Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/compat/linuxkpi/common/src/linux_compat.c
102415 views
1
/*-
2
* Copyright (c) 2010 Isilon Systems, Inc.
3
* Copyright (c) 2010 iX Systems, Inc.
4
* Copyright (c) 2010 Panasas, Inc.
5
* Copyright (c) 2013-2021 Mellanox Technologies, Ltd.
6
* All rights reserved.
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice unmodified, this list of conditions, and the following
13
* disclaimer.
14
* 2. Redistributions in binary form must reproduce the above copyright
15
* notice, this list of conditions and the following disclaimer in the
16
* documentation and/or other materials provided with the distribution.
17
*
18
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
*/
29
30
#include <sys/cdefs.h>
31
#include "opt_global.h"
32
#include "opt_stack.h"
33
34
#include <sys/param.h>
35
#include <sys/systm.h>
36
#include <sys/malloc.h>
37
#include <sys/kernel.h>
38
#include <sys/sysctl.h>
39
#include <sys/proc.h>
40
#include <sys/sglist.h>
41
#include <sys/sleepqueue.h>
42
#include <sys/refcount.h>
43
#include <sys/lock.h>
44
#include <sys/mutex.h>
45
#include <sys/bus.h>
46
#include <sys/eventhandler.h>
47
#include <sys/fcntl.h>
48
#include <sys/file.h>
49
#include <sys/filio.h>
50
#include <sys/rwlock.h>
51
#include <sys/mman.h>
52
#include <sys/stack.h>
53
#include <sys/stdarg.h>
54
#include <sys/sysent.h>
55
#include <sys/time.h>
56
#include <sys/user.h>
57
58
#include <vm/vm.h>
59
#include <vm/pmap.h>
60
#include <vm/vm_object.h>
61
#include <vm/vm_page.h>
62
#include <vm/vm_pager.h>
63
#include <vm/vm_radix.h>
64
65
#if defined(__i386__) || defined(__amd64__)
66
#include <machine/cputypes.h>
67
#include <machine/md_var.h>
68
#endif
69
70
#include <linux/kobject.h>
71
#include <linux/cpu.h>
72
#include <linux/device.h>
73
#include <linux/slab.h>
74
#include <linux/module.h>
75
#include <linux/moduleparam.h>
76
#include <linux/cdev.h>
77
#include <linux/file.h>
78
#include <linux/fs.h>
79
#include <linux/sysfs.h>
80
#include <linux/mm.h>
81
#include <linux/io.h>
82
#include <linux/vmalloc.h>
83
#include <linux/netdevice.h>
84
#include <linux/timer.h>
85
#include <linux/interrupt.h>
86
#include <linux/uaccess.h>
87
#include <linux/utsname.h>
88
#include <linux/list.h>
89
#include <linux/kthread.h>
90
#include <linux/kernel.h>
91
#include <linux/compat.h>
92
#include <linux/io-mapping.h>
93
#include <linux/poll.h>
94
#include <linux/smp.h>
95
#include <linux/wait_bit.h>
96
#include <linux/rcupdate.h>
97
#include <linux/interval_tree.h>
98
#include <linux/interval_tree_generic.h>
99
#include <linux/printk.h>
100
#include <linux/seq_file.h>
101
102
#if defined(__i386__) || defined(__amd64__)
103
#include <asm/smp.h>
104
#include <asm/processor.h>
105
#endif
106
107
#include <xen/xen.h>
108
#ifdef XENHVM
109
#undef xen_pv_domain
110
#undef xen_initial_domain
111
/* xen/xen-os.h redefines __must_check */
112
#undef __must_check
113
#include <xen/xen-os.h>
114
#endif
115
116
SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
117
"LinuxKPI parameters");
118
119
int linuxkpi_debug;
120
SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
121
&linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
122
123
int linuxkpi_rcu_debug;
124
SYSCTL_INT(_compat_linuxkpi, OID_AUTO, rcu_debug, CTLFLAG_RWTUN,
125
&linuxkpi_rcu_debug, 0, "Set to enable RCU warning. Clear to disable.");
126
127
int linuxkpi_warn_dump_stack = 0;
128
SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN,
129
&linuxkpi_warn_dump_stack, 0,
130
"Set to enable stack traces from WARN_ON(). Clear to disable.");
131
132
static struct timeval lkpi_net_lastlog;
133
static int lkpi_net_curpps;
134
static int lkpi_net_maxpps = 99;
135
SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN,
136
&lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second.");
137
138
MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat");
139
140
#include <linux/rbtree.h>
141
/* Undo Linux compat changes. */
142
#undef RB_ROOT
143
#undef file
144
#undef cdev
145
#define RB_ROOT(head) (head)->rbh_root
146
147
static void linux_destroy_dev(struct linux_cdev *);
148
static void linux_cdev_deref(struct linux_cdev *ldev);
149
static struct vm_area_struct *linux_cdev_handle_find(void *handle);
150
151
cpumask_t cpu_online_mask;
152
static cpumask_t **static_single_cpu_mask;
153
static cpumask_t *static_single_cpu_mask_lcs;
154
struct kobject linux_class_root;
155
struct device linux_root_device;
156
struct class linux_class_misc;
157
struct list_head pci_drivers;
158
struct list_head pci_devices;
159
spinlock_t pci_lock;
160
struct uts_namespace init_uts_ns;
161
162
unsigned long linux_timer_hz_mask;
163
164
wait_queue_head_t linux_bit_waitq;
165
wait_queue_head_t linux_var_waitq;
166
167
int
168
panic_cmp(struct rb_node *one, struct rb_node *two)
169
{
170
panic("no cmp");
171
}
172
173
RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
174
175
#define START(node) ((node)->start)
176
#define LAST(node) ((node)->last)
177
178
INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START,
179
LAST,, lkpi_interval_tree)
180
181
static void
182
linux_device_release(struct device *dev)
183
{
184
pr_debug("linux_device_release: %s\n", dev_name(dev));
185
kfree(dev);
186
}
187
188
static ssize_t
189
linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
190
{
191
struct class_attribute *dattr;
192
ssize_t error;
193
194
dattr = container_of(attr, struct class_attribute, attr);
195
error = -EIO;
196
if (dattr->show)
197
error = dattr->show(container_of(kobj, struct class, kobj),
198
dattr, buf);
199
return (error);
200
}
201
202
static ssize_t
203
linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
204
size_t count)
205
{
206
struct class_attribute *dattr;
207
ssize_t error;
208
209
dattr = container_of(attr, struct class_attribute, attr);
210
error = -EIO;
211
if (dattr->store)
212
error = dattr->store(container_of(kobj, struct class, kobj),
213
dattr, buf, count);
214
return (error);
215
}
216
217
static void
218
linux_class_release(struct kobject *kobj)
219
{
220
struct class *class;
221
222
class = container_of(kobj, struct class, kobj);
223
if (class->class_release)
224
class->class_release(class);
225
}
226
227
static const struct sysfs_ops linux_class_sysfs = {
228
.show = linux_class_show,
229
.store = linux_class_store,
230
};
231
232
const struct kobj_type linux_class_ktype = {
233
.release = linux_class_release,
234
.sysfs_ops = &linux_class_sysfs
235
};
236
237
static void
238
linux_dev_release(struct kobject *kobj)
239
{
240
struct device *dev;
241
242
dev = container_of(kobj, struct device, kobj);
243
/* This is the precedence defined by linux. */
244
if (dev->release)
245
dev->release(dev);
246
else if (dev->class && dev->class->dev_release)
247
dev->class->dev_release(dev);
248
}
249
250
static ssize_t
251
linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
252
{
253
struct device_attribute *dattr;
254
ssize_t error;
255
256
dattr = container_of(attr, struct device_attribute, attr);
257
error = -EIO;
258
if (dattr->show)
259
error = dattr->show(container_of(kobj, struct device, kobj),
260
dattr, buf);
261
return (error);
262
}
263
264
static ssize_t
265
linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
266
size_t count)
267
{
268
struct device_attribute *dattr;
269
ssize_t error;
270
271
dattr = container_of(attr, struct device_attribute, attr);
272
error = -EIO;
273
if (dattr->store)
274
error = dattr->store(container_of(kobj, struct device, kobj),
275
dattr, buf, count);
276
return (error);
277
}
278
279
static const struct sysfs_ops linux_dev_sysfs = {
280
.show = linux_dev_show,
281
.store = linux_dev_store,
282
};
283
284
const struct kobj_type linux_dev_ktype = {
285
.release = linux_dev_release,
286
.sysfs_ops = &linux_dev_sysfs
287
};
288
289
struct device *
290
device_create(struct class *class, struct device *parent, dev_t devt,
291
void *drvdata, const char *fmt, ...)
292
{
293
struct device *dev;
294
va_list args;
295
296
dev = kzalloc(sizeof(*dev), M_WAITOK);
297
dev->parent = parent;
298
dev->class = class;
299
dev->devt = devt;
300
dev->driver_data = drvdata;
301
dev->release = linux_device_release;
302
va_start(args, fmt);
303
kobject_set_name_vargs(&dev->kobj, fmt, args);
304
va_end(args);
305
device_register(dev);
306
307
return (dev);
308
}
309
310
struct device *
311
device_create_groups_vargs(struct class *class, struct device *parent,
312
dev_t devt, void *drvdata, const struct attribute_group **groups,
313
const char *fmt, va_list args)
314
{
315
struct device *dev = NULL;
316
int retval = -ENODEV;
317
318
if (class == NULL || IS_ERR(class))
319
goto error;
320
321
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
322
if (!dev) {
323
retval = -ENOMEM;
324
goto error;
325
}
326
327
dev->devt = devt;
328
dev->class = class;
329
dev->parent = parent;
330
dev->groups = groups;
331
dev->release = device_create_release;
332
/* device_initialize() needs the class and parent to be set */
333
device_initialize(dev);
334
dev_set_drvdata(dev, drvdata);
335
336
retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
337
if (retval)
338
goto error;
339
340
retval = device_add(dev);
341
if (retval)
342
goto error;
343
344
return dev;
345
346
error:
347
put_device(dev);
348
return ERR_PTR(retval);
349
}
350
351
struct class *
352
lkpi_class_create(const char *name)
353
{
354
struct class *class;
355
int error;
356
357
class = kzalloc(sizeof(*class), M_WAITOK);
358
class->name = name;
359
class->class_release = linux_class_kfree;
360
error = class_register(class);
361
if (error) {
362
kfree(class);
363
return (NULL);
364
}
365
366
return (class);
367
}
368
369
static void
370
linux_kq_lock(void *arg)
371
{
372
spinlock_t *s = arg;
373
374
spin_lock(s);
375
}
376
static void
377
linux_kq_unlock(void *arg)
378
{
379
spinlock_t *s = arg;
380
381
spin_unlock(s);
382
}
383
384
static void
385
linux_kq_assert_lock(void *arg, int what)
386
{
387
#ifdef INVARIANTS
388
spinlock_t *s = arg;
389
390
if (what == LA_LOCKED)
391
mtx_assert(s, MA_OWNED);
392
else
393
mtx_assert(s, MA_NOTOWNED);
394
#endif
395
}
396
397
static void
398
linux_file_kqfilter_poll(struct linux_file *, int);
399
400
struct linux_file *
401
linux_file_alloc(void)
402
{
403
struct linux_file *filp;
404
405
filp = kzalloc(sizeof(*filp), GFP_KERNEL);
406
407
/* set initial refcount */
408
filp->f_count = 1;
409
410
/* setup fields needed by kqueue support */
411
spin_lock_init(&filp->f_kqlock);
412
knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
413
linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock);
414
415
return (filp);
416
}
417
418
void
419
linux_file_free(struct linux_file *filp)
420
{
421
if (filp->_file == NULL) {
422
if (filp->f_op != NULL && filp->f_op->release != NULL)
423
filp->f_op->release(filp->f_vnode, filp);
424
if (filp->f_shmem != NULL)
425
vm_object_deallocate(filp->f_shmem);
426
kfree_rcu(filp, rcu);
427
} else {
428
/*
429
* The close method of the character device or file
430
* will free the linux_file structure:
431
*/
432
_fdrop(filp->_file, curthread);
433
}
434
}
435
436
struct linux_cdev *
437
cdev_alloc(void)
438
{
439
struct linux_cdev *cdev;
440
441
cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK);
442
kobject_init(&cdev->kobj, &linux_cdev_ktype);
443
cdev->refs = 1;
444
return (cdev);
445
}
446
447
static int
448
linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
449
vm_page_t *mres)
450
{
451
struct vm_area_struct *vmap;
452
453
vmap = linux_cdev_handle_find(vm_obj->handle);
454
455
MPASS(vmap != NULL);
456
MPASS(vmap->vm_private_data == vm_obj->handle);
457
458
if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
459
vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
460
vm_page_t page;
461
462
if (((*mres)->flags & PG_FICTITIOUS) != 0) {
463
/*
464
* If the passed in result page is a fake
465
* page, update it with the new physical
466
* address.
