Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/dev/athk/ath10k/sdio.c
48375 views
1
// SPDX-License-Identifier: ISC
2
/*
3
* Copyright (c) 2004-2011 Atheros Communications Inc.
4
* Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc.
5
* Copyright (c) 2016-2017 Erik Stromdahl <[email protected]>
6
*/
7
8
#include <linux/module.h>
9
#include <linux/mmc/card.h>
10
#include <linux/mmc/mmc.h>
11
#include <linux/mmc/host.h>
12
#include <linux/mmc/sdio_func.h>
13
#include <linux/mmc/sdio_ids.h>
14
#include <linux/mmc/sdio.h>
15
#include <linux/mmc/sd.h>
16
#include <linux/bitfield.h>
17
#include "core.h"
18
#include "bmi.h"
19
#include "debug.h"
20
#include "hif.h"
21
#include "htc.h"
22
#include "mac.h"
23
#include "targaddrs.h"
24
#include "trace.h"
25
#include "sdio.h"
26
#include "coredump.h"
27
28
void ath10k_sdio_fw_crashed_dump(struct ath10k *ar);
29
30
#define ATH10K_SDIO_VSG_BUF_SIZE (64 * 1024)
31
32
/* inlined helper functions */
33
34
static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio,
35
size_t len)
36
{
37
return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask);
38
}
39
40
static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id)
41
{
42
return (enum ath10k_htc_ep_id)pipe_id;
43
}
44
45
static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt)
46
{
47
dev_kfree_skb(pkt->skb);
48
pkt->skb = NULL;
49
pkt->alloc_len = 0;
50
pkt->act_len = 0;
51
pkt->trailer_only = false;
52
}
53
54
static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt,
55
size_t act_len, size_t full_len,
56
bool part_of_bundle,
57
bool last_in_bundle)
58
{
59
pkt->skb = dev_alloc_skb(full_len);
60
if (!pkt->skb)
61
return -ENOMEM;
62
63
pkt->act_len = act_len;
64
pkt->alloc_len = full_len;
65
pkt->part_of_bundle = part_of_bundle;
66
pkt->last_in_bundle = last_in_bundle;
67
pkt->trailer_only = false;
68
69
return 0;
70
}
71
72
static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt)
73
{
74
bool trailer_only = false;
75
struct ath10k_htc_hdr *htc_hdr =
76
(struct ath10k_htc_hdr *)pkt->skb->data;
77
u16 len = __le16_to_cpu(htc_hdr->len);
78
79
if (len == htc_hdr->trailer_len)
80
trailer_only = true;
81
82
return trailer_only;
83
}
84
85
/* sdio/mmc functions */
86
87
static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
88
unsigned int address,
89
unsigned char val)
90
{
91
*arg = FIELD_PREP(BIT(31), write) |
92
FIELD_PREP(BIT(27), raw) |
93
FIELD_PREP(BIT(26), 1) |
94
FIELD_PREP(GENMASK(25, 9), address) |
95
FIELD_PREP(BIT(8), 1) |
96
FIELD_PREP(GENMASK(7, 0), val);
97
}
98
99
static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
100
unsigned int address,
101
unsigned char byte)
102
{
103
struct mmc_command io_cmd;
104
105
memset(&io_cmd, 0, sizeof(io_cmd));
106
ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
107
io_cmd.opcode = SD_IO_RW_DIRECT;
108
io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
109
110
return mmc_wait_for_cmd(card->host, &io_cmd, 0);
111
}
112
113
static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card,
114
unsigned int address,
115
unsigned char *byte)
116
{
117
struct mmc_command io_cmd;
118
int ret;
119
120
memset(&io_cmd, 0, sizeof(io_cmd));
121
ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0);
122
io_cmd.opcode = SD_IO_RW_DIRECT;
123
io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
124
125
ret = mmc_wait_for_cmd(card->host, &io_cmd, 0);
126
if (!ret)
127
*byte = io_cmd.resp[0];
128
129
return ret;
130
}
131
132
static int ath10k_sdio_config(struct ath10k *ar)
133
{
134
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
135
struct sdio_func *func = ar_sdio->func;
136
unsigned char byte, asyncintdelay = 2;
137
int ret;
138
139
ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n");
140
141
sdio_claim_host(func);
142
143
byte = 0;
144
ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
145
SDIO_CCCR_DRIVE_STRENGTH,
146
&byte);
147
148
byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK;
149
byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK,
150
ATH10K_SDIO_DRIVE_DTSX_TYPE_D);
151
152
ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
153
SDIO_CCCR_DRIVE_STRENGTH,
154
byte);
155
156
byte = 0;
157
ret = ath10k_sdio_func0_cmd52_rd_byte(
158
func->card,
159
CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR,
160
&byte);
161
162
byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A |
163
CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C |
164
CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D);
165
166
ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
167
CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR,
168
byte);
169
if (ret) {
170
ath10k_warn(ar, "failed to enable driver strength: %d\n", ret);
171
goto out;
172
}
173
174
byte = 0;
175
ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
176
CCCR_SDIO_IRQ_MODE_REG_SDIO3,
177
&byte);
178
179
byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3;
180
181
ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
182
CCCR_SDIO_IRQ_MODE_REG_SDIO3,
183
byte);
184
if (ret) {
185
ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n",
186
ret);
187
goto out;
188
}
189
190
byte = 0;
191
ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
192
CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS,
193
&byte);
194
195
byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK;
196
byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay);
197
198
ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
199
CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS,
200
byte);
201
202
/* give us some time to enable, in ms */
203
func->enable_timeout = 100;
204
205
ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size);
206
if (ret) {
207
ath10k_warn(ar, "failed to set sdio block size to %d: %d\n",
208
ar_sdio->mbox_info.block_size, ret);
209
goto out;
210
}
211
212
out:
213
sdio_release_host(func);
214
return ret;
215
}
216
217
static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val)
218
{
219
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
220
struct sdio_func *func = ar_sdio->func;
221
int ret;
222
223
sdio_claim_host(func);
224
225
sdio_writel(func, val, addr, &ret);
226
if (ret) {
227
ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n",
228
val, addr, ret);
229
goto out;
230
}
231
232
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n",
233
addr, val);
234
235
out:
236
sdio_release_host(func);
237
238
return ret;
239
}
240
241
static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val)
242
{
243
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
244
struct sdio_func *func = ar_sdio->func;
245
__le32 *buf;
246
int ret;
247
248
buf = kzalloc(sizeof(*buf), GFP_KERNEL);
249
if (!buf)
250
return -ENOMEM;
251
252
*buf = cpu_to_le32(val);
253
254
sdio_claim_host(func);
255
256
ret = sdio_writesb(func, addr, buf, sizeof(*buf));
257
if (ret) {
258
ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n",
259
val, addr, ret);
260
goto out;
261
}
262
263
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n",
264
addr, val);
265
266
out:
267
sdio_release_host(func);
268
269
kfree(buf);
270
271
return ret;
272
}
273
274
static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val)
275
{
276
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
277
struct sdio_func *func = ar_sdio->func;
278
int ret;
279
280
sdio_claim_host(func);
281
*val = sdio_readl(func, addr, &ret);
282
if (ret) {
283
ath10k_warn(ar, "failed to read from address 0x%x: %d\n",
284
addr, ret);
285
goto out;
286
}
287
288
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n",
289
addr, *val);
290
291
out:
292
sdio_release_host(func);
293
294
return ret;
295
}
296
297
static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len)
298
{
299
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
300
struct sdio_func *func = ar_sdio->func;
301
int ret;
302
303
sdio_claim_host(func);
304
305
ret = sdio_memcpy_fromio(func, buf, addr, len);
306
if (ret) {
307
ath10k_warn(ar, "failed to read from address 0x%x: %d\n",
308
addr, ret);
309
goto out;
310
}
311
312
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n",
313
addr, buf, len);
314
ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len);
315
316
out:
317
sdio_release_host(func);
318
319
return ret;
320
}
321
322
static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len)
323
{
324
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
325
struct sdio_func *func = ar_sdio->func;
326
int ret;
327
328
sdio_claim_host(func);
329
330
/* For some reason toio() doesn't have const for the buffer, need
331
* an ugly hack to workaround that.
