Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/compat/linuxkpi/common/src/linux_pci.c
39586 views
1
/*-
2
* Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3
* All rights reserved.
4
* Copyright (c) 2020-2025 The FreeBSD Foundation
5
*
6
* Portions of this software were developed by Björn Zeeb
7
* under sponsorship from the FreeBSD Foundation.
8
*
9
* Redistribution and use in source and binary forms, with or without
10
* modification, are permitted provided that the following conditions
11
* are met:
12
* 1. Redistributions of source code must retain the above copyright
13
* notice unmodified, this list of conditions, and the following
14
* disclaimer.
15
* 2. Redistributions in binary form must reproduce the above copyright
16
* notice, this list of conditions and the following disclaimer in the
17
* documentation and/or other materials provided with the distribution.
18
*
19
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
*/
30
31
#include <sys/param.h>
32
#include <sys/systm.h>
33
#include <sys/bus.h>
34
#include <sys/malloc.h>
35
#include <sys/kernel.h>
36
#include <sys/sysctl.h>
37
#include <sys/lock.h>
38
#include <sys/mutex.h>
39
#include <sys/fcntl.h>
40
#include <sys/file.h>
41
#include <sys/filio.h>
42
#include <sys/pciio.h>
43
#include <sys/pctrie.h>
44
#include <sys/rman.h>
45
#include <sys/rwlock.h>
46
#include <sys/stdarg.h>
47
48
#include <vm/vm.h>
49
#include <vm/pmap.h>
50
51
#include <machine/bus.h>
52
#include <machine/resource.h>
53
54
#include <dev/pci/pcivar.h>
55
#include <dev/pci/pci_private.h>
56
#include <dev/pci/pci_iov.h>
57
#include <dev/backlight/backlight.h>
58
59
#include <linux/kernel.h>
60
#include <linux/kobject.h>
61
#include <linux/device.h>
62
#include <linux/slab.h>
63
#include <linux/module.h>
64
#include <linux/cdev.h>
65
#include <linux/file.h>
66
#include <linux/sysfs.h>
67
#include <linux/mm.h>
68
#include <linux/io.h>
69
#include <linux/vmalloc.h>
70
#define WANT_NATIVE_PCI_GET_SLOT
71
#include <linux/pci.h>
72
#include <linux/compat.h>
73
74
#include <linux/backlight.h>
75
76
#include "backlight_if.h"
77
#include "pcib_if.h"
78
79
/* Undef the linux function macro defined in linux/pci.h */
80
#undef pci_get_class
81
82
extern int linuxkpi_debug;
83
84
SYSCTL_DECL(_compat_linuxkpi);
85
86
static counter_u64_t lkpi_pci_nseg1_fail;
87
SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD,
88
&lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment");
89
90
static device_probe_t linux_pci_probe;
91
static device_attach_t linux_pci_attach;
92
static device_detach_t linux_pci_detach;
93
static device_suspend_t linux_pci_suspend;
94
static device_resume_t linux_pci_resume;
95
static device_shutdown_t linux_pci_shutdown;
96
static pci_iov_init_t linux_pci_iov_init;
97
static pci_iov_uninit_t linux_pci_iov_uninit;
98
static pci_iov_add_vf_t linux_pci_iov_add_vf;
99
static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
100
static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
101
static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
102
static void lkpi_pcim_iomap_table_release(struct device *, void *);
103
104
static device_method_t pci_methods[] = {
105
DEVMETHOD(device_probe, linux_pci_probe),
106
DEVMETHOD(device_attach, linux_pci_attach),
107
DEVMETHOD(device_detach, linux_pci_detach),
108
DEVMETHOD(device_suspend, linux_pci_suspend),
109
DEVMETHOD(device_resume, linux_pci_resume),
110
DEVMETHOD(device_shutdown, linux_pci_shutdown),
111
DEVMETHOD(pci_iov_init, linux_pci_iov_init),
112
DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
113
DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
114
115
/* Bus interface. */
116
DEVMETHOD(bus_add_child, bus_generic_add_child),
117
118
/* backlight interface */
119
DEVMETHOD(backlight_update_status, linux_backlight_update_status),
120
DEVMETHOD(backlight_get_status, linux_backlight_get_status),
121
DEVMETHOD(backlight_get_info, linux_backlight_get_info),
122
DEVMETHOD_END
123
};
124
125
const char *pci_power_names[] = {
126
"UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold"
127
};
128
129
/* We need some meta-struct to keep track of these for devres. */
130
struct pci_devres {
131
bool enable_io;
132
/* PCIR_MAX_BAR_0 + 1 = 6 => BIT(0..5). */
133
uint8_t region_mask;
134
struct resource *region_table[PCIR_MAX_BAR_0 + 1]; /* Not needed. */
135
};
136
struct pcim_iomap_devres {
137
void *mmio_table[PCIR_MAX_BAR_0 + 1];
138
struct resource *res_table[PCIR_MAX_BAR_0 + 1];
139
};
140
141
struct linux_dma_priv {
142
uint64_t dma_mask;
143
bus_dma_tag_t dmat;
144
uint64_t dma_coherent_mask;
145
bus_dma_tag_t dmat_coherent;
146
struct mtx lock;
147
struct pctrie ptree;
148
};
149
#define DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
150
#define DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
151
152
static void
153
lkpi_set_pcim_iomap_devres(struct pcim_iomap_devres *dr, int bar,
154
void *res)
155
{
156
dr->mmio_table[bar] = (void *)rman_get_bushandle(res);
157
dr->res_table[bar] = res;
158
}
159
160
static bool
161
lkpi_pci_bar_id_valid(int bar)
162
{
163
if (bar < 0 || bar > PCIR_MAX_BAR_0)
164
return (false);
165
166
return (true);
167
}
168
169
static int
170
linux_pdev_dma_uninit(struct pci_dev *pdev)
171
{
172
struct linux_dma_priv *priv;
173
174
priv = pdev->dev.dma_priv;
175
if (priv->dmat)
176
bus_dma_tag_destroy(priv->dmat);
177
if (priv->dmat_coherent)
178
bus_dma_tag_destroy(priv->dmat_coherent);
179
mtx_destroy(&priv->lock);
180
pdev->dev.dma_priv = NULL;
181
free(priv, M_DEVBUF);
182
return (0);
183
}
184
185
static int
186
linux_pdev_dma_init(struct pci_dev *pdev)
187
{
188
struct linux_dma_priv *priv;
189
int error;
190
191
priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
192
193
mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
194
pctrie_init(&priv->ptree);
195
196
pdev->dev.dma_priv = priv;
197
198
/* Create a default DMA tags. */
199
error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
200
if (error != 0)
201
goto err;
202
/* Coherent is lower 32bit only by default in Linux. */
203
error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
204
if (error != 0)
205
goto err;
206
207
return (error);
208
209
err:
210
linux_pdev_dma_uninit(pdev);
211
return (error);
212
}
213
214
int
215
linux_dma_tag_init(struct device *dev, u64 dma_mask)
216
{
217
struct linux_dma_priv *priv;
218
int error;
219
220
priv = dev->dma_priv;
221
222
if (priv->dmat) {
223
if (priv->dma_mask == dma_mask)
224
return (0);
225
226
bus_dma_tag_destroy(priv->dmat);
227
}
228
229
priv->dma_mask = dma_mask;
230
231
error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
232
1, 0, /* alignment, boundary */
233
dma_mask, /* lowaddr */
234
BUS_SPACE_MAXADDR, /* highaddr */
235
NULL, NULL, /* filtfunc, filtfuncarg */
236
BUS_SPACE_MAXSIZE, /* maxsize */
237
1, /* nsegments */
238
BUS_SPACE_MAXSIZE, /* maxsegsz */
239
0, /* flags */
240
NULL, NULL, /* lockfunc, lockfuncarg */
241
&priv->dmat);
242
return (-error);
243
}
244
245
int
246
linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
247
{
248
struct linux_dma_priv *priv;
249
int error;
250
251
priv = dev->dma_priv;
252
253
if (priv->dmat_coherent) {
254
if (priv->dma_coherent_mask == dma_mask)
255
return (0);
256
257
bus_dma_tag_destroy(priv->dmat_coherent);
258
}
259
260
priv->dma_coherent_mask = dma_mask;
261
262
