
415
return (filp);
416
}
417
418
void
419
linux_file_free(struct linux_file *filp)
420
{
421
if (filp->_file == NULL) {
422
if (filp->f_op != NULL && filp->f_op->release != NULL)
423
filp->f_op->release(filp->f_vnode, filp);
424
if (filp->f_shmem != NULL)
425
vm_object_deallocate(filp->f_shmem);
426
kfree_rcu(filp, rcu);
427
} else {
428
/*
429
* The close method of the character device or file
430
* will free the linux_file structure:
431
*/
432
_fdrop(filp->_file, curthread);
433
}
434
}
435
436
struct linux_cdev *
437
cdev_alloc(void)
438
{
439
struct linux_cdev *cdev;
440
441
cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK);
442
kobject_init(&cdev->kobj, &linux_cdev_ktype);
443
cdev->refs = 1;
444
return (cdev);
445
}
446
447
static int
448
linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
449
vm_page_t *mres)
450
{
451
struct vm_area_struct *vmap;
452
453
vmap = linux_cdev_handle_find(vm_obj->handle);
454
455
MPASS(vmap != NULL);
456
MPASS(vmap->vm_private_data == vm_obj->handle);
457
458
if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
459
vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
460
vm_page_t page;
461
462
if (((*mres)->flags & PG_FICTITIOUS) != 0) {
463
/*
464
* If the passed in result page is a fake
465
* page, update it with the new physical
466
* address.
467
*/
468
page = *mres;
469
vm_page_updatefake(page, paddr, vm_obj->memattr);
470
} else {
471
/*
472
* Replace the passed in "mres" page with our
473
* own fake page and free up the all of the
474
* original pages.
475
*/
476
VM_OBJECT_WUNLOCK(vm_obj);
477
page = vm_page_getfake(paddr, vm_obj->memattr);
478
VM_OBJECT_WLOCK(vm_obj);
479
480
vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
481
*mres = page;
482
}
483
vm_page_valid(page);
484
return (VM_PAGER_OK);
485
}
486
return (VM_PAGER_FAIL);
487
}
488
489
static int
490
linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
491
vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
492
{
493
struct vm_area_struct *vmap;
494
int err;
495
496
/* get VM area structure */
497
vmap = linux_cdev_handle_find(vm_obj->handle);
498
MPASS(vmap != NULL);
499
MPASS(vmap->vm_private_data == vm_obj->handle);
500
501
VM_OBJECT_WUNLOCK(vm_obj);
502
503
linux_set_current(curthread);
504
505
down_write(&vmap->vm_mm->mmap_sem);
506
if (unlikely(vmap->vm_ops == NULL)) {
507
err = VM_FAULT_SIGBUS;
508
} else {
509
struct vm_fault vmf;
510
511
/* fill out VM fault structure */
512
vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
513
vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
514
vmf.pgoff = 0;
515
vmf.page = NULL;
516
vmf.vma = vmap;
517
518
vmap->vm_pfn_count = 0;
519
vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
520
vmap->vm_obj = vm_obj;
521
522
err = vmap->vm_ops->fault(&vmf);
523
524
while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
525
kern_yield(PRI_USER);
526
err = vmap->vm_ops->fault(&vmf);
527
}
528
}
529
530
/* translate return code */
531
switch (err) {
532
case VM_FAULT_OOM:
533
err = VM_PAGER_AGAIN;
534
break;
535
case VM_FAULT_SIGBUS:
536
err = VM_PAGER_BAD;
537
break;
538
case VM_FAULT_NOPAGE:
539
/*
540
* By contract the fault handler will return having
541
* busied all the pages itself. If pidx is already
542
* found in the object, it will simply xbusy the first
543
* page and return with vm_pfn_count set to 1.
544
*/
545
*first = vmap->vm_pfn_first;
546
*last = *first + vmap->vm_pfn_count - 1;
547
err = VM_PAGER_OK;
548
break;
549
default:
550
err = VM_PAGER_ERROR;
551
break;
552
}
553
up_write(&vmap->vm_mm->mmap_sem);
554
VM_OBJECT_WLOCK(vm_obj);
555
return (err);
556
}
557
558
static struct rwlock linux_vma_lock;
559
static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
560
TAILQ_HEAD_INITIALIZER(linux_vma_head);
561
562
static void
563
linux_cdev_handle_free(struct vm_area_struct *vmap)
564
{
565
/* Drop reference on vm_file */
566
if (vmap->vm_file != NULL)
567
fput(vmap->vm_file);
568
569
/* Drop reference on mm_struct */
570
mmput(vmap->vm_mm);
571
572
kfree(vmap);
573
}
574
575
static void
576
linux_cdev_handle_remove(struct vm_area_struct *vmap)
577
{
578
rw_wlock(&linux_vma_lock);
579
TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
580
rw_wunlock(&linux_vma_lock);
581
}
582
583
static struct vm_area_struct *
584
linux_cdev_handle_find(void *handle)
585
{
586
struct vm_area_struct *vmap;
587
588
rw_rlock(&linux_vma_lock);
589
TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
590
if (vmap->vm_private_data == handle)
591
break;
592
}
593
rw_runlock(&linux_vma_lock);
594
return (vmap);
595
}
596
597
static int
598
linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
599
vm_ooffset_t foff, struct ucred *cred, u_short *color)
600
{
601
602
MPASS(linux_cdev_handle_find(handle) != NULL);
603
*color = 0;
604
return (0);
605
}
606
607
static void
608
linux_cdev_pager_dtor(void *handle)
609
{
610
const struct vm_operations_struct *vm_ops;
611
struct vm_area_struct *vmap;
612
613
vmap = linux_cdev_handle_find(handle);
614
MPASS(vmap != NULL);
615
616
/*
617
* Remove handle before calling close operation to prevent
618
* other threads from reusing the handle pointer.
619
*/
620
linux_cdev_handle_remove(vmap);
621
622
down_write(&vmap->vm_mm->mmap_sem);
623
vm_ops = vmap->vm_ops;
624
if (likely(vm_ops != NULL))
625
vm_ops->close(vmap);
626
up_write(&vmap->vm_mm->mmap_sem);
627
628
linux_cdev_handle_free(vmap);
629
}
630
631
static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
632
{
633
/* OBJT_MGTDEVICE */
634
.cdev_pg_populate = linux_cdev_pager_populate,
635
.cdev_pg_ctor = linux_cdev_pager_ctor,
636
.cdev_pg_dtor = linux_cdev_pager_dtor
637
},
638
{
639
/* OBJT_DEVICE */
640
.cdev_pg_fault = linux_cdev_pager_fault,
641
.cdev_pg_ctor = linux_cdev_pager_ctor,
642
.cdev_pg_dtor = linux_cdev_pager_dtor
643
},
644
};
645
646
int
647
zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
648
unsigned long size)
649
{
650
struct pctrie_iter pages;
651
vm_object_t obj;
652
vm_page_t m;
653
654
obj = vma->vm_obj;
655
if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
656
return (-ENOTSUP);
657
VM_OBJECT_RLOCK(obj);
658
vm_page_iter_limit_init(&pages, obj, OFF_TO_IDX(address + size));
659
VM_RADIX_FOREACH_FROM(m, &pages, OFF_TO_IDX(address))
660
pmap_remove_all(m);
661
VM_OBJECT_RUNLOCK(obj);
662
return (0);
663
}
664
665
void
666
vma_set_file(struct vm_area_struct *vma, struct linux_file *file)
667
{
668
struct linux_file *tmp;
669
670
/* Changing an anonymous vma with this is illegal */
671
get_file(file);
672
tmp = vma->vm_file;
673
vma->vm_file = file;
674
fput(tmp);
675
}
676
677
static struct file_operations dummy_ldev_ops = {
678
/* XXXKIB */
679
};
680
681
static struct linux_cdev dummy_ldev = {
682
.ops = &dummy_ldev_ops,
683
};
684
685
#define LDEV_SI_DTR 0x0001
686
#define LDEV_SI_REF 0x0002
687
688
static void
689
linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
690
struct linux_cdev **dev)
691
{
692
struct linux_cdev *ldev;
693
u_int siref;
694
695
ldev = filp->f_cdev;
696
*fop = filp->f_op;
697
if (ldev != NULL) {
698
if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
699
refcount_acquire(&ldev->refs);
700
} else {
701
for (siref = ldev->siref;;) {
702
if ((siref & LDEV_SI_DTR) != 0) {
703
ldev = &dummy_ldev;
704
*fop = ldev->ops;
705
siref = ldev->siref;
706
MPASS((ldev->siref & LDEV_SI_DTR) == 0);
707
} else if (atomic_fcmpset_int(&ldev->siref,
708
&siref, siref + LDEV_SI_REF)) {
709
break;
710
}
711
}
712
}
713
}
714
*dev = ldev;
715
}
716
717
static void
718
linux_drop_fop(struct linux_cdev *ldev)
719
{
720
721
if (ldev == NULL)
722
return;
723
if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
724
linux_cdev_deref(ldev);
725
} else {
726
MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
727
MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
728
atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
729
}
730
}
731
732
#define OPW(fp,td,code) ({ \
733
struct file *__fpop; \
734
__typeof(code) __retval; \
735
\
736
__fpop = (td)->td_fpop; \
737
(td)->td_fpop = (fp); \
738
__retval = (code); \
739
(td)->td_fpop = __fpop; \
740
__retval; \
741
})
742
743
static int
744
linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
745
struct file *file)
746
{
747
struct linux_cdev *ldev;
748
struct linux_file *filp;
749
const struct file_operations *fop;
750
int error;
751
752
ldev = dev->si_drv1;
753
754
filp = linux_file_alloc();
755
filp->f_dentry = &filp->f_dentry_store;
756
filp->f_op = ldev->ops;
757
filp->f_mode = file->f_flag;
758
filp->f_flags = file->f_flag;
759
filp->f_vnode = file->f_vnode;
760
filp->_file = file;
761
refcount_acquire(&ldev->refs);
762
filp->f_cdev = ldev;
763
764
linux_set_current(td);
765
linux_get_fop(filp, &fop, &ldev);
766
767
if (fop->open != NULL) {
768
error = -fop->open(file->f_vnode, filp);
769
if (error != 0) {
770
linux_drop_fop(ldev);
771
linux_cdev_deref(filp->f_cdev);
772
kfree(filp);
773
return (error);
774
}
775
}
776
777
/* hold on to the vnode - used for fstat() */
778
vref(filp->f_vnode);
779
780
/* release the file from devfs */
781
finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
782
linux_drop_fop(ldev);
783
