Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/dev/ath/ath_hal/ar9300/ar9300_misc.c
48525 views
1
/*
2
* Copyright (c) 2013 Qualcomm Atheros, Inc.
3
*
4
* Permission to use, copy, modify, and/or distribute this software for any
5
* purpose with or without fee is hereby granted, provided that the above
6
* copyright notice and this permission notice appear in all copies.
7
*
8
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14
* PERFORMANCE OF THIS SOFTWARE.
15
*/
16
17
#include "opt_ah.h"
18
19
#include "ah.h"
20
#include "ah_internal.h"
21
#include "ah_devid.h"
22
#ifdef AH_DEBUG
23
#include "ah_desc.h" /* NB: for HAL_PHYERR* */
24
#endif
25
26
#include "ar9300/ar9300.h"
27
#include "ar9300/ar9300reg.h"
28
#include "ar9300/ar9300phy.h"
29
#include "ar9300/ar9300desc.h"
30
31
static u_int32_t ar9300_read_loc_timer(struct ath_hal *ah);
32
33
void
34
ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
35
{
36
struct ath_hal_9300 *ahp = AH9300(ah);
37
*hangs = 0;
38
39
if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
40
*hangs |= HAL_RIFS_BB_HANG_WAR;
41
}
42
if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
43
*hangs |= HAL_DFS_BB_HANG_WAR;
44
}
45
if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
46
== HAL_OK)
47
{
48
*hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
49
}
50
if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
51
*hangs |= HAL_MAC_HANG_WAR;
52
}
53
if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
54
== HAL_OK)
55
{
56
*hangs |= HAL_PHYRESTART_CLR_WAR;
57
}
58
59
ahp->ah_hang_wars = *hangs;
60
}
61
62
/*
63
* XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
64
* HT20, HT40, fast-clock, turbo mode, etc.
65
*/
66
static u_int
67
ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
68
{
69
#if 0
70
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
71
72
if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
73
return (ath_hal_mac_usec(ah, clks) / 2);
74
} else {
75
return (ath_hal_mac_usec(ah, clks));
76
}
77
#endif
78
return (ath_hal_mac_usec(ah, clks));
79
}
80
81
u_int
82
ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
83
{
84
#if 0
85
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
86
87
if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
88
return (ath_hal_mac_clks(ah, usecs) * 2);
89
} else {
90
return (ath_hal_mac_clks(ah, usecs));
91
}
92
#endif
93
return (ath_hal_mac_clks(ah, usecs));
94
}
95
96
void
97
ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
98
{
99
struct ath_hal_9300 *ahp = AH9300(ah);
100
101
OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
102
}
103
104
HAL_BOOL
105
ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
106
{
107
struct ath_hal_9300 *ahp = AH9300(ah);
108
109
OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
110
return AH_TRUE;
111
}
112
113
void
114
ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
115
{
116
struct ath_hal_9300 *ahp = AH9300(ah);
117
118
OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
119
}
120
121
HAL_BOOL
122
ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
123
{
124
struct ath_hal_9300 *ahp = AH9300(ah);
125
126
/* save it since it must be rewritten on reset */
127
OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
128
129
OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
130
OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
131
return AH_TRUE;
132
}
133
134
/*
135
* Attempt to change the cards operating regulatory domain to the given value
136
* Returns: A_EINVAL for an unsupported regulatory domain.
137
* A_HARDWARE for an unwritable EEPROM or bad EEPROM version
138
*/
139
HAL_BOOL
140
ar9300_set_regulatory_domain(struct ath_hal *ah,
141
u_int16_t reg_domain, HAL_STATUS *status)
142
{
143
HAL_STATUS ecode;
144
145
if (AH_PRIVATE(ah)->ah_currentRD == 0) {
146
AH_PRIVATE(ah)->ah_currentRD = reg_domain;
147
return AH_TRUE;
148
}
149
ecode = HAL_EIO;
150
151
#if 0
152
bad:
153
#endif
154
if (status) {
155
*status = ecode;
156
}
157
return AH_FALSE;
158
}
159
160
/*
161
* Return the wireless modes (a,b,g,t) supported by hardware.
162
*
163
* This value is what is actually supported by the hardware
164
* and is unaffected by regulatory/country code settings.
165
*
166
*/
167
u_int
168
ar9300_get_wireless_modes(struct ath_hal *ah)
169
{
170
return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
171
}
172
173
/*
174
* Set the interrupt and GPIO values so the ISR can disable RF
175
* on a switch signal. Assumes GPIO port and interrupt polarity
176
* are set prior to call.
177
*/
178
void
179
ar9300_enable_rf_kill(struct ath_hal *ah)
180
{
181
/* TODO - can this really be above the hal on the GPIO interface for
182
* TODO - the client only?
183
*/
184
struct ath_hal_9300 *ahp = AH9300(ah);
185
186
if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
187
/* Check RF kill GPIO before set/clear RFSILENT bits. */
188
if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
189
OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
190
AR_RFSILENT_FORCE);
191
OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
192
}
193
else {
194
OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
195
AR_RFSILENT_FORCE);
196
OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
197
}
198
}
199
else {
200
/* Connect rfsilent_bb_l to baseband */
201
OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
202
AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
203
204
/* Set input mux for rfsilent_bb_l to GPIO #0 */
205
OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
206
AR_GPIO_INPUT_MUX2_RFSILENT);
207
OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
208
(ahp->ah_gpio_select & 0x0f) << 4);
209
210
/*
211
* Configure the desired GPIO port for input and
212
* enable baseband rf silence
213
*/
214
ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
215
OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
216
}
217
218
/*
219
* If radio disable switch connection to GPIO bit x is enabled
220
* program GPIO interrupt.
221
* If rfkill bit on eeprom is 1, setupeeprommap routine has already
222
* verified that it is a later version of eeprom, it has a place for
223
* rfkill bit and it is set to 1, indicating that GPIO bit x hardware
224
* connection is present.
225
*/
226
/*
227
* RFKill uses polling not interrupt,
228
* disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
229
*/
230
if (ath_hal_hasrfkill_int(ah)) {
231
if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
232
/* switch already closed, set to interrupt upon open */
233
ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
234
} else {
235
ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
236
}
237
}
238
}
239
240
/*
241
* Change the LED blinking pattern to correspond to the connectivity
242
*/
243
void
244
ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
245
{
246
static const u_int32_t ledbits[8] = {
247
AR_CFG_LED_ASSOC_NONE, /* HAL_LED_RESET */
248
AR_CFG_LED_ASSOC_PENDING, /* HAL_LED_INIT */
249
AR_CFG_LED_ASSOC_PENDING, /* HAL_LED_READY */
250
AR_CFG_LED_ASSOC_PENDING, /* HAL_LED_SCAN */
251
AR_CFG_LED_ASSOC_PENDING, /* HAL_LED_AUTH */
252
AR_CFG_LED_ASSOC_ACTIVE, /* HAL_LED_ASSOC */
253
AR_CFG_LED_ASSOC_ACTIVE, /* HAL_LED_RUN */
254
AR_CFG_LED_ASSOC_NONE,
255
};
256
257
OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
258
}
259
260
/*
261
* Sets the Power LED on the cardbus without affecting the Network LED.
262
*/
263
void
264
ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
265
{
266
u_int32_t val;
267
268
val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
269
OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
270
}
271
272
/*
273
* Sets the Network LED on the cardbus without affecting the Power LED.
274
*/
275
void
276
ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
277
{
278
u_int32_t val;
279
280
val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
281
OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
282
}
283
284
/*
285
* Change association related fields programmed into the hardware.
286
* Writing a valid BSSID to the hardware effectively enables the hardware
287
* to synchronize its TSF to the correct beacons and receive frames coming
288
* from that BSSID. It is called by the SME JOIN operation.
289
*/
290
void
291
ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
292
u_int16_t assoc_id)
293
{
294
struct ath_hal_9300 *ahp = AH9300(ah);
295
296
/* save bssid and assoc_id for restore on reset */
297
OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
298
ahp->ah_assoc_id = assoc_id;
299
300
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
301
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
302
((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
303
}
304
305
/*
306
* Get the current hardware tsf for stamlme
307
*/
308
u_int64_t
309
ar9300_get_tsf64(struct ath_hal *ah)
310
{
311
u_int64_t tsf;
312
313
/* XXX sync multi-word read? */
314
tsf = OS_REG_READ(ah, AR_TSF_U32);
315
tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
316
return tsf;
317
}
318
319
void
320
ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
321
{
322
OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
323
OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
324
}
325
326
/*
327
* Get the current hardware tsf for stamlme
328
*/
329
u_int32_t
330
ar9300_get_tsf32(struct ath_hal *ah)
331
{
332
return OS_REG_READ(ah, AR_TSF_L32);
333
}
334
335
u_int32_t
336
ar9300_get_tsf2_32(struct ath_hal *ah)
337
{
338
return OS_REG_READ(ah, AR_TSF2_L32);
339
}
340
341
/*
342
* Reset the current hardware tsf for stamlme.
343
*/
344
void
345
ar9300_reset_tsf(struct ath_hal *ah)
346
{
347
int count;
348
349
count = 0;
350
while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
351
count++;
352
if (count > 10) {
353
HALDEBUG(ah, HAL_DEBUG_RESET,
354
"%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
355
break;
356
}
357
OS_DELAY(10);
358
}
359
OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
360
}
361
362
/*
363
* Set or clear hardware basic rate bit
364
* Set hardware basic rate set if basic rate is found
365
* and basic rate is equal or less than 2Mbps
366
*/
367
void
368
ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
369
{
370
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
371
u_int32_t reg;
372
u_int8_t xset;
373
int i;
374
375
if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
376
return;
377
}
378
xset = 0;
379
for (i = 0; i < rs->rs_count; i++) {
380
u_int8_t rset = rs->rs_rates[i];
381
/* Basic rate defined? */
382
if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
383
xset = rset;
384
}
385
}
386
/*
387
* Set the h/w bit to reflect whether or not the basic
388
* rate is found to be equal or less than 2Mbps.
389
*/
390
reg = OS_REG_READ(ah, AR_STA_ID1);
391
if (xset && xset / 2 <= 2) {
392
OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
393
} else {
394
OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
395
}
396
}
397
398
/*
399
* Grab a semi-random value from hardware registers - may not
400
* change often
401
*/
402
u_int32_t
403
ar9300_get_random_seed(struct ath_hal *ah)
404
{
405
u_int32_t nf;
406
407
nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
408
if (nf & 0x100) {
409
nf = 0 - ((nf ^ 0x1ff) + 1);
410
}
411
return (OS_REG_READ(ah, AR_TSF_U32) ^
412
OS_REG_READ(ah, AR_TSF_L32) ^ nf);
413
}
414
415
/*
416
* Detect if our card is present
417
*/
418
HAL_BOOL
419
ar9300_detect_card_present(struct ath_hal *ah)
420
{
421
u_int16_t mac_version, mac_rev;
422
u_int32_t v;
423
424
/*
425
* Read the Silicon Revision register and compare that
426
* to what we read at attach time. If the same, we say
427
* a card/device is present.
428
*/
429
v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
430
if (v == 0xFF) {
431
/* new SREV format */
432
v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
433
/*
434
* Include 6-bit Chip Type (masked to 0) to differentiate
435
* from pre-Sowl versions
436
*/
437
mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
438
mac_rev = MS(v, AR_SREV_REVISION2);
439
} else {
440
mac_version = MS(v, AR_SREV_VERSION);
441
mac_rev = v & AR_SREV_REVISION;
442
}
443
return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
444
AH_PRIVATE(ah)->ah_macRev == mac_rev);
445
}
446
447
/*
448
* Update MIB Counters
449
*/
450
void
451
ar9300_update_mib_mac_stats(struct ath_hal *ah)
452
{
453
struct ath_hal_9300 *ahp = AH9300(ah);
454
HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
455
456
stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
457
stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
458
stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
459
stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
460
stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
461
}
462
463
void
464
ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
465
{
466
struct ath_hal_9300 *ahp = AH9300(ah);
467
HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
468
469
stats->ackrcv_bad = istats->ackrcv_bad;
470
stats->rts_bad = istats->rts_bad;
471
stats->fcs_bad = istats->fcs_bad;
472
stats->rts_good = istats->rts_good;
473
stats->beacons = istats->beacons;
474
}
475
476
/*
477
* Detect if the HW supports spreading a CCK signal on channel 14
478
*/
479
HAL_BOOL
480
ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
481
{
482
return AH_TRUE;
483
}
484
485
/*
486
* Get the rssi of frame curently being received.
487
*/
488
u_int32_t
489
ar9300_get_cur_rssi(struct ath_hal *ah)
490
{
491
/* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
492
/* get combined RSSI */
493
return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
494
}
495
496
#if ATH_GEN_RANDOMNESS
497
/*
498
* Get the rssi value from BB on ctl chain0.
499
*/
500
u_int32_t
501
ar9300_get_rssi_chain0(struct ath_hal *ah)
502
{
503
/* get ctl chain0 RSSI */
504
return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
505
}
506
#endif
507
508
u_int
509
ar9300_get_def_antenna(struct ath_hal *ah)
510
{
511
return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
512
}
513
514
/* Setup coverage class */
515
void
516
ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
517
{
518
}
519
520
void
521
ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
522
{
523
OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
524
}
525
526
HAL_BOOL
527
ar9300_set_antenna_switch(struct ath_hal *ah,
528
HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
529
u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
530
{
531
struct ath_hal_9300 *ahp = AH9300(ah);
532
533
/*
534
* Owl does not support diversity or changing antennas.
535
*
536
* Instead this API and function are defined differently for AR9300.
537
* To support Tablet PC's, this interface allows the system
538
* to dramatically reduce the TX power on a particular chain.
539
*
540
* Based on the value of (redefined) diversity_control, the
541
* reset code will decrease power on chain 0 or chain 1/2.
542
*
543
* Based on the value of bit 0 of antenna_switch_swap,
544
* the mapping between OID call and chain is defined as:
545
* 0: map A -> 0, B -> 1;
546
* 1: map A -> 1, B -> 0;
547
*
548
* NOTE:
549
* The devices that use this OID should use a tx_chain_mask and
550
* tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
551
* used in order to ensure an active transmit antenna. This
552
* API will allow the host to turn off the only transmitting
553
* antenna to ensure the antenna closest to the user's body is
554
* powered-down.