332
*/
333
ret = sdio_memcpy_toio(func, addr, (void *)buf, len);
334
if (ret) {
335
ath10k_warn(ar, "failed to write to address 0x%x: %d\n",
336
addr, ret);
337
goto out;
338
}
339
340
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n",
341
addr, buf, len);
342
ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len);
343
344
out:
345
sdio_release_host(func);
346
347
return ret;
348
}
349
350
static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len)
351
{
352
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
353
struct sdio_func *func = ar_sdio->func;
354
int ret;
355
356
sdio_claim_host(func);
357
358
len = round_down(len, ar_sdio->mbox_info.block_size);
359
360
ret = sdio_readsb(func, buf, addr, len);
361
if (ret) {
362
ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n",
363
addr, ret);
364
goto out;
365
}
366
367
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n",
368
addr, buf, len);
369
ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len);
370
371
out:
372
sdio_release_host(func);
373
374
return ret;
375
}
376
377
/* HIF mbox functions */
378
379
static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar,
380
struct ath10k_sdio_rx_data *pkt,
381
u32 *lookaheads,
382
int *n_lookaheads)
383
{
384
struct ath10k_htc *htc = &ar->htc;
385
struct sk_buff *skb = pkt->skb;
386
struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data;
387
bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT;
388
enum ath10k_htc_ep_id eid;
389
u8 *trailer;
390
int ret;
391
392
if (trailer_present) {
393
trailer = skb->data + skb->len - htc_hdr->trailer_len;
394
395
eid = pipe_id_to_eid(htc_hdr->eid);
396
397
ret = ath10k_htc_process_trailer(htc,
398
trailer,
399
htc_hdr->trailer_len,
400
eid,
401
lookaheads,
402
n_lookaheads);
403
if (ret)
404
return ret;
405
406
if (is_trailer_only_msg(pkt))
407
pkt->trailer_only = true;
408
409
skb_trim(skb, skb->len - htc_hdr->trailer_len);
410
}
411
412
skb_pull(skb, sizeof(*htc_hdr));
413
414
return 0;
415
}
416
417
static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar,
418
u32 lookaheads[],
419
int *n_lookahead)
420
{
421
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
422
struct ath10k_htc *htc = &ar->htc;
423
struct ath10k_sdio_rx_data *pkt;
424
struct ath10k_htc_ep *ep;
425
struct ath10k_skb_rxcb *cb;
426
enum ath10k_htc_ep_id id;
427
int ret, i, *n_lookahead_local;
428
u32 *lookaheads_local;
429
int lookahead_idx = 0;
430
431
for (i = 0; i < ar_sdio->n_rx_pkts; i++) {
432
lookaheads_local = lookaheads;
433
n_lookahead_local = n_lookahead;
434
435
id = ((struct ath10k_htc_hdr *)
436
&lookaheads[lookahead_idx++])->eid;
437
438
if (id >= ATH10K_HTC_EP_COUNT) {
439
ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n",
440
id);
441
ret = -ENOMEM;
442
goto out;
443
}
444
445
ep = &htc->endpoint[id];
446
447
if (ep->service_id == 0) {
448
ath10k_warn(ar, "ep %d is not connected\n", id);
449
ret = -ENOMEM;
450
goto out;
451
}
452
453
pkt = &ar_sdio->rx_pkts[i];
454
455
if (pkt->part_of_bundle && !pkt->last_in_bundle) {
456
/* Only read lookahead's from RX trailers
457
* for the last packet in a bundle.
458
*/
459
lookahead_idx--;
460
lookaheads_local = NULL;
461
n_lookahead_local = NULL;
462
}
463
464
ret = ath10k_sdio_mbox_rx_process_packet(ar,
465
pkt,
466
lookaheads_local,
467
n_lookahead_local);
468
if (ret)
469
goto out;
470
471
if (!pkt->trailer_only) {
472
cb = ATH10K_SKB_RXCB(pkt->skb);
473
cb->eid = id;
474
475
skb_queue_tail(&ar_sdio->rx_head, pkt->skb);
476
queue_work(ar->workqueue_aux,
477
&ar_sdio->async_work_rx);
478
} else {
479
kfree_skb(pkt->skb);
480
}
481
482
/* The RX complete handler now owns the skb...*/
483
pkt->skb = NULL;
484
pkt->alloc_len = 0;
485
}
486
487
ret = 0;
488
489
out:
490
/* Free all packets that was not passed on to the RX completion
491
* handler...
492
*/
493
for (; i < ar_sdio->n_rx_pkts; i++)
494
ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
495
496
return ret;
497
}
498
499
static int ath10k_sdio_mbox_alloc_bundle(struct ath10k *ar,
500
struct ath10k_sdio_rx_data *rx_pkts,
501
struct ath10k_htc_hdr *htc_hdr,
502
size_t full_len, size_t act_len,
503
size_t *bndl_cnt)
504
{
505
int ret, i;
506
u8 max_msgs = ar->htc.max_msgs_per_htc_bundle;
507
508
*bndl_cnt = ath10k_htc_get_bundle_count(max_msgs, htc_hdr->flags);
509
510
if (*bndl_cnt > max_msgs) {
511
ath10k_warn(ar,
512
"HTC bundle length %u exceeds maximum %u\n",
513
le16_to_cpu(htc_hdr->len),
514
max_msgs);
515
return -ENOMEM;
516
}
517
518
/* Allocate bndl_cnt extra skb's for the bundle.
519
* The package containing the
520
* ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included
521
* in bndl_cnt. The skb for that packet will be
522
* allocated separately.
523
*/
524
for (i = 0; i < *bndl_cnt; i++) {
525
ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i],
526
act_len,
527
full_len,
528
true,
529
false);
530
if (ret)
531
return ret;
532
}
533
534
return 0;
535
}
536
537
static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar,
538
u32 lookaheads[], int n_lookaheads)
539
{
540
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
541
struct ath10k_htc_hdr *htc_hdr;
542
size_t full_len, act_len;
543
bool last_in_bundle;
544
int ret, i;
545
int pkt_cnt = 0;
546
547
if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) {
548
ath10k_warn(ar, "the total number of pkts to be fetched (%u) exceeds maximum %u\n",
549
n_lookaheads, ATH10K_SDIO_MAX_RX_MSGS);
550
ret = -ENOMEM;
551
goto err;
552
}
553
554
for (i = 0; i < n_lookaheads; i++) {
555
htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i];
556
last_in_bundle = false;
557
558
if (le16_to_cpu(htc_hdr->len) > ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) {
559
ath10k_warn(ar, "payload length %d exceeds max htc length: %zu\n",
560
le16_to_cpu(htc_hdr->len),
561
ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH);
562
ret = -ENOMEM;
563
564
ath10k_core_start_recovery(ar);
565
ath10k_warn(ar, "exceeds length, start recovery\n");
566
567
goto err;
568
}
569
570
act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr);
571
full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len);
572
573
if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) {
574
ath10k_warn(ar, "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n",
575
htc_hdr->eid, htc_hdr->flags,
576
le16_to_cpu(htc_hdr->len));
577
ret = -EINVAL;
578
goto err;
579
}
580
581
if (ath10k_htc_get_bundle_count(
582
ar->htc.max_msgs_per_htc_bundle, htc_hdr->flags)) {
583
/* HTC header indicates that every packet to follow
584
* has the same padded length so that it can be
585
* optimally fetched as a full bundle.
586
*/
587
size_t bndl_cnt;
588
589
ret = ath10k_sdio_mbox_alloc_bundle(ar,
590
&ar_sdio->rx_pkts[pkt_cnt],
591
htc_hdr,
592
full_len,
593
act_len,
594
&bndl_cnt);
595
596
if (ret) {
597
ath10k_warn(ar, "failed to allocate a bundle: %d\n",
598
ret);
599
goto err;
600
}
601
602
pkt_cnt += bndl_cnt;
603
604
/* next buffer will be the last in the bundle */
605
last_in_bundle = true;
606
}
607
608
/* Allocate skb for packet. If the packet had the
609
* ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled
610
* packet skb's have been allocated in the previous step.