return (ENXIO);
784
}
785
786
#define LINUX_IOCTL_MIN_PTR 0x10000UL
787
#define LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
788
789
static inline int
790
linux_remap_address(void **uaddr, size_t len)
791
{
792
uintptr_t uaddr_val = (uintptr_t)(*uaddr);
793
794
if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
795
uaddr_val < LINUX_IOCTL_MAX_PTR)) {
796
struct task_struct *pts = current;
797
if (pts == NULL) {
798
*uaddr = NULL;
799
return (1);
800
}
801
802
/* compute data offset */
803
uaddr_val -= LINUX_IOCTL_MIN_PTR;
804
805
/* check that length is within bounds */
806
if ((len > IOCPARM_MAX) ||
807
(uaddr_val + len) > pts->bsd_ioctl_len) {
808
*uaddr = NULL;
809
return (1);
810
}
811
812
/* re-add kernel buffer address */
813
uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
814
815
/* update address location */
816
*uaddr = (void *)uaddr_val;
817
return (1);
818
}
819
return (0);
820
}
821
822
int
823
linux_copyin(const void *uaddr, void *kaddr, size_t len)
824
{
825
if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
826
if (uaddr == NULL)
827
return (-EFAULT);
828
memcpy(kaddr, uaddr, len);
829
return (0);
830
}
831
return (-copyin(uaddr, kaddr, len));
832
}
833
834
int
835
linux_copyout(const void *kaddr, void *uaddr, size_t len)
836
{
837
if (linux_remap_address(&uaddr, len)) {
838
if (uaddr == NULL)
839
return (-EFAULT);
840
memcpy(uaddr, kaddr, len);
841
return (0);
842
}
843
return (-copyout(kaddr, uaddr, len));
844
}
845
846
size_t
847
linux_clear_user(void *_uaddr, size_t _len)
848
{
849
uint8_t *uaddr = _uaddr;
850
size_t len = _len;
851
852
/* make sure uaddr is aligned before going into the fast loop */
853
while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
854
if (subyte(uaddr, 0))
855
return (_len);
856
uaddr++;
857
len--;
858
}
859
860
/* zero 8 bytes at a time */
861
while (len > 7) {
862
#ifdef __LP64__
863
if (suword64(uaddr, 0))
864
return (_len);
865
#else
866
if (suword32(uaddr, 0))
867
return (_len);
868
if (suword32(uaddr + 4, 0))
869
return (_len);
870
#endif
871
uaddr += 8;
872
len -= 8;
873
}
874
875
/* zero fill end, if any */
876
while (len > 0) {
877
if (subyte(uaddr, 0))
878
return (_len);
879
uaddr++;
880
len--;
881
}
882
return (0);
883
}
884
885
int
886
linux_access_ok(const void *uaddr, size_t len)
887
{
888
uintptr_t saddr;
889
uintptr_t eaddr;
890
891
/* get start and end address */
892
saddr = (uintptr_t)uaddr;
893
eaddr = (uintptr_t)uaddr + len;
894
895
/* verify addresses are valid for userspace */
896
return ((saddr == eaddr) ||
897
(eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
898
}
899
900
/*
901
* This function should return either EINTR or ERESTART depending on
902
* the signal type sent to this thread:
903
*/
904
static int
905
linux_get_error(struct task_struct *task, int error)
906
{
907
/* check for signal type interrupt code */
908
if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
909
error = -linux_schedule_get_interrupt_value(task);
910
if (error == 0)
911
error = EINTR;
912
}
913
return (error);
914
}
915
916
static int
917
linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
918
const struct file_operations *fop, u_long cmd, caddr_t data,
919
struct thread *td)
920
{
921
struct task_struct *task = current;
922
unsigned size;
923
int error;
924
925
size = IOCPARM_LEN(cmd);
926
/* refer to logic in sys_ioctl() */
927
if (size > 0) {
928
/*
929
* Setup hint for linux_copyin() and linux_copyout().
930
*
931
* Background: Linux code expects a user-space address
932
* while FreeBSD supplies a kernel-space address.
933
*/
934
task->bsd_ioctl_data = data;
935
task->bsd_ioctl_len = size;
936
data = (void *)LINUX_IOCTL_MIN_PTR;
937
} else {
938
/* fetch user-space pointer */
939
data = *(void **)data;
940
}
941
#ifdef COMPAT_FREEBSD32
942
if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
943
/* try the compat IOCTL handler first */
944
if (fop->compat_ioctl != NULL) {
945
error = -OPW(fp, td, fop->compat_ioctl(filp,
946
cmd, (u_long)data));
947
} else {
948
error = ENOTTY;
949
}
950
951
/* fallback to the regular IOCTL handler, if any */
952
if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
953
error = -OPW(fp, td, fop->unlocked_ioctl(filp,
954
cmd, (u_long)data));
955
}
956
} else
957
#endif
958
{
959
if (fop->unlocked_ioctl != NULL) {
960
error = -OPW(fp, td, fop->unlocked_ioctl(filp,
961
cmd, (u_long)data));
962
} else {
963
error = ENOTTY;
964
}
965
}
966
if (size > 0) {
967
task->bsd_ioctl_data = NULL;
968
task->bsd_ioctl_len = 0;
969
}
970
971
if (error == EWOULDBLOCK) {
972
/* update kqfilter status, if any */
973
linux_file_kqfilter_poll(filp,
974
LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
975
} else {
976
error = linux_get_error(task, error);
977
}
978
return (error);
979
}
980
981
#define LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
982
983
/*
984
* This function atomically updates the poll wakeup state and returns
985
* the previous state at the time of update.
986
*/
987
static uint8_t
988
linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
989
{
990
int c, old;
991
992
c = v->counter;
993
994
while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
995
c = old;
996
997
return (c);
998
}
999
1000
static int
1001
linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1002
{
1003
static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1004
[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1005
[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1006
[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1007
[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1008
};
1009
struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1010
1011
switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1012
case LINUX_FWQ_STATE_QUEUED:
1013
linux_poll_wakeup(filp);
1014
return (1);
1015
default:
1016
return (0);
1017
}
1018
}
1019
1020
void
1021
linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1022
{
1023
static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1024
[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1025
[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1026
[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1027
[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1028
};
1029
1030
/* check if we are called inside the select system call */
1031
if (p == LINUX_POLL_TABLE_NORMAL)
1032
selrecord(curthread, &filp->f_selinfo);
1033
1034
switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1035
case LINUX_FWQ_STATE_INIT:
1036
/* NOTE: file handles can only belong to one wait-queue */
1037
filp->f_wait_queue.wqh = wqh;
1038
filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1039
add_wait_queue(wqh, &filp->f_wait_queue.wq);
1040
atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1041
break;
1042
default:
1043
break;
1044
}
1045
}
1046
1047
static void
1048
linux_poll_wait_dequeue(struct linux_file *filp)
1049
{
1050
static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1051
[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1052
[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1053
[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1054
[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1055
};
1056
1057
seldrain(&filp->f_selinfo);
1058
1059
switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1060
case LINUX_FWQ_STATE_NOT_READY:
1061
case LINUX_FWQ_STATE_QUEUED:
1062
case LINUX_FWQ_STATE_READY:
1063
remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1064
break;
1065
default:
1066
break;
1067
}
1068
}
1069
1070
void
1071
linux_poll_wakeup(struct linux_file *filp)
1072
{
1073
/* this function should be NULL-safe */
1074
if (filp == NULL)
1075
return;
1076
1077
selwakeup(&filp->f_selinfo);
1078
1079
spin_lock(&filp->f_kqlock);
1080
filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1081
LINUX_KQ_FLAG_NEED_WRITE;
1082
1083
/* make sure the "knote" gets woken up */
1084
KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1085
spin_unlock(&filp->f_kqlock);
1086
}
1087
1088
static struct linux_file *
1089
__get_file_rcu(struct linux_file **f)
1090
{
1091
struct linux_file *file1, *file2;
1092
1093
file1 = READ_ONCE(*f);
1094
if (file1 == NULL)
1095
return (NULL);
1096
1097
if (!refcount_acquire_if_not_zero(
1098
file1->_file == NULL ? &file1->f_count : &file1->_file->f_count))
1099
return (ERR_PTR(-EAGAIN));
1100
1101
file2 = READ_ONCE(*f);
1102
if (file2 == file1)
1103
return (file2);
1104
1105
fput(file1);
1106
return (ERR_PTR(-EAGAIN));
1107
}
1108
1109
struct linux_file *
1110
linux_get_file_rcu(struct linux_file **f)
1111
{
1112
struct linux_file *file1;
1113
1114
for (;;) {
1115
file1 = __get_file_rcu(f);
1116
if (file1 == NULL)
1117
return (NULL);
1118
1119
if (IS_ERR(file1))
1120
continue;
1121
1122
return (file1);
1123
}
1124
}
1125
1126
struct linux_file *
1127
get_file_active(struct linux_file **f)
1128
{
1129
struct linux_file *file1;
1130
1131
rcu_read_lock();
1132
file1 = __get_file_rcu(f);
1133
rcu_read_unlock();
1134
if (IS_ERR(file1))
1135
file1 = NULL;
1136
1137
return (file1);
1138
}
1139
1140
static void
1141
linux_file_kqfilter_detach(struct knote *kn)
1142
{
1143
struct linux_file *filp = kn->kn_hook;