555
*/
556
/*
557
* Set antenna control for use during reset sequence by
558
* ar9300_decrease_chain_power()
559
*/
560
ahp->ah_diversity_control = settings;
561
562
return AH_TRUE;
563
}
564
565
HAL_BOOL
566
ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
567
{
568
return AH_TRUE;
569
}
570
571
HAL_BOOL
572
ar9300_set_slot_time(struct ath_hal *ah, u_int us)
573
{
574
struct ath_hal_9300 *ahp = AH9300(ah);
575
if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
576
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
577
ahp->ah_slot_time = (u_int) -1; /* restore default handling */
578
return AH_FALSE;
579
} else {
580
/* convert to system clocks */
581
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
582
ahp->ah_slot_time = us;
583
return AH_TRUE;
584
}
585
}
586
587
HAL_BOOL
588
ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
589
{
590
struct ath_hal_9300 *ahp = AH9300(ah);
591
592
if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
593
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
594
ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
595
return AH_FALSE;
596
} else {
597
/* convert to system clocks */
598
OS_REG_RMW_FIELD(ah,
599
AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
600
ahp->ah_ack_timeout = us;
601
return AH_TRUE;
602
}
603
}
604
605
u_int
606
ar9300_get_ack_timeout(struct ath_hal *ah)
607
{
608
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
609
return ar9300_mac_to_usec(ah, clks); /* convert from system clocks */
610
}
611
612
HAL_STATUS
613
ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
614
u_int32_t next_start, HAL_QUIET_FLAG flag)
615
{
616
#define TU_TO_USEC(_tu) ((_tu) << 10)
617
HAL_STATUS status = HAL_EIO;
618
u_int32_t tsf = 0, j, next_start_us = 0;
619
if (flag & HAL_QUIET_ENABLE) {
620
for (j = 0; j < 2; j++) {
621
next_start_us = TU_TO_USEC(next_start);
622
tsf = OS_REG_READ(ah, AR_TSF_L32);
623
if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
624
next_start_us += tsf;
625
}
626
if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
627
next_start_us +=
628
ah->ah_config.ah_sw_beacon_response_time;
629
}
630
OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
631
OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
632
OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
633
OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
634
OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
635
if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
636
status = HAL_OK;
637
break;
638
}
639
HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
640
"while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
641
/* TSF shouldn't count twice or reg access is taking forever */
642
HALASSERT(j < 1);
643
}
644
} else {
645
OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
646
status = HAL_OK;
647
}
648
649
return status;
650
#undef TU_TO_USEC
651
}
652
653
//#ifdef ATH_SUPPORT_DFS
654
void
655
ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
656
{
657
uint32_t reg1, reg2;
658
659
reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
660
reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
661
AH9300(ah)->ah_cac_quiet_enabled = enable;
662
663
if (enable) {
664
OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
665
reg1 | AR_PCU_FORCE_QUIET_COLL);
666
OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
667
reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
668
} else {
669
OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
670
reg1 & ~AR_PCU_FORCE_QUIET_COLL);
671
OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
672
reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
673
}
674
}
675
//#endif /* ATH_SUPPORT_DFS */
676
677
void
678
ar9300_set_pcu_config(struct ath_hal *ah)
679
{
680
ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
681
}
682
683
HAL_STATUS
684
ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
685
u_int32_t capability, u_int32_t *result)
686
{
687
struct ath_hal_9300 *ahp = AH9300(ah);
688
const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
689
struct ar9300_ani_state *ani;
690
691
switch (type) {
692
case HAL_CAP_CIPHER: /* cipher handled in hardware */
693
switch (capability) {
694
case HAL_CIPHER_AES_CCM:
695
case HAL_CIPHER_AES_OCB:
696
case HAL_CIPHER_TKIP:
697
case HAL_CIPHER_WEP:
698
case HAL_CIPHER_MIC:
699
case HAL_CIPHER_CLR:
700
return HAL_OK;
701
default:
702
return HAL_ENOTSUPP;
703
}
704
case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */
705
switch (capability) {
706
case 0: /* hardware capability */
707
return HAL_OK;
708
case 1:
709
return (ahp->ah_sta_id1_defaults &
710
AR_STA_ID1_CRPT_MIC_ENABLE) ? HAL_OK : HAL_ENXIO;
711
default:
712
return HAL_ENOTSUPP;
713
}
714
case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */
715
switch (capability) {
716
case 0: /* hardware capability */
717
return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
718
case 1: /* current setting */
719
return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
720
HAL_ENXIO : HAL_OK;
721
default:
722
return HAL_ENOTSUPP;
723
}
724
case HAL_CAP_WME_TKIPMIC:
725
/* hardware can do TKIP MIC when WMM is turned on */
726
return HAL_OK;
727
case HAL_CAP_PHYCOUNTERS: /* hardware PHY error counters */
728
return HAL_OK;
729
case HAL_CAP_DIVERSITY: /* hardware supports fast diversity */
730
switch (capability) {
731
case 0: /* hardware capability */
732
return HAL_OK;
733
case 1: /* current setting */
734
return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
735
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
736
HAL_OK : HAL_ENXIO;
737
}
738
return HAL_EINVAL;
739
case HAL_CAP_TPC:
740
switch (capability) {
741
case 0: /* hardware capability */
742
return HAL_OK;
743
case 1:
744
return ah->ah_config.ath_hal_desc_tpc ?
745
HAL_OK : HAL_ENXIO;
746
}
747
return HAL_OK;
748
case HAL_CAP_PHYDIAG: /* radar pulse detection capability */
749
return HAL_OK;
750
case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */
751
switch (capability) {
752
case 0: /* hardware capability */
753
return HAL_OK;
754
case 1:
755
if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
756
/*
757
* Owl and Merlin have problems in mcast key search.
758
* Disable this cap. in Ad-hoc mode. see Bug 25776 and
759
* 26802
760
*/
761
return HAL_ENXIO;
762
} else {
763
return (ahp->ah_sta_id1_defaults &
764
AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
765
}
766
}
767
return HAL_EINVAL;
768
case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */
769
switch (capability) {
770
case 0: /* hardware capability */
771
return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
772
case 1:
773
return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
774
HAL_OK : HAL_ENXIO;
775
}
776
return HAL_EINVAL;
777
case HAL_CAP_RFSILENT: /* rfsilent support */
778
if (capability == 3) { /* rfkill interrupt */
779
/*
780
* XXX: Interrupt-based notification of RF Kill state
781
* changes not working yet. Report that this feature
782
* is not supported so that polling is used instead.
783
*/
784
return (HAL_ENOTSUPP);
785
}
786
return ath_hal_getcapability(ah, type, capability, result);
787
case HAL_CAP_4ADDR_AGGR:
788
return HAL_OK;
789
case HAL_CAP_BB_RIFS_HANG:
790
return HAL_ENOTSUPP;
791
case HAL_CAP_BB_DFS_HANG:
792
return HAL_ENOTSUPP;
793
case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
794
/* Track chips that are known to have BB hangs related
795
* to rx_clear stuck low.
796
*/
797
return HAL_ENOTSUPP;
798
case HAL_CAP_MAC_HANG:
799
/* Track chips that are known to have MAC hangs.
800
*/
801
return HAL_OK;
802
case HAL_CAP_RIFS_RX_ENABLED:
803
/* Is RIFS RX currently enabled */
804
return (ahp->ah_rifs_enabled == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
805
#if 0
806
case HAL_CAP_ANT_CFG_2GHZ:
807
*result = p_cap->halNumAntCfg2Ghz;
808
return HAL_OK;
809
case HAL_CAP_ANT_CFG_5GHZ:
810
*result = p_cap->halNumAntCfg5Ghz;
811
return HAL_OK;
812
case HAL_CAP_RX_STBC:
813
*result = p_cap->hal_rx_stbc_support;
814
return HAL_OK;
815
case HAL_CAP_TX_STBC:
816
*result = p_cap->hal_tx_stbc_support;
817
return HAL_OK;
818
#endif
819
case HAL_CAP_LDPC:
820
*result = p_cap->halLDPCSupport;
821
return HAL_OK;
822
case HAL_CAP_DYNAMIC_SMPS:
823
return HAL_OK;
824
case HAL_CAP_DS:
825
return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
826
(p_cap->halTxChainMask & 0x3) != 0x3 ||
827
(p_cap->halRxChainMask & 0x3) != 0x3) ?
828
HAL_ENOTSUPP : HAL_OK;
829
case HAL_CAP_TS:
830
return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
831
(p_cap->halTxChainMask & 0x7) != 0x7 ||
832
(p_cap->halRxChainMask & 0x7) != 0x7) ?
833
HAL_ENOTSUPP : HAL_OK;
834
case HAL_CAP_OL_PWRCTRL:
835
return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
836
HAL_OK : HAL_ENOTSUPP;
837
case HAL_CAP_CRDC:
838
#if ATH_SUPPORT_CRDC
839
return (AR_SREV_WASP(ah) &&
840
ah->ah_config.ath_hal_crdc_enable) ?
841
HAL_OK : HAL_ENOTSUPP;
842
#else
843
return HAL_ENOTSUPP;
844
#endif
845
#if 0
846
case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
847
*result = (u_int32_t)(-1);
848
return HAL_OK;
849
case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
850
*result = (u_int32_t)(-1);
851
return HAL_OK;
852
#endif
853
case HAL_CAP_BB_PANIC_WATCHDOG:
854
return HAL_OK;
855
case HAL_CAP_PHYRESTART_CLR_WAR:
856
if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
857
(AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
858
{
859
return HAL_OK;
860
}
861
else
862
{
863
return HAL_ENOTSUPP;
864
}
865
case HAL_CAP_ENTERPRISE_MODE:
866
*result = ahp->ah_enterprise_mode >> 16;
867
/*
868
* WAR for EV 77658 - Add delimiters to first sub-frame when using
869
* RTS/CTS with aggregation and non-enterprise Osprey.
870
*
871
* Bug fixed in AR9580/Peacock, Wasp1.1 and later
872
*/
873
if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
874
!AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
875
AR_SREV_WASP_10(ah))) {
876
*result |= AH_ENT_RTSCTS_DELIM_WAR;
877
}
878
return HAL_OK;
879
case HAL_CAP_LDPCWAR:
880
/* WAR for RIFS+LDPC issue is required for all chips currently
881
* supported by ar9300 HAL.
882
*/
883
return HAL_OK;
884
case HAL_CAP_ENABLE_APM:
885
*result = p_cap->halApmEnable;
886
return HAL_OK;
887
case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
888
return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
889
case HAL_CAP_PCIE_LCR_OFFSET:
890
*result = p_cap->hal_pcie_lcr_offset;
891
return HAL_OK;
892
case HAL_CAP_SMARTANTENNA:
893
/* FIXME A request is pending with h/w team to add feature bit in
894
* caldata to detect if board has smart antenna or not, once added
895
* we need to fix his piece of code to read and return value without
896
* any compile flags
897
*/
898
#if UMAC_SUPPORT_SMARTANTENNA
899
/* enable smart antenna for Peacock, Wasp and scorpion
900
for future chips need to modify */
901
if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
902
return HAL_OK;
903
} else {
904
return HAL_ENOTSUPP;
905
}
906
#else
907
return HAL_ENOTSUPP;
908
#endif
909
910
#ifdef ATH_TRAFFIC_FAST_RECOVER
911
case HAL_CAP_TRAFFIC_FAST_RECOVER:
912
if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
913
return HAL_OK;
914
} else {
915
return HAL_ENOTSUPP;
916
}
917
#endif
918
919
/* FreeBSD ANI */
920
case HAL_CAP_INTMIT: /* interference mitigation */
921
switch (capability) {
922
case HAL_CAP_INTMIT_PRESENT: /* hardware capability */
923
return HAL_OK;
924
case HAL_CAP_INTMIT_ENABLE:
925
return (ahp->ah_proc_phy_err & HAL_PROCESS_ANI) ?
926
HAL_OK : HAL_ENXIO;
927
case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
928
case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
929
// case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
930
case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
931
case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
932
ani = ar9300_ani_get_current_state(ah);
933
if (ani == AH_NULL)
934
return HAL_ENXIO;
935
switch (capability) {
936
/* XXX AR9300 HAL has OFDM/CCK noise immunity level params? */
937
case 2: *result = ani->ofdm_noise_immunity_level; break;
938
case 3: *result = !ani->ofdm_weak_sig_detect_off; break;
939
// case 4: *result = ani->cck_weak_sig_threshold; break;
940
case 5: *result = ani->firstep_level; break;
941
case 6: *result = ani->spur_immunity_level; break;
942
}
943
return HAL_OK;
944
}
945
return HAL_EINVAL;
946
case HAL_CAP_ENFORCE_TXOP:
947
if (capability == 0)
948
return (HAL_OK);
949
if (capability != 1)
950
return (HAL_ENOTSUPP);
951
(*result) = !! (ahp->ah_misc_mode & AR_PCU_TXOP_TBTT_LIMIT_ENA);
952
return (HAL_OK);
953
case HAL_CAP_TOA_LOCATIONING:
954
if (capability == 0)
955
return HAL_OK;
956
if (capability == 2) {
957
*result = ar9300_read_loc_timer(ah);
958
return (HAL_OK);
959
}
960
return HAL_ENOTSUPP;
961
default:
962
return ath_hal_getcapability(ah, type, capability, result);
963
}
964
}
965
966
HAL_BOOL
967
ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
968
u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
969
{
970
struct ath_hal_9300 *ahp = AH9300(ah);
971
HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
972
u_int32_t v;
973
974
switch (type) {
975
case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */
976
if (! p_cap->halTkipMicTxRxKeySupport)
977
return AH_FALSE;
978
979
if (setting)
980
ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
981
else
982
ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
983
984
OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
985
return AH_TRUE;
986
987
case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */
988
if (setting) {
989
ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
990
} else {
991
ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
992
}
993
return AH_TRUE;
994
case HAL_CAP_DIVERSITY:
995
v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
996
if (setting) {
997
v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
998
} else {
999
v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
1000
}
1001
OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
1002
return AH_TRUE;
1003
case HAL_CAP_DIAG: /* hardware diagnostic support */
1004
/*
1005
* NB: could split this up into virtual capabilities,
1006
* (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
1007
* seems worth the additional complexity.