error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
263
1, 0, /* alignment, boundary */
264
dma_mask, /* lowaddr */
265
BUS_SPACE_MAXADDR, /* highaddr */
266
NULL, NULL, /* filtfunc, filtfuncarg */
267
BUS_SPACE_MAXSIZE, /* maxsize */
268
1, /* nsegments */
269
BUS_SPACE_MAXSIZE, /* maxsegsz */
270
0, /* flags */
271
NULL, NULL, /* lockfunc, lockfuncarg */
272
&priv->dmat_coherent);
273
return (-error);
274
}
275
276
static struct pci_driver *
277
linux_pci_find(device_t dev, const struct pci_device_id **idp)
278
{
279
const struct pci_device_id *id;
280
struct pci_driver *pdrv;
281
uint16_t vendor;
282
uint16_t device;
283
uint16_t subvendor;
284
uint16_t subdevice;
285
286
vendor = pci_get_vendor(dev);
287
device = pci_get_device(dev);
288
subvendor = pci_get_subvendor(dev);
289
subdevice = pci_get_subdevice(dev);
290
291
spin_lock(&pci_lock);
292
list_for_each_entry(pdrv, &pci_drivers, node) {
293
for (id = pdrv->id_table; id->vendor != 0; id++) {
294
if (vendor == id->vendor &&
295
(PCI_ANY_ID == id->device || device == id->device) &&
296
(PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
297
(PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
298
*idp = id;
299
spin_unlock(&pci_lock);
300
return (pdrv);
301
}
302
}
303
}
304
spin_unlock(&pci_lock);
305
return (NULL);
306
}
307
308
struct pci_dev *
309
lkpi_pci_get_device(uint32_t vendor, uint32_t device, struct pci_dev *odev)
310
{
311
struct pci_dev *pdev, *found;
312
313
found = NULL;
314
spin_lock(&pci_lock);
315
list_for_each_entry(pdev, &pci_devices, links) {
316
/* Walk until we find odev. */
317
if (odev != NULL) {
318
if (pdev == odev)
319
odev = NULL;
320
continue;
321
}
322
323
if ((pdev->vendor == vendor || vendor == PCI_ANY_ID) &&
324
(pdev->device == device || device == PCI_ANY_ID)) {
325
found = pdev;
326
break;
327
}
328
}
329
pci_dev_get(found);
330
spin_unlock(&pci_lock);
331
332
return (found);
333
}
334
335
static void
336
lkpi_pci_dev_release(struct device *dev)
337
{
338
339
lkpi_devres_release_free_list(dev);
340
spin_lock_destroy(&dev->devres_lock);
341
}
342
343
static int
344
lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
345
{
346
struct pci_devinfo *dinfo;
347
int error;
348
349
error = kobject_init_and_add(&pdev->dev.kobj, &linux_dev_ktype,
350
&linux_root_device.kobj, device_get_nameunit(dev));
351
if (error != 0) {
352
printf("%s:%d: kobject_init_and_add returned %d\n",
353
__func__, __LINE__, error);
354
return (error);
355
}
356
357
pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
358
pdev->vendor = pci_get_vendor(dev);
359
pdev->device = pci_get_device(dev);
360
pdev->subsystem_vendor = pci_get_subvendor(dev);
361
pdev->subsystem_device = pci_get_subdevice(dev);
362
pdev->class = pci_get_class(dev);
363
pdev->revision = pci_get_revid(dev);
364
pdev->path_name = kasprintf(GFP_KERNEL, "%04d:%02d:%02d.%d",
365
pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
366
pci_get_function(dev));
367
368
pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
369
pdev->bus->number = pci_get_bus(dev);
370
pdev->bus->domain = pci_get_domain(dev);
371
372
/* Check if we have reached the root to satisfy pci_is_root_bus() */
373
dinfo = device_get_ivars(dev);
374
if (dinfo->cfg.pcie.pcie_location != 0 &&
375
dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
376
pdev->bus->self = NULL;
377
} else {
378
/*
379
* This should be the upstream bridge; pci_upstream_bridge()
380
* handles that case on demand as otherwise we'll shadow the
381
* entire PCI hierarchy.
382
*/
383
pdev->bus->self = pdev;
384
}
385
pdev->dev.bsddev = dev;
386
pdev->dev.parent = &linux_root_device;
387
pdev->dev.release = lkpi_pci_dev_release;
388
INIT_LIST_HEAD(&pdev->dev.irqents);
389
390
if (pci_msi_count(dev) > 0)
391
pdev->msi_desc = malloc(pci_msi_count(dev) *
392
sizeof(*pdev->msi_desc), M_DEVBUF, M_WAITOK | M_ZERO);
393
394
spin_lock_init(&pdev->dev.devres_lock);
395
INIT_LIST_HEAD(&pdev->dev.devres_head);
396
397
return (0);
398
}
399
400
static void
401
lkpinew_pci_dev_release(struct device *dev)
402
{
403
struct pci_dev *pdev;
404
int i;
405
406
pdev = to_pci_dev(dev);
407
if (pdev->root != NULL)
408
pci_dev_put(pdev->root);
409
if (pdev->bus->self != pdev && pdev->bus->self != NULL)
410
pci_dev_put(pdev->bus->self);
411
free(pdev->bus, M_DEVBUF);
412
if (pdev->msi_desc != NULL) {
413
for (i = pci_msi_count(pdev->dev.bsddev) - 1; i >= 0; i--)
414
free(pdev->msi_desc[i], M_DEVBUF);
415
free(pdev->msi_desc, M_DEVBUF);
416
}
417
kfree(pdev->path_name);
418
free(pdev, M_DEVBUF);
419
}
420
421
struct pci_dev *
422
lkpinew_pci_dev(device_t dev)
423
{
424
struct pci_dev *pdev;
425
int error;
426
427
pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
428
error = lkpifill_pci_dev(dev, pdev);
429
if (error != 0) {
430
free(pdev, M_DEVBUF);
431
return (NULL);
432
}
433
pdev->dev.release = lkpinew_pci_dev_release;
434
435
return (pdev);
436
}
437
438
struct pci_dev *
439
lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
440
{
441
device_t dev;
442
device_t devfrom = NULL;
443
struct pci_dev *pdev;
444
445
if (from != NULL)
446
devfrom = from->dev.bsddev;
447
448
dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
449
if (dev == NULL)
450
return (NULL);
451
452
pdev = lkpinew_pci_dev(dev);
453
return (pdev);
454
}
455
456
struct pci_dev *
457
lkpi_pci_get_base_class(unsigned int baseclass, struct pci_dev *from)
458
{
459
device_t dev;
460
device_t devfrom = NULL;
461
struct pci_dev *pdev;
462
463
if (from != NULL)
464
devfrom = from->dev.bsddev;
465
466
dev = pci_find_base_class_from(baseclass, devfrom);
467
if (dev == NULL)
468
return (NULL);
469
470
pdev = lkpinew_pci_dev(dev);
471
return (pdev);
472
}
473
474
struct pci_dev *
475
lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
476
unsigned int devfn)
477
{
478
device_t dev;
479
struct pci_dev *pdev;
480
481
dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
482
if (dev == NULL)
483
return (NULL);
484
485
pdev = lkpinew_pci_dev(dev);
486
return (pdev);
487
}
488
489
struct pci_dev *
490
lkpi_pci_get_slot(struct pci_bus *pbus, unsigned int devfn)
491
{
492
device_t dev;
493
struct pci_dev *pdev;
494
495
dev = pci_find_bsf(pbus->number, PCI_SLOT(devfn), PCI_FUNC(devfn));
496
if (dev == NULL)
497
return (NULL);
498
499
pdev = lkpinew_pci_dev(dev);
500
return (pdev);
501
}
502
503
static int
504
linux_pci_probe(device_t dev)
505
{
506
const struct pci_device_id *id;
507
struct pci_driver *pdrv;
508
509
if ((pdrv = linux_pci_find(dev, &id)) == NULL)
510
return (ENXIO);
511
if (device_get_driver(dev) != &pdrv->bsddriver)
512
return (ENXIO);
513
device_set_desc(dev, pdrv->name);
514
515
/* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
516
if (pdrv->bsd_probe_return == 0)
517
return (BUS_PROBE_DEFAULT);
518
else
519
return (pdrv->bsd_probe_return);
520
}
521
522
static int
523
linux_pci_attach(device_t dev)
524
{
525
const struct pci_device_id *id;
526
struct pci_driver *pdrv;
527
struct pci_dev *pdev;
528
529
pdrv = linux_pci_find(dev, &id);
530
pdev = device_get_softc(dev);
531
532
MPASS(pdrv != NULL);
533
MPASS(pdev != NULL);
534
535
return (linux_pci_attach_device(dev, pdrv, id, pdev));
536
}
537
538
static struct resource_list_entry *
539
linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
540
int type, int rid)
541
{
542
device_t dev;
543
struct resource *res;
544