1144
1145
spin_lock(&filp->f_kqlock);
1146
knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1147
spin_unlock(&filp->f_kqlock);
1148
}
1149
1150
static int
1151
linux_file_kqfilter_read_event(struct knote *kn, long hint)
1152
{
1153
struct linux_file *filp = kn->kn_hook;
1154
1155
mtx_assert(&filp->f_kqlock, MA_OWNED);
1156
1157
return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1158
}
1159
1160
static int
1161
linux_file_kqfilter_write_event(struct knote *kn, long hint)
1162
{
1163
struct linux_file *filp = kn->kn_hook;
1164
1165
mtx_assert(&filp->f_kqlock, MA_OWNED);
1166
1167
return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1168
}
1169
1170
static const struct filterops linux_dev_kqfiltops_read = {
1171
.f_isfd = 1,
1172
.f_detach = linux_file_kqfilter_detach,
1173
.f_event = linux_file_kqfilter_read_event,
1174
};
1175
1176
static const struct filterops linux_dev_kqfiltops_write = {
1177
.f_isfd = 1,
1178
.f_detach = linux_file_kqfilter_detach,
1179
.f_event = linux_file_kqfilter_write_event,
1180
};
1181
1182
static void
1183
linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1184
{
1185
struct thread *td;
1186
const struct file_operations *fop;
1187
struct linux_cdev *ldev;
1188
int temp;
1189
1190
if ((filp->f_kqflags & kqflags) == 0)
1191
return;
1192
1193
td = curthread;
1194
1195
linux_get_fop(filp, &fop, &ldev);
1196
/* get the latest polling state */
1197
temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1198
linux_drop_fop(ldev);
1199
1200
spin_lock(&filp->f_kqlock);
1201
/* clear kqflags */
1202
filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1203
LINUX_KQ_FLAG_NEED_WRITE);
1204
/* update kqflags */
1205
if ((temp & (POLLIN | POLLOUT)) != 0) {
1206
if ((temp & POLLIN) != 0)
1207
filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1208
if ((temp & POLLOUT) != 0)
1209
filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1210
1211
/* make sure the "knote" gets woken up */
1212
KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1213
}
1214
spin_unlock(&filp->f_kqlock);
1215
}
1216
1217
static int
1218
linux_file_kqfilter(struct file *file, struct knote *kn)
1219
{
1220
struct linux_file *filp;
1221
struct thread *td;
1222
int error;
1223
1224
td = curthread;
1225
filp = (struct linux_file *)file->f_data;
1226
filp->f_flags = file->f_flag;
1227
if (filp->f_op->poll == NULL)
1228
return (EINVAL);
1229
1230
spin_lock(&filp->f_kqlock);
1231
switch (kn->kn_filter) {
1232
case EVFILT_READ:
1233
filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1234
kn->kn_fop = &linux_dev_kqfiltops_read;
1235
kn->kn_hook = filp;
1236
knlist_add(&filp->f_selinfo.si_note, kn, 1);
1237
error = 0;
1238
break;
1239
case EVFILT_WRITE:
1240
filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1241
kn->kn_fop = &linux_dev_kqfiltops_write;
1242
kn->kn_hook = filp;
1243
knlist_add(&filp->f_selinfo.si_note, kn, 1);
1244
error = 0;
1245
break;
1246
default:
1247
error = EINVAL;
1248
break;
1249
}
1250
spin_unlock(&filp->f_kqlock);
1251
1252
if (error == 0) {
1253
linux_set_current(td);
1254
1255
/* update kqfilter status, if any */
1256
linux_file_kqfilter_poll(filp,
1257
LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1258
}
1259
return (error);
1260
}
1261
1262
static int
1263
linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1264
vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1265
int nprot, bool is_shared, struct thread *td)
1266
{
1267
struct task_struct *task;
1268
struct vm_area_struct *vmap;
1269
struct mm_struct *mm;
1270
struct linux_file *filp;
1271
vm_memattr_t attr;
1272
int error;
1273
1274
filp = (struct linux_file *)fp->f_data;
1275
filp->f_flags = fp->f_flag;
1276
1277
if (fop->mmap == NULL)
1278
return (EOPNOTSUPP);
1279
1280
linux_set_current(td);
1281
1282
/*
1283
* The same VM object might be shared by multiple processes
1284
* and the mm_struct is usually freed when a process exits.
1285
*
1286
* The atomic reference below makes sure the mm_struct is
1287
* available as long as the vmap is in the linux_vma_head.
1288
*/
1289
task = current;
1290
mm = task->mm;
1291
if (atomic_inc_not_zero(&mm->mm_users) == 0)
1292
return (EINVAL);
1293
1294
vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1295
vmap->vm_start = 0;
1296
vmap->vm_end = size;
1297
vmap->vm_pgoff = *offset / PAGE_SIZE;
1298
vmap->vm_pfn = 0;
1299
vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1300
if (is_shared)
1301
vmap->vm_flags |= VM_SHARED;
1302
vmap->vm_ops = NULL;
1303
vmap->vm_file = get_file(filp);
1304
vmap->vm_mm = mm;
1305
1306
if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1307
error = linux_get_error(task, EINTR);
1308
} else {
1309
error = -OPW(fp, td, fop->mmap(filp, vmap));
1310
error = linux_get_error(task, error);
1311
up_write(&vmap->vm_mm->mmap_sem);
1312
}
1313
1314
if (error != 0) {
1315
linux_cdev_handle_free(vmap);
1316
return (error);
1317
}
1318
1319
attr = pgprot2cachemode(vmap->vm_page_prot);
1320
1321
if (vmap->vm_ops != NULL) {
1322
struct vm_area_struct *ptr;
1323
void *vm_private_data;
1324
bool vm_no_fault;
1325
1326
if (vmap->vm_ops->open == NULL ||
1327
vmap->vm_ops->close == NULL ||
1328
vmap->vm_private_data == NULL) {
1329
/* free allocated VM area struct */
1330
linux_cdev_handle_free(vmap);
1331
return (EINVAL);
1332
}
1333
1334
vm_private_data = vmap->vm_private_data;
1335
1336
rw_wlock(&linux_vma_lock);
1337
TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1338
if (ptr->vm_private_data == vm_private_data)
1339
break;
1340
}
1341
/* check if there is an existing VM area struct */
1342
if (ptr != NULL) {
1343
/* check if the VM area structure is invalid */
1344
if (ptr->vm_ops == NULL ||
1345
ptr->vm_ops->open == NULL ||
1346
ptr->vm_ops->close == NULL) {
1347
error = ESTALE;
1348
vm_no_fault = 1;
1349
} else {
1350
error = EEXIST;
1351
vm_no_fault = (ptr->vm_ops->fault == NULL);
1352
}
1353
} else {
1354
/* insert VM area structure into list */
1355
TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1356
error = 0;
1357
vm_no_fault = (vmap->vm_ops->fault == NULL);
1358
}
1359
rw_wunlock(&linux_vma_lock);
1360
1361
if (error != 0) {
1362
/* free allocated VM area struct */
1363
linux_cdev_handle_free(vmap);
1364
/* check for stale VM area struct */
1365
if (error != EEXIST)
1366
return (error);
1367
}
1368
1369
/* check if there is no fault handler */
1370
if (vm_no_fault) {
1371
*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1372
&linux_cdev_pager_ops[1], size, nprot, *offset,
1373
td->td_ucred);
1374
} else {
1375
*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1376
&linux_cdev_pager_ops[0], size, nprot, *offset,
1377
td->td_ucred);
1378
}
1379
1380
/* check if allocating the VM object failed */
1381
if (*object == NULL) {
1382
if (error == 0) {
1383
/* remove VM area struct from list */
1384
linux_cdev_handle_remove(vmap);
1385
/* free allocated VM area struct */
1386
linux_cdev_handle_free(vmap);
1387
}
1388
return (EINVAL);
1389
}
1390
} else {
1391
struct sglist *sg;
1392
1393
sg = sglist_alloc(1, M_WAITOK);
1394
sglist_append_phys(sg,
1395
(vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1396
1397
*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1398
nprot, 0, td->td_ucred);
1399
1400
linux_cdev_handle_free(vmap);
1401
1402
if (*object == NULL) {
1403
sglist_free(sg);
1404
return (EINVAL);
1405
}
1406
}
1407
1408
if (attr != VM_MEMATTR_DEFAULT) {
1409
VM_OBJECT_WLOCK(*object);
1410
vm_object_set_memattr(*object, attr);
1411
VM_OBJECT_WUNLOCK(*object);
1412
}
1413
*offset = 0;
1414
return (0);
1415
}
1416
1417
struct cdevsw linuxcdevsw = {
1418
.d_version = D_VERSION,
1419
.d_fdopen = linux_dev_fdopen,
1420
.d_name = "lkpidev",
1421
};
1422
1423
static int
1424
linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1425
int flags, struct thread *td)
1426
{
1427
struct linux_file *filp;
1428
const struct file_operations *fop;
1429
struct linux_cdev *ldev;
1430
ssize_t bytes;
1431
int error;
1432
1433
error = 0;
1434
filp = (struct linux_file *)file->f_data;
1435
filp->f_flags = file->f_flag;
1436
/* XXX no support for I/O vectors currently */
1437
if (uio->uio_iovcnt != 1)
1438
return (EOPNOTSUPP);
1439
if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1440
return (EINVAL);
1441
linux_set_current(td);
1442
linux_get_fop(filp, &fop, &ldev);
1443
if (fop->read != NULL) {
1444
bytes = OPW(file, td, fop->read(filp,
1445
uio->uio_iov->iov_base,
1446
uio->uio_iov->iov_len, &uio->uio_offset));
1447
if (bytes >= 0) {
1448
uio->uio_iov->iov_base =
1449
((uint8_t *)uio->uio_iov->iov_base) + bytes;
1450
uio->uio_iov->iov_len -= bytes;
1451
uio->uio_resid -= bytes;
1452
} else {
1453
error = linux_get_error(current, -bytes);
1454
}
1455
} else
1456
error = ENXIO;
1457
1458
/* update kqfilter status, if any */
1459
linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1460
linux_drop_fop(ldev);
1461
1462
return (error);
1463
}
1464
1465
static int
1466
linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1467
int flags, struct thread *td)
1468
{
1469
struct linux_file *filp;
1470
const struct file_operations *fop;
1471
struct linux_cdev *ldev;
1472
ssize_t bytes;
1473
int error;