1008
*/
1009
#ifdef AH_DEBUG
1010
AH_PRIVATE(ah)->ah_diagreg = setting;
1011
#else
1012
AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */
1013
#endif
1014
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
1015
return AH_TRUE;
1016
case HAL_CAP_TPC:
1017
ah->ah_config.ath_hal_desc_tpc = (setting != 0);
1018
return AH_TRUE;
1019
case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */
1020
if (setting) {
1021
ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
1022
} else {
1023
ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1024
}
1025
return AH_TRUE;
1026
case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */
1027
if (p_cap->halTsfAddSupport) {
1028
if (setting) {
1029
ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
1030
} else {
1031
ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
1032
}
1033
return AH_TRUE;
1034
}
1035
return AH_FALSE;
1036
1037
/* FreeBSD interrupt mitigation / ANI */
1038
case HAL_CAP_INTMIT: { /* interference mitigation */
1039
/* This maps the public ANI commands to the internal ANI commands */
1040
/* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
1041
static const HAL_ANI_CMD cmds[] = {
1042
HAL_ANI_PRESENT,
1043
HAL_ANI_MODE,
1044
HAL_ANI_NOISE_IMMUNITY_LEVEL,
1045
HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
1046
HAL_ANI_CCK_WEAK_SIGNAL_THR,
1047
HAL_ANI_FIRSTEP_LEVEL,
1048
HAL_ANI_SPUR_IMMUNITY_LEVEL,
1049
};
1050
#define N(a) (sizeof(a) / sizeof(a[0]))
1051
return capability < N(cmds) ?
1052
ar9300_ani_control(ah, cmds[capability], setting) :
1053
AH_FALSE;
1054
#undef N
1055
}
1056
1057
case HAL_CAP_RXBUFSIZE: /* set MAC receive buffer size */
1058
ahp->rx_buf_size = setting & AR_DATABUF_MASK;
1059
OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
1060
return AH_TRUE;
1061
1062
case HAL_CAP_ENFORCE_TXOP:
1063
if (capability != 1)
1064
return AH_FALSE;
1065
if (setting) {
1066
ahp->ah_misc_mode |= AR_PCU_TXOP_TBTT_LIMIT_ENA;
1067
OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1068
} else {
1069
ahp->ah_misc_mode &= ~AR_PCU_TXOP_TBTT_LIMIT_ENA;
1070
OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1071
}
1072
return AH_TRUE;
1073
1074
case HAL_CAP_TOA_LOCATIONING:
1075
if (capability == 0)
1076
return AH_TRUE;
1077
if (capability == 1) {
1078
ar9300_update_loc_ctl_reg(ah, setting);
1079
return AH_TRUE;
1080
}
1081
return AH_FALSE;
1082
1083
#define owl_get_ntxchains(_txchainmask) \
1084
(((_txchainmask >> 2) & 1) + ((_txchainmask >> 1) & 1) + \
1085
(_txchainmask & 1))
1086
1087
case HAL_CAP_RX_CHAINMASK:
1088
setting &= ar9300_eeprom_get(ahp, EEP_RX_MASK);
1089
p_cap->halRxChainMask = setting;
1090
p_cap->halRxStreams = owl_get_ntxchains(setting);
1091
if (p_cap->halRxStreams > 3)
1092
p_cap->halRxStreams = 3;
1093
else if (p_cap->halRxStreams < 1)
1094
p_cap->halRxStreams = 1;
1095
return AH_TRUE;
1096
1097
case HAL_CAP_TX_CHAINMASK:
1098
setting &= ar9300_eeprom_get(ahp, EEP_TX_MASK);
1099
p_cap->halTxChainMask = setting;
1100
p_cap->halTxStreams = owl_get_ntxchains(setting);
1101
if (p_cap->halTxStreams > 3)
1102
p_cap->halTxStreams = 3;
1103
else if (p_cap->halTxStreams < 1)
1104
p_cap->halTxStreams = 1;
1105
return AH_TRUE;
1106
1107
#undef owl_get_ntxchains
1108
1109
/* fall thru... */
1110
default:
1111
return ath_hal_setcapability(ah, type, capability, setting, status);
1112
}
1113
}
1114
1115
#ifdef AH_DEBUG
1116
static void
1117
ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
1118
{
1119
u_int32_t i = 0;
1120
1121
/* Read 0x80d0 to trigger pcie analyzer */
1122
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1123
"0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
1124
1125
if (args & HAL_DIAG_PRINT_REG_COUNTER) {
1126
struct ath_hal_9300 *ahp = AH9300(ah);
1127
u_int32_t tf, rf, rc, cc;
1128
1129
tf = OS_REG_READ(ah, AR_TFCNT);
1130
rf = OS_REG_READ(ah, AR_RFCNT);
1131
rc = OS_REG_READ(ah, AR_RCCNT);
1132
cc = OS_REG_READ(ah, AR_CCCNT);
1133
1134
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1135
"AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
1136
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1137
"AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
1138
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1139
"AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
1140
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1141
"AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
1142
1143
ahp->last_tf = tf;
1144
ahp->last_rf = rf;
1145
ahp->last_rc = rc;
1146
ahp->last_cc = cc;
1147
1148
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1149
"DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1150
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1151
"DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1152
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1153
"DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1154
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1155
"DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1156
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1157
"DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1158
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1159
"DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1160
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1161
"DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1162
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1163
"DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1164
}
1165
1166
if (args & HAL_DIAG_PRINT_REG_ALL) {
1167
for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1168
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1169
i, OS_REG_READ(ah, i));
1170
}
1171
1172
for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1173
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1174
i, OS_REG_READ(ah, i));
1175
}
1176
1177
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1178
"0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1179
1180
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1181
"0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1182
1183
for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1184
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1185
i, OS_REG_READ(ah, i));
1186
}
1187
1188
for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1189
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1190
i, OS_REG_READ(ah, i));
1191
}
1192
1193
for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1194
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1195
i, OS_REG_READ(ah, i));
1196
}
1197
1198
for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1199
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1200
i, OS_REG_READ(ah, i));
1201
}
1202
1203
for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1204
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1205
i, OS_REG_READ(ah, i));
1206
}
1207
1208
for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1209
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1210
i, OS_REG_READ(ah, i));
1211
}
1212
1213
for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1214
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1215
i, OS_REG_READ(ah, i));
1216
}
1217
1218
for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1219
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1220
i, OS_REG_READ(ah, i));
1221
}
1222
1223
for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1224
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1225
i, OS_REG_READ(ah, i));
1226
}
1227
1228
for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1229
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1230
i, OS_REG_READ(ah, i));
1231
}
1232
1233
for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1234
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1235
i, OS_REG_READ(ah, i));
1236
}
1237
}
1238
}
1239
#endif
1240
1241
HAL_BOOL
1242
ar9300_get_diag_state(struct ath_hal *ah, int request,
1243
const void *args, u_int32_t argsize,
1244
void **result, u_int32_t *resultsize)
1245
{
1246
struct ath_hal_9300 *ahp = AH9300(ah);
1247
struct ar9300_ani_state *ani;
1248
1249
(void) ahp;
1250
if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1251
return AH_TRUE;
1252
}
1253
switch (request) {
1254
#ifdef AH_PRIVATE_DIAG
1255
case HAL_DIAG_EEPROM:
1256
*result = &ahp->ah_eeprom;
1257
*resultsize = sizeof(ar9300_eeprom_t);
1258
return AH_TRUE;
1259
1260
#if 0 /* XXX - TODO */
1261
case HAL_DIAG_EEPROM_EXP_11A:
1262
case HAL_DIAG_EEPROM_EXP_11B:
1263
case HAL_DIAG_EEPROM_EXP_11G:
1264
pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1265
*result = pe->p_channels;
1266
*resultsize = (*result == AH_NULL) ? 0 :
1267
roundup(sizeof(u_int16_t) * pe->num_channels,
1268
sizeof(u_int32_t)) +
1269
sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1270
return AH_TRUE;
1271
#endif
1272
case HAL_DIAG_RFGAIN:
1273
*result = &ahp->ah_gain_values;
1274
*resultsize = sizeof(GAIN_VALUES);
1275
return AH_TRUE;
1276
case HAL_DIAG_RFGAIN_CURSTEP:
1277
*result = (void *) ahp->ah_gain_values.curr_step;
1278
*resultsize = (*result == AH_NULL) ?
1279
0 : sizeof(GAIN_OPTIMIZATION_STEP);
1280
return AH_TRUE;
1281
#if 0 /* XXX - TODO */
1282
case HAL_DIAG_PCDAC:
1283
*result = ahp->ah_pcdac_table;
1284
*resultsize = ahp->ah_pcdac_table_size;
1285
return AH_TRUE;
1286
#endif
1287
case HAL_DIAG_ANI_CURRENT:
1288
1289
ani = ar9300_ani_get_current_state(ah);
1290
if (ani == AH_NULL)
1291
return AH_FALSE;
1292
/* Convert ar9300 HAL to FreeBSD HAL ANI state */
1293
bzero(&ahp->ext_ani_state, sizeof(ahp->ext_ani_state));
1294
ahp->ext_ani_state.noiseImmunityLevel = ani->ofdm_noise_immunity_level;
1295
ahp->ext_ani_state.spurImmunityLevel = ani->spur_immunity_level;
1296
ahp->ext_ani_state.firstepLevel = ani->firstep_level;
1297
ahp->ext_ani_state.ofdmWeakSigDetectOff = ani->ofdm_weak_sig_detect_off;
1298
ahp->ext_ani_state.mrcCck = !! ani->mrc_cck_off;
1299
ahp->ext_ani_state.cckNoiseImmunityLevel = ani->cck_noise_immunity_level;
1300
1301
ahp->ext_ani_state.listenTime = ani->listen_time;
1302
1303
*result = &ahp->ext_ani_state;
1304
*resultsize = sizeof(ahp->ext_ani_state);
1305
#if 0
1306
*result = ar9300_ani_get_current_state(ah);
1307
*resultsize = (*result == AH_NULL) ?
1308
0 : sizeof(struct ar9300_ani_state);
1309
#endif
1310
return AH_TRUE;
1311
case HAL_DIAG_ANI_STATS:
1312
*result = ar9300_ani_get_current_stats(ah);
1313
*resultsize = (*result == AH_NULL) ?
1314
0 : sizeof(HAL_ANI_STATS);
1315
return AH_TRUE;
1316
case HAL_DIAG_ANI_CMD:
1317
{
1318
HAL_ANI_CMD savefunc = ahp->ah_ani_function;
1319
if (argsize != 2*sizeof(u_int32_t)) {
1320
return AH_FALSE;
1321
}
1322
/* temporarly allow all functions so we can override */
1323
ahp->ah_ani_function = HAL_ANI_ALL;
1324
ar9300_ani_control(
1325
ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1326
ahp->ah_ani_function = savefunc;
1327
return AH_TRUE;
1328
}
1329
#if 0
1330
case HAL_DIAG_TXCONT:
1331
/*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1332
return AH_TRUE;
1333
#endif /* 0 */
1334
#endif /* AH_PRIVATE_DIAG */
1335
case HAL_DIAG_CHANNELS:
1336
#if 0
1337
*result = &(ahp->ah_priv.ah_channels[0]);
1338
*resultsize =
1339
sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1340
#endif
1341
return AH_TRUE;
1342
#ifdef AH_DEBUG
1343
case HAL_DIAG_PRINT_REG:
1344
ar9300_print_reg(ah, *((const u_int32_t *)args));
1345
return AH_TRUE;
1346
#endif
1347
default:
1348
break;
1349
}
1350
1351
return AH_FALSE;
1352
}
1353
1354
void
1355
ar9300_dma_reg_dump(struct ath_hal *ah)
1356
{
1357
#ifdef AH_DEBUG
1358
#define NUM_DMA_DEBUG_REGS 8
1359
#define NUM_QUEUES 10
1360
1361
u_int32_t val[NUM_DMA_DEBUG_REGS];
1362
int qcu_offset = 0, dcu_offset = 0;
1363
u_int32_t *qcu_base = &val[0], *dcu_base = &val[4], reg;
1364
int i, j, k;
1365
int16_t nfarray[HAL_NUM_NF_READINGS];
1366
#ifdef ATH_NF_PER_CHAN
1367
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
1368
#endif /* ATH_NF_PER_CHAN */
1369
HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
1370
1371
/* selecting DMA OBS 8 */
1372
OS_REG_WRITE(ah, AR_MACMISC,
1373
((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1374
(AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1375
1376
ath_hal_printf(ah, "Raw DMA Debug values:\n");
1377
for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1378
if (i % 4 == 0) {
1379
ath_hal_printf(ah, "\n");
1380
}
1381
1382
val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1383
ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1384
}
1385
1386
ath_hal_printf(ah, "\n\n");
1387
ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1388
1389
for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1390
if (i == 8) {
1391
/* only 8 QCU entries in val[0] */
1392
qcu_offset = 0;
1393
qcu_base++;
1394
}
1395
1396
if (i == 6) {
1397
/* only 6 DCU entries in val[4] */
1398
dcu_offset = 0;
1399
dcu_base++;
1400
}
1401
1402
ath_hal_printf(ah,
1403
"%2d %2x %1x %2x %2x\n",
1404
i,
1405
(*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1406
(*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1407
val[2] & (0x7 << (i * 3)) >> (i * 3),
1408
(*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1409
}
1410
1411
ath_hal_printf(ah, "\n");
1412
ath_hal_printf(ah,
1413
"qcu_stitch state: %2x qcu_fetch state: %2x\n",
1414
(val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1415
ath_hal_printf(ah,
1416
"qcu_complete state: %2x dcu_complete state: %2x\n",
1417
(val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1418
ath_hal_printf(ah,
1419
"dcu_arb state: %2x dcu_fp state: %2x\n",
1420
(val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1421
ath_hal_printf(ah,
1422
"chan_idle_dur: %3d chan_idle_dur_valid: %1d\n",
1423
(val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1424
ath_hal_printf(ah,
1425
"txfifo_valid_0: %1d txfifo_valid_1: %1d\n",
1426
(val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1427
ath_hal_printf(ah,
1428
"txfifo_dcu_num_0: %2d txfifo_dcu_num_1: %2d\n",
1429
(val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1430
ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1431
ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1432
1433
ar9300_upload_noise_floor(ah, 1, nfarray);
1434
ath_hal_printf(ah, "2G:\n");
1435
ath_hal_printf(ah, "Min CCA Out:\n");
1436
ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1437
ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1438
nfarray[0], nfarray[1], nfarray[2]);
1439
ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1440
nfarray[3], nfarray[4], nfarray[5]);
1441
1442
ar9300_upload_noise_floor(ah, 0, nfarray);
1443
ath_hal_printf(ah, "5G:\n");
1444
ath_hal_printf(ah, "Min CCA Out:\n");
1445
ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1446
ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1447
nfarray[0], nfarray[1], nfarray[2]);
1448
ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1449
nfarray[3], nfarray[4], nfarray[5]);
1450
1451
for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
1452
ath_hal_printf(ah, "%s Chain %d NF History:\n",
1453
((i < 3) ? "Control " : "Extension "), i%3);
1454
for (j = 0, k = h->base.curr_index;
1455
j < HAL_NF_CAL_HIST_LEN_FULL;
1456
j++, k++) {
1457
ath_hal_printf(ah, "Element %d: %d\n",
1458
j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1459
}
1460
ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1461
}
1462
1463
reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1464
ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1465
MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1466
MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1467
reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1468
ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1469
MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1470
MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1471
ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1472
MS(reg, AR_PHY_DESIRED_SZ_ADC),
1473
MS(reg, AR_PHY_DESIRED_SZ_ADC));
1474
reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1475
ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1476
MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1477
MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1478
reg = OS_REG_READ(ah, AR_PHY_AGC);
1479
ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1480
MS(reg, AR_PHY_AGC_COARSE_HIGH),
1481
MS(reg, AR_PHY_AGC_COARSE_HIGH));
1482
ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1483
MS(reg, AR_PHY_AGC_COARSE_LOW),
1484
MS(reg, AR_PHY_AGC_COARSE_LOW));
1485
ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1486
MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1487
MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1488
reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1489
ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1490
MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1491
ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1492
MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1493
MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1494
ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1495
MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1496
MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1497
reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1498
ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1499
MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1500
ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1501
MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1502
MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1503
1504
1505
/* Step 1a: Set bit 23 of register 0xa360 to 0 */
1506
reg = OS_REG_READ(ah, 0xa360);
1507
reg &= ~0x00800000;
1508
OS_REG_WRITE(ah, 0xa360, reg);
1509
1510
/* Step 2a: Set register 0xa364 to 0x1000 */
1511
reg = 0x1000;
1512
OS_REG_WRITE(ah, 0xa364, reg);
1513
1514
/* Step 3a: Read bits 17:0 of register 0x9c20 */
1515
reg = OS_REG_READ(ah, 0x9c20);
1516
reg &= 0x0003ffff;
1517
ath_hal_printf(ah,
1518
"%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1519
__func__, reg);
1520
1521
/* Step 1b: Set bit 23 of register 0xa360 to 0 */
1522
reg = OS_REG_READ(ah, 0xa360);
1523
reg &= ~0x00800000;
1524
OS_REG_WRITE(ah, 0xa360, reg);
1525
1526
/* Step 2b: Set register 0xa364 to 0x1400 */
1527
reg = 0x1400;
1528
OS_REG_WRITE(ah, 0xa364, reg);
1529
1530
/* Step 3b: Read bits 17:0 of register 0x9c20 */
1531
reg = OS_REG_READ(ah, 0x9c20);
1532
reg &= 0x0003ffff;
1533
ath_hal_printf(ah,
1534
"%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1535
__func__, reg);
1536
1537
/* Step 1c: Set bit 23 of register 0xa360 to 0 */
1538
reg = OS_REG_READ(ah, 0xa360);
1539
reg &= ~0x00800000;
1540
OS_REG_WRITE(ah, 0xa360, reg);
1541
1542
/* Step 2c: Set register 0xa364 to 0x3C00 */
1543
reg = 0x3c00;
1544
OS_REG_WRITE(ah, 0xa364, reg);
1545
1546
/* Step 3c: Read bits 17:0 of register 0x9c20 */
1547
reg = OS_REG_READ(ah, 0x9c20);
1548
reg &= 0x0003ffff;
1549
ath_hal_printf(ah,
1550
"%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1551
__func__, reg);
1552
1553
/* Step 1d: Set bit 24 of register 0xa360 to 0 */
1554
reg = OS_REG_READ(ah, 0xa360);
1555
reg &= ~0x001040000;
1556
OS_REG_WRITE(ah, 0xa360, reg);
1557
1558
/* Step 2d: Set register 0xa364 to 0x5005D */
1559
reg = 0x5005D;
1560
OS_REG_WRITE(ah, 0xa364, reg);
1561
1562
/* Step 3d: Read bits 17:0 of register 0xa368 */
1563
reg = OS_REG_READ(ah, 0xa368);
1564
reg &= 0x0003ffff;
1565
ath_hal_printf(ah,
1566
"%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1567
__func__, reg);
1568
1569
/* Step 1e: Set bit 24 of register 0xa360 to 0 */
1570
reg = OS_REG_READ(ah, 0xa360);
1571
reg &= ~0x001040000;
1572
OS_REG_WRITE(ah, 0xa360, reg);
1573
1574
/* Step 2e: Set register 0xa364 to 0x7005D */
1575
reg = 0x7005D;
1576
OS_REG_WRITE(ah, 0xa364, reg);
1577
1578
/* Step 3e: Read bits 17:0 of register 0xa368 */
1579
reg = OS_REG_READ(ah, 0xa368);
1580
reg &= 0x0003ffff;
1581
ath_hal_printf(ah,
1582
"%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1583
__func__, reg);
1584
1585
/* Step 1f: Set bit 24 of register 0xa360 to 0 */
1586
reg = OS_REG_READ(ah, 0xa360);
1587
reg &= ~0x001000000;
1588
reg |= 0x40000;
1589
OS_REG_WRITE(ah, 0xa360, reg);
1590
1591
/* Step 2f: Set register 0xa364 to 0x3005D */
1592
reg = 0x3005D;
1593
OS_REG_WRITE(ah, 0xa364, reg);
1594
1595
/* Step 3f: Read bits 17:0 of register 0xa368 */
1596
reg = OS_REG_READ(ah, 0xa368);
1597
reg &= 0x0003ffff;
1598
ath_hal_printf(ah,
1599
"%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1600
__func__, reg);
1601
1602
/* Step 1g: Set bit 24 of register 0xa360 to 0 */
1603
reg = OS_REG_READ(ah, 0xa360);
1604
reg &= ~0x001000000;
1605
reg |= 0x40000;
1606
OS_REG_WRITE(ah, 0xa360, reg);
1607
1608
/* Step 2g: Set register 0xa364 to 0x6005D */
1609
reg = 0x6005D;
1610
OS_REG_WRITE(ah, 0xa364, reg);
1611
1612
/* Step 3g: Read bits 17:0 of register 0xa368 */
1613
reg = OS_REG_READ(ah, 0xa368);
1614
reg &= 0x0003ffff;
1615
ath_hal_printf(ah,
1616
"%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1617
__func__, reg);
1618
#endif /* AH_DEBUG */
1619
}
1620
1621
/*
1622
* Return the busy for rx_frame, rx_clear, and tx_frame
1623
*/
1624
u_int32_t
1625
ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1626
u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1627
{
1628
struct ath_hal_9300 *ahp = AH9300(ah);
1629
u_int32_t good = 1;
1630
1631
u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1632
u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1633
u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1634
u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1635
1636
if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1637
/*
1638
* Cycle counter wrap (or initial call); it's not possible
1639
* to accurately calculate a value because the registers
1640
* right shift rather than wrap--so punt and return 0.
1641
*/
1642
HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1643
"%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1644
good = 0;
1645
} else {
1646
u_int32_t cc_d = cc - ahp->ah_cycles;
1647
u_int32_t rc_d = rc - ahp->ah_rx_clear;
1648
u_int32_t rf_d = rf - ahp->ah_rx_frame;
1649
u_int32_t tf_d = tf - ahp->ah_tx_frame;
1650
1651
if (cc_d != 0) {
1652
*rxc_pcnt = rc_d * 100 / cc_d;
1653
*rxf_pcnt = rf_d * 100 / cc_d;
1654
*txf_pcnt = tf_d * 100 / cc_d;
1655
} else {
1656
good = 0;
1657
}
1658
}
1659
1660
ahp->ah_cycles = cc;
1661
ahp->ah_rx_frame = rf;
1662
ahp->ah_rx_clear = rc;
1663
ahp->ah_tx_frame = tf;
1664
1665
return good;
1666
}
1667
1668
/*
1669
* Return approximation of extension channel busy over an time interval
1670
* 0% (clear) -> 100% (busy)
1671
* -1 for invalid estimate
1672
*/
1673
uint32_t
1674
ar9300_get_11n_ext_busy(struct ath_hal *ah)
1675
{
1676
/*
1677
* Overflow condition to check before multiplying to get %
1678
* (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1679
*/
1680
#define OVERFLOW_LIMIT 0x28F5C28
1681
#define ERROR_CODE -1
1682
1683
struct ath_hal_9300 *ahp = AH9300(ah);
1684
u_int32_t busy = 0; /* percentage */
1685
int8_t busyper = 0;
1686
u_int32_t cycle_count, ctl_busy, ext_busy;
1687
1688
/* cycle_count will always be the first to wrap; therefore, read it last
1689
* This sequence of reads is not atomic, and MIB counter wrap
1690
* could happen during it ?
1691
*/
1692
ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1693
ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1694
cycle_count = OS_REG_READ(ah, AR_CCCNT);
1695
1696
if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1697
(ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1698
{
1699
/*
1700
* Cycle counter wrap (or initial call); it's not possible
1701
* to accurately calculate a value because the registers
1702
* right shift rather than wrap--so punt and return 0.
1703
*/
1704
busyper = ERROR_CODE;
1705
HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1706
"%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1707
} else {
1708
u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1709
u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1710
1711
/*
1712
* Compute extension channel busy percentage
1713
* Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1714
* Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1715
* Will never happen, since (ext_busy_delta < cycle_delta) always,
1716
* and shift necessitated by large ext_busy_delta.
1717
* Due to timing difference to read the registers and counter overflow,
1718
* it may still happen that cycle_delta >> 7 = 0.
1719
*
1720
*/
1721
if (cycle_delta) {
1722
if (ext_busy_delta > OVERFLOW_LIMIT) {
1723
if (cycle_delta >> 7) {
1724
busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta >> 7);
1725
} else {
1726
busyper = ERROR_CODE;
1727
}
1728
} else {
1729
busy = (ext_busy_delta * 100) / cycle_delta;
1730
}
1731
} else {
1732
busyper = ERROR_CODE;
1733
}
1734
1735
if (busy > 100) {
1736
busy = 100;
1737
}
1738
if ( busyper != ERROR_CODE ) {
1739
busyper = busy;
1740
}
1741
}
1742
1743
ahp->ah_cycle_count = cycle_count;
1744
ahp->ah_ctl_busy = ctl_busy;
1745
ahp->ah_ext_busy = ext_busy;
1746
1747
return busyper;
1748
#undef OVERFLOW_LIMIT
1749
#undef ERROR_CODE
1750
}
1751
1752
/* BB Panic Watchdog declarations */
1753
#define HAL_BB_PANIC_WD_HT20_FACTOR 74 /* 0.74 */
1754
#define HAL_BB_PANIC_WD_HT40_FACTOR 37 /* 0.37 */
1755
1756
void
1757
ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1758
{
1759
#define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1760
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1761
u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
1762
u_int32_t val, idle_count;
1763
1764
if (idle_tmo_ms != 0) {
1765
/* enable IRQ, disable chip-reset for BB panic */
1766
val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1767
AR_PHY_BB_PANIC_CNTL2_MASK;
1768
OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1769
(val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1770
/* bound limit to 10 secs */
1771
if (idle_tmo_ms > 10000) {
1772
idle_tmo_ms = 10000;
1773
}
1774
if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
1775
idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1776
} else {
1777
idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1778
}
1779
/*
1780
* enable panic in non-IDLE mode,
1781
* disable in IDLE mode,
1782
* set idle time-out
1783
*/
1784
1785
// EV92527 : Enable IDLE mode panic
1786
1787
OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1788
AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1789
AR_PHY_BB_PANIC_IDLE_ENABLE |
1790
(AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1791
(AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1792
} else {
1793
/* disable IRQ, disable chip-reset for BB panic */
1794
OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1795
OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1796
~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1797
/* disable panic in non-IDLE mode, disable in IDLE mode */
1798
OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1799
OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1800
~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1801
}
1802
1803
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1804
__func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1805
#undef HAL_BB_PANIC_IDLE_TIME_OUT
1806
}
1807
1808
1809
void
1810
ar9300_handle_bb_panic(struct ath_hal *ah)
1811
{
1812
u_int32_t status;
1813
/*
1814
* we want to avoid printing in ISR context so we save
1815
* panic watchdog status to be printed later in DPC context
1816
*/
1817
AH9300(ah)->ah_bb_panic_last_status = status =
1818
OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1819
/*
1820
* panic watchdog timer should reset on status read
1821
* but to make sure we write 0 to the watchdog status bit
1822
*/
1823
OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1824
}
1825
1826
int
1827
ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1828
{
1829
bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
1830
1831
/*
1832
* For signature 04000539 do not print anything.