467
*/
468
page = *mres;
469
vm_page_updatefake(page, paddr, vm_obj->memattr);
470
} else {
471
/*
472
* Replace the passed in "mres" page with our
473
* own fake page and free up the all of the
474
* original pages.
475
*/
476
VM_OBJECT_WUNLOCK(vm_obj);
477
page = vm_page_getfake(paddr, vm_obj->memattr);
478
VM_OBJECT_WLOCK(vm_obj);
479
480
vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
481
*mres = page;
482
}
483
vm_page_valid(page);
484
return (VM_PAGER_OK);
485
}
486
return (VM_PAGER_FAIL);
487
}
488
489
static int
490
linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
491
vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
492
{
493
struct vm_area_struct *vmap;
494
int err;
495
496
/* get VM area structure */
497
vmap = linux_cdev_handle_find(vm_obj->handle);
498
MPASS(vmap != NULL);
499
MPASS(vmap->vm_private_data == vm_obj->handle);
500
501
VM_OBJECT_WUNLOCK(vm_obj);
502
503
linux_set_current(curthread);
504
505
down_write(&vmap->vm_mm->mmap_sem);
506
if (unlikely(vmap->vm_ops == NULL)) {
507
err = VM_FAULT_SIGBUS;
508
} else {
509
struct vm_fault vmf;
510
511
/* fill out VM fault structure */
512
vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
513
vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
514
vmf.pgoff = 0;
515
vmf.page = NULL;
516
vmf.vma = vmap;
517
518
vmap->vm_pfn_count = 0;
519
vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
520
vmap->vm_obj = vm_obj;
521
522
err = vmap->vm_ops->fault(&vmf);
523
524
while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
525
kern_yield(PRI_USER);
526
err = vmap->vm_ops->fault(&vmf);
527
}
528
}
529
530
/* translate return code */
531
switch (err) {
532
case VM_FAULT_OOM:
533
err = VM_PAGER_AGAIN;
534
break;
535
case VM_FAULT_SIGBUS:
536
err = VM_PAGER_BAD;
537
break;
538
case VM_FAULT_NOPAGE:
539
/*
540
* By contract the fault handler will return having
541
* busied all the pages itself. If pidx is already
542
* found in the object, it will simply xbusy the first
543
* page and return with vm_pfn_count set to 1.
544
*/
545
*first = vmap->vm_pfn_first;
546
*last = *first + vmap->vm_pfn_count - 1;
547
err = VM_PAGER_OK;
548
break;
549
default:
550
err = VM_PAGER_ERROR;
551
break;
552
}
553
up_write(&vmap->vm_mm->mmap_sem);
554
VM_OBJECT_WLOCK(vm_obj);
555
return (err);
556
}
557
558
static struct rwlock linux_vma_lock;
559
static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
560
TAILQ_HEAD_INITIALIZER(linux_vma_head);
561
562
static void
563
linux_cdev_handle_free(struct vm_area_struct *vmap)
564
{
565
/* Drop reference on vm_file */
566
if (vmap->vm_file != NULL)
567
fput(vmap->vm_file);
568
569
/* Drop reference on mm_struct */
570
mmput(vmap->vm_mm);
571
572
kfree(vmap);
573
}
574
575
static void
576
linux_cdev_handle_remove(struct vm_area_struct *vmap)
577
{
578
rw_wlock(&linux_vma_lock);
579
TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
580
rw_wunlock(&linux_vma_lock);
581
}
582
583
static struct vm_area_struct *
584
linux_cdev_handle_find(void *handle)
585
{
586
struct vm_area_struct *vmap;
587
588
rw_rlock(&linux_vma_lock);
589
TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
590
if (vmap->vm_private_data == handle)
591
break;
592
}
593
rw_runlock(&linux_vma_lock);
594
return (vmap);
595
}
596
597
static int
598
linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
599
vm_ooffset_t foff, struct ucred *cred, u_short *color)
600
{
601
602
MPASS(linux_cdev_handle_find(handle) != NULL);
603
*color = 0;
604
return (0);
605
}
606
607
static void
608
linux_cdev_pager_dtor(void *handle)
609
{
610
const struct vm_operations_struct *vm_ops;
611
struct vm_area_struct *vmap;
612
613
vmap = linux_cdev_handle_find(handle);
614
MPASS(vmap != NULL);
615
616
/*
617
* Remove handle before calling close operation to prevent
618
* other threads from reusing the handle pointer.
619
*/
620
linux_cdev_handle_remove(vmap);
621
622
down_write(&vmap->vm_mm->mmap_sem);
623
vm_ops = vmap->vm_ops;
624
if (likely(vm_ops != NULL))
625
vm_ops->close(vmap);
626
up_write(&vmap->vm_mm->mmap_sem);
627
628
linux_cdev_handle_free(vmap);
629
}
630
631
static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
632
{
633
/* OBJT_MGTDEVICE */
634
.cdev_pg_populate = linux_cdev_pager_populate,
635
.cdev_pg_ctor = linux_cdev_pager_ctor,
636
.cdev_pg_dtor = linux_cdev_pager_dtor
637
},
638
{
639
/* OBJT_DEVICE */
640
.cdev_pg_fault = linux_cdev_pager_fault,
641
.cdev_pg_ctor = linux_cdev_pager_ctor,
642
.cdev_pg_dtor = linux_cdev_pager_dtor
643
},
644
};
645
646
int
647
zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
648
unsigned long size)
649
{
650
struct pctrie_iter pages;
651
vm_object_t obj;
652
vm_page_t m;
653
654
obj = vma->vm_obj;
655
if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
656
return (-ENOTSUP);
657
VM_OBJECT_RLOCK(obj);
658
vm_page_iter_limit_init(&pages, obj, OFF_TO_IDX(address + size));
659
VM_RADIX_FOREACH_FROM(m, &pages, OFF_TO_IDX(address))
660
pmap_remove_all(m);
661
VM_OBJECT_RUNLOCK(obj);
662
return (0);
663
}
664
665
void
666
vma_set_file(struct vm_area_struct *vma, struct linux_file *file)
667
{
668
struct linux_file *tmp;
669
670
/* Changing an anonymous vma with this is illegal */
671
get_file(file);
672
tmp = vma->vm_file;
673
vma->vm_file = file;
674
fput(tmp);
675
}
676
677
static struct file_operations dummy_ldev_ops = {
678
/* XXXKIB */
679
};
680
681
static struct linux_cdev dummy_ldev = {
682
.ops = &dummy_ldev_ops,
683
};
684
685
#define LDEV_SI_DTR 0x0001
686
#define LDEV_SI_REF 0x0002
687
688
static void
689
linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
690
struct linux_cdev **dev)
691
{
692
struct linux_cdev *ldev;
693
u_int siref;
694
695
ldev = filp->f_cdev;
696
*fop = filp->f_op;
697
if (ldev != NULL) {
698
if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
699
refcount_acquire(&ldev->refs);
700
} else {
701
for (siref = ldev->siref;;) {
702
if ((siref & LDEV_SI_DTR) != 0) {
703
ldev = &dummy_ldev;
704
*fop = ldev->ops;
705
siref = ldev->siref;
706
MPASS((ldev->siref & LDEV_SI_DTR) == 0);
707
} else if (atomic_fcmpset_int(&ldev->siref,
708
&siref, siref + LDEV_SI_REF)) {
709
break;
710
}
711
}
712
}
713
}
714
*dev = ldev;
715
}
716
717
static void
718
linux_drop_fop(struct linux_cdev *ldev)
719
{
720
721
if (ldev == NULL)
722
return;
723
if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
724
linux_cdev_deref(ldev);
725
} else {
726
MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
727
MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
728
atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
729
}
730
}
731
732
#define OPW(fp,td,code) ({ \
733
struct file *__fpop; \
734
__typeof(code) __retval; \
735
\
736
__fpop = (td)->td_fpop; \
737
(td)->td_fpop = (fp); \
738
__retval = (code); \
739
(td)->td_fpop = __fpop; \
740
__retval; \
741
})
742
743
static int
744
linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
745
struct file *file)
746
{
747
struct linux_cdev *ldev;
748
struct linux_file *filp;
749
const struct file_operations *fop;
750
int error;
751
752
ldev = dev->si_drv1;
753
754
filp = linux_file_alloc();
755
filp->f_dentry = &filp->f_dentry_store;
756
filp->f_op = ldev->ops;
757
filp->f_mode = file->f_flag;
758
filp->f_flags = file->f_flag;
759
filp->f_vnode = file->f_vnode;
760
filp->_file = file;
761
refcount_acquire(&ldev->refs);
762
filp->f_cdev = ldev;
763
764
linux_set_current(td);
765
linux_get_fop(filp, &fop, &ldev);
766
767
if (fop->open != NULL) {
768
error = -fop->open(file->f_vnode, filp);
769
if (error != 0) {
770
linux_drop_fop(ldev);
771
linux_cdev_deref(filp->f_cdev);
772
kfree(filp);
773
return (error);
774
}
775
}
776
777
/* hold on to the vnode - used for fstat() */
778
vref(filp->f_vnode);
779
780
/* release the file from devfs */
781
finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
782
linux_drop_fop(ldev);
783
return (ENXIO);
784
}
785
786
#define LINUX_IOCTL_MIN_PTR 0x10000UL
787
#define LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
788
789
static inline int
790
linux_remap_address(void **uaddr, size_t len)
791
{
792
uintptr_t uaddr_val = (uintptr_t)(*uaddr);
793
794
if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
795
uaddr_val < LINUX_IOCTL_MAX_PTR)) {
796
struct task_struct *pts = current;
797
if (pts == NULL) {
798
*uaddr = NULL;
799
return (1);
800
}
801
802
/* compute data offset */
803
uaddr_val -= LINUX_IOCTL_MIN_PTR;
804
805
/* check that length is within bounds */
806
if ((len > IOCPARM_MAX) ||
807
(uaddr_val + len) > pts->bsd_ioctl_len) {
808
*uaddr = NULL;
809
return (1);
810
}
811
812
/* re-add kernel buffer address */
813
uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
814
815
/* update address location */
816
*uaddr = (void *)uaddr_val;
817
return (1);
818
}
819
return (0);
820
}
821
822
int
823
linux_copyin(const void *uaddr, void *kaddr, size_t len)
824
{
825
if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
826
if (uaddr == NULL)
827
return (-EFAULT);
828
memcpy(kaddr, uaddr, len);
829
return (0);
830
}
831
return (-copyin(uaddr, kaddr, len));
832
}
833
834
int
835
linux_copyout(const void *kaddr, void *uaddr, size_t len)
836
{
837
if (linux_remap_address(&uaddr, len)) {
838
if (uaddr == NULL)
839
return (-EFAULT);
840
memcpy(uaddr, kaddr, len);
841
return (0);
842
}
843
return (-copyout(kaddr, uaddr, len));
844
}
845
846
size_t
847
linux_clear_user(void *_uaddr, size_t _len)
848
{
849
uint8_t *uaddr = _uaddr;
850
size_t len = _len;
851
852
/* make sure uaddr is aligned before going into the fast loop */
853
while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
854
if (subyte(uaddr, 0))
855
return (_len);
856
uaddr++;
857
len--;
858
}
859
860
/* zero 8 bytes at a time */
861
while (len > 7) {
862
#ifdef __LP64__
863
if (suword64(uaddr, 0))
864
return (_len);
865
#else
866
if (suword32(uaddr, 0))
867
return (_len);
868
if (suword32(uaddr + 4, 0))
869
return (_len);
870
#endif
871
uaddr += 8;
872
len -= 8;
873
}
874
875
/* zero fill end, if any */
876
while (len > 0) {
877
if (subyte(uaddr, 0))
878
return (_len);
879
uaddr++;
880
len--;
881
}
882
return (0);
883
}
884
885
int
886
linux_access_ok(const void *uaddr, size_t len)
887
{
888
uintptr_t saddr;
889
uintptr_t eaddr;
890
891
/* get start and end address */
892
saddr = (uintptr_t)uaddr;
893
eaddr = (uintptr_t)uaddr + len;
894
895
/* verify addresses are valid for userspace */
896
return ((saddr == eaddr) ||
897
(eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
898
}
899
900
/*
901
* This function should return either EINTR or ERESTART depending on
902
* the signal type sent to this thread:
903
*/
904
static int
905
linux_get_error(struct task_struct *task, int error)
906
{
907
/* check for signal type interrupt code */
908
if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
909
error = -linux_schedule_get_interrupt_value(task);
910
if (error == 0)
911
error = EINTR;
912
}
913
return (error);
914
}
915
916
static int
917
linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
918
const struct file_operations *fop, u_long cmd, caddr_t data,
919
struct thread *td)
920
{
921
struct task_struct *task = current;
922
unsigned size;
923
int error;
924
925
size = IOCPARM_LEN(cmd);
926
/* refer to logic in sys_ioctl() */
927
if (size > 0) {
928
/*
929
* Setup hint for linux_copyin() and linux_copyout().