545
KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
546
("trying to reserve non-BAR type %d", type));
547
548
dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
549
device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
550
res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
551
1, 1, 0);
552
if (res == NULL)
553
return (NULL);
554
return (resource_list_find(rl, type, rid));
555
}
556
557
static struct resource_list_entry *
558
linux_pci_get_rle(struct pci_dev *pdev, int type, int rid, bool reserve_bar)
559
{
560
struct pci_devinfo *dinfo;
561
struct resource_list *rl;
562
struct resource_list_entry *rle;
563
564
dinfo = device_get_ivars(pdev->dev.bsddev);
565
rl = &dinfo->resources;
566
rle = resource_list_find(rl, type, rid);
567
/* Reserve resources for this BAR if needed. */
568
if (rle == NULL && reserve_bar)
569
rle = linux_pci_reserve_bar(pdev, rl, type, rid);
570
return (rle);
571
}
572
573
int
574
linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
575
const struct pci_device_id *id, struct pci_dev *pdev)
576
{
577
struct resource_list_entry *rle;
578
device_t parent;
579
struct pci_dev *pbus, *ppbus;
580
uintptr_t rid;
581
int error;
582
bool isdrm;
583
584
linux_set_current(curthread);
585
586
parent = device_get_parent(dev);
587
isdrm = pdrv != NULL && pdrv->isdrm;
588
589
if (isdrm) {
590
struct pci_devinfo *dinfo;
591
592
dinfo = device_get_ivars(parent);
593
device_set_ivars(dev, dinfo);
594
}
595
596
error = lkpifill_pci_dev(dev, pdev);
597
if (error != 0)
598
return (error);
599
600
if (isdrm)
601
PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
602
else
603
PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
604
pdev->devfn = rid;
605
pdev->pdrv = pdrv;
606
rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
607
if (rle != NULL)
608
pdev->dev.irq = rle->start;
609
else
610
pdev->dev.irq = LINUX_IRQ_INVALID;
611
pdev->irq = pdev->dev.irq;
612
error = linux_pdev_dma_init(pdev);
613
if (error)
614
goto out_dma_init;
615
616
TAILQ_INIT(&pdev->mmio);
617
spin_lock_init(&pdev->pcie_cap_lock);
618
619
spin_lock(&pci_lock);
620
list_add(&pdev->links, &pci_devices);
621
spin_unlock(&pci_lock);
622
623
/*
624
* Create the hierarchy now as we cannot on demand later.
625
* Take special care of DRM as there is a non-PCI device in the chain.
626
*/
627
pbus = pdev;
628
if (isdrm) {
629
pbus = lkpinew_pci_dev(parent);
630
if (pbus == NULL) {
631
error = ENXIO;
632
goto out_dma_init;
633
}
634
}
635
pcie_find_root_port(pbus);
636
if (isdrm)
637
pdev->root = pbus->root;
638
ppbus = pci_upstream_bridge(pbus);
639
while (ppbus != NULL && ppbus != pbus) {
640
pbus = ppbus;
641
ppbus = pci_upstream_bridge(pbus);
642
}
643
644
if (pdrv != NULL) {
645
error = pdrv->probe(pdev, id);
646
if (error)
647
goto out_probe;
648
}
649
return (0);
650
651
/* XXX the cleanup does not match the allocation up there. */
652
out_probe:
653
free(pdev->bus, M_DEVBUF);
654
spin_lock_destroy(&pdev->pcie_cap_lock);
655
linux_pdev_dma_uninit(pdev);
656
out_dma_init:
657
spin_lock(&pci_lock);
658
list_del(&pdev->links);
659
spin_unlock(&pci_lock);
660
put_device(&pdev->dev);
661
return (-error);
662
}
663
664
static int
665
linux_pci_detach(device_t dev)
666
{
667
struct pci_dev *pdev;
668
669
pdev = device_get_softc(dev);
670
671
MPASS(pdev != NULL);
672
673
device_set_desc(dev, NULL);
674
675
return (linux_pci_detach_device(pdev));
676
}
677
678
int
679
linux_pci_detach_device(struct pci_dev *pdev)
680
{
681
682
linux_set_current(curthread);
683
684
if (pdev->pdrv != NULL)
685
pdev->pdrv->remove(pdev);
686
687
if (pdev->root != NULL)
688
pci_dev_put(pdev->root);
689
free(pdev->bus, M_DEVBUF);
690
linux_pdev_dma_uninit(pdev);
691
692
spin_lock(&pci_lock);
693
list_del(&pdev->links);
694
spin_unlock(&pci_lock);
695
spin_lock_destroy(&pdev->pcie_cap_lock);
696
put_device(&pdev->dev);
697
698
return (0);
699
}
700
701
static int
702
lkpi_pci_disable_dev(struct device *dev)
703
{
704
705
(void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
706
(void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
707
return (0);
708
}
709
710
static struct pci_devres *
711
lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
712
{
713
struct pci_devres *dr;
714
715
dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
716
if (dr == NULL) {
717
dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
718
GFP_KERNEL | __GFP_ZERO);
719
if (dr != NULL)
720
lkpi_devres_add(&pdev->dev, dr);
721
}
722
723
return (dr);
724
}
725
726
static struct pci_devres *
727
lkpi_pci_devres_find(struct pci_dev *pdev)
728
{
729
if (!pdev->managed)
730
return (NULL);
731
732
return (lkpi_pci_devres_get_alloc(pdev));
733
}
734
735
void
736
lkpi_pci_devres_release(struct device *dev, void *p)
737
{
738
struct pci_devres *dr;
739
struct pci_dev *pdev;
740
int bar;
741
742
pdev = to_pci_dev(dev);
743
dr = p;
744
745
if (pdev->msix_enabled)
746
lkpi_pci_disable_msix(pdev);
747
if (pdev->msi_enabled)
748
lkpi_pci_disable_msi(pdev);
749
750
if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
751
dr->enable_io = false;
752
753
if (dr->region_mask == 0)
754
return;
755
for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
756
757
if ((dr->region_mask & (1 << bar)) == 0)
758
continue;
759
pci_release_region(pdev, bar);
760
}
761
}
762
763
int
764
linuxkpi_pcim_enable_device(struct pci_dev *pdev)
765
{
766
struct pci_devres *dr;
767
int error;
768
769
/* Here we cannot run through the pdev->managed check. */
770
dr = lkpi_pci_devres_get_alloc(pdev);
771
if (dr == NULL)
772
return (-ENOMEM);
773
774
/* If resources were enabled before do not do it again. */
775
if (dr->enable_io)
776
return (0);
777
778
error = pci_enable_device(pdev);
779
if (error == 0)
780
dr->enable_io = true;
781
782
/* This device is not managed. */
783
pdev->managed = true;
784
785
return (error);
786
}
787
788
static struct pcim_iomap_devres *
789
lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
790
{
791
struct pcim_iomap_devres *dr;
792
793
dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
794
NULL, NULL);
795
if (dr == NULL) {
796
dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
797
sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
798
if (dr != NULL)
799
lkpi_devres_add(&pdev->dev, dr);
800
}
801
802
if (dr == NULL)
803
device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
804
805
return (dr);
806
}
807
808
void __iomem **
809
linuxkpi_pcim_iomap_table(struct pci_dev *pdev)
810
{
811
struct pcim_iomap_devres *dr;
812
813
dr = lkpi_pcim_iomap_devres_find(pdev);
814
if (dr == NULL)
815
return (NULL);
816
817
/*
818
* If the driver has manually set a flag to be able to request the
819
* resource to use bus_read/write_<n>, return the shadow table.
820
*/
821
if (pdev->want_iomap_res)
822
return ((void **)dr->res_table);
823
824
/* This is the Linux default. */
825
return (dr->mmio_table);
826
}
827
828
static struct resource *
829
_lkpi_pci_iomap(struct pci_dev *pdev, int bar, unsigned long maxlen __unused)
830
{
831
struct pci_mmio_region *mmio, *p;
832
int type;
833
834
if (!lkpi_pci_bar_id_valid(bar))
835
return (NULL);
836
837
type = pci_resource_type(pdev, bar);
838
if (type < 0) {
839
device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
840
__func__, bar, type);
841
return (NULL);
842
}
843
844
/*
845
* Check for duplicate mappings.