1833
* This is a very common occurence as a compromise between
1834
* BB Panic and AH_FALSE detects (EV71009). It indicates
1835
* radar hang, which can be cleared by reprogramming
1836
* radar related register and does not requre a chip reset
1837
*/
1838
1839
/* Suppress BB Status mesg following signature */
1840
switch (bb_panic->status) {
1841
case 0x04000539:
1842
case 0x04008009:
1843
case 0x04000b09:
1844
case 0x1300000a:
1845
return -1;
1846
}
1847
1848
bb_panic->tsf = ar9300_get_tsf32(ah);
1849
bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1850
bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1851
bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1852
bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1853
bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1854
bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1855
bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1856
bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1857
bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1858
bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1859
bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1860
bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1861
bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1862
bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1863
&bb_panic->rxc_pcnt,
1864
&bb_panic->rxf_pcnt,
1865
&bb_panic->txf_pcnt);
1866
1867
if (ah->ah_config.ath_hal_show_bb_panic) {
1868
ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1869
"tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1870
ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1871
"rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1872
bb_panic->wd, bb_panic->det, bb_panic->rdar,
1873
bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1874
bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1875
ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1876
bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1877
ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1878
bb_panic->phy_gen_ctrl);
1879
if (bb_panic->cycles) {
1880
ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1881
"rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1882
bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1883
}
1884
ath_hal_printf(ah, "==== BB update: done ====\n\n");
1885
}
1886
1887
return 0; //The returned data will be stored for athstats to retrieve it
1888
}
1889
1890
/* set the reason for HAL reset */
1891
void
1892
ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1893
{
1894
AH9300(ah)->ah_reset_reason = resetreason;
1895
}
1896
1897
/*
1898
* Configure 20/40 operation
1899
*
1900
* 20/40 = joint rx clear (control and extension)
1901
* 20 = rx clear (control)
1902
*
1903
* - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1904
* when changing from 20/40 => 20 only
1905
*/
1906
void
1907
ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1908
{
1909
u_int32_t macmode;
1910
1911
/* Configure MAC for 20/40 operation */
1912
if (mode == HAL_HT_MACMODE_2040 &&
1913
!ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
1914
macmode = AR_2040_JOINED_RX_CLEAR;
1915
} else {
1916
macmode = 0;
1917
}
1918
OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1919
}
1920
1921
/*
1922
* Get Rx clear (control/extension channel)
1923
*
1924
* Returns active low (busy) for ctrl/ext channel
1925
* Owl 2.0
1926
*/
1927
HAL_HT_RXCLEAR
1928
ar9300_get_11n_rx_clear(struct ath_hal *ah)
1929
{
1930
HAL_HT_RXCLEAR rxclear = 0;
1931
u_int32_t val;
1932
1933
val = OS_REG_READ(ah, AR_DIAG_SW);
1934
1935
/* control channel */
1936
if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1937
rxclear |= HAL_RX_CLEAR_CTL_LOW;
1938
}
1939
/* extension channel */
1940
if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1941
rxclear |= HAL_RX_CLEAR_EXT_LOW;
1942
}
1943
return rxclear;
1944
}
1945
1946
/*
1947
* Set Rx clear (control/extension channel)
1948
*
1949
* Useful for forcing the channel to appear busy for
1950
* debugging/diagnostics
1951
* Owl 2.0
1952
*/
1953
void
1954
ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1955
{
1956
/* control channel */
1957
if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1958
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1959
} else {
1960
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1961
}
1962
/* extension channel */
1963
if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1964
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1965
} else {
1966
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1967
}
1968
}
1969
1970
1971
/*
1972
* HAL support code for force ppm tracking workaround.
1973
*/
1974
1975
u_int32_t
1976
ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1977
{
1978
u_int32_t retval;
1979
u_int32_t off1;
1980
u_int32_t off2;
1981
1982
if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1983
off1 = 0x2000;
1984
off2 = 0x1000;
1985
} else {
1986
off1 = 0x1000;
1987
off2 = 0x2000;
1988
}
1989
1990
retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 )) << 0) |
1991
((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1992
((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1993
1994
return retval;
1995
}
1996
1997
u_int32_t
1998
ar9300_ppm_force(struct ath_hal *ah)
1999
{
2000
u_int32_t data_fine;
2001
u_int32_t data4;
2002
//u_int32_t off1;
2003
//u_int32_t off2;
2004
HAL_BOOL signed_val = AH_FALSE;
2005
2006
// if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
2007
// off1 = 0x2000;
2008
// off2 = 0x1000;
2009
// } else {
2010
// off1 = 0x1000;
2011
// off2 = 0x2000;
2012
// }
2013
data_fine =
2014
AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
2015
OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
2016
2017
/*
2018
* bit [11-0] is new ppm value. bit 11 is the signed bit.
2019
* So check value from bit[10:0].
2020
* Now get the abs val of the ppm value read in bit[0:11].
2021
* After that do bound check on abs value.
2022
* if value is off limit, CAP the value and and restore signed bit.
2023
*/
2024
if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
2025
{
2026
/* get the positive value */
2027
data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
2028
signed_val = AH_TRUE;
2029
}
2030
if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
2031
{
2032
HALDEBUG(ah, HAL_DEBUG_REGIO,
2033
"%s Correcting ppm out of range %x\n",
2034
__func__, (data_fine & 0x7ff));
2035
data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
2036
}
2037
/*
2038
* Restore signed value if changed above.
2039
* Use typecast to avoid compilation errors
2040
*/
2041
if (signed_val) {
2042
data_fine = (-(int32_t)data_fine) &
2043
AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
2044
}
2045
2046
/* write value */
2047
data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
2048
~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2049
OS_REG_WRITE(ah, AR_PHY_TIMING2,
2050
data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
2051
2052
return data_fine;
2053
}
2054
2055
void
2056
ar9300_ppm_un_force(struct ath_hal *ah)
2057
{
2058
u_int32_t data4;
2059
2060
data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
2061
OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
2062
}
2063
2064
u_int32_t
2065
ar9300_ppm_arm_trigger(struct ath_hal *ah)
2066
{
2067
u_int32_t val;
2068
u_int32_t ret;
2069
2070
val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
2071
ret = OS_REG_READ(ah, AR_TSF_L32);
2072
OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
2073
val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
2074
2075
/* return low word of TSF at arm time */
2076
return ret;
2077
}
2078
2079
int
2080
ar9300_ppm_get_trigger(struct ath_hal *ah)
2081
{
2082
if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
2083
AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
2084
{
2085
/* has not triggered yet, return AH_FALSE */
2086
return 0;
2087
}
2088
2089
/* else triggered, return AH_TRUE */
2090
return 1;
2091
}
2092
2093
void
2094
ar9300_mark_phy_inactive(struct ath_hal *ah)
2095
{
2096
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2097
}
2098
2099
/* DEBUG */
2100
u_int32_t
2101
ar9300_ppm_get_force_state(struct ath_hal *ah)
2102
{
2103
return
2104
OS_REG_READ(ah, AR_PHY_TIMING2) &
2105
(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2106
}
2107
2108
/*
2109
* Return the Cycle counts for rx_frame, rx_clear, and tx_frame
2110
*/
2111
HAL_BOOL
2112
ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
2113
{
2114
/*
2115
* XXX FreeBSD todo: reimplement this
2116
*/
2117
#if 0
2118
p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2119
p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2120
p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2121
p_cnts->cycle_count = OS_REG_READ(ah, AR_CCCNT);
2122
p_cnts->is_tx_active = (OS_REG_READ(ah, AR_TFCNT) ==
2123
p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
2124
p_cnts->is_rx_active = (OS_REG_READ(ah, AR_RFCNT) ==
2125
p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
2126
#endif
2127
return AH_FALSE;
2128
}
2129
2130
void
2131
ar9300_clear_mib_counters(struct ath_hal *ah)
2132
{
2133
u_int32_t reg_val;
2134
2135
reg_val = OS_REG_READ(ah, AR_MIBC);
2136
OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
2137
OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
2138
}
2139
2140
2141
/* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
2142
HAL_BOOL
2143
ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
2144
{
2145
struct ath_hal_9300 *ahp = AH9300(ah);
2146
HAL_CHANNEL_INTERNAL *ichan =
2147
ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2148
HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
2149
u_int32_t tmp = 0;
2150
2151
if (enable) {
2152
if (ahp->ah_rifs_enabled == AH_TRUE) {
2153
return AH_TRUE;
2154
}
2155
2156
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
2157
OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2158
ahp->ah_rifs_reg[1]);
2159
2160
ahp->ah_rifs_enabled = AH_TRUE;
2161
OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
2162
} else {
2163
if (ahp->ah_rifs_enabled == AH_TRUE) {
2164
ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
2165
AR_PHY_SEARCH_START_DELAY);
2166
ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
2167
}
2168
/* Change rifs init delay to 0 */
2169
OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2170
(ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
2171
tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
2172
if (is_chan_2g) {
2173
if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2174
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
2175
} else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
2176
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
2177
}
2178
} else {
2179
if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2180
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
2181
} else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
2182
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
2183
}
2184
}
2185
2186
ahp->ah_rifs_enabled = AH_FALSE;
2187
}
2188
return AH_TRUE;
2189
2190
} /* ar9300_set_rifs_delay () */
2191
2192
/* Set the current RIFS Rx setting */
2193
HAL_BOOL
2194
ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2195
{
2196
/* Non-Owl 11n chips */
2197
if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2198
if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2199
return ar9300_set_rifs_delay(ah, enable);
2200
}
2201
return AH_FALSE;
2202
}
2203
2204
return AH_TRUE;
2205
} /* ar9300_set_11n_rx_rifs () */
2206
2207
static hal_mac_hangs_t
2208
ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2209
hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2210
{
2211
int i = 0;
2212
hal_mac_hangs_t found_hangs = 0;
2213
2214
if (hangs & dcu_chain_state) {
2215
for (i = 0; i < 6; i++) {
2216
if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2217
hang_check.dcu_chain_state)
2218
{
2219
found_hangs |= dcu_chain_state;
2220
*dcu_chain = i;
2221
}
2222
}
2223
for (i = 0; i < 4; i++) {
2224
if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2225
hang_check.dcu_chain_state)
2226
{
2227
found_hangs |= dcu_chain_state;
2228
*dcu_chain = i + 6;
2229
}
2230
}
2231
}
2232
2233
if (hangs & dcu_complete_state) {
2234
if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2235
found_hangs |= dcu_complete_state;
2236
}
2237
}
2238
2239
return found_hangs;
2240
2241
} /* end - ar9300_compare_dbg_hang */
2242
2243
#define NUM_STATUS_READS 50
2244
HAL_BOOL
2245
ar9300_detect_mac_hang(struct ath_hal *ah)
2246
{
2247
struct ath_hal_9300 *ahp = AH9300(ah);
2248
mac_dbg_regs_t mac_dbg;
2249
hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2250
hal_mac_hangs_t hang_sig1 = (dcu_chain_state | dcu_complete_state);
2251
int i = 0;
2252
u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2253
2254
if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2255
return AH_FALSE;
2256
}
2257
2258
OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2259
2260
mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2261
mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2262
mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2263
2264
HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2265
mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2266
mac_dbg.dma_dbg_6);
2267
2268
if (hang_sig1 !=
2269
ar9300_compare_dbg_hang(ah, mac_dbg,
2270
hang_sig1_val, hang_sig1, &dcu_chain))
2271
{
2272
HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2273
return AH_FALSE;
2274
}
2275
2276
shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2277
shift_val *= 5;
2278
2279
for (i = 1; i <= NUM_STATUS_READS; i++) {
2280
if (dcu_chain < 6) {
2281
mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2282
current_dcu_chain_state =
2283
((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2284
} else {
2285
mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2286
current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2287
}
2288
mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2289
2290
if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2291
|| (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2292
return AH_FALSE;
2293
}
2294
}
2295
HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2296
ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2297
ahp->ah_hang[MAC_HANG_SIG1]++;
2298
return AH_TRUE;
2299
2300
} /* end - ar9300_detect_mac_hang */
2301
2302
/* Determine if the baseband is hung by reading the Observation Bus Register */
2303
HAL_BOOL
2304
ar9300_detect_bb_hang(struct ath_hal *ah)
2305
{
2306
#define N(a) (sizeof(a) / sizeof(a[0]))
2307
struct ath_hal_9300 *ahp = AH9300(ah);
2308
u_int32_t hang_sig = 0;
2309
int i = 0;
2310
/* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2311
*
2312
* 4 known BB hang signatures -
2313
* [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2314
* [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2315
* [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2316
* [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2317
* Rx State (bits 20-24) is 0x7.
2318
*/
2319
hal_hw_hang_check_t hang_list [] =
2320
{
2321
/* Offset Reg Value Reg Mask Hang Offset */
2322
{AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2323
{AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2324
{AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2325
{AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2326
};
2327
2328
if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2329
HAL_DFS_BB_HANG_WAR |
2330
HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2331
return AH_FALSE;
2332
}
2333
2334
hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2335
for (i = 1; i <= NUM_STATUS_READS; i++) {
2336
if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2337
return AH_FALSE;
2338
}
2339
}
2340
2341
for (i = 0; i < N(hang_list); i++) {
2342
if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2343
ahp->ah_hang[hang_list[i].hang_offset]++;
2344
HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2345
"sig3count=%d sig4count=%d\n", __func__,
2346
ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2347
ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2348
return AH_TRUE;
2349
}
2350
}
2351
2352
HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2353
"<0x806c>=0x%x\n", __func__, hang_sig);
2354
2355
return AH_FALSE;
2356
2357
#undef N
2358
} /* end - ar9300_detect_bb_hang () */
2359
2360
#undef NUM_STATUS_READS
2361
2362
HAL_STATUS
2363
ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2364
{
2365
struct ath_hal_9300 *ahp = AH9300(ah);
2366
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2367
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
2368
const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
2369
u_int16_t ant_config;
2370
u_int32_t hal_num_ant_config;
2371
2372
hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
2373
p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
2374
2375
if (cfg < hal_num_ant_config) {
2376
if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2377
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2378
return HAL_OK;
2379
}
2380
}
2381
2382
return HAL_EINVAL;
2383
}
2384
2385
/*
2386
* Functions to get/set DCS mode
2387
*/
2388
void
2389
ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2390
{
2391
AH9300(ah)->ah_dcs_enable = mode;
2392
}
2393
2394
u_int32_t
2395
ar9300_get_dcs_mode(struct ath_hal *ah)
2396
{
2397
return AH9300(ah)->ah_dcs_enable;
2398
}
2399
2400
#if ATH_BT_COEX
2401
void
2402
ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2403
{
2404
struct ath_hal_9300 *ahp = AH9300(ah);
2405
2406
ahp->ah_bt_module = btinfo->bt_module;
2407
ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2408
ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2409
ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2410
ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2411
ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2412
ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2413
ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2414
}
2415
2416
void
2417
ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2418
{
2419
struct ath_hal_9300 *ahp = AH9300(ah);
2420
HAL_BOOL rx_clear_polarity;
2421
2422
/*
2423
* For Kiwi and Osprey, the polarity of rx_clear is active high.