1474
1475
filp = (struct linux_file *)file->f_data;
1476
filp->f_flags = file->f_flag;
1477
/* XXX no support for I/O vectors currently */
1478
if (uio->uio_iovcnt != 1)
1479
return (EOPNOTSUPP);
1480
if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1481
return (EINVAL);
1482
linux_set_current(td);
1483
linux_get_fop(filp, &fop, &ldev);
1484
if (fop->write != NULL) {
1485
bytes = OPW(file, td, fop->write(filp,
1486
uio->uio_iov->iov_base,
1487
uio->uio_iov->iov_len, &uio->uio_offset));
1488
if (bytes >= 0) {
1489
uio->uio_iov->iov_base =
1490
((uint8_t *)uio->uio_iov->iov_base) + bytes;
1491
uio->uio_iov->iov_len -= bytes;
1492
uio->uio_resid -= bytes;
1493
error = 0;
1494
} else {
1495
error = linux_get_error(current, -bytes);
1496
}
1497
} else
1498
error = ENXIO;
1499
1500
/* update kqfilter status, if any */
1501
linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1502
1503
linux_drop_fop(ldev);
1504
1505
return (error);
1506
}
1507
1508
static int
1509
linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1510
struct thread *td)
1511
{
1512
struct linux_file *filp;
1513
const struct file_operations *fop;
1514
struct linux_cdev *ldev;
1515
int revents;
1516
1517
filp = (struct linux_file *)file->f_data;
1518
filp->f_flags = file->f_flag;
1519
linux_set_current(td);
1520
linux_get_fop(filp, &fop, &ldev);
1521
if (fop->poll != NULL) {
1522
revents = OPW(file, td, fop->poll(filp,
1523
LINUX_POLL_TABLE_NORMAL)) & events;
1524
} else {
1525
revents = 0;
1526
}
1527
linux_drop_fop(ldev);
1528
return (revents);
1529
}
1530
1531
static int
1532
linux_file_close(struct file *file, struct thread *td)
1533
{
1534
struct linux_file *filp;
1535
int (*release)(struct inode *, struct linux_file *);
1536
const struct file_operations *fop;
1537
struct linux_cdev *ldev;
1538
int error;
1539
1540
filp = (struct linux_file *)file->f_data;
1541
1542
KASSERT(file_count(filp) == 0,
1543
("File refcount(%d) is not zero", file_count(filp)));
1544
1545
if (td == NULL)
1546
td = curthread;
1547
1548
error = 0;
1549
filp->f_flags = file->f_flag;
1550
linux_set_current(td);
1551
linux_poll_wait_dequeue(filp);
1552
linux_get_fop(filp, &fop, &ldev);
1553
/*
1554
* Always use the real release function, if any, to avoid
1555
* leaking device resources:
1556
*/
1557
release = filp->f_op->release;
1558
if (release != NULL)
1559
error = -OPW(file, td, release(filp->f_vnode, filp));
1560
funsetown(&filp->f_sigio);
1561
if (filp->f_vnode != NULL)
1562
vrele(filp->f_vnode);
1563
linux_drop_fop(ldev);
1564
ldev = filp->f_cdev;
1565
if (ldev != NULL)
1566
linux_cdev_deref(ldev);
1567
linux_synchronize_rcu(RCU_TYPE_REGULAR);
1568
kfree(filp);
1569
1570
return (error);
1571
}
1572
1573
static int
1574
linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1575
struct thread *td)
1576
{
1577
struct linux_file *filp;
1578
const struct file_operations *fop;
1579
struct linux_cdev *ldev;
1580
struct fiodgname_arg *fgn;
1581
const char *p;
1582
int error, i;
1583
1584
error = 0;
1585
filp = (struct linux_file *)fp->f_data;
1586
filp->f_flags = fp->f_flag;
1587
linux_get_fop(filp, &fop, &ldev);
1588
1589
linux_set_current(td);
1590
switch (cmd) {
1591
case FIONBIO:
1592
break;
1593
case FIOASYNC:
1594
if (fop->fasync == NULL)
1595
break;
1596
error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1597
break;
1598
case FIOSETOWN:
1599
error = fsetown(*(int *)data, &filp->f_sigio);
1600
if (error == 0) {
1601
if (fop->fasync == NULL)
1602
break;
1603
error = -OPW(fp, td, fop->fasync(0, filp,
1604
fp->f_flag & FASYNC));
1605
}
1606
break;
1607
case FIOGETOWN:
1608
*(int *)data = fgetown(&filp->f_sigio);
1609
break;
1610
case FIODGNAME:
1611
#ifdef COMPAT_FREEBSD32
1612
case FIODGNAME_32:
1613
#endif
1614
if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1615
error = ENXIO;
1616
break;
1617
}
1618
fgn = data;
1619
p = devtoname(filp->f_cdev->cdev);
1620
i = strlen(p) + 1;
1621
if (i > fgn->len) {
1622
error = EINVAL;
1623
break;
1624
}
1625
error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
1626
break;
1627
default:
1628
error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1629
break;
1630
}
1631
linux_drop_fop(ldev);
1632
return (error);
1633
}
1634
1635
static int
1636
linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1637
vm_prot_t maxprot, int flags, struct file *fp,
1638
vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1639
{
1640
/*
1641
* Character devices do not provide private mappings
1642
* of any kind:
1643
*/
1644
if ((maxprot & VM_PROT_WRITE) == 0 &&
1645
(prot & VM_PROT_WRITE) != 0)
1646
return (EACCES);
1647
if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0)
1648
return (EINVAL);
1649
1650
return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1651
(int)prot, (flags & MAP_SHARED) ? true : false, td));
1652
}
1653
1654
static int
1655
linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1656
vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1657
struct thread *td)
1658
{
1659
struct linux_file *filp;
1660
const struct file_operations *fop;
1661
struct linux_cdev *ldev;
1662
struct mount *mp;
1663
struct vnode *vp;
1664
vm_object_t object;
1665
vm_prot_t maxprot;
1666
int error;
1667
1668
filp = (struct linux_file *)fp->f_data;
1669
1670
vp = filp->f_vnode;
1671
if (vp == NULL)
1672
return (EOPNOTSUPP);
1673
1674
/*
1675
* Ensure that file and memory protections are
1676
* compatible.
1677
*/
1678
mp = vp->v_mount;
1679
if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1680
maxprot = VM_PROT_NONE;
1681
if ((prot & VM_PROT_EXECUTE) != 0)
1682
return (EACCES);
1683
} else
1684
maxprot = VM_PROT_EXECUTE;
1685
if ((fp->f_flag & FREAD) != 0)
1686
maxprot |= VM_PROT_READ;
1687
else if ((prot & VM_PROT_READ) != 0)
1688
return (EACCES);
1689
1690
/*
1691
* If we are sharing potential changes via MAP_SHARED and we
1692
* are trying to get write permission although we opened it
1693
* without asking for it, bail out.
1694
*
1695
* Note that most character devices always share mappings.
1696
*
1697
* Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1698
* requests rather than doing it here.
1699
*/
1700
if ((flags & MAP_SHARED) != 0) {
1701
if ((fp->f_flag & FWRITE) != 0)
1702
maxprot |= VM_PROT_WRITE;
1703
else if ((prot & VM_PROT_WRITE) != 0)
1704
return (EACCES);
1705
}
1706
maxprot &= cap_maxprot;
1707
1708
linux_get_fop(filp, &fop, &ldev);
1709
error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp,
1710
&foff, fop, &object);
1711
if (error != 0)
1712
goto out;
1713
1714
error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1715
foff, FALSE, td);
1716
if (error != 0)
1717
vm_object_deallocate(object);
1718
out:
1719
linux_drop_fop(ldev);
1720
return (error);
1721
}
1722
1723
static int
1724
linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
1725
{
1726
struct linux_file *filp;
1727
struct vnode *vp;
1728
int error;
1729
1730
filp = (struct linux_file *)fp->f_data;
1731
if (filp->f_vnode == NULL)
1732
return (EOPNOTSUPP);
1733
1734
vp = filp->f_vnode;
1735
1736
vn_lock(vp, LK_SHARED | LK_RETRY);
1737
error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED);
1738
VOP_UNLOCK(vp);
1739
1740
return (error);
1741
}
1742
1743
static int
1744
linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1745
struct filedesc *fdp)
1746
{
1747
struct linux_file *filp;
1748
struct vnode *vp;
1749
int error;
1750
1751
filp = fp->f_data;
1752
vp = filp->f_vnode;
1753
if (vp == NULL) {
1754
error = 0;
1755
kif->kf_type = KF_TYPE_DEV;
1756
} else {
1757
vref(vp);
1758
FILEDESC_SUNLOCK(fdp);
1759
error = vn_fill_kinfo_vnode(vp, kif);
1760
vrele(vp);
1761
kif->kf_type = KF_TYPE_VNODE;
1762
FILEDESC_SLOCK(fdp);
1763
}
1764
return (error);
1765
}
1766
1767
unsigned int
1768
linux_iminor(struct inode *inode)
1769
{
1770
struct linux_cdev *ldev;
1771
1772
if (inode == NULL || inode->v_rdev == NULL ||
1773
inode->v_rdev->si_devsw != &linuxcdevsw)
1774
return (-1U);
1775
ldev = inode->v_rdev->si_drv1;
1776
if (ldev == NULL)
1777
return (-1U);
1778
1779
return (minor(ldev->dev));
1780
}
1781
1782
static int
1783
linux_file_kcmp(struct file *fp1, struct file *fp2, struct thread *td)
1784
{
1785
struct linux_file *filp1, *filp2;
1786
1787
if (fp2->f_type != DTYPE_DEV)
1788
return (3);
1789
1790
filp1 = fp1->f_data;
1791
filp2 = fp2->f_data;
1792
return (kcmp_cmp((uintptr_t)filp1->f_cdev, (uintptr_t)filp2->f_cdev));
1793
}
1794
1795
const struct fileops linuxfileops = {
1796
.fo_read = linux_file_read,
1797
.fo_write = linux_file_write,
1798
.fo_truncate = invfo_truncate,
1799
.fo_kqfilter = linux_file_kqfilter,
1800
.fo_stat = linux_file_stat,
1801
.fo_fill_kinfo = linux_file_fill_kinfo,
1802
.fo_poll = linux_file_poll,
1803
.fo_close = linux_file_close,
1804
.fo_ioctl = linux_file_ioctl,
1805
.fo_mmap = linux_file_mmap,
1806
.fo_chmod = invfo_chmod,
1807
.fo_chown = invfo_chown,
1808
.fo_sendfile = invfo_sendfile,
1809
.fo_cmp = linux_file_kcmp,
1810
.fo_flags = DFLAG_PASSABLE,
1811
};
1812
1813
/*
1814
* Hash of vmmap addresses. This is infrequently accessed and does not
1815
* need to be particularly large. This is done because we must store the
1816
* caller's idea of the map size to properly unmap.