930
*
931
* Background: Linux code expects a user-space address
932
* while FreeBSD supplies a kernel-space address.
933
*/
934
task->bsd_ioctl_data = data;
935
task->bsd_ioctl_len = size;
936
data = (void *)LINUX_IOCTL_MIN_PTR;
937
} else {
938
/* fetch user-space pointer */
939
data = *(void **)data;
940
}
941
#ifdef COMPAT_FREEBSD32
942
if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
943
/* try the compat IOCTL handler first */
944
if (fop->compat_ioctl != NULL) {
945
error = -OPW(fp, td, fop->compat_ioctl(filp,
946
cmd, (u_long)data));
947
} else {
948
error = ENOTTY;
949
}
950
951
/* fallback to the regular IOCTL handler, if any */
952
if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
953
error = -OPW(fp, td, fop->unlocked_ioctl(filp,
954
cmd, (u_long)data));
955
}
956
} else
957
#endif
958
{
959
if (fop->unlocked_ioctl != NULL) {
960
error = -OPW(fp, td, fop->unlocked_ioctl(filp,
961
cmd, (u_long)data));
962
} else {
963
error = ENOTTY;
964
}
965
}
966
if (size > 0) {
967
task->bsd_ioctl_data = NULL;
968
task->bsd_ioctl_len = 0;
969
}
970
971
if (error == EWOULDBLOCK) {
972
/* update kqfilter status, if any */
973
linux_file_kqfilter_poll(filp,
974
LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
975
} else {
976
error = linux_get_error(task, error);
977
}
978
return (error);
979
}
980
981
#define LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
982
983
/*
984
* This function atomically updates the poll wakeup state and returns
985
* the previous state at the time of update.
986
*/
987
static uint8_t
988
linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
989
{
990
int c, old;
991
992
c = v->counter;
993
994
while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
995
c = old;
996
997
return (c);
998
}
999
1000
static int
1001
linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1002
{
1003
static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1004
[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1005
[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1006
[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1007
[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1008
};
1009
struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1010
1011
switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1012
case LINUX_FWQ_STATE_QUEUED:
1013
linux_poll_wakeup(filp);
1014
return (1);
1015
default:
1016
return (0);
1017
}
1018
}
1019
1020
void
1021
linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1022
{
1023
static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1024
[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1025
[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1026
[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1027
[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1028
};
1029
1030
/* check if we are called inside the select system call */
1031
if (p == LINUX_POLL_TABLE_NORMAL)
1032
selrecord(curthread, &filp->f_selinfo);
1033
1034
switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1035
case LINUX_FWQ_STATE_INIT:
1036
/* NOTE: file handles can only belong to one wait-queue */
1037
filp->f_wait_queue.wqh = wqh;
1038
filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1039
add_wait_queue(wqh, &filp->f_wait_queue.wq);
1040
atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1041
break;
1042
default:
1043
break;
1044
}
1045
}
1046
1047
static void
1048
linux_poll_wait_dequeue(struct linux_file *filp)
1049
{
1050
static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1051
[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1052
[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1053
[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1054
[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1055
};
1056
1057
seldrain(&filp->f_selinfo);
1058
1059
switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1060
case LINUX_FWQ_STATE_NOT_READY:
1061
case LINUX_FWQ_STATE_QUEUED:
1062
case LINUX_FWQ_STATE_READY:
1063
remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1064
break;
1065
default:
1066
break;
1067
}
1068
}
1069
1070
void
1071
linux_poll_wakeup(struct linux_file *filp)
1072
{
1073
/* this function should be NULL-safe */
1074
if (filp == NULL)
1075
return;
1076
1077
selwakeup(&filp->f_selinfo);
1078
1079
spin_lock(&filp->f_kqlock);
1080
filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1081
LINUX_KQ_FLAG_NEED_WRITE;
1082
1083
/* make sure the "knote" gets woken up */
1084
KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1085
spin_unlock(&filp->f_kqlock);
1086
}
1087
1088
static struct linux_file *
1089
__get_file_rcu(struct linux_file **f)
1090
{
1091
struct linux_file *file1, *file2;
1092
1093
file1 = READ_ONCE(*f);
1094
if (file1 == NULL)
1095
return (NULL);
1096
1097
if (!refcount_acquire_if_not_zero(
1098
file1->_file == NULL ? &file1->f_count : &file1->_file->f_count))
1099
return (ERR_PTR(-EAGAIN));
1100
1101
file2 = READ_ONCE(*f);
1102
if (file2 == file1)
1103
return (file2);
1104
1105
fput(file1);
1106
return (ERR_PTR(-EAGAIN));
1107
}
1108
1109
struct linux_file *
1110
linux_get_file_rcu(struct linux_file **f)
1111
{
1112
struct linux_file *file1;
1113
1114
for (;;) {
1115
file1 = __get_file_rcu(f);
1116
if (file1 == NULL)
1117
return (NULL);
1118
1119
if (IS_ERR(file1))
1120
continue;
1121
1122
return (file1);
1123
}
1124
}
1125
1126
struct linux_file *
1127
get_file_active(struct linux_file **f)
1128
{
1129
struct linux_file *file1;
1130
1131
rcu_read_lock();
1132
file1 = __get_file_rcu(f);
1133
rcu_read_unlock();
1134
if (IS_ERR(file1))
1135
file1 = NULL;
1136
1137
return (file1);
1138
}
1139
1140
static void
1141
linux_file_kqfilter_detach(struct knote *kn)
1142
{
1143
struct linux_file *filp = kn->kn_hook;
1144
1145
spin_lock(&filp->f_kqlock);
1146
knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1147
spin_unlock(&filp->f_kqlock);
1148
}
1149
1150
static int
1151
linux_file_kqfilter_read_event(struct knote *kn, long hint)
1152
{
1153
struct linux_file *filp = kn->kn_hook;
1154
1155
mtx_assert(&filp->f_kqlock, MA_OWNED);
1156
1157
return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1158
}
1159
1160
static int
1161
linux_file_kqfilter_write_event(struct knote *kn, long hint)
1162
{
1163
struct linux_file *filp = kn->kn_hook;
1164
1165
mtx_assert(&filp->f_kqlock, MA_OWNED);
1166
1167
return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1168
}
1169
1170
static const struct filterops linux_dev_kqfiltops_read = {
1171
.f_isfd = 1,
1172
.f_detach = linux_file_kqfilter_detach,
1173
.f_event = linux_file_kqfilter_read_event,
1174
.f_copy = knote_triv_copy,
1175
};
1176
1177
static const struct filterops linux_dev_kqfiltops_write = {
1178
.f_isfd = 1,
1179
.f_detach = linux_file_kqfilter_detach,
1180
.f_event = linux_file_kqfilter_write_event,
1181
.f_copy = knote_triv_copy,
1182
};
1183
1184
static void
1185
linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1186
{
1187
struct thread *td;
1188
const struct file_operations *fop;
1189
struct linux_cdev *ldev;
1190
int temp;
1191
1192
if ((filp->f_kqflags & kqflags) == 0)
1193
return;
1194
1195
td = curthread;
1196
1197
linux_get_fop(filp, &fop, &ldev);
1198
/* get the latest polling state */
1199
temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1200
linux_drop_fop(ldev);
1201
1202
spin_lock(&filp->f_kqlock);
1203
/* clear kqflags */
1204
filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1205
LINUX_KQ_FLAG_NEED_WRITE);
1206
/* update kqflags */
1207
if ((temp & (POLLIN | POLLOUT)) != 0) {
1208
if ((temp & POLLIN) != 0)
1209
filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1210
if ((temp & POLLOUT) != 0)
1211
filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1212
1213
/* make sure the "knote" gets woken up */
1214
KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1215
}
1216
spin_unlock(&filp->f_kqlock);
1217
}
1218
1219
static int
1220
linux_file_kqfilter(struct file *file, struct knote *kn)
1221
{
1222
struct linux_file *filp;
1223
struct thread *td;
1224
int error;
1225
1226
td = curthread;
1227
filp = (struct linux_file *)file->f_data;
1228
filp->f_flags = file->f_flag;
1229
if (filp->f_op->poll == NULL)
1230
return (EINVAL);
1231
1232
spin_lock(&filp->f_kqlock);
1233
switch (kn->kn_filter) {
1234
case EVFILT_READ:
1235
filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1236
kn->kn_fop = &linux_dev_kqfiltops_read;
1237
kn->kn_hook = filp;
1238
knlist_add(&filp->f_selinfo.si_note, kn, 1);
1239
error = 0;
1240
break;
1241
case EVFILT_WRITE:
1242
filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1243
kn->kn_fop = &linux_dev_kqfiltops_write;
1244
kn->kn_hook = filp;
1245
knlist_add(&filp->f_selinfo.si_note, kn, 1);
1246
error = 0;
1247
break;
1248
default:
1249
error = EINVAL;
1250
break;
1251
}
1252
spin_unlock(&filp->f_kqlock);
1253
1254
if (error == 0) {
1255
linux_set_current(td);
1256
1257
/* update kqfilter status, if any */
1258
linux_file_kqfilter_poll(filp,
1259
LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1260
}
1261
return (error);
1262
}
1263
1264
static int
1265
linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1266
vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1267
int nprot, bool is_shared, struct thread *td)
1268
{
1269
struct task_struct *task;
1270
struct vm_area_struct *vmap;
1271
struct mm_struct *mm;
1272
struct linux_file *filp;
1273
vm_memattr_t attr;
1274
int error;
1275
1276
filp = (struct linux_file *)fp->f_data;
1277
filp->f_flags = fp->f_flag;
1278
1279
if (fop->mmap == NULL)
1280
return (EOPNOTSUPP);
1281
1282
linux_set_current(td);
1283
1284
/*
1285
* The same VM object might be shared by multiple processes
1286
* and the mm_struct is usually freed when a process exits.