2424
* The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2425
*/
2426
rx_clear_polarity = !btconf->bt_rxclear_polarity;
2427
2428
ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2429
SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2430
SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2431
SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2432
SM(btconf->bt_mode, AR_BT_MODE) |
2433
SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2434
SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2435
SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2436
SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2437
2438
ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2439
2440
if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2441
/* Enable ACK to go out even though BT has higher priority. */
2442
ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2443
}
2444
}
2445
2446
void
2447
ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2448
{
2449
struct ath_hal_9300 *ahp = AH9300(ah);
2450
2451
/* clear the old value, then set the new value */
2452
ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2453
ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2454
}
2455
2456
void
2457
ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2458
{
2459
struct ath_hal_9300 *ahp = AH9300(ah);
2460
2461
ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2462
ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2463
ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2464
ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2465
2466
switch (stomp_type) {
2467
case HAL_BT_COEX_STOMP_ALL:
2468
ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2469
ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2470
break;
2471
case HAL_BT_COEX_STOMP_LOW:
2472
ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2473
ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2474
break;
2475
case HAL_BT_COEX_STOMP_ALL_FORCE:
2476
ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2477
ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2478
break;
2479
case HAL_BT_COEX_STOMP_LOW_FORCE:
2480
ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2481
ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2482
break;
2483
case HAL_BT_COEX_STOMP_NONE:
2484
case HAL_BT_COEX_NO_STOMP:
2485
ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2486
ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2487
break;
2488
default:
2489
/* There is a force_weight from registry */
2490
ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2491
ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2492
break;
2493
}
2494
}
2495
2496
void
2497
ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2498
{
2499
struct ath_hal_9300 *ahp = AH9300(ah);
2500
2501
/* clear the old value, then set the new value */
2502
ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2503
ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2504
}
2505
2506
static void
2507
ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2508
{
2509
struct ath_hal_9300 *ahp = AH9300(ah);
2510
#if ATH_ANT_DIV_COMB
2511
//struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2512
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2513
#endif
2514
2515
HALDEBUG(ah, HAL_DEBUG_BT_COEX, "%s: called, value=%d\n", __func__, value);
2516
2517
if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2518
{
2519
if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2520
{
2521
/* Config antenna diversity */
2522
#if ATH_ANT_DIV_COMB
2523
ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2524
#endif
2525
}
2526
}
2527
}
2528
2529
2530
void
2531
ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2532
u_int32_t value)
2533
{
2534
struct ath_hal_9300 *ahp = AH9300(ah);
2535
struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2536
2537
switch (type) {
2538
case HAL_BT_COEX_SET_ACK_PWR:
2539
if (value) {
2540
ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2541
} else {
2542
ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2543
}
2544
ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2545
ahpriv->ah_extraTxPow, 0);
2546
break;
2547
2548
case HAL_BT_COEX_ANTENNA_DIVERSITY:
2549
if (AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
2550
ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2551
if (value) {
2552
ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2553
}
2554
else {
2555
ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2556
}
2557
ar9300_bt_coex_antenna_diversity(ah, value);
2558
}
2559
break;
2560
case HAL_BT_COEX_LOWER_TX_PWR:
2561
if (value) {
2562
ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2563
}
2564
else {
2565
ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2566
}
2567
ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2568
ahpriv->ah_extraTxPow, 0);
2569
break;
2570
#if ATH_SUPPORT_MCI
2571
case HAL_BT_COEX_MCI_MAX_TX_PWR:
2572
if ((ah->ah_config.ath_hal_mci_config &
2573
ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2574
{
2575
if (value) {
2576
ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2577
ahp->ah_mci_concur_tx_en = AH_TRUE;
2578
}
2579
else {
2580
ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2581
ahp->ah_mci_concur_tx_en = AH_FALSE;
2582
}
2583
ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2584
ahpriv->ah_extraTxPow, 0);
2585
}
2586
HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2587
ahp->ah_mci_concur_tx_en);
2588
break;
2589
case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2590
if (value) {
2591
ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2592
}
2593
else {
2594
ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2595
}
2596
break;
2597
#endif
2598
default:
2599
break;
2600
}
2601
}
2602
2603
void
2604
ar9300_bt_coex_disable(struct ath_hal *ah)
2605
{
2606
struct ath_hal_9300 *ahp = AH9300(ah);
2607
2608
/* Always drive rx_clear_external output as 0 */
2609
ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
2610
HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2611
2612
if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2613
OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2614
OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2615
}
2616
2617
OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2618
OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2619
OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2620
OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2621
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2622
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2623
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2624
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2625
2626
ahp->ah_bt_coex_enabled = AH_FALSE;
2627
}
2628
2629
int
2630
ar9300_bt_coex_enable(struct ath_hal *ah)
2631
{
2632
struct ath_hal_9300 *ahp = AH9300(ah);
2633
2634
/* Program coex mode and weight registers to actually enable coex */
2635
OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2636
OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2637
OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2638
OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2639
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2640
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2641
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2642
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2643
2644
if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2645
OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2646
} else {
2647
OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2648
}
2649
2650
OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2651
if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2652
OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2653
} else {
2654
OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2655
}
2656
2657
if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2658
/* For 3-wire, configure the desired GPIO port for rx_clear */
2659
ath_hal_gpioCfgOutput(ah,
2660
ahp->ah_wlan_active_gpio_select,
2661
HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2662
}
2663
else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2664
(ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2665
{
2666
/* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2667
ath_hal_gpioCfgOutput(ah,
2668
ahp->ah_wlan_active_gpio_select,
2669
HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2670
}
2671
2672
/*
2673
* Enable a weak pull down on BT_ACTIVE.
2674
* When BT device is disabled, BT_ACTIVE might be floating.
2675
*/
2676
OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2677
(AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2678
(AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2679
2680
ahp->ah_bt_coex_enabled = AH_TRUE;
2681
2682
return 0;
2683
}
2684
2685
u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2686
{
2687
return 0;
2688
}
2689
2690
u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2691
{
2692
return bOn;
2693
}
2694
2695
void
2696
ar9300_init_bt_coex(struct ath_hal *ah)
2697
{
2698
struct ath_hal_9300 *ahp = AH9300(ah);
2699
2700
if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2701
OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2702
(AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2703
AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2704
2705
/*
2706
* Set input mux for bt_prority_async and
2707
* bt_active_async to GPIO pins
2708
*/
2709
OS_REG_RMW_FIELD(ah,
2710
AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2711
AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2712
ahp->ah_bt_active_gpio_select);
2713
OS_REG_RMW_FIELD(ah,
2714
AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2715
AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2716
ahp->ah_bt_priority_gpio_select);
2717
2718
/* Configure the desired GPIO ports for input */
2719
ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2720
ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
2721
2722
if (ahp->ah_bt_coex_enabled) {
2723
ar9300_bt_coex_enable(ah);
2724
} else {
2725
ar9300_bt_coex_disable(ah);
2726
}
2727
}
2728
else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2729
(ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2730
{
2731
/* 2-wire */
2732
if (ahp->ah_bt_coex_enabled) {
2733
/* Connect bt_active_async to baseband */
2734
OS_REG_CLR_BIT(ah,
2735
AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2736
(AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2737
AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2738
OS_REG_SET_BIT(ah,
2739
AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2740
AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2741
2742
/*
2743
* Set input mux for bt_prority_async and
2744
* bt_active_async to GPIO pins
2745
*/
2746
OS_REG_RMW_FIELD(ah,
2747
AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2748
AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2749
ahp->ah_bt_active_gpio_select);
2750
2751
/* Configure the desired GPIO ports for input */
2752
ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2753
2754
/* Enable coexistence on initialization */
2755
ar9300_bt_coex_enable(ah);
2756
}
2757
}
2758
#if ATH_SUPPORT_MCI
2759
else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2760
if (ahp->ah_bt_coex_enabled) {
2761
ar9300_mci_bt_coex_enable(ah);
2762
}
2763
else {
2764
ar9300_mci_bt_coex_disable(ah);
2765
}
2766
}
2767
#endif /* ATH_SUPPORT_MCI */
2768
}
2769
2770
#endif /* ATH_BT_COEX */
2771
2772
HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2773
{
2774
u_int32_t val;
2775
int wasp_mm_rev;
2776
2777
#define AR_SOC_RST_REVISION_ID 0xB8060090
2778
#define REG_READ(_reg) *((volatile u_int32_t *)(_reg))
2779
wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2780
AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2781
AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2782
#undef AR_SOC_RST_REVISION_ID
2783
#undef REG_READ
2784
2785
/*
2786
* Azimuth (ProxySTA) Mode is only supported correctly by
2787
* Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2788
*
2789
* Enable this feature for Scorpion at this time. The silicon
2790
* still needs to be validated.
2791
*/
2792
if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2793
!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2794
!((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2795
((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2796
(AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2797
wasp_mm_rev >= 0 /* 1 */))))
2798
{
2799
HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2800
"rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2801
__func__, AH_PRIVATE((ah))->ah_macVersion,
2802
AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2803
return HAL_ENOTSUPP;
2804
}
2805
2806
OS_REG_WRITE(ah,
2807
AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2808
2809
/* turn on mode bit[24] for proxy sta */
2810
OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2811
OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2812
2813
val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2814
if (enable) {
2815
val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2816
AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2817
AR_AZIMUTH_BA_USES_AD1;
2818
/* turn off filter pass hold (bit 9) */
2819
val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2820
} else {
2821
val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2822
AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2823
AR_AZIMUTH_BA_USES_AD1);
2824
}
2825
OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2826
2827
/* enable promiscous mode */
2828
OS_REG_WRITE(ah, AR_RX_FILTER,
2829
OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2830
/* enable promiscous in azimuth mode */
2831
OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2832
OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2833
2834
/* turn on filter pass hold (bit 9) */
2835
OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2836
OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2837
2838
return HAL_OK;
2839
}
2840
2841
#if 0
2842
void ar9300_mat_enable(struct ath_hal *ah, int enable)
2843
{
2844
/*
2845
* MAT (s/w ProxySTA) implementation requires to turn off interrupt
2846
* mitigation and turn on key search always for better performance.
2847
*/
2848
struct ath_hal_9300 *ahp = AH9300(ah);
2849
struct ath_hal_private *ap = AH_PRIVATE(ah);
2850
2851
ahp->ah_intr_mitigation_rx = !enable;
2852
if (ahp->ah_intr_mitigation_rx) {
2853
/*
2854
* Enable Interrupt Mitigation for Rx.
2855
* If no build-specific limits for the rx interrupt mitigation
2856
* timer have been specified, use conservative defaults.
2857
*/
2858
#ifndef AH_RIMT_VAL_LAST
2859
#define AH_RIMT_LAST_MICROSEC 500
2860
#endif
2861
#ifndef AH_RIMT_VAL_FIRST
2862
#define AH_RIMT_FIRST_MICROSEC 2000
2863
#endif
2864
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2865
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2866
} else {
2867
OS_REG_WRITE(ah, AR_RIMT, 0);
2868
}
2869
2870
ahp->ah_enable_keysearch_always = !!enable;
2871
ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
2872
}
2873
#endif
2874
2875
void ar9300_enable_tpc(struct ath_hal *ah)
2876
{
2877
u_int32_t val = 0;
2878
2879
ah->ah_config.ath_hal_desc_tpc = 1;
2880
2881
/* Enable TPC */
2882
OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2883
2884
/*
2885
* Disable per chain power reduction since we are already
2886
* accounting for this in our calculations
2887
*/
2888
val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2889
if (AR_SREV_WASP(ah)) {
2890
OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2891
val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2892
} else {
2893
OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2894
val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2895
}
2896
}
2897
2898
2899
/*
2900
* ar9300_force_tsf_sync
2901
* This function forces the TSF sync to the given bssid, this is implemented
2902
* as a temp hack to get the AoW demo, and is primarily used in the WDS client
2903
* mode of operation, where we sync the TSF to RootAP TSF values
2904
*/
2905
void
2906
ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2907
u_int16_t assoc_id)
2908
{
2909
ar9300_set_operating_mode(ah, HAL_M_STA);
2910
ar9300_write_associd(ah, bssid, assoc_id);
2911
}
2912
2913
void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2914
{
2915
struct ath_hal_9300 *ahp = AH9300(ah);
2916
u_int32_t temp_obdb_reg_val = 0, temp_tcp_reg_val;
2917
u_int32_t temp_powertx_rate9_reg_val;
2918
int8_t olpc_power_offset = 0;
2919
int8_t tmp_olpc_val = 0;
2920
HAL_RSSI_TX_POWER old_greentx_status;
2921
u_int8_t target_power_val_t[ar9300_rate_size];
2922
int8_t tmp_rss1_thr1, tmp_rss1_thr2;
2923
2924
if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2925
!ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2926
return;
2927
}
2928
2929
old_greentx_status = AH9300(ah)->green_tx_status;
2930
if (ahp->ah_hw_green_tx_enable) {
2931
tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2932
tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2933
} else {
2934
tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2935
tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2936
}
2937
2938
if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2939
&& (rssi > tmp_rss1_thr1))
2940
{
2941
if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2942
AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2943
}
2944
} else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2945
&& (rssi > tmp_rss1_thr2))
2946
{
2947
if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2948
AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2949
}
2950
} else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2951
if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2952
AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2953
}
2954
}
2955
2956
/* If status is not change, don't do anything */
2957
if (old_greentx_status == AH9300(ah)->green_tx_status) {
2958
return;
2959
}
2960
2961
/* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2962
if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2963
&& AR_SREV_POSEIDON(ah))
2964
{
2965
if (ahp->ah_hw_green_tx_enable) {
2966
switch (AH9300(ah)->green_tx_status) {
2967
case HAL_RSSI_TX_POWER_SHORT:
2968
/* 1. TxPower Config */
2969
OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2970
sizeof(target_power_val_t));
2971
/* 1.1 Store OLPC Delta Calibration Offset*/
2972
olpc_power_offset = 0;
2973
/* 2. Store OB/DB */
2974
/* 3. Store TPC settting */
2975
temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2976
SM(14, AR_TPC_CTS) |
2977
SM(14, AR_TPC_CHIRP) |
2978
SM(14, AR_TPC_RPT));
2979
/* 4. Store BB_powertx_rate9 value */
2980
temp_powertx_rate9_reg_val =
2981
AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2982
break;
2983
case HAL_RSSI_TX_POWER_MIDDLE:
2984
/* 1. TxPower Config */
2985
OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2986
sizeof(target_power_val_t));
2987
/* 1.1 Store OLPC Delta Calibration Offset*/
2988
olpc_power_offset = 0;
2989
/* 2. Store OB/DB */
2990
/* 3. Store TPC settting */
2991
temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2992
SM(18, AR_TPC_CTS) |
2993
SM(18, AR_TPC_CHIRP) |
2994
SM(18, AR_TPC_RPT));
2995
/* 4. Store BB_powertx_rate9 value */
2996
temp_powertx_rate9_reg_val =
2997
AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2998
break;
2999
case HAL_RSSI_TX_POWER_LONG:
3000
default:
3001
/* 1. TxPower Config */
3002
OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
3003
sizeof(target_power_val_t));
3004
/* 1.1 Store OLPC Delta Calibration Offset*/
3005
olpc_power_offset = 0;
3006
/* 2. Store OB/DB1/DB2 */
3007
/* 3. Store TPC settting */
3008
temp_tcp_reg_val =
3009
AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
3010
/* 4. Store BB_powertx_rate9 value */
3011
temp_powertx_rate9_reg_val =
3012
AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
3013
break;
3014
}
3015
} else {
3016
switch (AH9300(ah)->green_tx_status) {
3017
case HAL_RSSI_TX_POWER_SHORT:
3018
/* 1. TxPower Config */
3019
OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
3020
sizeof(target_power_val_t));
3021
/* 1.1 Store OLPC Delta Calibration Offset*/
3022
olpc_power_offset =
3023
wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
3024
wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3025
/* 2. Store OB/DB */
3026
temp_obdb_reg_val =
3027
AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3028
temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
3029
AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
3030
AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3031
AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3032
temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3033
SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3034
AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3035
SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3036
AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3037
SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3038
AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3039
/* 3. Store TPC settting */
3040
temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
3041
SM(6, AR_TPC_CTS) |
3042
SM(6, AR_TPC_CHIRP) |
3043
SM(6, AR_TPC_RPT));
3044
/* 4. Store BB_powertx_rate9 value */
3045
temp_powertx_rate9_reg_val =
3046
WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
3047
break;
3048
case HAL_RSSI_TX_POWER_MIDDLE:
3049
/* 1. TxPower Config */
3050
OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
3051
sizeof(target_power_val_t));
3052
/* 1.1 Store OLPC Delta Calibration Offset*/
3053
olpc_power_offset =
3054
wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
3055
wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3056
/* 2. Store OB/DB */
3057
temp_obdb_reg_val =
3058
AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3059
temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
3060
AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
3061
AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3062
AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3063
temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3064
SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3065
AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3066
SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3067
AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3068
SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3069
AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3070
/* 3. Store TPC settting */
3071
temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
3072
SM(14, AR_TPC_CTS) |
3073
SM(14, AR_TPC_CHIRP) |
3074
SM(14, AR_TPC_RPT));
3075
/* 4. Store BB_powertx_rate9 value */
3076
temp_powertx_rate9_reg_val =
3077
WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
3078
break;
3079
case HAL_RSSI_TX_POWER_LONG:
3080
default:
3081
/* 1. TxPower Config */
3082
OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
3083
sizeof(target_power_val_t));
3084
/* 1.1 Store OLPC Delta Calibration Offset*/
3085
olpc_power_offset =
3086
wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
3087
wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3088
/* 2. Store OB/DB1/DB2 */
3089
temp_obdb_reg_val =
3090
AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3091
/* 3. Store TPC settting */
3092
temp_tcp_reg_val =
3093
AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
3094
/* 4. Store BB_powertx_rate9 value */
3095
temp_powertx_rate9_reg_val =
3096
AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
3097
break;
3098
}
3099
}
3100
/* 1.1 Do OLPC Delta Calibration Offset */
3101
tmp_olpc_val =
3102
(int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
3103
tmp_olpc_val += olpc_power_offset;
3104
OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
3105
(tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
3106
AR_PHY_TPC_OLPC_GAIN_DELTA);
3107
3108
/* 1.2 TxPower Config */
3109
ar9300_transmit_power_reg_write(ah, target_power_val_t);
3110
/* 2. Config OB/DB */
3111
if (!ahp->ah_hw_green_tx_enable) {
3112
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
3113
}
3114
/* 3. config TPC settting */
3115
OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
3116
/* 4. config BB_powertx_rate9 value */
3117
OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
3118
}
3119
}
3120
3121
#if 0
3122
void
3123
ar9300_get_vow_stats(
3124
struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
3125
{
3126
if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
3127
p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
3128
}
3129
if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
3130
p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
3131
}
3132
if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
3133
p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
3134
}
3135
if (vow_reg_flags & AR_REG_CYCLE_CNT) {
3136
p_stats->cycle_count = OS_REG_READ(ah, AR_CCCNT);
3137
}
3138
if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
3139
p_stats->ext_cycle_count = OS_REG_READ(ah, AR_EXTRCCNT);
3140
}
3141
}
3142
#endif
3143
3144
/*
3145
* ar9300_is_skip_paprd_by_greentx
3146
*
3147
* This function check if we need to skip PAPRD tuning
3148
* when GreenTx in specific state.