1817
*/
1818
struct vmmap {
1819
LIST_ENTRY(vmmap) vm_next;
1820
void *vm_addr;
1821
unsigned long vm_size;
1822
};
1823
1824
struct vmmaphd {
1825
struct vmmap *lh_first;
1826
};
1827
#define VMMAP_HASH_SIZE 64
1828
#define VMMAP_HASH_MASK (VMMAP_HASH_SIZE - 1)
1829
#define VM_HASH(addr) ((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1830
static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1831
static struct mtx vmmaplock;
1832
1833
static void
1834
vmmap_add(void *addr, unsigned long size)
1835
{
1836
struct vmmap *vmmap;
1837
1838
vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1839
mtx_lock(&vmmaplock);
1840
vmmap->vm_size = size;
1841
vmmap->vm_addr = addr;
1842
LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1843
mtx_unlock(&vmmaplock);
1844
}
1845
1846
static struct vmmap *
1847
vmmap_remove(void *addr)
1848
{
1849
struct vmmap *vmmap;
1850
1851
mtx_lock(&vmmaplock);
1852
LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1853
if (vmmap->vm_addr == addr)
1854
break;
1855
if (vmmap)
1856
LIST_REMOVE(vmmap, vm_next);
1857
mtx_unlock(&vmmaplock);
1858
1859
return (vmmap);
1860
}
1861
1862
#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1863
void *
1864
_ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1865
{
1866
void *addr;
1867
1868
addr = pmap_mapdev_attr(phys_addr, size, attr);
1869
if (addr == NULL)
1870
return (NULL);
1871
vmmap_add(addr, size);
1872
1873
return (addr);
1874
}
1875
#endif
1876
1877
void
1878
iounmap(void *addr)
1879
{
1880
struct vmmap *vmmap;
1881
1882
vmmap = vmmap_remove(addr);
1883
if (vmmap == NULL)
1884
return;
1885
#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1886
pmap_unmapdev(addr, vmmap->vm_size);
1887
#endif
1888
kfree(vmmap);
1889
}
1890
1891
void *
1892
vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1893
{
1894
vm_offset_t off;
1895
size_t size;
1896
1897
size = count * PAGE_SIZE;
1898
off = kva_alloc(size);
1899
if (off == 0)
1900
return (NULL);
1901
vmmap_add((void *)off, size);
1902
pmap_qenter(off, pages, count);
1903
1904
return ((void *)off);
1905
}
1906
1907
void
1908
vunmap(void *addr)
1909
{
1910
struct vmmap *vmmap;
1911
1912
vmmap = vmmap_remove(addr);
1913
if (vmmap == NULL)
1914
return;
1915
pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1916
kva_free((vm_offset_t)addr, vmmap->vm_size);
1917
kfree(vmmap);
1918
}
1919
1920
static char *
1921
devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)
1922
{
1923
unsigned int len;
1924
char *p;
1925
va_list aq;
1926
1927
va_copy(aq, ap);
1928
len = vsnprintf(NULL, 0, fmt, aq);
1929
va_end(aq);
1930
1931
if (dev != NULL)
1932
p = devm_kmalloc(dev, len + 1, gfp);
1933
else
1934
p = kmalloc(len + 1, gfp);
1935
if (p != NULL)
1936
vsnprintf(p, len + 1, fmt, ap);
1937
1938
return (p);
1939
}
1940
1941
char *
1942
kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1943
{
1944
1945
return (devm_kvasprintf(NULL, gfp, fmt, ap));
1946
}
1947
1948
char *
1949
lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1950
{
1951
va_list ap;
1952
char *p;
1953
1954
va_start(ap, fmt);
1955
p = devm_kvasprintf(dev, gfp, fmt, ap);
1956
va_end(ap);
1957
1958
return (p);
1959
}
1960
1961
char *
1962
kasprintf(gfp_t gfp, const char *fmt, ...)
1963
{
1964
va_list ap;
1965
char *p;
1966
1967
va_start(ap, fmt);
1968
p = kvasprintf(gfp, fmt, ap);
1969
va_end(ap);
1970
1971
return (p);
1972
}
1973
1974
int
1975
__lkpi_hexdump_printf(void *arg1 __unused, const char *fmt, ...)
1976
{
1977
va_list ap;
1978
int result;
1979
1980
va_start(ap, fmt);
1981
result = vprintf(fmt, ap);
1982
va_end(ap);
1983
return (result);
1984
}
1985
1986
int
1987
__lkpi_hexdump_sbuf_printf(void *arg1, const char *fmt, ...)
1988
{
1989
va_list ap;
1990
int result;
1991
1992
va_start(ap, fmt);
1993
result = sbuf_vprintf(arg1, fmt, ap);
1994
va_end(ap);
1995
return (result);
1996
}
1997
1998
void
1999
lkpi_hex_dump(int(*_fpf)(void *, const char *, ...), void *arg1,
2000
const char *level, const char *prefix_str,
2001
const int prefix_type, const int rowsize, const int groupsize,
2002
const void *buf, size_t len, const bool ascii)
2003
{
2004
typedef const struct { long long value; } __packed *print_64p_t;
2005
typedef const struct { uint32_t value; } __packed *print_32p_t;
2006
typedef const struct { uint16_t value; } __packed *print_16p_t;
2007
const void *buf_old = buf;
2008
int row;
2009
2010
while (len > 0) {
2011
if (level != NULL)
2012
_fpf(arg1, "%s", level);
2013
if (prefix_str != NULL)
2014
_fpf(arg1, "%s ", prefix_str);
2015
2016
switch (prefix_type) {
2017
case DUMP_PREFIX_ADDRESS:
2018
_fpf(arg1, "[%p] ", buf);
2019
break;
2020
case DUMP_PREFIX_OFFSET:
2021
_fpf(arg1, "[%#tx] ", ((const char *)buf -
2022
(const char *)buf_old));
2023
break;
2024
default:
2025
break;
2026
}
2027
for (row = 0; row != rowsize; row++) {
2028
if (groupsize == 8 && len > 7) {
2029
_fpf(arg1, "%016llx ", ((print_64p_t)buf)->value);
2030
buf = (const uint8_t *)buf + 8;
2031
len -= 8;
2032
} else if (groupsize == 4 && len > 3) {
2033
_fpf(arg1, "%08x ", ((print_32p_t)buf)->value);
2034
buf = (const uint8_t *)buf + 4;
2035
len -= 4;
2036
} else if (groupsize == 2 && len > 1) {
2037
_fpf(arg1, "%04x ", ((print_16p_t)buf)->value);
2038
buf = (const uint8_t *)buf + 2;
2039
len -= 2;
2040
} else if (len > 0) {
2041
_fpf(arg1, "%02x ", *(const uint8_t *)buf);
2042
buf = (const uint8_t *)buf + 1;
2043
len--;
2044
} else {
2045
break;
2046
}
2047
}
2048
_fpf(arg1, "\n");
2049
}
2050
}
2051
2052
static void
2053
linux_timer_callback_wrapper(void *context)
2054
{
2055
struct timer_list *timer;
2056
2057
timer = context;
2058
2059
/* the timer is about to be shutdown permanently */
2060
if (timer->function == NULL)
2061
return;
2062
2063
if (linux_set_current_flags(curthread, M_NOWAIT)) {
2064
/* try again later */
2065
callout_reset(&timer->callout, 1,
2066
&linux_timer_callback_wrapper, timer);
2067
return;
2068
}
2069
2070
timer->function(timer->data);
2071
}
2072
2073
static int
2074
linux_timer_jiffies_until(unsigned long expires)
2075
{
2076
unsigned long delta = expires - jiffies;
2077
2078
/*
2079
* Guard against already expired values and make sure that the value can
2080
* be used as a tick count, rather than a jiffies count.