1287
*
1288
* The atomic reference below makes sure the mm_struct is
1289
* available as long as the vmap is in the linux_vma_head.
1290
*/
1291
task = current;
1292
mm = task->mm;
1293
if (atomic_inc_not_zero(&mm->mm_users) == 0)
1294
return (EINVAL);
1295
1296
vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1297
vmap->vm_start = 0;
1298
vmap->vm_end = size;
1299
vmap->vm_pgoff = *offset / PAGE_SIZE;
1300
vmap->vm_pfn = 0;
1301
vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1302
if (is_shared)
1303
vmap->vm_flags |= VM_SHARED;
1304
vmap->vm_ops = NULL;
1305
vmap->vm_file = get_file(filp);
1306
vmap->vm_mm = mm;
1307
1308
if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1309
error = linux_get_error(task, EINTR);
1310
} else {
1311
error = -OPW(fp, td, fop->mmap(filp, vmap));
1312
error = linux_get_error(task, error);
1313
up_write(&vmap->vm_mm->mmap_sem);
1314
}
1315
1316
if (error != 0) {
1317
linux_cdev_handle_free(vmap);
1318
return (error);
1319
}
1320
1321
attr = pgprot2cachemode(vmap->vm_page_prot);
1322
1323
if (vmap->vm_ops != NULL) {
1324
struct vm_area_struct *ptr;
1325
void *vm_private_data;
1326
bool vm_no_fault;
1327
1328
if (vmap->vm_ops->open == NULL ||
1329
vmap->vm_ops->close == NULL ||
1330
vmap->vm_private_data == NULL) {
1331
/* free allocated VM area struct */
1332
linux_cdev_handle_free(vmap);
1333
return (EINVAL);
1334
}
1335
1336
vm_private_data = vmap->vm_private_data;
1337
1338
rw_wlock(&linux_vma_lock);
1339
TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1340
if (ptr->vm_private_data == vm_private_data)
1341
break;
1342
}
1343
/* check if there is an existing VM area struct */
1344
if (ptr != NULL) {
1345
/* check if the VM area structure is invalid */
1346
if (ptr->vm_ops == NULL ||
1347
ptr->vm_ops->open == NULL ||
1348
ptr->vm_ops->close == NULL) {
1349
error = ESTALE;
1350
vm_no_fault = 1;
1351
} else {
1352
error = EEXIST;
1353
vm_no_fault = (ptr->vm_ops->fault == NULL);
1354
}
1355
} else {
1356
/* insert VM area structure into list */
1357
TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1358
error = 0;
1359
vm_no_fault = (vmap->vm_ops->fault == NULL);
1360
}
1361
rw_wunlock(&linux_vma_lock);
1362
1363
if (error != 0) {
1364
/* free allocated VM area struct */
1365
linux_cdev_handle_free(vmap);
1366
/* check for stale VM area struct */
1367
if (error != EEXIST)
1368
return (error);
1369
}
1370
1371
/* check if there is no fault handler */
1372
if (vm_no_fault) {
1373
*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1374
&linux_cdev_pager_ops[1], size, nprot, *offset,
1375
td->td_ucred);
1376
} else {
1377
*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1378
&linux_cdev_pager_ops[0], size, nprot, *offset,
1379
td->td_ucred);
1380
}
1381
1382
/* check if allocating the VM object failed */
1383
if (*object == NULL) {
1384
if (error == 0) {
1385
/* remove VM area struct from list */
1386
linux_cdev_handle_remove(vmap);
1387
/* free allocated VM area struct */
1388
linux_cdev_handle_free(vmap);
1389
}
1390
return (EINVAL);
1391
}
1392
} else {
1393
struct sglist *sg;
1394
1395
sg = sglist_alloc(1, M_WAITOK);
1396
sglist_append_phys(sg,
1397
(vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1398
1399
*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1400
nprot, 0, td->td_ucred);
1401
1402
linux_cdev_handle_free(vmap);
1403
1404
if (*object == NULL) {
1405
sglist_free(sg);
1406
return (EINVAL);
1407
}
1408
}
1409
1410
if (attr != VM_MEMATTR_DEFAULT) {
1411
VM_OBJECT_WLOCK(*object);
1412
vm_object_set_memattr(*object, attr);
1413
VM_OBJECT_WUNLOCK(*object);
1414
}
1415
*offset = 0;
1416
return (0);
1417
}
1418
1419
struct cdevsw linuxcdevsw = {
1420
.d_version = D_VERSION,
1421
.d_fdopen = linux_dev_fdopen,
1422
.d_name = "lkpidev",
1423
};
1424
1425
static int
1426
linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1427
int flags, struct thread *td)
1428
{
1429
struct linux_file *filp;
1430
const struct file_operations *fop;
1431
struct linux_cdev *ldev;
1432
ssize_t bytes;
1433
int error;
1434
1435
error = 0;
1436
filp = (struct linux_file *)file->f_data;
1437
filp->f_flags = file->f_flag;
1438
/* XXX no support for I/O vectors currently */
1439
if (uio->uio_iovcnt != 1)
1440
return (EOPNOTSUPP);
1441
if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1442
return (EINVAL);
1443
linux_set_current(td);
1444
linux_get_fop(filp, &fop, &ldev);
1445
if (fop->read != NULL) {
1446
bytes = OPW(file, td, fop->read(filp,
1447
uio->uio_iov->iov_base,
1448
uio->uio_iov->iov_len, &uio->uio_offset));
1449
if (bytes >= 0) {
1450
uio->uio_iov->iov_base =
1451
((uint8_t *)uio->uio_iov->iov_base) + bytes;
1452
uio->uio_iov->iov_len -= bytes;
1453
uio->uio_resid -= bytes;
1454
} else {
1455
error = linux_get_error(current, -bytes);
1456
}
1457
} else
1458
error = ENXIO;
1459
1460
/* update kqfilter status, if any */
1461
linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1462
linux_drop_fop(ldev);
1463
1464
return (error);
1465
}
1466
1467
static int
1468
linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1469
int flags, struct thread *td)
1470
{
1471
struct linux_file *filp;
1472
const struct file_operations *fop;
1473
struct linux_cdev *ldev;
1474
ssize_t bytes;
1475
int error;
1476
1477
filp = (struct linux_file *)file->f_data;
1478
filp->f_flags = file->f_flag;
1479
/* XXX no support for I/O vectors currently */
1480
if (uio->uio_iovcnt != 1)
1481
return (EOPNOTSUPP);
1482
if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1483
return (EINVAL);
1484
linux_set_current(td);
1485
linux_get_fop(filp, &fop, &ldev);
1486
if (fop->write != NULL) {
1487
bytes = OPW(file, td, fop->write(filp,
1488
uio->uio_iov->iov_base,
1489
uio->uio_iov->iov_len, &uio->uio_offset));
1490
if (bytes >= 0) {
1491
uio->uio_iov->iov_base =
1492
((uint8_t *)uio->uio_iov->iov_base) + bytes;
1493
uio->uio_iov->iov_len -= bytes;
1494
uio->uio_resid -= bytes;
1495
error = 0;
1496
} else {
1497
error = linux_get_error(current, -bytes);
1498
}
1499
} else
1500
error = ENXIO;
1501
1502
/* update kqfilter status, if any */
1503
linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1504
1505
linux_drop_fop(ldev);
1506
1507
return (error);
1508
}
1509
1510
static int
1511
linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1512
struct thread *td)
1513
{
1514
struct linux_file *filp;
1515
const struct file_operations *fop;
1516
struct linux_cdev *ldev;
1517
int revents;
1518
1519
filp = (struct linux_file *)file->f_data;
1520
filp->f_flags = file->f_flag;
1521
linux_set_current(td);
1522
linux_get_fop(filp, &fop, &ldev);
1523
if (fop->poll != NULL) {
1524
revents = OPW(file, td, fop->poll(filp,
1525
LINUX_POLL_TABLE_NORMAL)) & events;
1526
} else {
1527
revents = 0;
1528
}
1529
linux_drop_fop(ldev);
1530
return (revents);
1531
}
1532
1533
static int
1534
linux_file_close(struct file *file, struct thread *td)
1535
{
1536
struct linux_file *filp;
1537
int (*release)(struct inode *, struct linux_file *);
1538
const struct file_operations *fop;
1539
struct linux_cdev *ldev;
1540
int error;
1541
1542
filp = (struct linux_file *)file->f_data;
1543
1544
KASSERT(file_count(filp) == 0,
1545
("File refcount(%d) is not zero", file_count(filp)));
1546
1547
if (td == NULL)
1548
td = curthread;
1549
1550
error = 0;
1551
filp->f_flags = file->f_flag;
1552
linux_set_current(td);
1553
linux_poll_wait_dequeue(filp);
1554
linux_get_fop(filp, &fop, &ldev);
1555
/*
1556
* Always use the real release function, if any, to avoid
1557
* leaking device resources:
1558
*/
1559
release = filp->f_op->release;
1560
if (release != NULL)
1561
error = -OPW(file, td, release(filp->f_vnode, filp));
1562
funsetown(&filp->f_sigio);
1563
if (filp->f_vnode != NULL)
1564
vrele(filp->f_vnode);
1565
linux_drop_fop(ldev);
1566
ldev = filp->f_cdev;
1567
if (ldev != NULL)
1568
linux_cdev_deref(ldev);
1569
linux_synchronize_rcu(RCU_TYPE_REGULAR);
1570
kfree(filp);
1571
1572
return (error);
1573
}
1574
1575
static int
1576
linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1577
struct thread *td)
1578
{
1579
struct linux_file *filp;
1580
const struct file_operations *fop;
1581
struct linux_cdev *ldev;
1582
struct fiodgname_arg *fgn;
1583
const char *p;
1584
int error, i;
1585
1586
error = 0;
1587
filp = (struct linux_file *)fp->f_data;
1588
filp->f_flags = fp->f_flag;
1589
linux_get_fop(filp, &fop, &ldev);
1590
1591
linux_set_current(td);
1592
switch (cmd) {
1593
case FIONBIO:
1594
break;
1595
case FIOASYNC:
1596
if (fop->fasync == NULL)
1597
break;
1598
error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1599
break;
1600
case FIOSETOWN:
1601
error = fsetown(*(int *)data, &filp->f_sigio);
1602
if (error == 0) {
1603
if (fop->fasync == NULL)
1604
break;
1605
error = -OPW(fp, td, fop->fasync(0, filp,
1606
fp->f_flag & FASYNC));
1607
}
1608
break;
1609
case FIOGETOWN:
1610
*(int *)data = fgetown(&filp->f_sigio);
1611
break;
1612
case FIODGNAME:
1613
#ifdef COMPAT_FREEBSD32
1614
case FIODGNAME_32:
1615
#endif
1616
if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1617
error = ENXIO;
1618
break;
1619
}
1620
fgn = data;
1621
p = devtoname(filp->f_cdev->cdev);
1622
i = strlen(p) + 1;
1623
if (i > fgn->len) {
1624
error = EINVAL;
1625
break;
1626
}
1627
error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
1628
break;
1629
default:
1630
error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1631
break;
1632
}
1633
linux_drop_fop(ldev);
1634
return (error);
1635
}
1636
1637
static int
1638
linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1639
vm_prot_t maxprot, int flags, struct file *fp,
1640
vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1641
{
1642
/*
1643
* Character devices do not provide private mappings
1644
* of any kind:
1645
*/
1646
if ((maxprot & VM_PROT_WRITE) == 0 &&
1647
(prot & VM_PROT_WRITE) != 0)
1648
return (EACCES);
1649
if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0)
1650
return (EINVAL);
1651
1652
return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1653
(int)prot, (flags & MAP_SHARED) ? true : false, td));
1654
}
1655
1656
static int
1657
linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1658
vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1659
struct thread *td)
1660
{
1661
struct linux_file *filp;
1662
const struct file_operations *fop;
1663
struct linux_cdev *ldev;
1664
struct mount *mp;
1665
struct vnode *vp;
1666
vm_object_t object;
1667
vm_prot_t maxprot;
1668
int error;
1669
1670
filp = (struct linux_file *)fp->f_data;
1671
1672
vp = filp->f_vnode;
1673
if (vp == NULL)
1674
return (EOPNOTSUPP);
1675
1676
/*
1677
* Ensure that file and memory protections are
1678
* compatible.