611
*/
612
if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK)
613
full_len += ATH10K_HIF_MBOX_BLOCK_SIZE;
614
615
ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[pkt_cnt],
616
act_len,
617
full_len,
618
last_in_bundle,
619
last_in_bundle);
620
if (ret) {
621
ath10k_warn(ar, "alloc_rx_pkt error %d\n", ret);
622
goto err;
623
}
624
625
pkt_cnt++;
626
}
627
628
ar_sdio->n_rx_pkts = pkt_cnt;
629
630
return 0;
631
632
err:
633
for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) {
634
if (!ar_sdio->rx_pkts[i].alloc_len)
635
break;
636
ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
637
}
638
639
return ret;
640
}
641
642
static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar)
643
{
644
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
645
struct ath10k_sdio_rx_data *pkt = &ar_sdio->rx_pkts[0];
646
struct sk_buff *skb = pkt->skb;
647
struct ath10k_htc_hdr *htc_hdr;
648
int ret;
649
650
ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr,
651
skb->data, pkt->alloc_len);
652
if (ret)
653
goto err;
654
655
htc_hdr = (struct ath10k_htc_hdr *)skb->data;
656
pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr);
657
658
if (pkt->act_len > pkt->alloc_len) {
659
ret = -EINVAL;
660
goto err;
661
}
662
663
skb_put(skb, pkt->act_len);
664
return 0;
665
666
err:
667
ar_sdio->n_rx_pkts = 0;
668
ath10k_sdio_mbox_free_rx_pkt(pkt);
669
670
return ret;
671
}
672
673
static int ath10k_sdio_mbox_rx_fetch_bundle(struct ath10k *ar)
674
{
675
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
676
struct ath10k_sdio_rx_data *pkt;
677
struct ath10k_htc_hdr *htc_hdr;
678
int ret, i;
679
u32 pkt_offset, virt_pkt_len;
680
681
virt_pkt_len = 0;
682
for (i = 0; i < ar_sdio->n_rx_pkts; i++)
683
virt_pkt_len += ar_sdio->rx_pkts[i].alloc_len;
684
685
if (virt_pkt_len > ATH10K_SDIO_VSG_BUF_SIZE) {
686
ath10k_warn(ar, "sdio vsg buffer size limit: %d\n", virt_pkt_len);
687
ret = -E2BIG;
688
goto err;
689
}
690
691
ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr,
692
ar_sdio->vsg_buffer, virt_pkt_len);
693
if (ret) {
694
ath10k_warn(ar, "failed to read bundle packets: %d", ret);
695
goto err;
696
}
697
698
pkt_offset = 0;
699
for (i = 0; i < ar_sdio->n_rx_pkts; i++) {
700
pkt = &ar_sdio->rx_pkts[i];
701
htc_hdr = (struct ath10k_htc_hdr *)(ar_sdio->vsg_buffer + pkt_offset);
702
pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr);
703
704
if (pkt->act_len > pkt->alloc_len) {
705
ret = -EINVAL;
706
goto err;
707
}
708
709
skb_put_data(pkt->skb, htc_hdr, pkt->act_len);
710
pkt_offset += pkt->alloc_len;
711
}
712
713
return 0;
714
715
err:
716
/* Free all packets that was not successfully fetched. */
717
for (i = 0; i < ar_sdio->n_rx_pkts; i++)
718
ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
719
720
ar_sdio->n_rx_pkts = 0;
721
722
return ret;
723
}
724
725
/* This is the timeout for mailbox processing done in the sdio irq
726
* handler. The timeout is deliberately set quite high since SDIO dump logs
727
* over serial port can/will add a substantial overhead to the processing
728
* (if enabled).
729
*/
730
#define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ)
731
732
static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar,
733
u32 msg_lookahead, bool *done)
734
{
735
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
736
u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS];
737
int n_lookaheads = 1;
738
unsigned long timeout;
739
int ret;
740
741
*done = true;
742
743
/* Copy the lookahead obtained from the HTC register table into our
744
* temp array as a start value.
745
*/
746
lookaheads[0] = msg_lookahead;
747
748
timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ;
749
do {
750
/* Try to allocate as many HTC RX packets indicated by
751
* n_lookaheads.
752
*/
753
ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads,
754
n_lookaheads);
755
if (ret)
756
break;
757
758
if (ar_sdio->n_rx_pkts >= 2)
759
/* A recv bundle was detected, force IRQ status
760
* re-check again.
761
*/
762
*done = false;
763
764
if (ar_sdio->n_rx_pkts > 1)
765
ret = ath10k_sdio_mbox_rx_fetch_bundle(ar);
766
else
767
ret = ath10k_sdio_mbox_rx_fetch(ar);
768
769
/* Process fetched packets. This will potentially update
770
* n_lookaheads depending on if the packets contain lookahead
771
* reports.
772
*/
773
n_lookaheads = 0;
774
ret = ath10k_sdio_mbox_rx_process_packets(ar,
775
lookaheads,
776
&n_lookaheads);
777
778
if (!n_lookaheads || ret)
779
break;
780
781
/* For SYNCH processing, if we get here, we are running
782
* through the loop again due to updated lookaheads. Set
783
* flag that we should re-check IRQ status registers again
784
* before leaving IRQ processing, this can net better
785
* performance in high throughput situations.
786
*/
787
*done = false;
788
} while (time_before(jiffies, timeout));
789
790
if (ret && (ret != -ECANCELED))
791
ath10k_warn(ar, "failed to get pending recv messages: %d\n",
792
ret);
793
794
return ret;
795
}
796
797
static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar)
798
{
799
u32 val;
800
int ret;
801
802
/* TODO: Add firmware crash handling */
803
ath10k_warn(ar, "firmware crashed\n");
804
805
/* read counter to clear the interrupt, the debug error interrupt is
806
* counter 0.
807
*/
808
ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val);
809
if (ret)
810
ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret);
811
812
return ret;
813
}
814
815
static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar)
816
{
817
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
818
struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
819
u8 counter_int_status;
820
int ret;
821
822
mutex_lock(&irq_data->mtx);
823
counter_int_status = irq_data->irq_proc_reg->counter_int_status &
824
irq_data->irq_en_reg->cntr_int_status_en;
825
826
/* NOTE: other modules like GMBOX may use the counter interrupt for
827
* credit flow control on other counters, we only need to check for
828
* the debug assertion counter interrupt.
829
*/
830
if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK)
831
ret = ath10k_sdio_mbox_proc_dbg_intr(ar);
832
else
833
ret = 0;
834
835
mutex_unlock(&irq_data->mtx);
836
837
return ret;
838
}
839
840
static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar)
841
{
842
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
843
struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
844
u8 error_int_status;
845
int ret;
846
847
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n");
848
849
error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F;
850
if (!error_int_status) {
851
ath10k_warn(ar, "invalid error interrupt status: 0x%x\n",
852
error_int_status);
853
return -EIO;
854
}
855
856
ath10k_dbg(ar, ATH10K_DBG_SDIO,
857
"sdio error_int_status 0x%x\n", error_int_status);
858
859
if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK,
860
error_int_status))
861
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n");
862
863
if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK,
864
error_int_status))
865
ath10k_warn(ar, "rx underflow interrupt error\n");
866
867
if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK,
868
error_int_status))
869
ath10k_warn(ar, "tx overflow interrupt error\n");
870
871
/* Clear the interrupt */
872
irq_data->irq_proc_reg->error_int_status &= ~error_int_status;
873
874
/* set W1C value to clear the interrupt, this hits the register first */
875
ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS,
876
error_int_status);
877
if (ret) {
878
ath10k_warn(ar, "unable to write to error int status address: %d\n",
879
ret);
880
return ret;
881
}
882
883
return 0;
884
}
885
886
static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar)
887
{
888
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
889
struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
890
u8 cpu_int_status;
891
int ret;
892
893
mutex_lock(&irq_data->mtx);
894
cpu_int_status = irq_data->irq_proc_reg->cpu_int_status &
895
irq_data->irq_en_reg->cpu_int_status_en;
896
if (!cpu_int_status) {
897
ath10k_warn(ar, "CPU interrupt status is zero\n");
898
ret = -EIO;
899
goto out;
900
}
901
902
/* Clear the interrupt */
903
irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status;
904
905
/* Set up the register transfer buffer to hit the register 4 times,
906
* this is done to make the access 4-byte aligned to mitigate issues
907
* with host bus interconnects that restrict bus transfer lengths to
908
* be a multiple of 4-bytes.
909
*
910
* Set W1C value to clear the interrupt, this hits the register first.
911
*/
912
ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS,
913
cpu_int_status);
914
if (ret) {
915
ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n",
916
ret);
917
goto out;
918
}
919
920
out:
921
mutex_unlock(&irq_data->mtx);
922
if (cpu_int_status & MBOX_CPU_STATUS_ENABLE_ASSERT_MASK)
923
ath10k_sdio_fw_crashed_dump(ar);
924
925
return ret;
926
}
927
928
static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar,
929
u8 *host_int_status,
930
u32 *lookahead)
931
{
932
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
933
struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
934
struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg;
935
struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg;
936
u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1);
937
int ret;
938
939
mutex_lock(&irq_data->mtx);
940
941
*lookahead = 0;
942
*host_int_status = 0;
943
944
/* int_status_en is supposed to be non zero, otherwise interrupts
945
* shouldn't be enabled. There is however a short time frame during
946
* initialization between the irq register and int_status_en init
947
* where this can happen.
948
* We silently ignore this condition.