2081
*/
2082
if ((long)delta < 1)
2083
delta = 1;
2084
else if (delta > INT_MAX)
2085
delta = INT_MAX;
2086
return ((int)delta);
2087
}
2088
2089
int
2090
mod_timer(struct timer_list *timer, unsigned long expires)
2091
{
2092
int ret;
2093
2094
timer->expires = expires;
2095
ret = callout_reset(&timer->callout,
2096
linux_timer_jiffies_until(expires),
2097
&linux_timer_callback_wrapper, timer);
2098
2099
MPASS(ret == 0 || ret == 1);
2100
2101
return (ret == 1);
2102
}
2103
2104
void
2105
add_timer(struct timer_list *timer)
2106
{
2107
2108
callout_reset(&timer->callout,
2109
linux_timer_jiffies_until(timer->expires),
2110
&linux_timer_callback_wrapper, timer);
2111
}
2112
2113
void
2114
add_timer_on(struct timer_list *timer, int cpu)
2115
{
2116
2117
callout_reset_on(&timer->callout,
2118
linux_timer_jiffies_until(timer->expires),
2119
&linux_timer_callback_wrapper, timer, cpu);
2120
}
2121
2122
int
2123
timer_delete(struct timer_list *timer)
2124
{
2125
2126
if (callout_stop(&(timer)->callout) == -1)
2127
return (0);
2128
return (1);
2129
}
2130
2131
int
2132
timer_delete_sync(struct timer_list *timer)
2133
{
2134
2135
if (callout_drain(&(timer)->callout) == -1)
2136
return (0);
2137
return (1);
2138
}
2139
2140
int
2141
timer_shutdown_sync(struct timer_list *timer)
2142
{
2143
2144
timer->function = NULL;
2145
return (del_timer_sync(timer));
2146
}
2147
2148
/* greatest common divisor, Euclid equation */
2149
static uint64_t
2150
lkpi_gcd_64(uint64_t a, uint64_t b)
2151
{
2152
uint64_t an;
2153
uint64_t bn;
2154
2155
while (b != 0) {
2156
an = b;
2157
bn = a % b;
2158
a = an;
2159
b = bn;
2160
}
2161
return (a);
2162
}
2163
2164
uint64_t lkpi_nsec2hz_rem;
2165
uint64_t lkpi_nsec2hz_div = 1000000000ULL;
2166
uint64_t lkpi_nsec2hz_max;
2167
2168
uint64_t lkpi_usec2hz_rem;
2169
uint64_t lkpi_usec2hz_div = 1000000ULL;
2170
uint64_t lkpi_usec2hz_max;
2171
2172
uint64_t lkpi_msec2hz_rem;
2173
uint64_t lkpi_msec2hz_div = 1000ULL;
2174
uint64_t lkpi_msec2hz_max;
2175
2176
static void
2177
linux_timer_init(void *arg)
2178
{
2179
uint64_t gcd;
2180
2181
/*
2182
* Compute an internal HZ value which can divide 2**32 to
2183
* avoid timer rounding problems when the tick value wraps
2184
* around 2**32:
2185
*/
2186
linux_timer_hz_mask = 1;
2187
while (linux_timer_hz_mask < (unsigned long)hz)
2188
linux_timer_hz_mask *= 2;
2189
linux_timer_hz_mask--;
2190
2191
/* compute some internal constants */
2192
2193
lkpi_nsec2hz_rem = hz;
2194
lkpi_usec2hz_rem = hz;
2195
lkpi_msec2hz_rem = hz;
2196
2197
gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
2198
lkpi_nsec2hz_rem /= gcd;
2199
lkpi_nsec2hz_div /= gcd;
2200
lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
2201
2202
gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
2203
lkpi_usec2hz_rem /= gcd;
2204
lkpi_usec2hz_div /= gcd;
2205
lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
2206
2207
gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
2208
lkpi_msec2hz_rem /= gcd;
2209
lkpi_msec2hz_div /= gcd;
2210
lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
2211
}
2212
SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
2213
2214
void
2215
linux_complete_common(struct completion *c, int all)
2216
{
2217
sleepq_lock(c);
2218
if (all) {
2219
c->done = UINT_MAX;
2220
sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2221
} else {
2222
if (c->done != UINT_MAX)
2223
c->done++;
2224
sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2225
}
2226
sleepq_release(c);
2227
}
2228
2229
/*
2230
* Indefinite wait for done != 0 with or without signals.
2231
*/
2232
int
2233
linux_wait_for_common(struct completion *c, int flags)
2234
{
2235
struct task_struct *task;
2236
int error;
2237
2238
if (SCHEDULER_STOPPED())
2239
return (0);
2240
2241
task = current;
2242
2243
if (flags != 0)
2244
flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2245
else
2246
flags = SLEEPQ_SLEEP;
2247
error = 0;
2248
for (;;) {
2249
sleepq_lock(c);
2250
if (c->done)
2251
break;
2252
sleepq_add(c, NULL, "completion", flags, 0);
2253
if (flags & SLEEPQ_INTERRUPTIBLE) {
2254
DROP_GIANT();
2255
error = -sleepq_wait_sig(c, 0);
2256
PICKUP_GIANT();
2257
if (error != 0) {
2258
linux_schedule_save_interrupt_value(task, error);
2259
error = -ERESTARTSYS;
2260
goto intr;
2261
}
2262
} else {
2263
DROP_GIANT();
2264
sleepq_wait(c, 0);
2265
PICKUP_GIANT();
2266
}
2267
}
2268
if (c->done != UINT_MAX)
2269
c->done--;
2270
sleepq_release(c);
2271
2272
intr:
2273
return (error);
2274
}
2275
2276
/*
2277
* Time limited wait for done != 0 with or without signals.
2278
*/
2279
unsigned long
2280
linux_wait_for_timeout_common(struct completion *c, unsigned long timeout,
2281
int flags)
2282
{
2283
struct task_struct *task;
2284
unsigned long end = jiffies + timeout, error;
2285
2286
if (SCHEDULER_STOPPED())
2287
return (0);
2288
2289
task = current;
2290
2291
if (flags != 0)
2292
flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2293
else
2294
flags = SLEEPQ_SLEEP;
2295
2296
for (;;) {
2297
sleepq_lock(c);
2298
if (c->done)
2299
break;
2300
sleepq_add(c, NULL, "completion", flags, 0);
2301
sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2302
2303
DROP_GIANT();
2304
if (flags & SLEEPQ_INTERRUPTIBLE)
2305
error = -sleepq_timedwait_sig(c, 0);
2306
else
2307
error = -sleepq_timedwait(c, 0);
2308
PICKUP_GIANT();
2309
2310
if (error != 0) {
2311
/* check for timeout */
2312
if (error == -EWOULDBLOCK) {
2313
error = 0; /* timeout */
2314
} else {
2315
/* signal happened */
2316
linux_schedule_save_interrupt_value(task, error);
2317
error = -ERESTARTSYS;
2318
}
2319
goto done;
2320
}
2321
}
2322
if (c->done != UINT_MAX)
2323
c->done--;
2324
sleepq_release(c);
2325
2326
/* return how many jiffies are left */
2327
error = linux_timer_jiffies_until(end);
2328
done:
2329
return (error);
2330
}
2331
2332
int
2333
linux_try_wait_for_completion(struct completion *c)
2334
{
2335
int isdone;
2336
2337
sleepq_lock(c);
2338
isdone = (c->done != 0);
2339
if (c->done != 0 && c->done != UINT_MAX)
2340
c->done--;
2341
sleepq_release(c);
2342
return (isdone);
2343
}
2344
2345
int
2346
linux_completion_done(struct completion *c)
2347
{
2348
int isdone;
2349
2350
sleepq_lock(c);
2351
isdone = (c->done != 0);
2352
sleepq_release(c);
2353
return (isdone);
2354
}
2355
2356
static void
2357
linux_cdev_deref(struct linux_cdev *ldev)
2358
{
2359
if (refcount_release(&ldev->refs) &&
2360
ldev->kobj.ktype == &linux_cdev_ktype)
2361
kfree(ldev);
2362
}
2363
2364
static void
2365
linux_cdev_release(struct kobject *kobj)
2366
{
2367
struct linux_cdev *cdev;
2368
struct kobject *parent;
2369
2370
cdev = container_of(kobj, struct linux_cdev, kobj);
2371
parent = kobj->parent;
2372
linux_destroy_dev(cdev);
2373
linux_cdev_deref(cdev);
2374
kobject_put(parent);
2375
}
2376
2377
static void
2378
linux_cdev_static_release(struct kobject *kobj)
2379
{
2380
struct cdev *cdev;
2381
struct linux_cdev *ldev;
2382
2383
ldev = container_of(kobj, struct linux_cdev, kobj);
2384
cdev = ldev->cdev;
2385
if (cdev != NULL) {
2386
destroy_dev(cdev);
2387
ldev->cdev = NULL;
2388
}
2389
kobject_put(kobj->parent);
2390
}
2391
2392
int
2393
linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev)
2394
{
2395
int ret;
2396
2397
if (dev->devt != 0) {
2398
/* Set parent kernel object. */
2399
ldev->kobj.parent = &dev->kobj;
2400
2401
/*
2402
* Unlike Linux we require the kobject of the
2403
* character device structure to have a valid name
2404
* before calling this function:
2405
*/
2406
if (ldev->kobj.name == NULL)
2407
return (-EINVAL);
2408
2409
ret = cdev_add(ldev, dev->devt, 1);
2410
if (ret)
2411
return (ret);
2412
}
2413
ret = device_add(dev);
2414
if (ret != 0 && dev->devt != 0)
2415
cdev_del(ldev);
2416
return (ret);
2417
}
2418
2419
void
2420
linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev)
2421
{
2422
device_del(dev);
2423
2424
if (dev->devt != 0)
2425
cdev_del(ldev);
2426
}
2427
2428
static void
2429
linux_destroy_dev(struct linux_cdev *ldev)
2430
{
2431
2432
if (ldev->cdev == NULL)
2433
return;
2434
2435
MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2436
MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