3149
*/
3150
HAL_BOOL
3151
ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
3152
{
3153
if (AR_SREV_POSEIDON(ah) &&
3154
ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
3155
((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
3156
(AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
3157
{
3158
return AH_TRUE;
3159
}
3160
return AH_FALSE;
3161
}
3162
3163
void
3164
ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
3165
{
3166
unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
3167
unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
3168
unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
3169
unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
3170
unsigned int valid_obdb_4_b0 = 0xd; // 1,5 - dB[0:2],oB[5:3]
3171
struct ath_hal_9300 *ahp = AH9300(ah);
3172
3173
if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3174
OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3175
AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
3176
OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3177
AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
3178
OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3179
AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
3180
OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3181
AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
3182
OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3183
AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
3184
}
3185
}
3186
3187
void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
3188
{
3189
struct ath_hal_9300 *ahp = AH9300(ah);
3190
3191
if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3192
if ((value == 0) || (value == 1)) {
3193
OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
3194
AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3195
}
3196
}
3197
}
3198
3199
void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3200
{
3201
OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3202
}
3203
3204
int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3205
{
3206
int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3207
3208
/* RSSI format is 8.4. Ignore lowest four bits */
3209
val = val >> 4;
3210
return val;
3211
}
3212
3213
void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3214
u_int32_t rssi_threshold)
3215
{
3216
struct ath_hal_9300 *ahp = AH9300(ah);
3217
3218
OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3219
3220
/* save value for restoring after chip reset */
3221
ahp->ah_beacon_rssi_threshold = rssi_threshold;
3222
}
3223
3224
void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3225
{
3226
OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3227
}
3228
3229
void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3230
{
3231
if (on) {
3232
OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3233
AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3234
}
3235
else {
3236
OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3237
AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3238
}
3239
}
3240
/*
3241
* Gets the contents of the specified key cache entry.
3242
*/
3243
HAL_BOOL
3244
ar9300_print_keycache(struct ath_hal *ah)
3245
{
3246
3247
const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3248
u_int32_t key0, key1, key2, key3, key4;
3249
u_int32_t mac_hi, mac_lo;
3250
u_int16_t entry = 0;
3251
u_int32_t valid = 0;
3252
u_int32_t key_type;
3253
3254
ath_hal_printf(ah, "Slot Key\t\t\t Valid Type Mac \n");
3255
3256
for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
3257
key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3258
key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3259
key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3260
key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3261
key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3262
3263
key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3264
3265
mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3266
mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3267
3268
if (mac_hi & AR_KEYTABLE_VALID) {
3269
valid = 1;
3270
} else {
3271
valid = 0;
3272
}
3273
3274
if ((mac_hi != 0) && (mac_lo != 0)) {
3275
mac_hi &= ~0x8000;
3276
mac_hi <<= 1;
3277
mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3278
mac_lo <<= 1;
3279
}
3280
3281
ath_hal_printf(ah,
3282
"%03d "
3283
"%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3284
" %02d %02d "
3285
"%02x:%02x:%02x:%02x:%02x:%02x \n",
3286
entry,
3287
(key0 << 24) >> 24, (key0 << 16) >> 24,
3288
(key0 << 8) >> 24, key0 >> 24,
3289
(key1 << 24) >> 24, (key1 << 16) >> 24,
3290
//(key1 << 8) >> 24, key1 >> 24,
3291
(key2 << 24) >> 24, (key2 << 16) >> 24,
3292
(key2 << 8) >> 24, key2 >> 24,
3293
(key3 << 24) >> 24, (key3 << 16) >> 24,
3294
//(key3 << 8) >> 24, key3 >> 24,
3295
(key4 << 24) >> 24, (key4 << 16) >> 24,
3296
(key4 << 8) >> 24, key4 >> 24,
3297
valid, key_type,
3298
(mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3299
(mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3300
}
3301
3302
return AH_TRUE;
3303
}
3304
3305
/* enable/disable smart antenna mode */
3306
HAL_BOOL
3307
ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3308
{
3309
struct ath_hal_9300 *ahp = AH9300(ah);
3310
3311
if (enable) {
3312
OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3313
} else {
3314
OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3315
}
3316
3317
/* if scropion and smart antenna is enabled, write swcom1 with 0x440
3318
* and swcom2 with 0
3319
* FIXME Ideally these registers need to be made read from caldata.
3320
* Until the calibration team gets them, keep them along with board
3321
* configuration.
3322
*/
3323
if (enable && AR_SREV_SCORPION(ah) &&
3324
(HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3325
3326
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3327
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3328
}
3329
3330
ahp->ah_smartantenna_enable = enable;
3331
return 1;
3332
}
3333
3334
#ifdef ATH_TX99_DIAG
3335
#ifndef ATH_SUPPORT_HTC
3336
void
3337
ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3338
u_int32_t txpower)
3339
{
3340
#define PWR_MAS(_r, _s) (((_r) & 0x3f) << (_s))
3341
static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3342
int32_t i;
3343
3344
/* The max power is limited to 63 */
3345
if (txpower <= AR9300_MAX_RATE_POWER) {
3346
for (i = 0; i < ar9300_rate_size; i++) {
3347
p_pwr_array[i] = txpower;
3348
}
3349
} else {
3350
for (i = 0; i < ar9300_rate_size; i++) {
3351
p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3352
}
3353
}
3354
3355
OS_REG_WRITE(ah, 0xa458, 0);
3356
3357
/* Write the OFDM power per rate set */
3358
/* 6 (LSB), 9, 12, 18 (MSB) */
3359
OS_REG_WRITE(ah, 0xa3c0,
3360
PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3361
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3362
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 8)
3363
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0)
3364
);
3365
/* 24 (LSB), 36, 48, 54 (MSB) */
3366
OS_REG_WRITE(ah, 0xa3c4,
3367
PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3368
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3369
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36], 8)
3370
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0)
3371
);
3372
3373
/* Write the CCK power per rate set */
3374
/* 1L (LSB), reserved, 2L, 2S (MSB) */
3375
OS_REG_WRITE(ah, 0xa3c8,
3376
PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3377
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16)
3378
/* | PWR_MAS(txPowerTimes2, 8) */ /* this is reserved for Osprey */
3379
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0)
3380
);
3381
/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3382
OS_REG_WRITE(ah, 0xa3cc,
3383
PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3384
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3385
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S], 8)
3386
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0)
3387
);
3388
3389
/* Write the HT20 power per rate set */
3390
/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3391
OS_REG_WRITE(ah, 0xa3d0,
3392
PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3393
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4], 16)
3394
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19], 8)
3395
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16], 0)
3396
);
3397
3398
/* 6 (LSB), 7, 12, 13 (MSB) */
3399
OS_REG_WRITE(ah, 0xa3d4,
3400
PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3401
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12], 16)
3402
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7], 8)
3403
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6], 0)
3404
);
3405
3406
/* 14 (LSB), 15, 20, 21 */
3407
OS_REG_WRITE(ah, 0xa3e4,
3408
PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3409
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20], 16)
3410
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15], 8)
3411
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14], 0)
3412
);
3413
3414
/* Mixed HT20 and HT40 rates */
3415
/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3416
OS_REG_WRITE(ah, 0xa3e8,
3417
PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3418
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22], 16)
3419
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23], 8)
3420
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22], 0)
3421
);
3422
3423
/* Write the HT40 power per rate set */
3424
/* correct PAR difference between HT40 and HT20/LEGACY */
3425
/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3426
OS_REG_WRITE(ah, 0xa3d8,
3427
PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3428
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4], 16)
3429
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19], 8)
3430
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16], 0)
3431
);
3432
3433
/* 6 (LSB), 7, 12, 13 (MSB) */
3434
OS_REG_WRITE(ah, 0xa3dc,
3435
PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3436
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12], 16)
3437
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3438
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3439
);
3440
3441
/* 14 (LSB), 15, 20, 21 */
3442
OS_REG_WRITE(ah, 0xa3ec,
3443
PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3444
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20], 16)
3445
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15], 8)
3446
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14], 0)
3447
);
3448
#undef PWR_MAS
3449
}
3450
3451
void
3452
ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3453
{
3454
if (tx_chainmask == 0x5) {
3455
OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3456
OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3457
}
3458
OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3459
OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3460
3461
OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3462
if (tx_chainmask == 0x5) {
3463
OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3464
OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3465
}
3466
}
3467
3468
void
3469
ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3470
int chtype)
3471
{
3472
OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3473
OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3474
OS_REG_WRITE(ah, 0xa350,
3475
(OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3476
3477
/* 11G mode */
3478
if (!chtype) {
3479
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3480
OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3481
if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3482
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3483
OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3484
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3485
(OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3486
| (0x1 << 26) | (0x7 << 24))
3487
& ~(0x1 << 22));
3488
} else {
3489
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3490
OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3491
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3492
(OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3493
| (0x1 << 26) | (0x7 << 24))
3494
& ~(0x1 << 22));
3495
}
3496
3497
/* chain zero */
3498
if ((tx_chain_mask & 0x01) == 0x01) {
3499
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3500
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3501
| (0x1 << 31) | (0x5 << 15)
3502
| (0x3 << 9)) & ~(0x1 << 27)
3503
& ~(0x1 << 12));
3504
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3505
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3506
| (0x1 << 12) | (0x1 << 10)
3507
| (0x1 << 9) | (0x1 << 8)
3508
| (0x1 << 7)) & ~(0x1 << 11));
3509
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3510
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3511
| (0x1 << 29) | (0x1 << 25)
3512
| (0x1 << 23) | (0x1 << 19)
3513
| (0x1 << 10) | (0x1 << 9)
3514
| (0x1 << 8) | (0x1 << 3))
3515
& ~(0x1 << 28)& ~(0x1 << 24)
3516
& ~(0x1 << 22)& ~(0x1 << 7));
3517
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3518
(OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3519
| (0x1 << 23))& ~(0x1 << 21));
3520
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3521
OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3522
| (0x1 << 12) | (0x1 << 10)
3523
| (0x1 << 9) | (0x1 << 8)
3524
| (0x1 << 6) | (0x1 << 5)
3525
| (0x1 << 4) | (0x1 << 3)
3526
| (0x1 << 2));
3527
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3528
OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3529
}
3530
if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3531
/* chain one */
3532
if ((tx_chain_mask & 0x02) == 0x02 ) {
3533
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3534
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3535
| (0x1 << 31) | (0x5 << 15)
3536
| (0x3 << 9)) & ~(0x1 << 27)
3537
& ~(0x1 << 12));
3538
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3539
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3540
| (0x1 << 12) | (0x1 << 10)
3541
| (0x1 << 9) | (0x1 << 8)
3542
| (0x1 << 7)) & ~(0x1 << 11));
3543
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3544
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3545
| (0x1 << 29) | (0x1 << 25)
3546
| (0x1 << 23) | (0x1 << 19)
3547
| (0x1 << 10) | (0x1 << 9)
3548
| (0x1 << 8) | (0x1 << 3))
3549
& ~(0x1 << 28)& ~(0x1 << 24)
3550
& ~(0x1 << 22)& ~(0x1 << 7));
3551
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3552
(OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3553
| (0x1 << 23))& ~(0x1 << 21));
3554
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3555
OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3556
| (0x1 << 12) | (0x1 << 10)
3557
| (0x1 << 9) | (0x1 << 8)
3558
| (0x1 << 6) | (0x1 << 5)
3559
| (0x1 << 4) | (0x1 << 3)
3560
| (0x1 << 2));
3561
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3562
OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3563
}
3564
}
3565
if (AR_SREV_OSPREY(ah)) {
3566
/* chain two */