1679
*/
1680
mp = vp->v_mount;
1681
if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1682
maxprot = VM_PROT_NONE;
1683
if ((prot & VM_PROT_EXECUTE) != 0)
1684
return (EACCES);
1685
} else
1686
maxprot = VM_PROT_EXECUTE;
1687
if ((fp->f_flag & FREAD) != 0)
1688
maxprot |= VM_PROT_READ;
1689
else if ((prot & VM_PROT_READ) != 0)
1690
return (EACCES);
1691
1692
/*
1693
* If we are sharing potential changes via MAP_SHARED and we
1694
* are trying to get write permission although we opened it
1695
* without asking for it, bail out.
1696
*
1697
* Note that most character devices always share mappings.
1698
*
1699
* Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1700
* requests rather than doing it here.
1701
*/
1702
if ((flags & MAP_SHARED) != 0) {
1703
if ((fp->f_flag & FWRITE) != 0)
1704
maxprot |= VM_PROT_WRITE;
1705
else if ((prot & VM_PROT_WRITE) != 0)
1706
return (EACCES);
1707
}
1708
maxprot &= cap_maxprot;
1709
1710
linux_get_fop(filp, &fop, &ldev);
1711
error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp,
1712
&foff, fop, &object);
1713
if (error != 0)
1714
goto out;
1715
1716
error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1717
foff, FALSE, td);
1718
if (error != 0)
1719
vm_object_deallocate(object);
1720
out:
1721
linux_drop_fop(ldev);
1722
return (error);
1723
}
1724
1725
static int
1726
linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
1727
{
1728
struct linux_file *filp;
1729
struct vnode *vp;
1730
int error;
1731
1732
filp = (struct linux_file *)fp->f_data;
1733
if (filp->f_vnode == NULL)
1734
return (EOPNOTSUPP);
1735
1736
vp = filp->f_vnode;
1737
1738
vn_lock(vp, LK_SHARED | LK_RETRY);
1739
error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED);
1740
VOP_UNLOCK(vp);
1741
1742
return (error);
1743
}
1744
1745
static int
1746
linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1747
struct filedesc *fdp)
1748
{
1749
struct linux_file *filp;
1750
struct vnode *vp;
1751
int error;
1752
1753
filp = fp->f_data;
1754
vp = filp->f_vnode;
1755
if (vp == NULL) {
1756
error = 0;
1757
kif->kf_type = KF_TYPE_DEV;
1758
} else {
1759
vref(vp);
1760
FILEDESC_SUNLOCK(fdp);
1761
error = vn_fill_kinfo_vnode(vp, kif);
1762
vrele(vp);
1763
kif->kf_type = KF_TYPE_VNODE;
1764
FILEDESC_SLOCK(fdp);
1765
}
1766
return (error);
1767
}
1768
1769
unsigned int
1770
linux_iminor(struct inode *inode)
1771
{
1772
struct linux_cdev *ldev;
1773
1774
if (inode == NULL || inode->v_rdev == NULL ||
1775
inode->v_rdev->si_devsw != &linuxcdevsw)
1776
return (-1U);
1777
ldev = inode->v_rdev->si_drv1;
1778
if (ldev == NULL)
1779
return (-1U);
1780
1781
return (minor(ldev->dev));
1782
}
1783
1784
static int
1785
linux_file_kcmp(struct file *fp1, struct file *fp2, struct thread *td)
1786
{
1787
struct linux_file *filp1, *filp2;
1788
1789
if (fp2->f_type != DTYPE_DEV)
1790
return (3);
1791
1792
filp1 = fp1->f_data;
1793
filp2 = fp2->f_data;
1794
return (kcmp_cmp((uintptr_t)filp1->f_cdev, (uintptr_t)filp2->f_cdev));
1795
}
1796
1797
const struct fileops linuxfileops = {
1798
.fo_read = linux_file_read,
1799
.fo_write = linux_file_write,
1800
.fo_truncate = invfo_truncate,
1801
.fo_kqfilter = linux_file_kqfilter,
1802
.fo_stat = linux_file_stat,
1803
.fo_fill_kinfo = linux_file_fill_kinfo,
1804
.fo_poll = linux_file_poll,
1805
.fo_close = linux_file_close,
1806
.fo_ioctl = linux_file_ioctl,
1807
.fo_mmap = linux_file_mmap,
1808
.fo_chmod = invfo_chmod,
1809
.fo_chown = invfo_chown,
1810
.fo_sendfile = invfo_sendfile,
1811
.fo_cmp = linux_file_kcmp,
1812
.fo_flags = DFLAG_PASSABLE,
1813
};
1814
1815
static char *
1816
devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)
1817
{
1818
unsigned int len;
1819
char *p;
1820
va_list aq;
1821
1822
va_copy(aq, ap);
1823
len = vsnprintf(NULL, 0, fmt, aq);
1824
va_end(aq);
1825
1826
if (dev != NULL)
1827
p = devm_kmalloc(dev, len + 1, gfp);
1828
else
1829
p = kmalloc(len + 1, gfp);
1830
if (p != NULL)
1831
vsnprintf(p, len + 1, fmt, ap);
1832
1833
return (p);
1834
}
1835
1836
char *
1837
kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1838
{
1839
1840
return (devm_kvasprintf(NULL, gfp, fmt, ap));
1841
}
1842
1843
char *
1844
lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1845
{
1846
va_list ap;
1847
char *p;
1848
1849
va_start(ap, fmt);
1850
p = devm_kvasprintf(dev, gfp, fmt, ap);
1851
va_end(ap);
1852
1853
return (p);
1854
}
1855
1856
char *
1857
kasprintf(gfp_t gfp, const char *fmt, ...)
1858
{
1859
va_list ap;
1860
char *p;
1861
1862
va_start(ap, fmt);
1863
p = kvasprintf(gfp, fmt, ap);
1864
va_end(ap);
1865
1866
return (p);
1867
}
1868
1869
int
1870
__lkpi_hexdump_printf(void *arg1 __unused, const char *fmt, ...)
1871
{
1872
va_list ap;
1873
int result;
1874
1875
va_start(ap, fmt);
1876
result = vprintf(fmt, ap);
1877
va_end(ap);
1878
return (result);
1879
}
1880
1881
int
1882
__lkpi_hexdump_sbuf_printf(void *arg1, const char *fmt, ...)
1883
{
1884
va_list ap;
1885
int result;
1886
1887
va_start(ap, fmt);
1888
result = sbuf_vprintf(arg1, fmt, ap);
1889
va_end(ap);
1890
return (result);
1891
}
1892
1893
void
1894
lkpi_hex_dump(int(*_fpf)(void *, const char *, ...), void *arg1,
1895
const char *level, const char *prefix_str,
1896
const int prefix_type, const int rowsize, const int groupsize,
1897
const void *buf, size_t len, const bool ascii, const bool trailing_newline)
1898
{
1899
typedef const struct { long long value; } __packed *print_64p_t;
1900
typedef const struct { uint32_t value; } __packed *print_32p_t;
1901
typedef const struct { uint16_t value; } __packed *print_16p_t;
1902
const void *buf_old = buf;
1903
int row, linelen, ret;
1904
1905
while (len > 0) {
1906
linelen = 0;
1907
if (level != NULL) {
1908
ret = _fpf(arg1, "%s", level);
1909
if (ret < 0)
1910
break;
1911
linelen += ret;
1912
}
1913
if (prefix_str != NULL) {
1914
ret = _fpf(
1915
arg1, "%s%s", linelen ? " " : "", prefix_str);
1916
if (ret < 0)
1917
break;
1918
linelen += ret;
1919
}
1920
1921
switch (prefix_type) {
1922
case DUMP_PREFIX_ADDRESS:
1923
ret = _fpf(
1924
arg1, "%s[%p]", linelen ? " " : "", buf);
1925
if (ret < 0)
1926
return;
1927
linelen += ret;
1928
break;
1929
case DUMP_PREFIX_OFFSET:
1930
ret = _fpf(
1931
arg1, "%s[%#tx]", linelen ? " " : "",
1932
((const char *)buf - (const char *)buf_old));
1933
if (ret < 0)
1934
return;
1935
linelen += ret;
1936
break;
1937
default:
1938
break;
1939
}
1940
for (row = 0; row != rowsize; row++) {
1941
if (groupsize == 8 && len > 7) {
1942
ret = _fpf(
1943
arg1, "%s%016llx", linelen ? " " : "",
1944
((print_64p_t)buf)->value);
1945
if (ret < 0)
1946
return;
1947
linelen += ret;
1948
buf = (const uint8_t *)buf + 8;
1949
len -= 8;
1950
} else if (groupsize == 4 && len > 3) {
1951
ret = _fpf(
1952
arg1, "%s%08x", linelen ? " " : "",
1953
((print_32p_t)buf)->value);
1954
if (ret < 0)
1955
return;
1956
linelen += ret;
1957
buf = (const uint8_t *)buf + 4;
1958
len -= 4;
1959
} else if (groupsize == 2 && len > 1) {
1960
ret = _fpf(
1961
arg1, "%s%04x", linelen ? " " : "",
1962
((print_16p_t)buf)->value);
1963
if (ret < 0)
1964
return;
1965
linelen += ret;
1966
buf = (const uint8_t *)buf + 2;
1967
len -= 2;
1968
} else if (len > 0) {
1969
ret = _fpf(
1970
arg1, "%s%02x", linelen ? " " : "",
1971
*(const uint8_t *)buf);
1972
if (ret < 0)
1973
return;
1974
linelen += ret;
1975
buf = (const uint8_t *)buf + 1;
1976
len--;
1977
} else {
1978
break;
1979
}
1980
}
1981
if (len > 0 && trailing_newline) {
1982
ret = _fpf(arg1, "\n");
1983
if (ret < 0)
1984
break;
1985
}
1986
}
1987
}
1988
1989
struct hdtb_context {
1990
char *linebuf;
1991
size_t linebuflen;
1992
int written;
1993
};
1994
1995
static int
1996
hdtb_cb(void *arg, const char *format, ...)