949
*/
950
if (!irq_en_reg->int_status_en) {
951
ret = 0;
952
goto out;
953
}
954
955
/* Read the first sizeof(struct ath10k_irq_proc_registers)
956
* bytes of the HTC register table. This
957
* will yield us the value of different int status
958
* registers and the lookahead registers.
959
*/
960
ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS,
961
irq_proc_reg, sizeof(*irq_proc_reg));
962
if (ret) {
963
ath10k_core_start_recovery(ar);
964
ath10k_warn(ar, "read int status fail, start recovery\n");
965
goto out;
966
}
967
968
/* Update only those registers that are enabled */
969
*host_int_status = irq_proc_reg->host_int_status &
970
irq_en_reg->int_status_en;
971
972
/* Look at mbox status */
973
if (!(*host_int_status & htc_mbox)) {
974
*lookahead = 0;
975
ret = 0;
976
goto out;
977
}
978
979
/* Mask out pending mbox value, we use look ahead as
980
* the real flag for mbox processing.
981
*/
982
*host_int_status &= ~htc_mbox;
983
if (irq_proc_reg->rx_lookahead_valid & htc_mbox) {
984
*lookahead = le32_to_cpu(
985
irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]);
986
if (!*lookahead)
987
ath10k_warn(ar, "sdio mbox lookahead is zero\n");
988
}
989
990
out:
991
mutex_unlock(&irq_data->mtx);
992
return ret;
993
}
994
995
static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar,
996
bool *done)
997
{
998
u8 host_int_status;
999
u32 lookahead;
1000
int ret;
1001
1002
/* NOTE: HIF implementation guarantees that the context of this
1003
* call allows us to perform SYNCHRONOUS I/O, that is we can block,
1004
* sleep or call any API that can block or switch thread/task
1005
* contexts. This is a fully schedulable context.
1006
*/
1007
1008
ret = ath10k_sdio_mbox_read_int_status(ar,
1009
&host_int_status,
1010
&lookahead);
1011
if (ret) {
1012
*done = true;
1013
goto out;
1014
}
1015
1016
if (!host_int_status && !lookahead) {
1017
ret = 0;
1018
*done = true;
1019
goto out;
1020
}
1021
1022
if (lookahead) {
1023
ath10k_dbg(ar, ATH10K_DBG_SDIO,
1024
"sdio pending mailbox msg lookahead 0x%08x\n",
1025
lookahead);
1026
1027
ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar,
1028
lookahead,
1029
done);
1030
if (ret)
1031
goto out;
1032
}
1033
1034
/* now, handle the rest of the interrupts */
1035
ath10k_dbg(ar, ATH10K_DBG_SDIO,
1036
"sdio host_int_status 0x%x\n", host_int_status);
1037
1038
if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) {
1039
/* CPU Interrupt */
1040
ret = ath10k_sdio_mbox_proc_cpu_intr(ar);
1041
if (ret)
1042
goto out;
1043
}
1044
1045
if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) {
1046
/* Error Interrupt */
1047
ret = ath10k_sdio_mbox_proc_err_intr(ar);
1048
if (ret)
1049
goto out;
1050
}
1051
1052
if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status))
1053
/* Counter Interrupt */
1054
ret = ath10k_sdio_mbox_proc_counter_intr(ar);
1055
1056
ret = 0;
1057
1058
out:
1059
/* An optimization to bypass reading the IRQ status registers
1060
* unnecessarily which can re-wake the target, if upper layers
1061
* determine that we are in a low-throughput mode, we can rely on
1062
* taking another interrupt rather than re-checking the status
1063
* registers which can re-wake the target.
1064
*
1065
* NOTE : for host interfaces that makes use of detecting pending
1066
* mbox messages at hif can not use this optimization due to
1067
* possible side effects, SPI requires the host to drain all
1068
* messages from the mailbox before exiting the ISR routine.
1069
*/
1070
1071
ath10k_dbg(ar, ATH10K_DBG_SDIO,
1072
"sdio pending irqs done %d status %d",
1073
*done, ret);
1074
1075
return ret;
1076
}
1077
1078
static void ath10k_sdio_set_mbox_info(struct ath10k *ar)
1079
{
1080
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1081
struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info;
1082
u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev;
1083
1084
mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR;
1085
mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE;
1086
mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1;
1087
mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR;
1088
mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH;
1089
1090
mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR;
1091
1092
dev_id_base = (device & 0x0F00);
1093
dev_id_chiprev = (device & 0x00FF);
1094
switch (dev_id_base) {
1095
case (SDIO_DEVICE_ID_ATHEROS_AR6005 & 0x0F00):
1096
if (dev_id_chiprev < 4)
1097
mbox_info->ext_info[0].htc_ext_sz =
1098
ATH10K_HIF_MBOX0_EXT_WIDTH;
1099
else
1100
/* from QCA6174 2.0(0x504), the width has been extended
1101
* to 56K
1102
*/
1103
mbox_info->ext_info[0].htc_ext_sz =
1104
ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0;
1105
break;
1106
case (SDIO_DEVICE_ID_ATHEROS_QCA9377 & 0x0F00):
1107
mbox_info->ext_info[0].htc_ext_sz =
1108
ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0;
1109
break;
1110
default:
1111
mbox_info->ext_info[0].htc_ext_sz =
1112
ATH10K_HIF_MBOX0_EXT_WIDTH;
1113
}
1114
1115
mbox_info->ext_info[1].htc_ext_addr =
1116
mbox_info->ext_info[0].htc_ext_addr +
1117
mbox_info->ext_info[0].htc_ext_sz +
1118
ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE;
1119
mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH;
1120
}
1121
1122
/* BMI functions */
1123
1124
static int ath10k_sdio_bmi_credits(struct ath10k *ar)
1125
{
1126
u32 addr, cmd_credits;
1127
unsigned long timeout;
1128
int ret;
1129
1130
/* Read the counter register to get the command credits */
1131
addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4;
1132
timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1133
cmd_credits = 0;
1134
1135
while (time_before(jiffies, timeout) && !cmd_credits) {
1136
/* Hit the credit counter with a 4-byte access, the first byte
1137
* read will hit the counter and cause a decrement, while the
1138
* remaining 3 bytes has no effect. The rationale behind this
1139
* is to make all HIF accesses 4-byte aligned.
1140
*/
1141
ret = ath10k_sdio_read32(ar, addr, &cmd_credits);
1142
if (ret) {
1143
ath10k_warn(ar,
1144
"unable to decrement the command credit count register: %d\n",
1145
ret);
1146
return ret;
1147
}
1148
1149
/* The counter is only 8 bits.
1150
* Ignore anything in the upper 3 bytes
1151
*/
1152
cmd_credits &= 0xFF;
1153
}
1154
1155
if (!cmd_credits) {
1156
ath10k_warn(ar, "bmi communication timeout\n");
1157
return -ETIMEDOUT;
1158
}
1159
1160
return 0;
1161
}
1162
1163
static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar)
1164
{
1165
unsigned long timeout;
1166
u32 rx_word;
1167
int ret;
1168
1169
timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1170
rx_word = 0;
1171
1172
while ((time_before(jiffies, timeout)) && !rx_word) {
1173
ret = ath10k_sdio_read32(ar,
1174
MBOX_HOST_INT_STATUS_ADDRESS,
1175
&rx_word);
1176
if (ret) {
1177
ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret);
1178
return ret;
1179
}
1180
1181
/* all we really want is one bit */
1182
rx_word &= 1;
1183
}
1184
1185
if (!rx_word) {
1186
ath10k_warn(ar, "bmi_recv_buf FIFO empty\n");
1187
return -EINVAL;
1188
}
1189
1190
return ret;
1191
}
1192
1193
static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar,
1194
void *req, u32 req_len,
1195
void *resp, u32 *resp_len)
1196
{
1197
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1198
u32 addr;
1199
int ret;
1200
1201
if (req) {
1202
ret = ath10k_sdio_bmi_credits(ar);
1203
if (ret)
1204
return ret;
1205
1206
addr = ar_sdio->mbox_info.htc_addr;
1207
1208
memcpy(ar_sdio->bmi_buf, req, req_len);
1209
ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len);
1210
if (ret) {
1211
ath10k_warn(ar,
1212
"unable to send the bmi data to the device: %d\n",
1213
ret);
1214
return ret;
1215
}
1216
}
1217
1218
if (!resp || !resp_len)
1219
/* No response expected */
1220
return 0;
1221
1222
/* During normal bootup, small reads may be required.
1223
* Rather than issue an HIF Read and then wait as the Target
1224
* adds successive bytes to the FIFO, we wait here until
1225
* we know that response data is available.