2437
2438
atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2439
while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2440
pause("ldevdtr", hz / 4);
2441
2442
destroy_dev(ldev->cdev);
2443
ldev->cdev = NULL;
2444
}
2445
2446
const struct kobj_type linux_cdev_ktype = {
2447
.release = linux_cdev_release,
2448
};
2449
2450
const struct kobj_type linux_cdev_static_ktype = {
2451
.release = linux_cdev_static_release,
2452
};
2453
2454
static void
2455
linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2456
{
2457
struct notifier_block *nb;
2458
struct netdev_notifier_info ni;
2459
2460
nb = arg;
2461
ni.ifp = ifp;
2462
ni.dev = (struct net_device *)ifp;
2463
if (linkstate == LINK_STATE_UP)
2464
nb->notifier_call(nb, NETDEV_UP, &ni);
2465
else
2466
nb->notifier_call(nb, NETDEV_DOWN, &ni);
2467
}
2468
2469
static void
2470
linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2471
{
2472
struct notifier_block *nb;
2473
struct netdev_notifier_info ni;
2474
2475
nb = arg;
2476
ni.ifp = ifp;
2477
ni.dev = (struct net_device *)ifp;
2478
nb->notifier_call(nb, NETDEV_REGISTER, &ni);
2479
}
2480
2481
static void
2482
linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2483
{
2484
struct notifier_block *nb;
2485
struct netdev_notifier_info ni;
2486
2487
nb = arg;
2488
ni.ifp = ifp;
2489
ni.dev = (struct net_device *)ifp;
2490
nb->notifier_call(nb, NETDEV_UNREGISTER, &ni);
2491
}
2492
2493
static void
2494
linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2495
{
2496
struct notifier_block *nb;
2497
struct netdev_notifier_info ni;
2498
2499
nb = arg;
2500
ni.ifp = ifp;
2501
ni.dev = (struct net_device *)ifp;
2502
nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni);
2503
}
2504
2505
static void
2506
linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2507
{
2508
struct notifier_block *nb;
2509
struct netdev_notifier_info ni;
2510
2511
nb = arg;
2512
ni.ifp = ifp;
2513
ni.dev = (struct net_device *)ifp;
2514
nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni);
2515
}
2516
2517
int
2518
register_netdevice_notifier(struct notifier_block *nb)
2519
{
2520
2521
nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2522
ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2523
nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2524
ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2525
nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2526
ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2527
nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2528
iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2529
2530
return (0);
2531
}
2532
2533
int
2534
register_inetaddr_notifier(struct notifier_block *nb)
2535
{
2536
2537
nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2538
ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2539
return (0);
2540
}
2541
2542
int
2543
unregister_netdevice_notifier(struct notifier_block *nb)
2544
{
2545
2546
EVENTHANDLER_DEREGISTER(ifnet_link_event,
2547
nb->tags[NETDEV_UP]);
2548
EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2549
nb->tags[NETDEV_REGISTER]);
2550
EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2551
nb->tags[NETDEV_UNREGISTER]);
2552
EVENTHANDLER_DEREGISTER(iflladdr_event,
2553
nb->tags[NETDEV_CHANGEADDR]);
2554
2555
return (0);
2556
}
2557
2558
int
2559
unregister_inetaddr_notifier(struct notifier_block *nb)
2560
{
2561
2562
EVENTHANDLER_DEREGISTER(ifaddr_event,
2563
nb->tags[NETDEV_CHANGEIFADDR]);
2564
2565
return (0);
2566
}
2567
2568
struct list_sort_thunk {
2569
int (*cmp)(void *, struct list_head *, struct list_head *);
2570
void *priv;
2571
};
2572
2573
static inline int
2574
linux_le_cmp(const void *d1, const void *d2, void *priv)
2575
{
2576
struct list_head *le1, *le2;
2577
struct list_sort_thunk *thunk;
2578
2579
thunk = priv;
2580
le1 = *(__DECONST(struct list_head **, d1));
2581
le2 = *(__DECONST(struct list_head **, d2));
2582
return ((thunk->cmp)(thunk->priv, le1, le2));
2583
}
2584
2585
void
2586
list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2587
struct list_head *a, struct list_head *b))
2588
{
2589
struct list_sort_thunk thunk;
2590
struct list_head **ar, *le;
2591
size_t count, i;
2592
2593
count = 0;
2594
list_for_each(le, head)
2595
count++;
2596
ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2597
i = 0;
2598
list_for_each(le, head)
2599
ar[i++] = le;
2600
thunk.cmp = cmp;
2601
thunk.priv = priv;
2602
qsort_r(ar, count, sizeof(struct list_head *), linux_le_cmp, &thunk);
2603
INIT_LIST_HEAD(head);
2604
for (i = 0; i < count; i++)
2605
list_add_tail(ar[i], head);
2606
free(ar, M_KMALLOC);
2607
}
2608
2609
#if defined(__i386__) || defined(__amd64__)
2610
int
2611
linux_wbinvd_on_all_cpus(void)
2612
{
2613
2614
pmap_invalidate_cache();
2615
return (0);
2616
}
2617
#endif
2618
2619
int
2620
linux_on_each_cpu(void callback(void *), void *data)
2621
{
2622
2623
smp_rendezvous(smp_no_rendezvous_barrier, callback,
2624
smp_no_rendezvous_barrier, data);
2625
return (0);
2626
}
2627
2628
int
2629
linux_in_atomic(void)
2630
{
2631
2632
return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2633
}
2634
2635
struct linux_cdev *
2636
linux_find_cdev(const char *name, unsigned major, unsigned minor)
2637
{
2638
dev_t dev = MKDEV(major, minor);
2639
struct cdev *cdev;
2640
2641
dev_lock();
2642
LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2643
struct linux_cdev *ldev = cdev->si_drv1;
2644
if (ldev->dev == dev &&
2645
strcmp(kobject_name(&ldev->kobj), name) == 0) {
2646
break;
2647
}
2648
}
2649
dev_unlock();
2650
2651
return (cdev != NULL ? cdev->si_drv1 : NULL);
2652
}
2653
2654
int
2655
__register_chrdev(unsigned int major, unsigned int baseminor,
2656
unsigned int count, const char *name,
2657
const struct file_operations *fops)
2658
{
2659
struct linux_cdev *cdev;
2660
int ret = 0;
2661
int i;
2662
2663
for (i = baseminor; i < baseminor + count; i++) {
2664
cdev = cdev_alloc();
2665
cdev->ops = fops;
2666
kobject_set_name(&cdev->kobj, name);
2667
2668
ret = cdev_add(cdev, makedev(major, i), 1);
2669
if (ret != 0)
2670
break;
2671
}
2672
return (ret);
2673
}
2674
2675
int
2676
__register_chrdev_p(unsigned int major, unsigned int baseminor,
2677
unsigned int count, const char *name,
2678
const struct file_operations *fops, uid_t uid,
2679
gid_t gid, int mode)
2680
{
2681
struct linux_cdev *cdev;
2682
int ret = 0;
2683
int i;
2684
2685
for (i = baseminor; i < baseminor + count; i++) {
2686
cdev = cdev_alloc();
2687
cdev->ops = fops;
2688
kobject_set_name(&cdev->kobj, name);
2689
2690
ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2691
if (ret != 0)
2692
break;
2693
}
2694
return (ret);
2695
}
2696
2697
void
2698
__unregister_chrdev(unsigned int major, unsigned int baseminor,
2699
unsigned int count, const char *name)
2700
{
2701
struct linux_cdev *cdevp;
2702
int i;
2703
2704
for (i = baseminor; i < baseminor + count; i++) {
2705
cdevp = linux_find_cdev(name, major, i);
2706
if (cdevp != NULL)
2707
cdev_del(cdevp);
2708
}
2709
}
2710
2711
void
2712
linux_dump_stack(void)
2713
{
2714
#ifdef STACK
2715
struct stack st;
2716
2717
stack_save(&st);
2718
stack_print(&st);
2719
#endif
2720
}
2721
2722
int
2723
linuxkpi_net_ratelimit(void)
2724
{
2725
2726
return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps,
2727
lkpi_net_maxpps));
2728
}
2729
2730
struct io_mapping *
2731
io_mapping_create_wc(resource_size_t base, unsigned long size)
2732
{
2733
struct io_mapping *mapping;
2734
2735
mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2736
if (mapping == NULL)
2737
return (NULL);
2738
return (io_mapping_init_wc(mapping, base, size));
2739
}
2740
2741
/* We likely want a linuxkpi_device.c at some point. */
2742
bool
2743
device_can_wakeup(struct device *dev)
2744
{
2745
2746
if (dev == NULL)
2747
return (false);
2748
/*
2749
* XXX-BZ iwlwifi queries it as part of enabling WoWLAN.
2750
* Normally this would be based on a bool in dev->power.XXX.
2751
* Check such as PCI PCIM_PCAP_*PME. We have no way to enable this yet.
2752
* We may get away by directly calling into bsddev for as long as
2753
* we can assume PCI only avoiding changing struct device breaking KBI.