1997
{
1998
struct hdtb_context *context;
1999
int written;
2000
va_list args;
2001
2002
context = arg;
2003
2004
va_start(args, format);
2005
written = vsnprintf(
2006
context->linebuf, context->linebuflen, format, args);
2007
va_end(args);
2008
2009
if (written < 0)
2010
return (written);
2011
2012
/*
2013
* Linux' hex_dump_to_buffer() function has the same behaviour as
2014
* snprintf() basically. Therefore, it returns the number of bytes it
2015
* would have written if the destination buffer was large enough.
2016
*
2017
* If the destination buffer was exhausted, lkpi_hex_dump() will
2018
* continue to call this callback but it will only compute the bytes it
2019
* would have written but write nothing to that buffer.
2020
*/
2021
context->written += written;
2022
2023
if (written < context->linebuflen) {
2024
context->linebuf += written;
2025
context->linebuflen -= written;
2026
} else {
2027
context->linebuf += context->linebuflen;
2028
context->linebuflen = 0;
2029
}
2030
2031
return (written);
2032
}
2033
2034
int
2035
lkpi_hex_dump_to_buffer(const void *buf, size_t len, int rowsize,
2036
int groupsize, char *linebuf, size_t linebuflen, bool ascii)
2037
{
2038
int written;
2039
struct hdtb_context context;
2040
2041
context.linebuf = linebuf;
2042
context.linebuflen = linebuflen;
2043
context.written = 0;
2044
2045
if (rowsize != 16 && rowsize != 32)
2046
rowsize = 16;
2047
2048
len = min(len, rowsize);
2049
2050
lkpi_hex_dump(
2051
hdtb_cb, &context, NULL, NULL, DUMP_PREFIX_NONE,
2052
rowsize, groupsize, buf, len, ascii, false);
2053
2054
written = context.written;
2055
2056
return (written);
2057
}
2058
2059
static void
2060
linux_timer_callback_wrapper(void *context)
2061
{
2062
struct timer_list *timer;
2063
2064
timer = context;
2065
2066
/* the timer is about to be shutdown permanently */
2067
if (timer->function == NULL)
2068
return;
2069
2070
if (linux_set_current_flags(curthread, M_NOWAIT)) {
2071
/* try again later */
2072
callout_reset(&timer->callout, 1,
2073
&linux_timer_callback_wrapper, timer);
2074
return;
2075
}
2076
2077
timer->function(timer->data);
2078
}
2079
2080
static int
2081
linux_timer_jiffies_until(unsigned long expires)
2082
{
2083
unsigned long delta = expires - jiffies;
2084
2085
/*
2086
* Guard against already expired values and make sure that the value can
2087
* be used as a tick count, rather than a jiffies count.
2088
*/
2089
if ((long)delta < 1)
2090
delta = 1;
2091
else if (delta > INT_MAX)
2092
delta = INT_MAX;
2093
return ((int)delta);
2094
}
2095
2096
int
2097
mod_timer(struct timer_list *timer, unsigned long expires)
2098
{
2099
int ret;
2100
2101
timer->expires = expires;
2102
ret = callout_reset(&timer->callout,
2103
linux_timer_jiffies_until(expires),
2104
&linux_timer_callback_wrapper, timer);
2105
2106
MPASS(ret == 0 || ret == 1);
2107
2108
return (ret == 1);
2109
}
2110
2111
void
2112
add_timer(struct timer_list *timer)
2113
{
2114
2115
callout_reset(&timer->callout,
2116
linux_timer_jiffies_until(timer->expires),
2117
&linux_timer_callback_wrapper, timer);
2118
}
2119
2120
void
2121
add_timer_on(struct timer_list *timer, int cpu)
2122
{
2123
2124
callout_reset_on(&timer->callout,
2125
linux_timer_jiffies_until(timer->expires),
2126
&linux_timer_callback_wrapper, timer, cpu);
2127
}
2128
2129
int
2130
timer_delete(struct timer_list *timer)
2131
{
2132
2133
if (callout_stop(&(timer)->callout) == -1)
2134
return (0);
2135
return (1);
2136
}
2137
2138
int
2139
timer_delete_sync(struct timer_list *timer)
2140
{
2141
2142
if (callout_drain(&(timer)->callout) == -1)
2143
return (0);
2144
return (1);
2145
}
2146
2147
int
2148
timer_shutdown_sync(struct timer_list *timer)
2149
{
2150
2151
timer->function = NULL;
2152
return (del_timer_sync(timer));
2153
}
2154
2155
/* greatest common divisor, Euclid equation */
2156
static uint64_t
2157
lkpi_gcd_64(uint64_t a, uint64_t b)
2158
{
2159
uint64_t an;
2160
uint64_t bn;
2161
2162
while (b != 0) {
2163
an = b;
2164
bn = a % b;
2165
a = an;
2166
b = bn;
2167
}
2168
return (a);
2169
}
2170
2171
uint64_t lkpi_nsec2hz_rem;
2172
uint64_t lkpi_nsec2hz_div = 1000000000ULL;
2173
uint64_t lkpi_nsec2hz_max;
2174
2175
uint64_t lkpi_usec2hz_rem;
2176
uint64_t lkpi_usec2hz_div = 1000000ULL;
2177
uint64_t lkpi_usec2hz_max;
2178
2179
uint64_t lkpi_msec2hz_rem;
2180
uint64_t lkpi_msec2hz_div = 1000ULL;
2181
uint64_t lkpi_msec2hz_max;
2182
2183
static void
2184
linux_timer_init(void *arg)
2185
{
2186
uint64_t gcd;
2187
2188
/*
2189
* Compute an internal HZ value which can divide 2**32 to
2190
* avoid timer rounding problems when the tick value wraps
2191
* around 2**32:
2192
*/
2193
linux_timer_hz_mask = 1;
2194
while (linux_timer_hz_mask < (unsigned long)hz)
2195
linux_timer_hz_mask *= 2;
2196
linux_timer_hz_mask--;
2197
2198
/* compute some internal constants */
2199
2200
lkpi_nsec2hz_rem = hz;
2201
lkpi_usec2hz_rem = hz;
2202
lkpi_msec2hz_rem = hz;
2203
2204
gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
2205
lkpi_nsec2hz_rem /= gcd;
2206
lkpi_nsec2hz_div /= gcd;
2207
lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
2208
2209
gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
2210
lkpi_usec2hz_rem /= gcd;
2211
lkpi_usec2hz_div /= gcd;
2212
lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
2213
2214
gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
2215
lkpi_msec2hz_rem /= gcd;
2216
lkpi_msec2hz_div /= gcd;
2217
lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
2218
}
2219
SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
2220
2221
void
2222
linux_complete_common(struct completion *c, int all)
2223
{
2224
sleepq_lock(c);
2225
if (all) {
2226
c->done = UINT_MAX;
2227
sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2228
} else {
2229
if (c->done != UINT_MAX)
2230
c->done++;
2231
sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2232
}
2233
sleepq_release(c);
2234
}
2235
2236
/*
2237
* Indefinite wait for done != 0 with or without signals.
2238
*/
2239
int
2240
linux_wait_for_common(struct completion *c, int flags)
2241
{
2242
struct task_struct *task;
2243
int error;
2244
2245
if (SCHEDULER_STOPPED())
2246
return (0);
2247
2248
task = current;
2249
2250
if (flags != 0)
2251
flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2252
else
2253
flags = SLEEPQ_SLEEP;
2254
error = 0;
2255
for (;;) {
2256
sleepq_lock(c);
2257
if (c->done)
2258
break;
2259
sleepq_add(c, NULL, "completion", flags, 0);
2260
if (flags & SLEEPQ_INTERRUPTIBLE) {
2261
DROP_GIANT();
2262
error = -sleepq_wait_sig(c, 0);
2263
PICKUP_GIANT();
2264
if (error != 0) {
2265
linux_schedule_save_interrupt_value(task, error);
2266
error = -ERESTARTSYS;
2267
goto intr;
2268
}
2269
} else {
2270
DROP_GIANT();
2271
sleepq_wait(c, 0);
2272
PICKUP_GIANT();
2273
}
2274
}
2275
if (c->done != UINT_MAX)
2276
c->done--;
2277
sleepq_release(c);
2278
2279
intr:
2280
return (error);
2281
}
2282
2283
/*
2284
* Time limited wait for done != 0 with or without signals.