1226
*
1227
* This allows us to cleanly timeout on an unexpected
1228
* Target failure rather than risk problems at the HIF level.
1229
* In particular, this avoids SDIO timeouts and possibly garbage
1230
* data on some host controllers. And on an interconnect
1231
* such as Compact Flash (as well as some SDIO masters) which
1232
* does not provide any indication on data timeout, it avoids
1233
* a potential hang or garbage response.
1234
*
1235
* Synchronization is more difficult for reads larger than the
1236
* size of the MBOX FIFO (128B), because the Target is unable
1237
* to push the 129th byte of data until AFTER the Host posts an
1238
* HIF Read and removes some FIFO data. So for large reads the
1239
* Host proceeds to post an HIF Read BEFORE all the data is
1240
* actually available to read. Fortunately, large BMI reads do
1241
* not occur in practice -- they're supported for debug/development.
1242
*
1243
* So Host/Target BMI synchronization is divided into these cases:
1244
* CASE 1: length < 4
1245
* Should not happen
1246
*
1247
* CASE 2: 4 <= length <= 128
1248
* Wait for first 4 bytes to be in FIFO
1249
* If CONSERVATIVE_BMI_READ is enabled, also wait for
1250
* a BMI command credit, which indicates that the ENTIRE
1251
* response is available in the FIFO
1252
*
1253
* CASE 3: length > 128
1254
* Wait for the first 4 bytes to be in FIFO
1255
*
1256
* For most uses, a small timeout should be sufficient and we will
1257
* usually see a response quickly; but there may be some unusual
1258
* (debug) cases of BMI_EXECUTE where we want an larger timeout.
1259
* For now, we use an unbounded busy loop while waiting for
1260
* BMI_EXECUTE.
1261
*
1262
* If BMI_EXECUTE ever needs to support longer-latency execution,
1263
* especially in production, this code needs to be enhanced to sleep
1264
* and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
1265
* a function of Host processor speed.
1266
*/
1267
ret = ath10k_sdio_bmi_get_rx_lookahead(ar);
1268
if (ret)
1269
return ret;
1270
1271
/* We always read from the start of the mbox address */
1272
addr = ar_sdio->mbox_info.htc_addr;
1273
ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len);
1274
if (ret) {
1275
ath10k_warn(ar,
1276
"unable to read the bmi data from the device: %d\n",
1277
ret);
1278
return ret;
1279
}
1280
1281
memcpy(resp, ar_sdio->bmi_buf, *resp_len);
1282
1283
return 0;
1284
}
1285
1286
/* sdio async handling functions */
1287
1288
static struct ath10k_sdio_bus_request
1289
*ath10k_sdio_alloc_busreq(struct ath10k *ar)
1290
{
1291
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1292
struct ath10k_sdio_bus_request *bus_req;
1293
1294
spin_lock_bh(&ar_sdio->lock);
1295
1296
if (list_empty(&ar_sdio->bus_req_freeq)) {
1297
bus_req = NULL;
1298
goto out;
1299
}
1300
1301
bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
1302
struct ath10k_sdio_bus_request, list);
1303
list_del(&bus_req->list);
1304
1305
out:
1306
spin_unlock_bh(&ar_sdio->lock);
1307
return bus_req;
1308
}
1309
1310
static void ath10k_sdio_free_bus_req(struct ath10k *ar,
1311
struct ath10k_sdio_bus_request *bus_req)
1312
{
1313
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1314
1315
memset(bus_req, 0, sizeof(*bus_req));
1316
1317
spin_lock_bh(&ar_sdio->lock);
1318
list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
1319
spin_unlock_bh(&ar_sdio->lock);
1320
}
1321
1322
static void __ath10k_sdio_write_async(struct ath10k *ar,
1323
struct ath10k_sdio_bus_request *req)
1324
{
1325
struct ath10k_htc_ep *ep;
1326
struct sk_buff *skb;
1327
int ret;
1328
1329
skb = req->skb;
1330
ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len);
1331
if (ret)
1332
ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d",
1333
req->address, ret);
1334
1335
if (req->htc_msg) {
1336
ep = &ar->htc.endpoint[req->eid];
1337
ath10k_htc_notify_tx_completion(ep, skb);
1338
} else if (req->comp) {
1339
complete(req->comp);
1340
}
1341
1342
ath10k_sdio_free_bus_req(ar, req);
1343
}
1344
1345
/* To improve throughput use workqueue to deliver packets to HTC layer,
1346
* this way SDIO bus is utilised much better.
1347
*/
1348
static void ath10k_rx_indication_async_work(struct work_struct *work)
1349
{
1350
struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio,
1351
async_work_rx);
1352
struct ath10k *ar = ar_sdio->ar;
1353
struct ath10k_htc_ep *ep;
1354
struct ath10k_skb_rxcb *cb;
1355
struct sk_buff *skb;
1356
1357
while (true) {
1358
skb = skb_dequeue(&ar_sdio->rx_head);
1359
if (!skb)
1360
break;
1361
cb = ATH10K_SKB_RXCB(skb);
1362
ep = &ar->htc.endpoint[cb->eid];
1363
ep->ep_ops.ep_rx_complete(ar, skb);
1364
}
1365
1366
if (test_bit(ATH10K_FLAG_CORE_REGISTERED, &ar->dev_flags)) {
1367
local_bh_disable();
1368
napi_schedule(&ar->napi);
1369
local_bh_enable();
1370
}
1371
}
1372
1373
static int ath10k_sdio_read_rtc_state(struct ath10k_sdio *ar_sdio, unsigned char *state)
1374
{
1375
struct ath10k *ar = ar_sdio->ar;
1376
unsigned char rtc_state = 0;
1377
int ret = 0;
1378
1379
rtc_state = sdio_f0_readb(ar_sdio->func, ATH10K_CIS_RTC_STATE_ADDR, &ret);
1380
if (ret) {
1381
ath10k_warn(ar, "failed to read rtc state: %d\n", ret);
1382
return ret;
1383
}
1384
1385
*state = rtc_state & 0x3;
1386
1387
return ret;
1388
}
1389
1390
static int ath10k_sdio_set_mbox_sleep(struct ath10k *ar, bool enable_sleep)
1391
{
1392
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1393
u32 val;
1394
int retry = ATH10K_CIS_READ_RETRY, ret = 0;
1395
unsigned char rtc_state = 0;
1396
1397
sdio_claim_host(ar_sdio->func);
1398
1399
ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val);
1400
if (ret) {
1401
ath10k_warn(ar, "failed to read fifo/chip control register: %d\n",
1402
ret);
1403
goto release;
1404
}
1405
1406
if (enable_sleep) {
1407
val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF;
1408
ar_sdio->mbox_state = SDIO_MBOX_SLEEP_STATE;
1409
} else {
1410
val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON;
1411
ar_sdio->mbox_state = SDIO_MBOX_AWAKE_STATE;
1412
}
1413
1414
ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val);
1415
if (ret) {
1416
ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d",
1417
ret);
1418
}
1419
1420
if (!enable_sleep) {
1421
do {
1422
udelay(ATH10K_CIS_READ_WAIT_4_RTC_CYCLE_IN_US);
1423
ret = ath10k_sdio_read_rtc_state(ar_sdio, &rtc_state);
1424
1425
if (ret) {
1426
ath10k_warn(ar, "failed to disable mbox sleep: %d", ret);
1427
break;
1428
}
1429
1430
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read rtc state: %d\n",
1431
rtc_state);
1432
1433
if (rtc_state == ATH10K_CIS_RTC_STATE_ON)
1434
break;
1435
1436
udelay(ATH10K_CIS_XTAL_SETTLE_DURATION_IN_US);
1437
retry--;
1438
} while (retry > 0);
1439
}
1440
1441
release:
1442
sdio_release_host(ar_sdio->func);
1443
1444
return ret;
1445
}
1446
1447
static void ath10k_sdio_sleep_timer_handler(struct timer_list *t)
1448
{
1449
struct ath10k_sdio *ar_sdio = from_timer(ar_sdio, t, sleep_timer);
1450
1451
ar_sdio->mbox_state = SDIO_MBOX_REQUEST_TO_SLEEP_STATE;
1452
queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work);
1453
}
1454
1455
static void ath10k_sdio_write_async_work(struct work_struct *work)
1456
{
1457
struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio,
1458
wr_async_work);
1459
struct ath10k *ar = ar_sdio->ar;
1460
struct ath10k_sdio_bus_request *req, *tmp_req;
1461
struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info;
1462
1463
spin_lock_bh(&ar_sdio->wr_async_lock);
1464
1465
list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1466
list_del(&req->list);
1467
spin_unlock_bh(&ar_sdio->wr_async_lock);
1468
1469
if (req->address >= mbox_info->htc_addr &&
1470
ar_sdio->mbox_state == SDIO_MBOX_SLEEP_STATE) {
1471
ath10k_sdio_set_mbox_sleep(ar, false);
1472
mod_timer(&ar_sdio->sleep_timer, jiffies +
1473
msecs_to_jiffies(ATH10K_MIN_SLEEP_INACTIVITY_TIME_MS));
1474
}
1475
1476
__ath10k_sdio_write_async(ar, req);
1477
spin_lock_bh(&ar_sdio->wr_async_lock);
1478
}
1479
1480
spin_unlock_bh(&ar_sdio->wr_async_lock);
1481
1482
if (ar_sdio->mbox_state == SDIO_MBOX_REQUEST_TO_SLEEP_STATE)
1483
ath10k_sdio_set_mbox_sleep(ar, true);
1484
}
1485
1486
static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr,
1487
struct sk_buff *skb,
1488
struct completion *comp,
1489
bool htc_msg, enum ath10k_htc_ep_id eid)
1490
{
1491
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1492
struct ath10k_sdio_bus_request *bus_req;
1493
1494
/* Allocate a bus request for the message and queue it on the
1495
* SDIO workqueue.