846
* This can happen if a driver calls pci_request_region() first.
847
*/
848
TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
849
if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
850
return (mmio->res);
851
}
852
}
853
854
mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
855
mmio->rid = PCIR_BAR(bar);
856
mmio->type = type;
857
mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
858
&mmio->rid, RF_ACTIVE|RF_SHAREABLE);
859
if (mmio->res == NULL) {
860
device_printf(pdev->dev.bsddev, "%s: failed to alloc "
861
"bar %d type %d rid %d\n",
862
__func__, bar, type, PCIR_BAR(bar));
863
free(mmio, M_DEVBUF);
864
return (NULL);
865
}
866
TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
867
868
return (mmio->res);
869
}
870
871
void *
872
linuxkpi_pci_iomap_range(struct pci_dev *pdev, int bar,
873
unsigned long off, unsigned long maxlen)
874
{
875
struct resource *res;
876
877
if (!lkpi_pci_bar_id_valid(bar))
878
return (NULL);
879
880
res = _lkpi_pci_iomap(pdev, bar, maxlen);
881
if (res == NULL)
882
return (NULL);
883
/* This is a FreeBSD extension so we can use bus_*(). */
884
if (pdev->want_iomap_res)
885
return (res);
886
MPASS(off < rman_get_size(res));
887
return ((void *)(rman_get_bushandle(res) + off));
888
}
889
890
void *
891
linuxkpi_pci_iomap(struct pci_dev *pdev, int bar, unsigned long maxlen)
892
{
893
if (!lkpi_pci_bar_id_valid(bar))
894
return (NULL);
895
896
return (linuxkpi_pci_iomap_range(pdev, bar, 0, maxlen));
897
}
898
899
void *
900
linuxkpi_pcim_iomap(struct pci_dev *pdev, int bar, unsigned long maxlen)
901
{
902
struct pcim_iomap_devres *dr;
903
void *res;
904
905
if (!lkpi_pci_bar_id_valid(bar))
906
return (NULL);
907
908
dr = lkpi_pcim_iomap_devres_find(pdev);
909
if (dr == NULL)
910
return (NULL);
911
912
if (dr->res_table[bar] != NULL)
913
return (dr->res_table[bar]);
914
915
res = linuxkpi_pci_iomap(pdev, bar, maxlen);
916
if (res == NULL) {
917
/*
918
* Do not free the devres in case there were
919
* other valid mappings before already.
920
*/
921
return (NULL);
922
}
923
lkpi_set_pcim_iomap_devres(dr, bar, res);
924
925
return (res);
926
}
927
928
void
929
linuxkpi_pci_iounmap(struct pci_dev *pdev, void *res)
930
{
931
struct pci_mmio_region *mmio, *p;
932
bus_space_handle_t bh = (bus_space_handle_t)res;
933
934
TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
935
if (pdev->want_iomap_res) {
936
if (res != mmio->res)
937
continue;
938
} else {
939
if (bh < rman_get_bushandle(mmio->res) ||
940
bh >= rman_get_bushandle(mmio->res) +
941
rman_get_size(mmio->res))
942
continue;
943
}
944
bus_release_resource(pdev->dev.bsddev,
945
mmio->type, mmio->rid, mmio->res);
946
TAILQ_REMOVE(&pdev->mmio, mmio, next);
947
free(mmio, M_DEVBUF);
948
return;
949
}
950
}
951
952
int
953
linuxkpi_pcim_iomap_regions(struct pci_dev *pdev, uint32_t mask, const char *name)
954
{
955
struct pcim_iomap_devres *dr;
956
void *res;
957
uint32_t mappings;
958
int bar;
959
960
dr = lkpi_pcim_iomap_devres_find(pdev);
961
if (dr == NULL)
962
return (-ENOMEM);
963
964
/* Now iomap all the requested (by "mask") ones. */
965
for (bar = mappings = 0; mappings != mask; bar++) {
966
if ((mask & (1 << bar)) == 0)
967
continue;
968
969
/* Request double is not allowed. */
970
if (dr->mmio_table[bar] != NULL) {
971
device_printf(pdev->dev.bsddev, "%s: bar %d %p\n",
972
__func__, bar, dr->mmio_table[bar]);
973
goto err;
974
}
975
976
res = _lkpi_pci_iomap(pdev, bar, 0);
977
if (res == NULL)
978
goto err;
979
lkpi_set_pcim_iomap_devres(dr, bar, res);
980
981
mappings |= (1 << bar);
982
}
983
984
return (0);
985
err:
986
for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
987
if ((mappings & (1 << bar)) != 0) {
988
res = dr->mmio_table[bar];
989
if (res == NULL)
990
continue;
991
pci_iounmap(pdev, res);
992
}
993
}
994
995
return (-EINVAL);
996
}
997
998
static void
999
lkpi_pcim_iomap_table_release(struct device *dev, void *p)
1000
{
1001
struct pcim_iomap_devres *dr;
1002
struct pci_dev *pdev;
1003
int bar;
1004
1005
dr = p;
1006
pdev = to_pci_dev(dev);
1007
for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
1008
1009
if (dr->mmio_table[bar] == NULL)
1010
continue;
1011
1012
pci_iounmap(pdev, dr->mmio_table[bar]);
1013
}
1014
}
1015
1016
static int
1017
linux_pci_suspend(device_t dev)
1018
{
1019
const struct dev_pm_ops *pmops;
1020
struct pm_message pm = { };
1021
struct pci_dev *pdev;
1022
int error;
1023
1024
error = 0;
1025
linux_set_current(curthread);
1026
pdev = device_get_softc(dev);
1027
pmops = pdev->pdrv->driver.pm;
1028
1029
if (pdev->pdrv->suspend != NULL)
1030
error = -pdev->pdrv->suspend(pdev, pm);
1031
else if (pmops != NULL && pmops->suspend != NULL) {
1032
error = -pmops->suspend(&pdev->dev);
1033
if (error == 0 && pmops->suspend_late != NULL)
1034
error = -pmops->suspend_late(&pdev->dev);
1035
if (error == 0 && pmops->suspend_noirq != NULL)
1036
error = -pmops->suspend_noirq(&pdev->dev);
1037
}
1038
return (error);
1039
}
1040
1041
static int
1042
linux_pci_resume(device_t dev)
1043
{
1044
const struct dev_pm_ops *pmops;
1045
struct pci_dev *pdev;
1046
int error;
1047
1048
error = 0;
1049
linux_set_current(curthread);
1050
pdev = device_get_softc(dev);
1051
pmops = pdev->pdrv->driver.pm;
1052
1053
if (pdev->pdrv->resume != NULL)
1054
error = -pdev->pdrv->resume(pdev);
1055
else if (pmops != NULL && pmops->resume != NULL) {
1056
if (pmops->resume_early != NULL)
1057
error = -pmops->resume_early(&pdev->dev);
1058
if (error == 0 && pmops->resume != NULL)
1059
error = -pmops->resume(&pdev->dev);
1060
}
1061
return (error);
1062
}
1063
1064
static int
1065
linux_pci_shutdown(device_t dev)
1066
{
1067
struct pci_dev *pdev;
1068
1069
linux_set_current(curthread);
1070
pdev = device_get_softc(dev);
1071
if (pdev->pdrv->shutdown != NULL)
1072
pdev->pdrv->shutdown(pdev);
1073
return (0);
1074
}
1075
1076
static int
1077
linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
1078
{
1079
struct pci_dev *pdev;
1080
int error;
1081
1082
linux_set_current(curthread);
1083
pdev = device_get_softc(dev);
1084
if (pdev->pdrv->bsd_iov_init != NULL)
1085
error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
1086
else
1087
error = EINVAL;
1088
return (error);
1089
}
1090
1091
static void
1092
linux_pci_iov_uninit(device_t dev)
1093
{
1094
struct pci_dev *pdev;
1095
1096
linux_set_current(curthread);
1097
pdev = device_get_softc(dev);
1098