2285
*/
2286
unsigned long
2287
linux_wait_for_timeout_common(struct completion *c, unsigned long timeout,
2288
int flags)
2289
{
2290
struct task_struct *task;
2291
unsigned long end = jiffies + timeout, error;
2292
2293
if (SCHEDULER_STOPPED())
2294
return (0);
2295
2296
task = current;
2297
2298
if (flags != 0)
2299
flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2300
else
2301
flags = SLEEPQ_SLEEP;
2302
2303
for (;;) {
2304
sleepq_lock(c);
2305
if (c->done)
2306
break;
2307
sleepq_add(c, NULL, "completion", flags, 0);
2308
sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2309
2310
DROP_GIANT();
2311
if (flags & SLEEPQ_INTERRUPTIBLE)
2312
error = -sleepq_timedwait_sig(c, 0);
2313
else
2314
error = -sleepq_timedwait(c, 0);
2315
PICKUP_GIANT();
2316
2317
if (error != 0) {
2318
/* check for timeout */
2319
if (error == -EWOULDBLOCK) {
2320
error = 0; /* timeout */
2321
} else {
2322
/* signal happened */
2323
linux_schedule_save_interrupt_value(task, error);
2324
error = -ERESTARTSYS;
2325
}
2326
goto done;
2327
}
2328
}
2329
if (c->done != UINT_MAX)
2330
c->done--;
2331
sleepq_release(c);
2332
2333
/* return how many jiffies are left */
2334
error = linux_timer_jiffies_until(end);
2335
done:
2336
return (error);
2337
}
2338
2339
int
2340
linux_try_wait_for_completion(struct completion *c)
2341
{
2342
int isdone;
2343
2344
sleepq_lock(c);
2345
isdone = (c->done != 0);
2346
if (c->done != 0 && c->done != UINT_MAX)
2347
c->done--;
2348
sleepq_release(c);
2349
return (isdone);
2350
}
2351
2352
int
2353
linux_completion_done(struct completion *c)
2354
{
2355
int isdone;
2356
2357
sleepq_lock(c);
2358
isdone = (c->done != 0);
2359
sleepq_release(c);
2360
return (isdone);
2361
}
2362
2363
static void
2364
linux_cdev_deref(struct linux_cdev *ldev)
2365
{
2366
if (refcount_release(&ldev->refs) &&
2367
ldev->kobj.ktype == &linux_cdev_ktype)
2368
kfree(ldev);
2369
}
2370
2371
static void
2372
linux_cdev_release(struct kobject *kobj)
2373
{
2374
struct linux_cdev *cdev;
2375
struct kobject *parent;
2376
2377
cdev = container_of(kobj, struct linux_cdev, kobj);
2378
parent = kobj->parent;
2379
linux_destroy_dev(cdev);
2380
linux_cdev_deref(cdev);
2381
kobject_put(parent);
2382
}
2383
2384
static void
2385
linux_cdev_static_release(struct kobject *kobj)
2386
{
2387
struct cdev *cdev;
2388
struct linux_cdev *ldev;
2389
2390
ldev = container_of(kobj, struct linux_cdev, kobj);
2391
cdev = ldev->cdev;
2392
if (cdev != NULL) {
2393
destroy_dev(cdev);
2394
ldev->cdev = NULL;
2395
}
2396
kobject_put(kobj->parent);
2397
}
2398
2399
int
2400
linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev)
2401
{
2402
int ret;
2403
2404
if (dev->devt != 0) {
2405
/* Set parent kernel object. */
2406
ldev->kobj.parent = &dev->kobj;
2407
2408
/*
2409
* Unlike Linux we require the kobject of the
2410
* character device structure to have a valid name
2411
* before calling this function:
2412
*/
2413
if (ldev->kobj.name == NULL)
2414
return (-EINVAL);
2415
2416
ret = cdev_add(ldev, dev->devt, 1);
2417
if (ret)
2418
return (ret);
2419
}
2420
ret = device_add(dev);
2421
if (ret != 0 && dev->devt != 0)
2422
cdev_del(ldev);
2423
return (ret);
2424
}
2425
2426
void
2427
linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev)
2428
{
2429
device_del(dev);
2430
2431
if (dev->devt != 0)
2432
cdev_del(ldev);
2433
}
2434
2435
static void
2436
linux_destroy_dev(struct linux_cdev *ldev)
2437
{
2438
2439
if (ldev->cdev == NULL)
2440
return;
2441
2442
MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2443
MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
2444
2445
atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2446
while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2447
pause("ldevdtr", hz / 4);
2448
2449
destroy_dev(ldev->cdev);
2450
ldev->cdev = NULL;
2451
}
2452
2453
const struct kobj_type linux_cdev_ktype = {
2454
.release = linux_cdev_release,
2455
};
2456
2457
const struct kobj_type linux_cdev_static_ktype = {
2458
.release = linux_cdev_static_release,
2459
};
2460
2461
static void
2462
linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2463
{
2464
struct notifier_block *nb;
2465
struct netdev_notifier_info ni;
2466
2467
nb = arg;
2468
ni.ifp = ifp;
2469
ni.dev = (struct net_device *)ifp;
2470
if (linkstate == LINK_STATE_UP)
2471
nb->notifier_call(nb, NETDEV_UP, &ni);
2472
else
2473
nb->notifier_call(nb, NETDEV_DOWN, &ni);
2474
}
2475
2476
static void
2477
linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2478
{
2479
struct notifier_block *nb;
2480
struct netdev_notifier_info ni;
2481
2482
nb = arg;
2483
ni.ifp = ifp;
2484
ni.dev = (struct net_device *)ifp;
2485
nb->notifier_call(nb, NETDEV_REGISTER, &ni);
2486
}
2487
2488
static void
2489
linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2490
{
2491
struct notifier_block *nb;
2492
struct netdev_notifier_info ni;
2493
2494
nb = arg;
2495
ni.ifp = ifp;
2496
ni.dev = (struct net_device *)ifp;
2497
nb->notifier_call(nb, NETDEV_UNREGISTER, &ni);
2498
}
2499
2500
static void
2501
linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2502
{
2503
struct notifier_block *nb;
2504
struct netdev_notifier_info ni;
2505
2506
nb = arg;
2507
ni.ifp = ifp;
2508
ni.dev = (struct net_device *)ifp;
2509
nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni);
2510
}
2511
2512
static void
2513
linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2514
{
2515
struct notifier_block *nb;
2516
struct netdev_notifier_info ni;
2517
2518
nb = arg;
2519
ni.ifp = ifp;
2520
ni.dev = (struct net_device *)ifp;
2521
nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni);
2522
}
2523
2524
int
2525
register_netdevice_notifier(struct notifier_block *nb)
2526
{
2527
2528
nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2529
ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2530
nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2531
ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2532
nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2533
ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2534
nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2535
iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2536
2537
return (0);
2538
}
2539
2540
int
2541
register_inetaddr_notifier(struct notifier_block *nb)
2542
{
2543
2544
nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2545
ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2546
return (0);
2547
}
2548
2549
int
2550
unregister_netdevice_notifier(struct notifier_block *nb)
2551
{
2552
2553
EVENTHANDLER_DEREGISTER(ifnet_link_event,
2554
nb->tags[NETDEV_UP]);
2555
EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2556
nb->tags[NETDEV_REGISTER]);
2557
EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2558
nb->tags[NETDEV_UNREGISTER]);
2559
EVENTHANDLER_DEREGISTER(iflladdr_event,
2560
nb->tags[NETDEV_CHANGEADDR]);
2561
2562
return (0);
2563
}
2564
2565
int
2566
unregister_inetaddr_notifier(struct notifier_block *nb)
2567
{
2568
2569
EVENTHANDLER_DEREGISTER(ifaddr_event,
2570
nb->tags[NETDEV_CHANGEIFADDR]);
2571
2572
return (0);
2573
}
2574
2575
struct list_sort_thunk {
2576
int (*cmp)(void *, struct list_head *, struct list_head *);
2577
void *priv;
2578
};
2579
2580
static inline int
2581
linux_le_cmp(const void *d1, const void *d2, void *priv)
2582
{
2583
struct list_head *le1, *le2;
2584
struct list_sort_thunk *thunk;
2585
2586
thunk = priv;
2587
le1 = *(__DECONST(struct list_head **, d1));
2588
le2 = *(__DECONST(struct list_head **, d2));
2589
return ((thunk->cmp)(thunk->priv, le1, le2));
2590
}
2591
2592
void
2593
list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2594
struct list_head *a, struct list_head *b))
2595
{
2596
struct list_sort_thunk thunk;
2597
struct list_head **ar, *le;
2598
size_t count, i;
2599
2600
count = 0;
2601
list_for_each(le, head)
2602
count++;
2603
ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2604
i = 0;
2605
list_for_each(le, head)
2606
ar[i++] = le;
2607
thunk.cmp = cmp;
2608
thunk.priv = priv;
2609
qsort_r(ar, count, sizeof(struct list_head *), linux_le_cmp, &thunk);
2610
INIT_LIST_HEAD(head);
2611
for (i = 0; i < count; i++)
2612
list_add_tail(ar[i], head);
2613
free(ar, M_KMALLOC);
2614
}
2615
2616
#if defined(__i386__) || defined(__amd64__)
2617
int
2618
linux_wbinvd_on_all_cpus(void)
2619
{
2620
2621
pmap_invalidate_cache();
2622
return (0);
2623
}
2624
#endif
2625
2626
int
2627
linux_on_each_cpu(void callback(void *), void *data)
2628
{
2629
2630
smp_rendezvous(smp_no_rendezvous_barrier, callback,
2631
smp_no_rendezvous_barrier, data);
2632
return (0);
2633
}
2634
2635
int
2636
linux_in_atomic(void)
2637
{
2638
2639
return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2640
}
2641
2642
struct linux_cdev *
2643
linux_find_cdev(const char *name, unsigned major, unsigned minor)
2644
{
2645
dev_t dev = MKDEV(major, minor);
2646
struct cdev *cdev;
2647
2648
dev_lock();
2649
LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2650
struct linux_cdev *ldev = cdev->si_drv1;
2651
if (ldev->dev == dev &&
2652
strcmp(kobject_name(&ldev->kobj), name) == 0) {
2653
break;
2654
}
2655
}
2656
dev_unlock();
2657
2658
return (cdev != NULL ? cdev->si_drv1 : NULL);
2659
}
2660
2661
int
2662
__register_chrdev(unsigned int major, unsigned int baseminor,
2663
unsigned int count, const char *name,
2664
const struct file_operations *fops)
2665
{
2666
struct linux_cdev *cdev;
2667
int ret = 0;
2668
int i;
2669
2670
for (i = baseminor; i < baseminor + count; i++) {
2671
cdev = cdev_alloc();
2672
cdev->ops = fops;
2673
kobject_set_name(&cdev->kobj, name);
2674
2675
ret = cdev_add(cdev, makedev(major, i), 1);
2676
if (ret != 0)
2677
break;
2678
}
2679
return (ret);
2680
}
2681
2682
int
2683
__register_chrdev_p(unsigned int major, unsigned int baseminor,
2684
unsigned int count, const char *name,
2685
const struct file_operations *fops, uid_t uid,
2686
gid_t gid, int mode)
2687
{
2688
struct linux_cdev *cdev;
2689
int ret = 0;
2690
int i;
2691
2692
for (i = baseminor; i < baseminor + count; i++) {
2693
cdev = cdev_alloc();
2694
cdev->ops = fops;
2695
kobject_set_name(&cdev->kobj, name);
2696
2697
ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2698
if (ret != 0)
2699
break;
2700
}
2701
return (ret);
2702
}
2703
2704
void
2705
__unregister_chrdev(unsigned int major, unsigned int baseminor,
2706
unsigned int count, const char *name)
2707
{
2708
struct linux_cdev *cdevp;
2709
int i;
2710
2711
for (i = baseminor; i < baseminor + count; i++) {
2712
cdevp = linux_find_cdev(name, major, i);
2713
if (cdevp != NULL)
2714
cdev_del(cdevp);
2715
}
2716
}
2717
2718
void
2719
linux_dump_stack(void)
2720
{
2721
#ifdef STACK
2722
struct stack st;
2723
2724
stack_save(&st);
2725
stack_print(&st);
2726
#endif
2727
}
2728
2729
int
2730
linuxkpi_net_ratelimit(void)
2731
{
2732
2733
return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps,
2734
lkpi_net_maxpps));
2735
}
2736
2737
struct io_mapping *
2738
io_mapping_create_wc(resource_size_t base, unsigned long size)
2739
{
2740
struct io_mapping *mapping;
2741
2742
mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2743
if (mapping == NULL)
2744
return (NULL);
2745
return (io_mapping_init_wc(mapping, base, size));
2746
}
2747
2748
/* We likely want a linuxkpi_device.c at some point. */
2749
bool
2750
device_can_wakeup(struct device *dev)
2751
{
2752
2753
if (dev == NULL)
2754
return (false);
2755
/*
2756
* XXX-BZ iwlwifi queries it as part of enabling WoWLAN.