1496
*/
1497
bus_req = ath10k_sdio_alloc_busreq(ar);
1498
if (!bus_req) {
1499
ath10k_warn(ar,
1500
"unable to allocate bus request for async request\n");
1501
return -ENOMEM;
1502
}
1503
1504
bus_req->skb = skb;
1505
bus_req->eid = eid;
1506
bus_req->address = addr;
1507
bus_req->htc_msg = htc_msg;
1508
bus_req->comp = comp;
1509
1510
spin_lock_bh(&ar_sdio->wr_async_lock);
1511
list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
1512
spin_unlock_bh(&ar_sdio->wr_async_lock);
1513
1514
return 0;
1515
}
1516
1517
/* IRQ handler */
1518
1519
static void ath10k_sdio_irq_handler(struct sdio_func *func)
1520
{
1521
struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
1522
struct ath10k *ar = ar_sdio->ar;
1523
unsigned long timeout;
1524
bool done = false;
1525
int ret;
1526
1527
/* Release the host during interrupts so we can pick it back up when
1528
* we process commands.
1529
*/
1530
sdio_release_host(ar_sdio->func);
1531
1532
timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ;
1533
do {
1534
ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done);
1535
if (ret)
1536
break;
1537
} while (time_before(jiffies, timeout) && !done);
1538
1539
ath10k_mac_tx_push_pending(ar);
1540
1541
sdio_claim_host(ar_sdio->func);
1542
1543
if (ret && ret != -ECANCELED)
1544
ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n",
1545
ret);
1546
}
1547
1548
/* sdio HIF functions */
1549
1550
static int ath10k_sdio_disable_intrs(struct ath10k *ar)
1551
{
1552
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1553
struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1554
struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1555
int ret;
1556
1557
mutex_lock(&irq_data->mtx);
1558
1559
memset(regs, 0, sizeof(*regs));
1560
ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1561
&regs->int_status_en, sizeof(*regs));
1562
if (ret)
1563
ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret);
1564
1565
mutex_unlock(&irq_data->mtx);
1566
1567
return ret;
1568
}
1569
1570
static int ath10k_sdio_hif_power_up(struct ath10k *ar,
1571
enum ath10k_firmware_mode fw_mode)
1572
{
1573
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1574
struct sdio_func *func = ar_sdio->func;
1575
int ret;
1576
1577
if (!ar_sdio->is_disabled)
1578
return 0;
1579
1580
ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n");
1581
1582
ret = ath10k_sdio_config(ar);
1583
if (ret) {
1584
ath10k_err(ar, "failed to config sdio: %d\n", ret);
1585
return ret;
1586
}
1587
1588
sdio_claim_host(func);
1589
1590
ret = sdio_enable_func(func);
1591
if (ret) {
1592
ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret);
1593
sdio_release_host(func);
1594
return ret;
1595
}
1596
1597
sdio_release_host(func);
1598
1599
/* Wait for hardware to initialise. It should take a lot less than
1600
* 20 ms but let's be conservative here.
1601
*/
1602
msleep(20);
1603
1604
ar_sdio->is_disabled = false;
1605
1606
ret = ath10k_sdio_disable_intrs(ar);
1607
if (ret)
1608
return ret;
1609
1610
return 0;
1611
}
1612
1613
static void ath10k_sdio_hif_power_down(struct ath10k *ar)
1614
{
1615
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1616
int ret;
1617
1618
if (ar_sdio->is_disabled)
1619
return;
1620
1621
ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n");
1622
1623
del_timer_sync(&ar_sdio->sleep_timer);
1624
ath10k_sdio_set_mbox_sleep(ar, true);
1625
1626
/* Disable the card */
1627
sdio_claim_host(ar_sdio->func);
1628
1629
ret = sdio_disable_func(ar_sdio->func);
1630
if (ret) {
1631
ath10k_warn(ar, "unable to disable sdio function: %d\n", ret);
1632
sdio_release_host(ar_sdio->func);
1633
return;
1634
}
1635
1636
ret = mmc_hw_reset(ar_sdio->func->card);
1637
if (ret)
1638
ath10k_warn(ar, "unable to reset sdio: %d\n", ret);
1639
1640
sdio_release_host(ar_sdio->func);
1641
1642
ar_sdio->is_disabled = true;
1643
}
1644
1645
static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1646
struct ath10k_hif_sg_item *items, int n_items)
1647
{
1648
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1649
enum ath10k_htc_ep_id eid;
1650
struct sk_buff *skb;
1651
int ret, i;
1652
1653
eid = pipe_id_to_eid(pipe_id);
1654
1655
for (i = 0; i < n_items; i++) {
1656
size_t padded_len;
1657
u32 address;
1658
1659
skb = items[i].transfer_context;
1660
padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio,
1661
skb->len);
1662
skb_trim(skb, padded_len);
1663
1664
/* Write TX data to the end of the mbox address space */
1665
address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] -
1666
skb->len;
1667
ret = ath10k_sdio_prep_async_req(ar, address, skb,
1668
NULL, true, eid);
1669
if (ret)
1670
return ret;
1671
}
1672
1673
queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work);
1674
1675
return 0;
1676
}
1677
1678
static int ath10k_sdio_enable_intrs(struct ath10k *ar)
1679
{
1680
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1681
struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1682
struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1683
int ret;
1684
1685
mutex_lock(&irq_data->mtx);
1686
1687
/* Enable all but CPU interrupts */
1688
regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) |
1689
FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) |
1690
FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1);
1691
1692
/* NOTE: There are some cases where HIF can do detection of
1693
* pending mbox messages which is disabled now.
1694
*/
1695
regs->int_status_en |=
1696
FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1);
1697
1698
/* Set up the CPU Interrupt Status Register, enable CPU sourced interrupt #0
1699
* #0 is used for report assertion from target
1700
*/
1701
regs->cpu_int_status_en = FIELD_PREP(MBOX_CPU_STATUS_ENABLE_ASSERT_MASK, 1);
1702
1703
/* Set up the Error Interrupt status Register */
1704
regs->err_int_status_en =
1705
FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) |
1706
FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1);
1707
1708
/* Enable Counter interrupt status register to get fatal errors for
1709
* debugging.