if (pdev->pdrv->bsd_iov_uninit != NULL)
1099
pdev->pdrv->bsd_iov_uninit(dev);
1100
}
1101
1102
static int
1103
linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
1104
{
1105
struct pci_dev *pdev;
1106
int error;
1107
1108
linux_set_current(curthread);
1109
pdev = device_get_softc(dev);
1110
if (pdev->pdrv->bsd_iov_add_vf != NULL)
1111
error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
1112
else
1113
error = EINVAL;
1114
return (error);
1115
}
1116
1117
static int
1118
_linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
1119
{
1120
int error;
1121
1122
linux_set_current(curthread);
1123
spin_lock(&pci_lock);
1124
list_add(&pdrv->node, &pci_drivers);
1125
spin_unlock(&pci_lock);
1126
if (pdrv->bsddriver.name == NULL)
1127
pdrv->bsddriver.name = pdrv->name;
1128
pdrv->bsddriver.methods = pci_methods;
1129
pdrv->bsddriver.size = sizeof(struct pci_dev);
1130
1131
bus_topo_lock();
1132
error = devclass_add_driver(dc, &pdrv->bsddriver,
1133
BUS_PASS_DEFAULT, &pdrv->bsdclass);
1134
bus_topo_unlock();
1135
return (-error);
1136
}
1137
1138
int
1139
linux_pci_register_driver(struct pci_driver *pdrv)
1140
{
1141
devclass_t dc;
1142
1143
pdrv->isdrm = strcmp(pdrv->name, "drmn") == 0;
1144
dc = pdrv->isdrm ? devclass_create("vgapci") : devclass_find("pci");
1145
if (dc == NULL)
1146
return (-ENXIO);
1147
return (_linux_pci_register_driver(pdrv, dc));
1148
}
1149
1150
static struct resource_list_entry *
1151
lkpi_pci_get_bar(struct pci_dev *pdev, int bar, bool reserve)
1152
{
1153
int type;
1154
1155
type = pci_resource_type(pdev, bar);
1156
if (type < 0)
1157
return (NULL);
1158
bar = PCIR_BAR(bar);
1159
return (linux_pci_get_rle(pdev, type, bar, reserve));
1160
}
1161
1162
struct device *
1163
lkpi_pci_find_irq_dev(unsigned int irq)
1164
{
1165
struct pci_dev *pdev;
1166
struct device *found;
1167
1168
found = NULL;
1169
spin_lock(&pci_lock);
1170
list_for_each_entry(pdev, &pci_devices, links) {
1171
if (irq == pdev->dev.irq ||
1172
(irq >= pdev->dev.irq_start && irq < pdev->dev.irq_end)) {
1173
found = &pdev->dev;
1174
break;
1175
}
1176
}
1177
spin_unlock(&pci_lock);
1178
return (found);
1179
}
1180
1181
unsigned long
1182
pci_resource_start(struct pci_dev *pdev, int bar)
1183
{
1184
struct resource_list_entry *rle;
1185
rman_res_t newstart;
1186
device_t dev;
1187
int error;
1188
1189
if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1190
return (0);
1191
dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
1192
device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
1193
error = bus_translate_resource(dev, rle->type, rle->start, &newstart);
1194
if (error != 0) {
1195
device_printf(pdev->dev.bsddev,
1196
"translate of %#jx failed: %d\n",
1197
(uintmax_t)rle->start, error);
1198
return (0);
1199
}
1200
return (newstart);
1201
}
1202
1203
unsigned long
1204
pci_resource_len(struct pci_dev *pdev, int bar)
1205
{
1206
struct resource_list_entry *rle;
1207
1208
if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1209
return (0);
1210
return (rle->count);
1211
}
1212
1213
static int
1214
lkpi_pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1215
bool managed)
1216
{
1217
struct resource *res;
1218
struct pci_devres *dr;
1219
struct pci_mmio_region *mmio;
1220
int rid;
1221
int type;
1222
1223
if (!lkpi_pci_bar_id_valid(bar))
1224
return (-EINVAL);
1225
1226
/*
1227
* If the bar is not valid, return success without adding the BAR;
1228
* otherwise linuxkpi_pcim_request_all_regions() will error.
1229
*/
1230
if (pci_resource_len(pdev, bar) == 0)
1231
return (0);
1232
/* Likewise if it is neither IO nor MEM, nothing to do for us. */
1233
type = pci_resource_type(pdev, bar);
1234
if (type < 0)
1235
return (0);
1236
1237
rid = PCIR_BAR(bar);
1238
res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
1239
RF_ACTIVE|RF_SHAREABLE);
1240
if (res == NULL) {
1241
device_printf(pdev->dev.bsddev, "%s: failed to alloc "
1242
"bar %d type %d rid %d\n",
1243
__func__, bar, type, PCIR_BAR(bar));
1244
return (-ENODEV);
1245
}
1246
1247
/*
1248
* It seems there is an implicit devres tracking on these if the device
1249
* is managed (lkpi_pci_devres_find() case); otherwise the resources are
1250
* not automatically freed on FreeBSD/LinuxKPI though they should be/are
1251
* expected to be by Linux drivers.
1252
* Otherwise if we are called from a pcim-function with the managed
1253
* argument set, we need to track devres independent of pdev->managed.
1254
*/
1255
if (managed)
1256
dr = lkpi_pci_devres_get_alloc(pdev);
1257
else
1258
dr = lkpi_pci_devres_find(pdev);
1259
if (dr != NULL) {
1260
dr->region_mask |= (1 << bar);
1261
dr->region_table[bar] = res;
1262
}
1263
1264
/* Even if the device is not managed we need to track it for iomap. */
1265
mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
1266
mmio->rid = PCIR_BAR(bar);
1267
mmio->type = type;
1268
mmio->res = res;
1269
TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
1270
1271
return (0);
1272
}
1273
1274
int
1275
linuxkpi_pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1276
{
1277
return (lkpi_pci_request_region(pdev, bar, res_name, false));
1278
}
1279
1280
int
1281
linuxkpi_pci_request_regions(struct pci_dev *pdev, const char *res_name)
1282
{
1283
int error;
1284
int i;
1285
1286
for (i = 0; i <= PCIR_MAX_BAR_0; i++) {
1287
error = pci_request_region(pdev, i, res_name);
1288
if (error && error != -ENODEV) {
1289
pci_release_regions(pdev);
1290
return (error);
1291
}
1292
}
1293
return (0);
1294
}
1295
1296
int
1297
linuxkpi_pcim_request_all_regions(struct pci_dev *pdev, const char *res_name)
1298
{
1299
int bar, error;
1300
1301
for (bar = 0; bar <= PCIR_MAX_BAR_0; bar++) {
1302
error = lkpi_pci_request_region(pdev, bar, res_name, true);
1303
if (error != 0) {
1304
device_printf(pdev->dev.bsddev, "%s: bar %d res_name '%s': "
1305
"lkpi_pci_request_region returned %d\n", __func__,
1306
bar, res_name, error);
1307
pci_release_regions(pdev);
1308
return (error);
1309
}
1310
}
1311
return (0);
1312
}
1313
1314
void
1315
linuxkpi_pci_release_region(struct pci_dev *pdev, int bar)
1316
{
1317
struct resource_list_entry *rle;
1318
struct pci_devres *dr;
1319
struct pci_mmio_region *mmio, *p;
1320
1321
if ((rle = lkpi_pci_get_bar(pdev, bar, false)) == NULL)
1322
return;
1323
1324
/*
1325
* As we implicitly track the requests we also need to clear them on
1326
* release. Do clear before resource release.