2754
*/
2755
pr_debug("%s:%d: not enabled; see comment.\n", __func__, __LINE__);
2756
return (false);
2757
}
2758
2759
static void
2760
devm_device_group_remove(struct device *dev, void *p)
2761
{
2762
const struct attribute_group **dr = p;
2763
const struct attribute_group *group = *dr;
2764
2765
sysfs_remove_group(&dev->kobj, group);
2766
}
2767
2768
int
2769
lkpi_devm_device_add_group(struct device *dev,
2770
const struct attribute_group *group)
2771
{
2772
const struct attribute_group **dr;
2773
int ret;
2774
2775
dr = devres_alloc(devm_device_group_remove, sizeof(*dr), GFP_KERNEL);
2776
if (dr == NULL)
2777
return (-ENOMEM);
2778
2779
ret = sysfs_create_group(&dev->kobj, group);
2780
if (ret == 0) {
2781
*dr = group;
2782
devres_add(dev, dr);
2783
} else
2784
devres_free(dr);
2785
2786
return (ret);
2787
}
2788
2789
#if defined(__i386__) || defined(__amd64__)
2790
bool linux_cpu_has_clflush;
2791
struct cpuinfo_x86 boot_cpu_data;
2792
struct cpuinfo_x86 *__cpu_data;
2793
#endif
2794
2795
cpumask_t *
2796
lkpi_get_static_single_cpu_mask(int cpuid)
2797
{
2798
2799
KASSERT((cpuid >= 0 && cpuid <= mp_maxid), ("%s: invalid cpuid %d\n",
2800
__func__, cpuid));
2801
KASSERT(!CPU_ABSENT(cpuid), ("%s: cpu with cpuid %d is absent\n",
2802
__func__, cpuid));
2803
2804
return (static_single_cpu_mask[cpuid]);
2805
}
2806
2807
bool
2808
lkpi_xen_initial_domain(void)
2809
{
2810
#ifdef XENHVM
2811
return (xen_initial_domain());
2812
#else
2813
return (false);
2814
#endif
2815
}
2816
2817
bool
2818
lkpi_xen_pv_domain(void)
2819
{
2820
#ifdef XENHVM
2821
return (xen_pv_domain());
2822
#else
2823
return (false);
2824
#endif
2825
}
2826
2827
static void
2828
linux_compat_init(void *arg)
2829
{
2830
struct sysctl_oid *rootoid;
2831
int i;
2832
2833
#if defined(__i386__) || defined(__amd64__)
2834
static const uint32_t x86_vendors[X86_VENDOR_NUM] = {
2835
[X86_VENDOR_INTEL] = CPU_VENDOR_INTEL,
2836
[X86_VENDOR_CYRIX] = CPU_VENDOR_CYRIX,
2837
[X86_VENDOR_AMD] = CPU_VENDOR_AMD,
2838
[X86_VENDOR_UMC] = CPU_VENDOR_UMC,
2839
[X86_VENDOR_CENTAUR] = CPU_VENDOR_CENTAUR,
2840
[X86_VENDOR_TRANSMETA] = CPU_VENDOR_TRANSMETA,
2841
[X86_VENDOR_NSC] = CPU_VENDOR_NSC,
2842
[X86_VENDOR_HYGON] = CPU_VENDOR_HYGON,
2843
};
2844
uint8_t x86_vendor = X86_VENDOR_UNKNOWN;
2845
2846
for (i = 0; i < X86_VENDOR_NUM; i++) {
2847
if (cpu_vendor_id != 0 && cpu_vendor_id == x86_vendors[i]) {
2848
x86_vendor = i;
2849
break;
2850
}
2851
}
2852
linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2853
boot_cpu_data.x86_clflush_size = cpu_clflush_line_size;
2854
boot_cpu_data.x86_max_cores = mp_ncpus;
2855
boot_cpu_data.x86 = CPUID_TO_FAMILY(cpu_id);
2856
boot_cpu_data.x86_model = CPUID_TO_MODEL(cpu_id);
2857
boot_cpu_data.x86_vendor = x86_vendor;
2858
2859
__cpu_data = kmalloc_array(mp_maxid + 1,
2860
sizeof(*__cpu_data), M_WAITOK | M_ZERO);
2861
CPU_FOREACH(i) {
2862
__cpu_data[i].x86_clflush_size = cpu_clflush_line_size;
2863
__cpu_data[i].x86_max_cores = mp_ncpus;
2864
__cpu_data[i].x86 = CPUID_TO_FAMILY(cpu_id);
2865
__cpu_data[i].x86_model = CPUID_TO_MODEL(cpu_id);
2866
__cpu_data[i].x86_vendor = x86_vendor;
2867
}
2868
#endif
2869
rw_init(&linux_vma_lock, "lkpi-vma-lock");
2870
2871
rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2872
OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2873
kobject_init(&linux_class_root, &linux_class_ktype);
2874
kobject_set_name(&linux_class_root, "class");
2875
linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2876
OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2877
kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2878
kobject_set_name(&linux_root_device.kobj, "device");
2879
linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2880
SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
2881
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
2882
linux_root_device.bsddev = root_bus;
2883
linux_class_misc.name = "misc";
2884
class_register(&linux_class_misc);
2885
INIT_LIST_HEAD(&pci_drivers);
2886
INIT_LIST_HEAD(&pci_devices);
2887
spin_lock_init(&pci_lock);
2888
mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2889
for (i = 0; i < VMMAP_HASH_SIZE; i++)
2890
LIST_INIT(&vmmaphead[i]);
2891
init_waitqueue_head(&linux_bit_waitq);
2892
init_waitqueue_head(&linux_var_waitq);
2893
2894
CPU_COPY(&all_cpus, &cpu_online_mask);
2895
/*
2896
* Generate a single-CPU cpumask_t for each CPU (possibly) in the system.
2897
* CPUs are indexed from 0..(mp_maxid). The entry for cpuid 0 will only
2898
* have itself in the cpumask, cupid 1 only itself on entry 1, and so on.
2899
* This is used by cpumask_of() (and possibly others in the future) for,
2900
* e.g., drivers to pass hints to irq_set_affinity_hint().
2901
*/
2902
static_single_cpu_mask = kmalloc_array(mp_maxid + 1,
2903
sizeof(static_single_cpu_mask), M_WAITOK | M_ZERO);
2904
2905
/*
2906
* When the number of CPUs reach a threshold, we start to save memory
2907
* given the sets are static by overlapping those having their single
2908
* bit set at same position in a bitset word. Asymptotically, this
2909
* regular scheme is in O(n²) whereas the overlapping one is in O(n)
2910
* only with n being the maximum number of CPUs, so the gain will become
2911
* huge quite quickly. The threshold for 64-bit architectures is 128
2912
* CPUs.
2913
*/
2914
if (mp_ncpus < (2 * _BITSET_BITS)) {
2915
cpumask_t *sscm_ptr;
2916
2917
/*
2918
* This represents 'mp_ncpus * __bitset_words(CPU_SETSIZE) *
2919
* (_BITSET_BITS / 8)' bytes (for comparison with the
2920
* overlapping scheme).
2921
*/
2922
static_single_cpu_mask_lcs = kmalloc_array(mp_ncpus,
2923
sizeof(*static_single_cpu_mask_lcs),
2924
M_WAITOK | M_ZERO);
2925
2926
sscm_ptr = static_single_cpu_mask_lcs;
2927
CPU_FOREACH(i) {
2928
static_single_cpu_mask[i] = sscm_ptr++;
2929
CPU_SET(i, static_single_cpu_mask[i]);
2930
}
2931
} else {
2932
/* Pointer to a bitset word. */
2933
__typeof(((cpuset_t *)NULL)->__bits[0]) *bwp;
2934
2935
/*
2936
* Allocate memory for (static) spans of 'cpumask_t' ('cpuset_t'
2937
* really) with a single bit set that can be reused for all
2938
* single CPU masks by making them start at different offsets.
2939
* We need '__bitset_words(CPU_SETSIZE) - 1' bitset words before
2940
* the word having its single bit set, and the same amount
2941
* after.
2942
*/
2943
static_single_cpu_mask_lcs = mallocarray(_BITSET_BITS,
2944
(2 * __bitset_words(CPU_SETSIZE) - 1) * (_BITSET_BITS / 8),
2945
M_KMALLOC, M_WAITOK | M_ZERO);
2946
2947
/*
2948
* We rely below on cpuset_t and the bitset generic
2949
* implementation assigning words in the '__bits' array in the
2950
* same order of bits (i.e., little-endian ordering, not to be
2951
* confused with machine endianness, which concerns bits in
2952
* words and other integers). This is an imperfect test, but it
2953
* will detect a change to big-endian ordering.
2954
*/
2955
_Static_assert(
2956
__bitset_word(_BITSET_BITS + 1, _BITSET_BITS) == 1,
2957
"Assumes a bitset implementation that is little-endian "
2958
"on its words");
2959
2960
/* Initialize the single bit of each static span. */
2961
bwp = (__typeof(bwp))static_single_cpu_mask_lcs +
2962
(__bitset_words(CPU_SETSIZE) - 1);
2963
for (i = 0; i < _BITSET_BITS; i++) {
2964
CPU_SET(i, (cpuset_t *)bwp);
2965
bwp += (2 * __bitset_words(CPU_SETSIZE) - 1);
2966
}
2967
2968
/*
2969
* Finally set all CPU masks to the proper word in their
2970
* relevant span.
2971
*/
2972
CPU_FOREACH(i) {
2973
bwp = (__typeof(bwp))static_single_cpu_mask_lcs;
2974
/* Find the non-zero word of the relevant span. */
2975
bwp += (2 * __bitset_words(CPU_SETSIZE) - 1) *
2976
(i % _BITSET_BITS) +
2977
__bitset_words(CPU_SETSIZE) - 1;
2978
/* Shift to find the CPU mask start. */
2979
bwp -= (i / _BITSET_BITS);
2980
static_single_cpu_mask[i] = (cpuset_t *)bwp;
2981
}
2982
}
2983
2984
strlcpy(init_uts_ns.name.release, osrelease, sizeof(init_uts_ns.name.release));
2985
}
2986
SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2987
2988
static void
2989
linux_compat_uninit(void *arg)
2990
{
2991
linux_kobject_kfree_name(&linux_class_root);
2992
linux_kobject_kfree_name(&linux_root_device.kobj);
2993
linux_kobject_kfree_name(&linux_class_misc.kobj);
2994
2995
free(static_single_cpu_mask_lcs, M_KMALLOC);
2996
free(static_single_cpu_mask, M_KMALLOC);
2997
#if defined(__i386__) || defined(__amd64__)
2998
free(__cpu_data, M_KMALLOC);
2999
#endif
3000
3001
mtx_destroy(&vmmaplock);
3002
spin_lock_destroy(&pci_lock);
3003
rw_destroy(&linux_vma_lock);
3004
}
3005
SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
3006
3007
/*
3008
* NOTE: Linux frequently uses "unsigned long" for pointer to integer
3009
* conversion and vice versa, where in FreeBSD "uintptr_t" would be
3010
* used. Assert these types have the same size, else some parts of the
3011
* LinuxKPI may not work like expected:
3012
*/
3013
CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
3014
3015