2757
* Normally this would be based on a bool in dev->power.XXX.
2758
* Check such as PCI PCIM_PCAP_*PME. We have no way to enable this yet.
2759
* We may get away by directly calling into bsddev for as long as
2760
* we can assume PCI only avoiding changing struct device breaking KBI.
2761
*/
2762
pr_debug("%s:%d: not enabled; see comment.\n", __func__, __LINE__);
2763
return (false);
2764
}
2765
2766
static void
2767
devm_device_group_remove(struct device *dev, void *p)
2768
{
2769
const struct attribute_group **dr = p;
2770
const struct attribute_group *group = *dr;
2771
2772
sysfs_remove_group(&dev->kobj, group);
2773
}
2774
2775
int
2776
lkpi_devm_device_add_group(struct device *dev,
2777
const struct attribute_group *group)
2778
{
2779
const struct attribute_group **dr;
2780
int ret;
2781
2782
dr = devres_alloc(devm_device_group_remove, sizeof(*dr), GFP_KERNEL);
2783
if (dr == NULL)
2784
return (-ENOMEM);
2785
2786
ret = sysfs_create_group(&dev->kobj, group);
2787
if (ret == 0) {
2788
*dr = group;
2789
devres_add(dev, dr);
2790
} else
2791
devres_free(dr);
2792
2793
return (ret);
2794
}
2795
2796
#if defined(__i386__) || defined(__amd64__)
2797
bool linux_cpu_has_clflush;
2798
struct cpuinfo_x86 boot_cpu_data;
2799
struct cpuinfo_x86 *__cpu_data;
2800
#endif
2801
2802
cpumask_t *
2803
lkpi_get_static_single_cpu_mask(int cpuid)
2804
{
2805
2806
KASSERT((cpuid >= 0 && cpuid <= mp_maxid), ("%s: invalid cpuid %d\n",
2807
__func__, cpuid));
2808
KASSERT(!CPU_ABSENT(cpuid), ("%s: cpu with cpuid %d is absent\n",
2809
__func__, cpuid));
2810
2811
return (static_single_cpu_mask[cpuid]);
2812
}
2813
2814
bool
2815
lkpi_xen_initial_domain(void)
2816
{
2817
#ifdef XENHVM
2818
return (xen_initial_domain());
2819
#else
2820
return (false);
2821
#endif
2822
}
2823
2824
bool
2825
lkpi_xen_pv_domain(void)
2826
{
2827
#ifdef XENHVM
2828
return (xen_pv_domain());
2829
#else
2830
return (false);
2831
#endif
2832
}
2833
2834
static void
2835
linux_compat_init(void *arg)
2836
{
2837
struct sysctl_oid *rootoid;
2838
int i;
2839
2840
#if defined(__i386__) || defined(__amd64__)
2841
static const uint32_t x86_vendors[X86_VENDOR_NUM] = {
2842
[X86_VENDOR_INTEL] = CPU_VENDOR_INTEL,
2843
[X86_VENDOR_CYRIX] = CPU_VENDOR_CYRIX,
2844
[X86_VENDOR_AMD] = CPU_VENDOR_AMD,
2845
[X86_VENDOR_UMC] = CPU_VENDOR_UMC,
2846
[X86_VENDOR_CENTAUR] = CPU_VENDOR_CENTAUR,
2847
[X86_VENDOR_TRANSMETA] = CPU_VENDOR_TRANSMETA,
2848
[X86_VENDOR_NSC] = CPU_VENDOR_NSC,
2849
[X86_VENDOR_HYGON] = CPU_VENDOR_HYGON,
2850
};
2851
uint8_t x86_vendor = X86_VENDOR_UNKNOWN;
2852
2853
for (i = 0; i < X86_VENDOR_NUM; i++) {
2854
if (cpu_vendor_id != 0 && cpu_vendor_id == x86_vendors[i]) {
2855
x86_vendor = i;
2856
break;
2857
}
2858
}
2859
linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2860
boot_cpu_data.x86_clflush_size = cpu_clflush_line_size;
2861
boot_cpu_data.x86_max_cores = mp_ncpus;
2862
boot_cpu_data.x86 = CPUID_TO_FAMILY(cpu_id);
2863
boot_cpu_data.x86_model = CPUID_TO_MODEL(cpu_id);
2864
boot_cpu_data.x86_vendor = x86_vendor;
2865
2866
__cpu_data = kmalloc_array(mp_maxid + 1,
2867
sizeof(*__cpu_data), M_WAITOK | M_ZERO);
2868
CPU_FOREACH(i) {
2869
__cpu_data[i].x86_clflush_size = cpu_clflush_line_size;
2870
__cpu_data[i].x86_max_cores = mp_ncpus;
2871
__cpu_data[i].x86 = CPUID_TO_FAMILY(cpu_id);
2872
__cpu_data[i].x86_model = CPUID_TO_MODEL(cpu_id);
2873
__cpu_data[i].x86_vendor = x86_vendor;
2874
}
2875
#endif
2876
rw_init(&linux_vma_lock, "lkpi-vma-lock");
2877
2878
rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2879
OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2880
kobject_init(&linux_class_root, &linux_class_ktype);
2881
kobject_set_name(&linux_class_root, "class");
2882
linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2883
OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2884
kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2885
kobject_set_name(&linux_root_device.kobj, "device");
2886
linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2887
SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
2888
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
2889
linux_root_device.bsddev = root_bus;
2890
linux_class_misc.name = "misc";
2891
class_register(&linux_class_misc);
2892
INIT_LIST_HEAD(&pci_drivers);
2893
INIT_LIST_HEAD(&pci_devices);
2894
spin_lock_init(&pci_lock);
2895
init_waitqueue_head(&linux_bit_waitq);
2896
init_waitqueue_head(&linux_var_waitq);
2897
2898
CPU_COPY(&all_cpus, &cpu_online_mask);
2899
/*
2900
* Generate a single-CPU cpumask_t for each CPU (possibly) in the system.
2901
* CPUs are indexed from 0..(mp_maxid). The entry for cpuid 0 will only
2902
* have itself in the cpumask, cupid 1 only itself on entry 1, and so on.
2903
* This is used by cpumask_of() (and possibly others in the future) for,
2904
* e.g., drivers to pass hints to irq_set_affinity_hint().
2905
*/
2906
static_single_cpu_mask = kmalloc_array(mp_maxid + 1,
2907
sizeof(static_single_cpu_mask), M_WAITOK | M_ZERO);
2908
2909
/*
2910
* When the number of CPUs reach a threshold, we start to save memory
2911
* given the sets are static by overlapping those having their single
2912
* bit set at same position in a bitset word. Asymptotically, this
2913
* regular scheme is in O(n²) whereas the overlapping one is in O(n)
2914
* only with n being the maximum number of CPUs, so the gain will become
2915
* huge quite quickly. The threshold for 64-bit architectures is 128
2916
* CPUs.
2917
*/
2918
if (mp_ncpus < (2 * _BITSET_BITS)) {
2919
cpumask_t *sscm_ptr;
2920
2921
/*
2922
* This represents 'mp_ncpus * __bitset_words(CPU_SETSIZE) *
2923
* (_BITSET_BITS / 8)' bytes (for comparison with the
2924
* overlapping scheme).
2925
*/
2926
static_single_cpu_mask_lcs = kmalloc_array(mp_ncpus,
2927
sizeof(*static_single_cpu_mask_lcs),
2928
M_WAITOK | M_ZERO);
2929
2930
sscm_ptr = static_single_cpu_mask_lcs;
2931
CPU_FOREACH(i) {
2932
static_single_cpu_mask[i] = sscm_ptr++;
2933
CPU_SET(i, static_single_cpu_mask[i]);
2934
}
2935
} else {
2936
/* Pointer to a bitset word. */
2937
__typeof(((cpuset_t *)NULL)->__bits[0]) *bwp;
2938
2939
/*
2940
* Allocate memory for (static) spans of 'cpumask_t' ('cpuset_t'
2941
* really) with a single bit set that can be reused for all
2942
* single CPU masks by making them start at different offsets.
2943
* We need '__bitset_words(CPU_SETSIZE) - 1' bitset words before
2944
* the word having its single bit set, and the same amount
2945
* after.
2946
*/
2947
static_single_cpu_mask_lcs = mallocarray(_BITSET_BITS,
2948
(2 * __bitset_words(CPU_SETSIZE) - 1) * (_BITSET_BITS / 8),
2949
M_KMALLOC, M_WAITOK | M_ZERO);
2950
2951
/*
2952
* We rely below on cpuset_t and the bitset generic
2953
* implementation assigning words in the '__bits' array in the
2954
* same order of bits (i.e., little-endian ordering, not to be
2955
* confused with machine endianness, which concerns bits in
2956
* words and other integers). This is an imperfect test, but it
2957
* will detect a change to big-endian ordering.
2958
*/
2959
_Static_assert(
2960
__bitset_word(_BITSET_BITS + 1, _BITSET_BITS) == 1,
2961
"Assumes a bitset implementation that is little-endian "
2962
"on its words");
2963
2964
/* Initialize the single bit of each static span. */
2965
bwp = (__typeof(bwp))static_single_cpu_mask_lcs +
2966
(__bitset_words(CPU_SETSIZE) - 1);
2967
for (i = 0; i < _BITSET_BITS; i++) {
2968
CPU_SET(i, (cpuset_t *)bwp);
2969
bwp += (2 * __bitset_words(CPU_SETSIZE) - 1);
2970
}
2971
2972
/*
2973
* Finally set all CPU masks to the proper word in their
2974
* relevant span.
2975
*/
2976
CPU_FOREACH(i) {
2977
bwp = (__typeof(bwp))static_single_cpu_mask_lcs;
2978
/* Find the non-zero word of the relevant span. */
2979
bwp += (2 * __bitset_words(CPU_SETSIZE) - 1) *
2980
(i % _BITSET_BITS) +
2981
__bitset_words(CPU_SETSIZE) - 1;
2982
/* Shift to find the CPU mask start. */
2983
bwp -= (i / _BITSET_BITS);
2984
static_single_cpu_mask[i] = (cpuset_t *)bwp;
2985
}
2986
}
2987
2988
strlcpy(init_uts_ns.name.release, osrelease, sizeof(init_uts_ns.name.release));
2989
}
2990
SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2991
2992
static void
2993
linux_compat_uninit(void *arg)
2994
{
2995
linux_kobject_kfree_name(&linux_class_root);
2996
linux_kobject_kfree_name(&linux_root_device.kobj);
2997
linux_kobject_kfree_name(&linux_class_misc.kobj);
2998
2999
free(static_single_cpu_mask_lcs, M_KMALLOC);
3000
free(static_single_cpu_mask, M_KMALLOC);
3001
#if defined(__i386__) || defined(__amd64__)
3002
free(__cpu_data, M_KMALLOC);
3003
#endif
3004
3005
spin_lock_destroy(&pci_lock);
3006
rw_destroy(&linux_vma_lock);
3007
}
3008
SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
3009
3010
/*
3011
* NOTE: Linux frequently uses "unsigned long" for pointer to integer
3012
* conversion and vice versa, where in FreeBSD "uintptr_t" would be
3013
* used. Assert these types have the same size, else some parts of the
3014
* LinuxKPI may not work like expected:
3015
*/
3016
CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
3017
3018