1327
*/
1328
dr = lkpi_pci_devres_find(pdev);
1329
if (dr != NULL) {
1330
KASSERT(dr->region_table[bar] == rle->res, ("%s: pdev %p bar %d"
1331
" region_table res %p != rel->res %p\n", __func__, pdev,
1332
bar, dr->region_table[bar], rle->res));
1333
dr->region_table[bar] = NULL;
1334
dr->region_mask &= ~(1 << bar);
1335
}
1336
1337
TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
1338
if (rle->res != (void *)rman_get_bushandle(mmio->res))
1339
continue;
1340
TAILQ_REMOVE(&pdev->mmio, mmio, next);
1341
free(mmio, M_DEVBUF);
1342
}
1343
1344
bus_release_resource(pdev->dev.bsddev, rle->type, rle->rid, rle->res);
1345
}
1346
1347
void
1348
linuxkpi_pci_release_regions(struct pci_dev *pdev)
1349
{
1350
int i;
1351
1352
for (i = 0; i <= PCIR_MAX_BAR_0; i++)
1353
pci_release_region(pdev, i);
1354
}
1355
1356
int
1357
linux_pci_register_drm_driver(struct pci_driver *pdrv)
1358
{
1359
devclass_t dc;
1360
1361
dc = devclass_create("vgapci");
1362
if (dc == NULL)
1363
return (-ENXIO);
1364
pdrv->isdrm = true;
1365
pdrv->name = "drmn";
1366
return (_linux_pci_register_driver(pdrv, dc));
1367
}
1368
1369
void
1370
linux_pci_unregister_driver(struct pci_driver *pdrv)
1371
{
1372
devclass_t bus;
1373
1374
bus = devclass_find(pdrv->isdrm ? "vgapci" : "pci");
1375
1376
spin_lock(&pci_lock);
1377
list_del(&pdrv->node);
1378
spin_unlock(&pci_lock);
1379
bus_topo_lock();
1380
if (bus != NULL)
1381
devclass_delete_driver(bus, &pdrv->bsddriver);
1382
bus_topo_unlock();
1383
}
1384
1385
void
1386
linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
1387
{
1388
devclass_t bus;
1389
1390
bus = devclass_find("vgapci");
1391
1392
spin_lock(&pci_lock);
1393
list_del(&pdrv->node);
1394
spin_unlock(&pci_lock);
1395
bus_topo_lock();
1396
if (bus != NULL)
1397
devclass_delete_driver(bus, &pdrv->bsddriver);
1398
bus_topo_unlock();
1399
}
1400
1401
int
1402
linuxkpi_pci_enable_msix(struct pci_dev *pdev, struct msix_entry *entries,
1403
int nreq)
1404
{
1405
struct resource_list_entry *rle;
1406
int error;
1407
int avail;
1408
int i;
1409
1410
avail = pci_msix_count(pdev->dev.bsddev);
1411
if (avail < nreq) {
1412
if (avail == 0)
1413
return -EINVAL;
1414
return avail;
1415
}
1416
avail = nreq;
1417
if ((error = -pci_alloc_msix(pdev->dev.bsddev, &avail)) != 0)
1418
return error;
1419
/*
1420
* Handle case where "pci_alloc_msix()" may allocate less
1421
* interrupts than available and return with no error:
1422
*/
1423
if (avail < nreq) {
1424
pci_release_msi(pdev->dev.bsddev);
1425
return avail;
1426
}
1427
rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1428
pdev->dev.irq_start = rle->start;
1429
pdev->dev.irq_end = rle->start + avail;
1430
for (i = 0; i < nreq; i++)
1431
entries[i].vector = pdev->dev.irq_start + i;
1432
pdev->msix_enabled = true;
1433
return (0);
1434
}
1435
1436
int
1437
_lkpi_pci_enable_msi_range(struct pci_dev *pdev, int minvec, int maxvec)
1438
{
1439
struct resource_list_entry *rle;
1440
int error;
1441
int nvec;
1442
1443
if (maxvec < minvec)
1444
return (-EINVAL);
1445
1446
nvec = pci_msi_count(pdev->dev.bsddev);
1447
if (nvec < 1 || nvec < minvec)
1448
return (-ENOSPC);
1449
1450
nvec = min(nvec, maxvec);
1451
if ((error = -pci_alloc_msi(pdev->dev.bsddev, &nvec)) != 0)
1452
return error;
1453
1454
/* Native PCI might only ever ask for 32 vectors. */
1455
if (nvec < minvec) {
1456
pci_release_msi(pdev->dev.bsddev);
1457
return (-ENOSPC);
1458
}
1459
1460
rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1461
pdev->dev.irq_start = rle->start;
1462
pdev->dev.irq_end = rle->start + nvec;
1463
pdev->irq = rle->start;
1464
pdev->msi_enabled = true;
1465
return (0);
1466
}
1467
1468
int
1469
pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
1470
unsigned int flags)
1471
{
1472
int error;
1473
1474
if (flags & PCI_IRQ_MSIX) {
1475
struct msix_entry *entries;
1476
int i;
1477
1478
entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
1479
if (entries == NULL) {
1480
error = -ENOMEM;
1481
goto out;
1482
}
1483
for (i = 0; i < maxv; ++i)
1484
entries[i].entry = i;
1485
error = pci_enable_msix(pdev, entries, maxv);
1486
out:
1487
kfree(entries);
1488
if (error == 0 && pdev->msix_enabled)
1489
return (pdev->dev.irq_end - pdev->dev.irq_start);
1490
}
1491
if (flags & PCI_IRQ_MSI) {
1492
if (pci_msi_count(pdev->dev.bsddev) < minv)
1493
return (-ENOSPC);
1494
error = _lkpi_pci_enable_msi_range(pdev, minv, maxv);
1495
if (error == 0 && pdev->msi_enabled)
1496
return (pdev->dev.irq_end - pdev->dev.irq_start);
1497
}
1498
if (flags & PCI_IRQ_INTX) {
1499
if (pdev->irq)
1500
return (1);
1501
}
1502
1503
return (-EINVAL);
1504
}
1505
1506
struct msi_desc *
1507
lkpi_pci_msi_desc_alloc(int irq)
1508
{
1509
struct device *dev;
1510
struct pci_dev *pdev;
1511
struct msi_desc *desc;
1512
struct pci_devinfo *dinfo;
1513
struct pcicfg_msi *msi;
1514
int vec;
1515
1516
dev = lkpi_pci_find_irq_dev(irq);
1517
if (dev == NULL)
1518
return (NULL);
1519
1520
pdev = to_pci_dev(dev);
1521
1522
if (pdev->msi_desc == NULL)
1523
return (NULL);
1524
1525
if (irq < pdev->dev.irq_start || irq >= pdev->dev.irq_end)
1526
return (NULL);
1527
1528
vec = pdev->dev.irq_start - irq;
1529
1530
if (pdev->msi_desc[vec] != NULL)
1531
return (pdev->msi_desc[vec]);
1532
1533
dinfo = device_get_ivars(dev->bsddev);
1534
msi = &dinfo->cfg.msi;
1535
1536
desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO);
1537
1538
desc->pci.msi_attrib.is_64 =
1539
(msi->msi_ctrl & PCIM_MSICTRL_64BIT) ? true : false;
1540
desc->msg.data = msi->msi_data;
1541
1542
pdev->msi_desc[vec] = desc;
1543
1544
return (desc);
1545
}
1546
1547
bool
1548
pci_device_is_present(struct pci_dev *pdev)
1549
{
1550
device_t dev;
1551
1552
dev = pdev->dev.bsddev;
1553
1554
return (bus_child_present(dev));
1555
}
1556
1557
CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
1558
1559
struct linux_dma_obj {
1560
void *vaddr;
1561
uint64_t dma_addr;
1562
bus_dmamap_t dmamap;
1563
bus_dma_tag_t dmat;
1564
};
1565
1566
static uma_zone_t linux_dma_trie_zone;
1567
static uma_zone_t linux_dma_obj_zone;
1568
1569
static void
1570
linux_dma_init(void *arg)
1571
{
1572
1573
linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
1574
pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
1575
UMA_ALIGN_PTR, 0);
1576
linux_dma_obj_zone = uma_zcreate("linux_dma_object",
1577
sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
1578
UMA_ALIGN_PTR, 0);
1579
lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK);
1580
}
1581
SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
1582
1583
static void
1584
linux_dma_uninit(void *arg)
1585
{
1586
1587
counter_u64_free(lkpi_pci_nseg1_fail);
1588
uma_zdestroy(linux_dma_obj_zone);
1589
uma_zdestroy(linux_dma_trie_zone);
1590
}
1591
SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
1592
1593
static void *
1594
linux_dma_trie_alloc(struct pctrie *ptree)
1595
{
1596
1597
return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
1598
}
1599
1600
static void
1601
linux_dma_trie_free(struct pctrie *ptree, void *node)
1602
{
1603
1604
uma_zfree(linux_dma_trie_zone, node);
1605
}
1606
1607
PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
1608
linux_dma_trie_free);
1609
1610
#if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1611
static dma_addr_t
1612
linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
1613
bus_dma_tag_t dmat)
1614
{
1615
struct linux_dma_priv *priv;
1616
struct linux_dma_obj *obj;
1617
int error, nseg;
1618
bus_dma_segment_t seg;
1619
1620
priv = dev->dma_priv;
1621
1622
/*
1623
* If the resultant mapping will be entirely 1:1 with the
1624
* physical address, short-circuit the remainder of the
1625
* bus_dma API. This avoids tracking collisions in the pctrie
1626
* with the additional benefit of reducing overhead.