1710
*/
1711
regs->cntr_int_status_en =
1712
FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK,
1713
ATH10K_SDIO_TARGET_DEBUG_INTR_MASK);
1714
1715
ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1716
&regs->int_status_en, sizeof(*regs));
1717
if (ret)
1718
ath10k_warn(ar,
1719
"failed to update mbox interrupt status register : %d\n",
1720
ret);
1721
1722
mutex_unlock(&irq_data->mtx);
1723
return ret;
1724
}
1725
1726
/* HIF diagnostics */
1727
1728
static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1729
size_t buf_len)
1730
{
1731
int ret;
1732
void *mem;
1733
1734
mem = kzalloc(buf_len, GFP_KERNEL);
1735
if (!mem)
1736
return -ENOMEM;
1737
1738
/* set window register to start read cycle */
1739
ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address);
1740
if (ret) {
1741
ath10k_warn(ar, "failed to set mbox window read address: %d", ret);
1742
goto out;
1743
}
1744
1745
/* read the data */
1746
ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, mem, buf_len);
1747
if (ret) {
1748
ath10k_warn(ar, "failed to read from mbox window data address: %d\n",
1749
ret);
1750
goto out;
1751
}
1752
1753
memcpy(buf, mem, buf_len);
1754
1755
out:
1756
kfree(mem);
1757
1758
return ret;
1759
}
1760
1761
static int ath10k_sdio_diag_read32(struct ath10k *ar, u32 address,
1762
u32 *value)
1763
{
1764
__le32 *val;
1765
int ret;
1766
1767
val = kzalloc(sizeof(*val), GFP_KERNEL);
1768
if (!val)
1769
return -ENOMEM;
1770
1771
ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val));
1772
if (ret)
1773
goto out;
1774
1775
*value = __le32_to_cpu(*val);
1776
1777
out:
1778
kfree(val);
1779
1780
return ret;
1781
}
1782
1783
static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address,
1784
const void *data, int nbytes)
1785
{
1786
int ret;
1787
1788
/* set write data */
1789
ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes);
1790
if (ret) {
1791
ath10k_warn(ar,
1792
"failed to write 0x%p to mbox window data address: %d\n",
1793
data, ret);
1794
return ret;
1795
}
1796
1797
/* set window register, which starts the write cycle */
1798
ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address);
1799
if (ret) {
1800
ath10k_warn(ar, "failed to set mbox window write address: %d", ret);
1801
return ret;
1802
}
1803
1804
return 0;
1805
}
1806
1807
static int ath10k_sdio_hif_start_post(struct ath10k *ar)
1808
{
1809
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1810
u32 addr, val;
1811
int ret = 0;
1812
1813
addr = host_interest_item_address(HI_ITEM(hi_acs_flags));
1814
1815
ret = ath10k_sdio_diag_read32(ar, addr, &val);
1816
if (ret) {
1817
ath10k_warn(ar, "unable to read hi_acs_flags : %d\n", ret);
1818
return ret;
1819
}
1820
1821
if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) {
1822
ath10k_dbg(ar, ATH10K_DBG_SDIO,
1823
"sdio mailbox swap service enabled\n");
1824
ar_sdio->swap_mbox = true;
1825
} else {
1826
ath10k_dbg(ar, ATH10K_DBG_SDIO,
1827
"sdio mailbox swap service disabled\n");
1828
ar_sdio->swap_mbox = false;
1829
}
1830
1831
ath10k_sdio_set_mbox_sleep(ar, true);
1832
1833
return 0;
1834
}
1835
1836
static int ath10k_sdio_get_htt_tx_complete(struct ath10k *ar)
1837
{
1838
u32 addr, val;
1839
int ret;
1840
1841
addr = host_interest_item_address(HI_ITEM(hi_acs_flags));
1842
1843
ret = ath10k_sdio_diag_read32(ar, addr, &val);
1844
if (ret) {
1845
ath10k_warn(ar,
1846
"unable to read hi_acs_flags for htt tx comple : %d\n", ret);
1847
return ret;
1848
}
1849
1850
ret = (val & HI_ACS_FLAGS_SDIO_REDUCE_TX_COMPL_FW_ACK);
1851
1852
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio reduce tx complete fw%sack\n",
1853
ret ? " " : " not ");
1854
1855
return ret;
1856
}
1857
1858
/* HIF start/stop */
1859
1860
static int ath10k_sdio_hif_start(struct ath10k *ar)
1861
{
1862
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1863
int ret;
1864
1865
ath10k_core_napi_enable(ar);
1866
1867
/* Sleep 20 ms before HIF interrupts are disabled.
1868
* This will give target plenty of time to process the BMI done
1869
* request before interrupts are disabled.
1870
*/
1871
msleep(20);
1872
ret = ath10k_sdio_disable_intrs(ar);
1873
if (ret)
1874
return ret;
1875
1876
/* eid 0 always uses the lower part of the extended mailbox address
1877
* space (ext_info[0].htc_ext_addr).
1878
*/
1879
ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
1880
ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
1881
1882
sdio_claim_host(ar_sdio->func);
1883
1884
/* Register the isr */
1885
ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler);
1886
if (ret) {
1887
ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret);
1888
sdio_release_host(ar_sdio->func);
1889
return ret;
1890
}
1891
1892
sdio_release_host(ar_sdio->func);
1893
1894
ret = ath10k_sdio_enable_intrs(ar);
1895
if (ret)
1896
ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret);
1897
1898
/* Enable sleep and then disable it again */
1899
ret = ath10k_sdio_set_mbox_sleep(ar, true);
1900
if (ret)
1901
return ret;
1902
1903
/* Wait for 20ms for the written value to take effect */
1904
msleep(20);
1905
1906
ret = ath10k_sdio_set_mbox_sleep(ar, false);
1907
if (ret)
1908
return ret;
1909
1910
return 0;
1911
}
1912
1913
#define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ)
1914
1915
static void ath10k_sdio_irq_disable(struct ath10k *ar)
1916
{
1917
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1918
struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1919
struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1920
struct sk_buff *skb;
1921
struct completion irqs_disabled_comp;
1922
int ret;
1923
1924
skb = dev_alloc_skb(sizeof(*regs));
1925
if (!skb)
1926
return;
1927
1928
mutex_lock(&irq_data->mtx);
1929
1930
memset(regs, 0, sizeof(*regs)); /* disable all interrupts */
1931
memcpy(skb->data, regs, sizeof(*regs));
1932
skb_put(skb, sizeof(*regs));
1933
1934
mutex_unlock(&irq_data->mtx);
1935
1936
init_completion(&irqs_disabled_comp);
1937
ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1938
skb, &irqs_disabled_comp, false, 0);
1939
if (ret)
1940
goto out;
1941
1942
queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work);
1943
1944
/* Wait for the completion of the IRQ disable request.
1945
* If there is a timeout we will try to disable irq's anyway.
1946
*/
1947
ret = wait_for_completion_timeout(&irqs_disabled_comp,
1948
SDIO_IRQ_DISABLE_TIMEOUT_HZ);
1949
if (!ret)
1950
ath10k_warn(ar, "sdio irq disable request timed out\n");
1951
1952
sdio_claim_host(ar_sdio->func);
1953
1954
ret = sdio_release_irq(ar_sdio->func);
1955
if (ret)
1956
ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret);
1957
1958
sdio_release_host(ar_sdio->func);
1959
1960
out:
1961
kfree_skb(skb);
1962
}
1963
1964
static void ath10k_sdio_hif_stop(struct ath10k *ar)
1965
{
1966
struct ath10k_sdio_bus_request *req, *tmp_req;
1967
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1968
struct sk_buff *skb;
1969
1970
ath10k_sdio_irq_disable(ar);
1971
1972
cancel_work_sync(&ar_sdio->async_work_rx);
1973
1974
while ((skb = skb_dequeue(&ar_sdio->rx_head)))
1975
dev_kfree_skb_any(skb);
1976
1977
cancel_work_sync(&ar_sdio->wr_async_work);
1978
1979
spin_lock_bh(&ar_sdio->wr_async_lock);
1980
1981
/* Free all bus requests that have not been handled */
1982
list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1983
struct ath10k_htc_ep *ep;
1984
1985
list_del(&req->list);
1986
1987
if (req->htc_msg) {
1988
ep = &ar->htc.endpoint[req->eid];
1989
ath10k_htc_notify_tx_completion(ep, req->skb);
1990
} else if (req->skb) {
1991
kfree_skb(req->skb);
1992
}
1993
ath10k_sdio_free_bus_req(ar, req);
1994
}
1995
1996
spin_unlock_bh(&ar_sdio->wr_async_lock);
1997
1998
ath10k_core_napi_sync_disable(ar);
1999
}
2000
2001
#ifdef CONFIG_PM
2002
2003
static int ath10k_sdio_hif_suspend(struct ath10k *ar)
2004
{
2005
return 0;
2006
}
2007
2008
static int ath10k_sdio_hif_resume(struct ath10k *ar)
2009
{
2010
switch (ar->state) {
2011
case ATH10K_STATE_OFF:
2012
ath10k_dbg(ar, ATH10K_DBG_SDIO,
2013
"sdio resume configuring sdio\n");
2014
2015
/* need to set sdio settings after power is cut from sdio */
2016
ath10k_sdio_config(ar);
2017
break;
2018
2019
case ATH10K_STATE_ON:
2020
default:
2021
break;
2022
}
2023
2024
return 0;
2025
}
2026
#endif
2027
2028
static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar,
2029
u16 service_id,
2030
u8 *ul_pipe, u8 *dl_pipe)
2031
{
2032
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
2033
struct ath10k_htc *htc = &ar->htc;
2034
u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size;
2035
enum ath10k_htc_ep_id eid;
2036
bool ep_found = false;
2037
int i;
2038
2039
/* For sdio, we are interested in the mapping between eid
2040
* and pipeid rather than service_id to pipe_id.