3567
if ((tx_chain_mask & 0x04) == 0x04 ) {
3568
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3569
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3570
| (0x1 << 31) | (0x5 << 15)
3571
| (0x3 << 9)) & ~(0x1 << 27)
3572
& ~(0x1 << 12));
3573
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3574
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3575
| (0x1 << 12) | (0x1 << 10)
3576
| (0x1 << 9) | (0x1 << 8)
3577
| (0x1 << 7)) & ~(0x1 << 11));
3578
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3579
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3580
| (0x1 << 29) | (0x1 << 25)
3581
| (0x1 << 23) | (0x1 << 19)
3582
| (0x1 << 10) | (0x1 << 9)
3583
| (0x1 << 8) | (0x1 << 3))
3584
& ~(0x1 << 28)& ~(0x1 << 24)
3585
& ~(0x1 << 22)& ~(0x1 << 7));
3586
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3587
(OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3588
| (0x1 << 23))& ~(0x1 << 21));
3589
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3590
OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3591
| (0x1 << 12) | (0x1 << 10)
3592
| (0x1 << 9) | (0x1 << 8)
3593
| (0x1 << 6) | (0x1 << 5)
3594
| (0x1 << 4) | (0x1 << 3)
3595
| (0x1 << 2));
3596
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3597
OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3598
}
3599
}
3600
3601
OS_REG_WRITE(ah, 0xa28c, 0x11111);
3602
OS_REG_WRITE(ah, 0xa288, 0x111);
3603
} else {
3604
/* chain zero */
3605
if ((tx_chain_mask & 0x01) == 0x01) {
3606
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3607
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3608
| (0x1 << 31) | (0x1 << 27)
3609
| (0x3 << 23) | (0x1 << 19)
3610
| (0x1 << 15) | (0x3 << 9))
3611
& ~(0x1 << 12));
3612
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3613
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3614
| (0x1 << 12) | (0x1 << 10)
3615
| (0x1 << 9) | (0x1 << 8)
3616
| (0x1 << 7) | (0x1 << 3)
3617
| (0x1 << 2) | (0x1 << 1))
3618
& ~(0x1 << 11)& ~(0x1 << 0));
3619
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3620
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3621
| (0x1 << 29) | (0x1 << 25)
3622
| (0x1 << 23) | (0x1 << 19)
3623
| (0x1 << 10) | (0x1 << 9)
3624
| (0x1 << 8) | (0x1 << 3))
3625
& ~(0x1 << 28)& ~(0x1 << 24)
3626
& ~(0x1 << 22)& ~(0x1 << 7));
3627
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3628
(OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3629
| (0x1 << 23))& ~(0x1 << 21));
3630
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3631
OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3632
| (0x3 << 3) | (0x3 << 0));
3633
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3634
(OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3635
| (0x3 << 29) | (0x3 << 26)
3636
| (0x2 << 23) | (0x2 << 20)
3637
| (0x2 << 17))& ~(0x1 << 14));
3638
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3639
OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3640
| (0x1 << 12) | (0x1 << 10)
3641
| (0x1 << 9) | (0x1 << 8)
3642
| (0x1 << 6) | (0x1 << 5)
3643
| (0x1 << 4) | (0x1 << 3)
3644
| (0x1 << 2));
3645
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3646
OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3647
if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3648
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3649
OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3650
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3651
OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3652
| (0x1 << 26) | (0x7 << 24)
3653
| (0x3 << 22));
3654
} else {
3655
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3656
OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3657
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3658
OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3659
| (0x1 << 26) | (0x7 << 24)
3660
| (0x3 << 22));
3661
}
3662
3663
if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3664
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3665
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3666
| (0x1 << 3) | (0x1 << 2)
3667
| (0x1 << 1)) & ~(0x1 << 0));
3668
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3669
OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3670
| (0x1 << 19) | (0x1 << 3));
3671
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3672
OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3673
}
3674
if (AR_SREV_OSPREY(ah)) {
3675
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3676
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3677
| (0x1 << 3) | (0x1 << 2)
3678
| (0x1 << 1)) & ~(0x1 << 0));
3679
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3680
OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3681
| (0x1 << 19) | (0x1 << 3));
3682
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3683
OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3684
}
3685
}
3686
if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3687
/* chain one */
3688
if ((tx_chain_mask & 0x02) == 0x02 ) {
3689
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3690
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3691
| (0x1 << 3) | (0x1 << 2)
3692
| (0x1 << 1)) & ~(0x1 << 0));
3693
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3694
OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3695
| (0x1 << 19) | (0x1 << 3));
3696
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3697
OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3698
if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3699
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3700
OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3701
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3702
OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3703
| (0x1 << 26) | (0x7 << 24)
3704
| (0x3 << 22));
3705
} else {
3706
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3707
OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3708
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3709
OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3710
| (0x1 << 26) | (0x7 << 24)
3711
| (0x3 << 22));
3712
}
3713
3714
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3715
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3716
| (0x1 << 31) | (0x1 << 27)
3717
| (0x3 << 23) | (0x1 << 19)
3718
| (0x1 << 15) | (0x3 << 9))
3719
& ~(0x1 << 12));
3720
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3721
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3722
| (0x1 << 12) | (0x1 << 10)
3723
| (0x1 << 9) | (0x1 << 8)
3724
| (0x1 << 7) | (0x1 << 3)
3725
| (0x1 << 2) | (0x1 << 1))
3726
& ~(0x1 << 11)& ~(0x1 << 0));
3727
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3728
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3729
| (0x1 << 29) | (0x1 << 25)
3730
| (0x1 << 23) | (0x1 << 19)
3731
| (0x1 << 10) | (0x1 << 9)
3732
| (0x1 << 8) | (0x1 << 3))
3733
& ~(0x1 << 28)& ~(0x1 << 24)
3734
& ~(0x1 << 22)& ~(0x1 << 7));
3735
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3736
(OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3737
| (0x1 << 23))& ~(0x1 << 21));
3738
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3739
OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3740
| (0x3 << 3) | (0x3 << 0));
3741
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3742
(OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3743
| (0x3 << 29) | (0x3 << 26)
3744
| (0x2 << 23) | (0x2 << 20)
3745
| (0x2 << 17))& ~(0x1 << 14));
3746
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3747
OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3748
| (0x1 << 12) | (0x1 << 10)
3749
| (0x1 << 9) | (0x1 << 8)
3750
| (0x1 << 6) | (0x1 << 5)
3751
| (0x1 << 4) | (0x1 << 3)
3752
| (0x1 << 2));
3753
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3754
OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3755
3756
if (AR_SREV_OSPREY(ah)) {
3757
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3758
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3759
| (0x1 << 3) | (0x1 << 2)
3760
| (0x1 << 1)) & ~(0x1 << 0));
3761
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3762
OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3763
| (0x1 << 19) | (0x1 << 3));
3764
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3765
OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3766
}
3767
}
3768
}
3769
if (AR_SREV_OSPREY(ah)) {
3770
/* chain two */
3771
if ((tx_chain_mask & 0x04) == 0x04 ) {
3772
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3773
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3774
| (0x1 << 3) | (0x1 << 2)
3775
| (0x1 << 1)) & ~(0x1 << 0));
3776
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3777
OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3778
| (0x1 << 19) | (0x1 << 3));
3779
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3780
OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3781
if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3782
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3783
OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3784
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3785
OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3786
| (0x1 << 26) | (0x7 << 24)
3787
| (0x3 << 22));
3788
} else {
3789
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3790
OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3791
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3792
OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3793
| (0x1 << 26) | (0x7 << 24)
3794
| (0x3 << 22));
3795
}
3796
3797
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3798
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3799
| (0x1 << 3) | (0x1 << 2)
3800
| (0x1 << 1)) & ~(0x1 << 0));
3801
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3802
OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3803
| (0x1 << 19) | (0x1 << 3));
3804
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3805
OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3806
3807
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3808
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3809
| (0x1 << 31) | (0x1 << 27)
3810
| (0x3 << 23) | (0x1 << 19)
3811
| (0x1 << 15) | (0x3 << 9))
3812
& ~(0x1 << 12));
3813
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3814
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3815
| (0x1 << 12) | (0x1 << 10)
3816
| (0x1 << 9) | (0x1 << 8)
3817
| (0x1 << 7) | (0x1 << 3)
3818
| (0x1 << 2) | (0x1 << 1))
3819
& ~(0x1 << 11)& ~(0x1 << 0));
3820
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3821
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3822
| (0x1 << 29) | (0x1 << 25)
3823
| (0x1 << 23) | (0x1 << 19)
3824
| (0x1 << 10) | (0x1 << 9)
3825
| (0x1 << 8) | (0x1 << 3))
3826
& ~(0x1 << 28)& ~(0x1 << 24)
3827
& ~(0x1 << 22)& ~(0x1 << 7));
3828
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3829
(OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3830
| (0x1 << 23))& ~(0x1 << 21));
3831
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3832
OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3833
| (0x3 << 3) | (0x3 << 0));
3834
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3835
(OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3836
| (0x3 << 29) | (0x3 << 26)
3837
| (0x2 << 23) | (0x2 << 20)
3838
| (0x2 << 17))& ~(0x1 << 14));
3839
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3840
OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3841
| (0x1 << 12) | (0x1 << 10)
3842
| (0x1 << 9) | (0x1 << 8)
3843
| (0x1 << 6) | (0x1 << 5)
3844
| (0x1 << 4) | (0x1 << 3)
3845
| (0x1 << 2));
3846
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3847
OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3848
}
3849
}
3850
3851
OS_REG_WRITE(ah, 0xa28c, 0x22222);
3852
OS_REG_WRITE(ah, 0xa288, 0x222);
3853
}
3854
}
3855
3856
void
3857
ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3858
{
3859
u_int32_t val;
3860
u_int32_t qnum = (u_int32_t)data;
3861
3862
/* Disable AGC to A2 */
3863
OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3864
OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3865
3866
OS_REG_WRITE(ah, AR_CR, AR_CR_RXD); /* set receive disable */
3867
/* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3868
OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3869
OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3870
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3871
/* 200 ok for HT20, 400 ok for HT40 */
3872
OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3873
OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3874
3875
/* set QCU modes to early termination */
3876
val = OS_REG_READ(ah, AR_QMISC(qnum));
3877
OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3878
}
3879
3880
void
3881
ar9300_tx99_stop(struct ath_hal *ah)
3882
{
3883
/* this should follow the setting of start */
3884
OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3885
OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3886
}
3887
#endif /* ATH_TX99_DIAG */
3888
#endif /* ATH_SUPPORT_HTC */
3889
3890
HAL_BOOL
3891
ar9300Get3StreamSignature(struct ath_hal *ah)
3892
{
3893
return AH_FALSE;
3894
}
3895
3896
HAL_BOOL
3897
ar9300ForceVCS(struct ath_hal *ah)
3898
{
3899
return AH_FALSE;
3900
}
3901
3902
HAL_BOOL
3903
ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3904
{
3905
return AH_FALSE;
3906
}
3907
3908
static u_int32_t
3909
ar9300_read_loc_timer(struct ath_hal *ah)
3910
{
3911
3912
return OS_REG_READ(ah, AR_LOC_TIMER_REG);
3913
}
3914
3915
HAL_BOOL
3916
ar9300_set_ctl_pwr(struct ath_hal *ah, u_int8_t *ctl_array)
3917
{
3918
struct ath_hal_9300 *ahp = AH9300(ah);
3919
ar9300_eeprom_t *p_eep_data = &ahp->ah_eeprom;
3920
u_int8_t *ctl_index;
3921
u_int32_t offset = 0;
3922
3923
if (!ctl_array)
3924
return AH_FALSE;
3925
3926
/* copy 2G ctl freqbin and power data */
3927
ctl_index = p_eep_data->ctl_index_2g;
3928
OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_2G, ctl_array,
3929
OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G + /* ctl_freqbin_2G */
3930
OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G)); /* ctl_power_data_2g */
3931
offset = (OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G) +
3932
( OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));
3933
3934
3935
/* copy 2G ctl freqbin and power data */
3936
ctl_index = p_eep_data->ctl_index_5g;
3937
OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_5G, ctl_array + offset,
3938
OSPREY_NUM_CTLS_5G * OSPREY_NUM_BAND_EDGES_5G + /* ctl_freqbin_5G */
3939
OSPREY_NUM_CTLS_5G * sizeof(OSP_CAL_CTL_DATA_5G)); /* ctl_power_data_5g */
3940
3941
return AH_FALSE;
3942
}
3943
3944
void
3945
ar9300_set_txchainmaskopt(struct ath_hal *ah, u_int8_t mask)
3946
{
3947
struct ath_hal_9300 *ahp = AH9300(ah);
3948
3949
/* optional txchainmask should be subset of primary txchainmask */
3950
if ((mask & ahp->ah_tx_chainmask) != mask) {
3951
ahp->ah_tx_chainmaskopt = 0;
3952
ath_hal_printf(ah, "Error: ah_tx_chainmask=%d, mask=%d\n", ahp->ah_tx_chainmask, mask);
3953
return;
3954
}
3955
3956
ahp->ah_tx_chainmaskopt = mask;
3957
}
3958
3959