1627
*/
1628
if (bus_dma_id_mapped(dmat, phys, len))
1629
return (phys);
1630
1631
obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
1632
if (obj == NULL) {
1633
return (0);
1634
}
1635
obj->dmat = dmat;
1636
1637
DMA_PRIV_LOCK(priv);
1638
if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
1639
DMA_PRIV_UNLOCK(priv);
1640
uma_zfree(linux_dma_obj_zone, obj);
1641
return (0);
1642
}
1643
1644
nseg = -1;
1645
error = _bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
1646
BUS_DMA_NOWAIT, &seg, &nseg);
1647
if (error != 0) {
1648
bus_dmamap_destroy(obj->dmat, obj->dmamap);
1649
DMA_PRIV_UNLOCK(priv);
1650
uma_zfree(linux_dma_obj_zone, obj);
1651
counter_u64_add(lkpi_pci_nseg1_fail, 1);
1652
if (linuxkpi_debug) {
1653
device_printf(dev->bsddev, "%s: _bus_dmamap_load_phys "
1654
"error %d, phys %#018jx len %zu\n", __func__,
1655
error, (uintmax_t)phys, len);
1656
dump_stack();
1657
}
1658
return (0);
1659
}
1660
1661
KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1662
obj->dma_addr = seg.ds_addr;
1663
1664
error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
1665
if (error != 0) {
1666
bus_dmamap_unload(obj->dmat, obj->dmamap);
1667
bus_dmamap_destroy(obj->dmat, obj->dmamap);
1668
DMA_PRIV_UNLOCK(priv);
1669
uma_zfree(linux_dma_obj_zone, obj);
1670
return (0);
1671
}
1672
DMA_PRIV_UNLOCK(priv);
1673
return (obj->dma_addr);
1674
}
1675
#else
1676
static dma_addr_t
1677
linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
1678
size_t len __unused, bus_dma_tag_t dmat __unused)
1679
{
1680
return (phys);
1681
}
1682
#endif
1683
1684
dma_addr_t
1685
lkpi_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len,
1686
enum dma_data_direction direction, unsigned long attrs)
1687
{
1688
struct linux_dma_priv *priv;
1689
dma_addr_t dma;
1690
1691
priv = dev->dma_priv;
1692
dma = linux_dma_map_phys_common(dev, phys, len, priv->dmat);
1693
if (dma_mapping_error(dev, dma))
1694
return (dma);
1695
1696
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1697
dma_sync_single_for_device(dev, dma, len, direction);
1698
1699
return (dma);
1700
}
1701
1702
/* For backward compat only so we can MFC this. Remove before 15. */
1703
dma_addr_t
1704
linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
1705
{
1706
return (lkpi_dma_map_phys(dev, phys, len, DMA_NONE, 0));
1707
}
1708
1709
#if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1710
void
1711
lkpi_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len,
1712
enum dma_data_direction direction, unsigned long attrs)
1713
{
1714
struct linux_dma_priv *priv;
1715
struct linux_dma_obj *obj;
1716
1717
priv = dev->dma_priv;
1718
1719
if (pctrie_is_empty(&priv->ptree))
1720
return;
1721
1722
DMA_PRIV_LOCK(priv);
1723
obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1724
if (obj == NULL) {
1725
DMA_PRIV_UNLOCK(priv);
1726
return;
1727
}
1728
LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
1729
1730
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1731
dma_sync_single_for_cpu(dev, dma_addr, len, direction);
1732
1733
bus_dmamap_unload(obj->dmat, obj->dmamap);
1734
bus_dmamap_destroy(obj->dmat, obj->dmamap);
1735
DMA_PRIV_UNLOCK(priv);
1736
1737
uma_zfree(linux_dma_obj_zone, obj);
1738
}
1739
#else
1740
void
1741
lkpi_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len,
1742
enum dma_data_direction direction, unsigned long attrs)
1743
{
1744
}
1745
#endif
1746
1747
/* For backward compat only so we can MFC this. Remove before 15. */
1748
void
1749
linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1750
{
1751
lkpi_dma_unmap(dev, dma_addr, len, DMA_NONE, 0);
1752
}
1753
1754
void *
1755
linux_dma_alloc_coherent(struct device *dev, size_t size,
1756
dma_addr_t *dma_handle, gfp_t flag)
1757
{
1758
struct linux_dma_priv *priv;
1759
vm_paddr_t high;
1760
size_t align;
1761
void *mem;
1762
1763
if (dev == NULL || dev->dma_priv == NULL) {
1764
*dma_handle = 0;
1765
return (NULL);
1766
}
1767
priv = dev->dma_priv;
1768
if (priv->dma_coherent_mask)
1769
high = priv->dma_coherent_mask;
1770
else
1771
/* Coherent is lower 32bit only by default in Linux. */
1772
high = BUS_SPACE_MAXADDR_32BIT;
1773
align = PAGE_SIZE << get_order(size);
1774
/* Always zero the allocation. */
1775
flag |= M_ZERO;
1776
mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
1777
align, 0, VM_MEMATTR_DEFAULT);
1778
if (mem != NULL) {
1779
*dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
1780
priv->dmat_coherent);
1781
if (*dma_handle == 0) {
1782
kmem_free(mem, size);
1783
mem = NULL;
1784
}
1785
} else {
1786
*dma_handle = 0;
1787
}
1788
return (mem);
1789
}
1790
1791
struct lkpi_devres_dmam_coherent {
1792
size_t size;
1793
dma_addr_t *handle;
1794
void *mem;
1795
};
1796
1797
static void
1798
lkpi_dmam_free_coherent(struct device *dev, void *p)
1799
{
1800
struct lkpi_devres_dmam_coherent *dr;
1801
1802
dr = p;
1803
dma_free_coherent(dev, dr->size, dr->mem, *dr->handle);
1804
}
1805
1806
void *
1807
linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1808
gfp_t flag)
1809
{
1810
struct lkpi_devres_dmam_coherent *dr;
1811
1812
dr = lkpi_devres_alloc(lkpi_dmam_free_coherent,
1813
sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
1814
1815
if (dr == NULL)
1816
return (NULL);
1817
1818
dr->size = size;
1819
dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag);
1820
dr->handle = dma_handle;
1821
if (dr->mem == NULL) {
1822
lkpi_devres_free(dr);
1823
return (NULL);
1824
}
1825
1826
lkpi_devres_add(dev, dr);
1827
return (dr->mem);
1828
}
1829
1830
void
1831
linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
1832
bus_dmasync_op_t op)
1833
{
1834
struct linux_dma_priv *priv;
1835
struct linux_dma_obj *obj;
1836
1837
priv = dev->dma_priv;
1838
1839
if (pctrie_is_empty(&priv->ptree))
1840
return;
1841
1842
DMA_PRIV_LOCK(priv);
1843
obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1844
if (obj == NULL) {
1845
DMA_PRIV_UNLOCK(priv);
1846
return;
1847
}
1848
1849
bus_dmamap_sync(obj->dmat, obj->dmamap, op);
1850
DMA_PRIV_UNLOCK(priv);
1851
}
1852
1853
int
1854
linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
1855
enum dma_data_direction direction, unsigned long attrs)
1856
{
1857
struct linux_dma_priv *priv;
1858
struct scatterlist *sg;
1859
int i, nseg;
1860
bus_dma_segment_t seg;
1861
1862
priv = dev->dma_priv;
1863
1864
DMA_PRIV_LOCK(priv);
1865
1866
/* create common DMA map in the first S/G entry */
1867
if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1868
DMA_PRIV_UNLOCK(priv);
1869
return (0);
1870
}
1871
1872
/* load all S/G list entries */
1873
for_each_sg(sgl, sg, nents, i) {
1874
nseg = -1;
1875
if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1876
sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1877
&seg, &nseg) != 0) {
1878
bus_dmamap_unload(priv->dmat, sgl->dma_map);
1879
bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1880
DMA_PRIV_UNLOCK(priv);
1881
return (0);
1882
}
1883
KASSERT(nseg == 0,
1884
("More than one segment (nseg=%d)", nseg + 1));
1885
1886
sg_dma_address(sg) = seg.ds_addr;
1887
}
1888
1889
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) != 0)
1890
goto skip_sync;
1891
1892
switch (direction) {
1893
case DMA_BIDIRECTIONAL:
1894
bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1895
break;
1896
case DMA_TO_DEVICE:
1897
bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1898
break;
1899
case DMA_FROM_DEVICE:
1900
bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1901
break;
1902
default:
1903
break;
1904
}
1905
skip_sync:
1906
1907
DMA_PRIV_UNLOCK(priv);
1908
1909
return (nents);
1910
}
1911
1912
void
1913
linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1914
int nents __unused, enum dma_data_direction direction,
1915
unsigned long attrs)
1916
{
1917
struct linux_dma_priv *priv;
1918
1919
priv = dev->dma_priv;
1920
1921
DMA_PRIV_LOCK(priv);
1922
1923
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) != 0)
1924
goto skip_sync;
1925
1926
switch (direction) {
1927
case DMA_BIDIRECTIONAL:
1928
bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1929
bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1930
break;
1931
case DMA_TO_DEVICE:
1932
bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1933
break;
1934
case DMA_FROM_DEVICE:
1935
bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1936
break;
1937
default:
1938
break;
1939
}
1940
skip_sync:
1941
1942
bus_dmamap_unload(priv->dmat, sgl->dma_map);
1943
bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1944
DMA_PRIV_UNLOCK(priv);
1945
}
1946
1947
struct dma_pool {
1948
struct device *pool_device;
1949
uma_zone_t pool_zone;
1950
struct mtx pool_lock;
1951
bus_dma_tag_t pool_dmat;
1952
size_t pool_entry_size;
1953
struct pctrie pool_ptree;
1954
};
1955
1956
#define DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1957
#define DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1958
1959
static inline int
1960
dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1961
{
1962
struct linux_dma_obj *obj = mem;
1963
struct dma_pool *pool = arg;
1964
int error, nseg;
1965
bus_dma_segment_t seg;
1966
1967
nseg = -1;
1968
DMA_POOL_LOCK(pool);
1969
error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1970
vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1971
&seg, &nseg);
1972
DMA_POOL_UNLOCK(pool);
1973
if (error != 0) {
1974
return (error);
1975
}
1976
KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1977
obj->dma_addr = seg.ds_addr;
1978
1979
return (0);
1980
}
1981
1982
static void
1983
dma_pool_obj_dtor(void *mem, int size, void *arg)
1984
{
1985
struct linux_dma_obj *obj = mem;
1986
struct dma_pool *pool = arg;
1987
1988
DMA_POOL_LOCK(pool);
1989
bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1990
DMA_POOL_UNLOCK(pool);
1991
}
1992
1993
static int
1994
dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1995
int flags)
1996
{
1997
struct dma_pool *pool = arg;
1998
struct linux_dma_obj *obj;
1999
int error, i;
2000
2001
for (i = 0; i < count; i++) {
2002
obj = uma_zalloc(linux_dma_obj_zone, flags);
2003
if (obj == NULL)
2004
break;
2005
2006
error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
2007
BUS_DMA_NOWAIT, &obj->dmamap);
2008
if (error!= 0) {
2009
uma_zfree(linux_dma_obj_zone, obj);
2010
break;
2011
}
2012
2013
store[i] = obj;
2014
}
2015
2016
return (i);
2017
}
2018
2019
static void
2020
dma_pool_obj_release(void *arg, void **store, int count)
2021
{
2022
struct dma_pool *pool = arg;
2023
struct linux_dma_obj *obj;
2024
int i;
2025
2026
for (i = 0; i < count; i++) {
2027
obj = store[i];
2028
bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
2029
uma_zfree(linux_dma_obj_zone, obj);
2030
}
2031
}
2032
2033
struct dma_pool *
2034
linux_dma_pool_create(char *name, struct device *dev, size_t size,
2035
size_t align, size_t boundary)
2036
{
2037
struct linux_dma_priv *priv;
2038
struct dma_pool *pool;
2039
2040
priv = dev->dma_priv;
2041
2042
pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2043
pool->pool_device = dev;
2044
pool->pool_entry_size = size;
2045
2046
if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
2047
align, boundary, /* alignment, boundary */
2048
priv->dma_mask, /* lowaddr */
2049
BUS_SPACE_MAXADDR, /* highaddr */
2050
NULL, NULL, /* filtfunc, filtfuncarg */
2051
size, /* maxsize */
2052
1, /* nsegments */
2053
size, /* maxsegsz */
2054
0, /* flags */
2055
NULL, NULL, /* lockfunc, lockfuncarg */
2056
&pool->pool_dmat)) {
2057
kfree(pool);
2058
return (NULL);
2059
}
2060
2061
pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
2062
dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
2063
dma_pool_obj_release, pool, 0);
2064
2065
mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
2066
pctrie_init(&pool->pool_ptree);
2067
2068
return (pool);
2069
}
2070
2071
void
2072
linux_dma_pool_destroy(struct dma_pool *pool)
2073
{
2074
2075
uma_zdestroy(pool->pool_zone);
2076
bus_dma_tag_destroy(pool->pool_dmat);
2077
mtx_destroy(&pool->pool_lock);
2078
kfree(pool);
2079
}
2080
2081
void
2082
lkpi_dmam_pool_destroy(struct device *dev, void *p)
2083
{
2084
struct dma_pool *pool;
2085
2086
pool = *(struct dma_pool **)p;
2087
LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
2088
linux_dma_pool_destroy(pool);
2089
}
2090
2091
void *
2092
linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
2093
dma_addr_t *handle)
2094
{
2095
struct linux_dma_obj *obj;
2096
2097
obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
2098
if (obj == NULL)
2099
return (NULL);
2100
2101
DMA_POOL_LOCK(pool);
2102
if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
2103
DMA_POOL_UNLOCK(pool);
2104
uma_zfree_arg(pool->pool_zone, obj, pool);
2105
return (NULL);
2106
}
2107
DMA_POOL_UNLOCK(pool);
2108
2109
*handle = obj->dma_addr;
2110
return (obj->vaddr);
2111
}
2112
2113
void
2114
linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
2115
{
2116
struct linux_dma_obj *obj;
2117
2118
DMA_POOL_LOCK(pool);
2119
obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
2120
if (obj == NULL) {
2121
DMA_POOL_UNLOCK(pool);
2122
return;
2123
}
2124
LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
2125
DMA_POOL_UNLOCK(pool);
2126
2127
uma_zfree_arg(pool->pool_zone, obj, pool);
2128
}
2129
2130
static int
2131
linux_backlight_get_status(device_t dev, struct backlight_props *props)
2132
{
2133
struct pci_dev *pdev;
2134
2135
linux_set_current(curthread);
2136
pdev = device_get_softc(dev);
2137
2138
props->brightness = pdev->dev.bd->props.brightness;
2139
props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
2140
props->nlevels = 0;
2141
2142
return (0);
2143
}
2144
2145
static int
2146
linux_backlight_get_info(device_t dev, struct backlight_info *info)
2147
{
2148
struct pci_dev *pdev;
2149
2150
linux_set_current(curthread);
2151
pdev = device_get_softc(dev);
2152
2153
info->type = BACKLIGHT_TYPE_PANEL;
2154
strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
2155
return (0);
2156
}
2157
2158
static int
2159
linux_backlight_update_status(device_t dev, struct backlight_props *props)
2160
{
2161
struct pci_dev *pdev;
2162
2163
linux_set_current(curthread);
2164
pdev = device_get_softc(dev);
2165
2166
pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
2167
props->brightness / 100;
2168
pdev->dev.bd->props.power = props->brightness == 0 ?
2169
4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
2170
return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
2171
}
2172
2173
struct backlight_device *
2174
linux_backlight_device_register(const char *name, struct device *dev,
2175
void *data, const struct backlight_ops *ops, struct backlight_properties *props)
2176
{
2177
2178
dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
2179
dev->bd->ops = ops;
2180
dev->bd->props.type = props->type;
2181
dev->bd->props.max_brightness = props->max_brightness;
2182
dev->bd->props.brightness = props->brightness;
2183
dev->bd->props.power = props->power;
2184
dev->bd->data = data;
2185
dev->bd->dev = dev;
2186
dev->bd->name = strdup(name, M_DEVBUF);
2187
2188
dev->backlight_dev = backlight_register(name, dev->bsddev);
2189
2190
return (dev->bd);
2191
}
2192
2193
void
2194
linux_backlight_device_unregister(struct backlight_device *bd)
2195
{
2196
2197
backlight_destroy(bd->dev->backlight_dev);
2198
free(bd->name, M_DEVBUF);
2199
free(bd, M_DEVBUF);
2200
}
2201
2202