2041
* First we find out which eid has been allocated to the
2042
* service...
2043
*/
2044
for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) {
2045
if (htc->endpoint[i].service_id == service_id) {
2046
eid = htc->endpoint[i].eid;
2047
ep_found = true;
2048
break;
2049
}
2050
}
2051
2052
if (!ep_found)
2053
return -EINVAL;
2054
2055
/* Then we create the simplest mapping possible between pipeid
2056
* and eid
2057
*/
2058
*ul_pipe = *dl_pipe = (u8)eid;
2059
2060
/* Normally, HTT will use the upper part of the extended
2061
* mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl
2062
* the lower part (ext_info[0].htc_ext_addr).
2063
* If fw wants swapping of mailbox addresses, the opposite is true.
2064
*/
2065
if (ar_sdio->swap_mbox) {
2066
htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
2067
wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr;
2068
htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
2069
wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz;
2070
} else {
2071
htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr;
2072
wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
2073
htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz;
2074
wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
2075
}
2076
2077
switch (service_id) {
2078
case ATH10K_HTC_SVC_ID_RSVD_CTRL:
2079
/* HTC ctrl ep mbox address has already been setup in
2080
* ath10k_sdio_hif_start
2081
*/
2082
break;
2083
case ATH10K_HTC_SVC_ID_WMI_CONTROL:
2084
ar_sdio->mbox_addr[eid] = wmi_addr;
2085
ar_sdio->mbox_size[eid] = wmi_mbox_size;
2086
ath10k_dbg(ar, ATH10K_DBG_SDIO,
2087
"sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n",
2088
ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]);
2089
break;
2090
case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
2091
ar_sdio->mbox_addr[eid] = htt_addr;
2092
ar_sdio->mbox_size[eid] = htt_mbox_size;
2093
ath10k_dbg(ar, ATH10K_DBG_SDIO,
2094
"sdio htt data mbox_addr 0x%x mbox_size %d\n",
2095
ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]);
2096
break;
2097
default:
2098
ath10k_warn(ar, "unsupported HTC service id: %d\n",
2099
service_id);
2100
return -EINVAL;
2101
}
2102
2103
return 0;
2104
}
2105
2106
static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar,
2107
u8 *ul_pipe, u8 *dl_pipe)
2108
{
2109
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n");
2110
2111
/* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our
2112
* case) == 0
2113
*/
2114
*ul_pipe = 0;
2115
*dl_pipe = 0;
2116
}
2117
2118
static const struct ath10k_hif_ops ath10k_sdio_hif_ops = {
2119
.tx_sg = ath10k_sdio_hif_tx_sg,
2120
.diag_read = ath10k_sdio_hif_diag_read,
2121
.diag_write = ath10k_sdio_hif_diag_write_mem,
2122
.exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg,
2123
.start = ath10k_sdio_hif_start,
2124
.stop = ath10k_sdio_hif_stop,
2125
.start_post = ath10k_sdio_hif_start_post,
2126
.get_htt_tx_complete = ath10k_sdio_get_htt_tx_complete,
2127
.map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe,
2128
.get_default_pipe = ath10k_sdio_hif_get_default_pipe,
2129
.power_up = ath10k_sdio_hif_power_up,
2130
.power_down = ath10k_sdio_hif_power_down,
2131
#ifdef CONFIG_PM
2132
.suspend = ath10k_sdio_hif_suspend,
2133
.resume = ath10k_sdio_hif_resume,
2134
#endif
2135
};
2136
2137
#ifdef CONFIG_PM_SLEEP
2138
2139
/* Empty handlers so that mmc subsystem doesn't remove us entirely during
2140
* suspend. We instead follow cfg80211 suspend/resume handlers.
2141
*/
2142
static int ath10k_sdio_pm_suspend(struct device *device)
2143
{
2144
struct sdio_func *func = dev_to_sdio_func(device);
2145
struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
2146
struct ath10k *ar = ar_sdio->ar;
2147
mmc_pm_flag_t pm_flag, pm_caps;
2148
int ret;
2149
2150
if (!device_may_wakeup(ar->dev))
2151
return 0;
2152
2153
ath10k_sdio_set_mbox_sleep(ar, true);
2154
2155
pm_flag = MMC_PM_KEEP_POWER;
2156
2157
ret = sdio_set_host_pm_flags(func, pm_flag);
2158
if (ret) {
2159
pm_caps = sdio_get_host_pm_caps(func);
2160
ath10k_warn(ar, "failed to set sdio host pm flags (0x%x, 0x%x): %d\n",
2161
pm_flag, pm_caps, ret);
2162
return ret;
2163
}
2164
2165
return ret;
2166
}
2167
2168
static int ath10k_sdio_pm_resume(struct device *device)
2169
{
2170
return 0;
2171
}
2172
2173
static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend,
2174
ath10k_sdio_pm_resume);
2175
2176
#define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops)
2177
2178
#else
2179
2180
#define ATH10K_SDIO_PM_OPS NULL
2181
2182
#endif /* CONFIG_PM_SLEEP */
2183
2184
static int ath10k_sdio_napi_poll(struct napi_struct *ctx, int budget)
2185
{
2186
struct ath10k *ar = container_of(ctx, struct ath10k, napi);
2187
int done;
2188
2189
done = ath10k_htt_rx_hl_indication(ar, budget);
2190
ath10k_dbg(ar, ATH10K_DBG_SDIO, "napi poll: done: %d, budget:%d\n", done, budget);
2191
2192
if (done < budget)
2193
napi_complete_done(ctx, done);
2194
2195
return done;
2196
}
2197
2198
static int ath10k_sdio_read_host_interest_value(struct ath10k *ar,
2199
u32 item_offset,
2200
u32 *val)
2201
{
2202
u32 addr;
2203
int ret;
2204
2205
addr = host_interest_item_address(item_offset);
2206
2207
ret = ath10k_sdio_diag_read32(ar, addr, val);
2208
2209
if (ret)
2210
ath10k_warn(ar, "unable to read host interest offset %d value\n",
2211
item_offset);
2212
2213
return ret;
2214
}
2215
2216
static int ath10k_sdio_read_mem(struct ath10k *ar, u32 address, void *buf,
2217
u32 buf_len)
2218
{
2219
u32 val;
2220
int i, ret;
2221
2222
for (i = 0; i < buf_len; i += 4) {
2223
ret = ath10k_sdio_diag_read32(ar, address + i, &val);
2224
if (ret) {
2225
ath10k_warn(ar, "unable to read mem %d value\n", address + i);
2226
break;
2227
}
2228
memcpy(buf + i, &val, 4);
2229
}
2230
2231
return ret;
2232
}
2233
2234
static bool ath10k_sdio_is_fast_dump_supported(struct ath10k *ar)
2235
{
2236
u32 param;
2237
2238
ath10k_sdio_read_host_interest_value(ar, HI_ITEM(hi_option_flag2), &param);
2239
2240
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hi_option_flag2 %x\n", param);
2241
2242
return !!(param & HI_OPTION_SDIO_CRASH_DUMP_ENHANCEMENT_FW);
2243
}
2244
2245
static void ath10k_sdio_dump_registers(struct ath10k *ar,
2246
struct ath10k_fw_crash_data *crash_data,
2247
bool fast_dump)
2248
{
2249
u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
2250
int i, ret;
2251
u32 reg_dump_area;
2252
2253
ret = ath10k_sdio_read_host_interest_value(ar, HI_ITEM(hi_failure_state),
2254
&reg_dump_area);
2255
if (ret) {
2256
ath10k_warn(ar, "failed to read firmware dump area: %d\n", ret);
2257
return;
2258
}
2259
2260
if (fast_dump)
2261
ret = ath10k_bmi_read_memory(ar, reg_dump_area, reg_dump_values,
2262
sizeof(reg_dump_values));
2263
else
2264
ret = ath10k_sdio_read_mem(ar, reg_dump_area, reg_dump_values,
2265
sizeof(reg_dump_values));
2266
2267
if (ret) {
2268
ath10k_warn(ar, "failed to read firmware dump value: %d\n", ret);
2269
return;
2270
}
2271
2272
ath10k_err(ar, "firmware register dump:\n");
2273
for (i = 0; i < ARRAY_SIZE(reg_dump_values); i += 4)
2274
ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
2275
i,
2276
reg_dump_values[i],
2277
reg_dump_values[i + 1],
2278
reg_dump_values[i + 2],
2279
reg_dump_values[i + 3]);
2280
2281
if (!crash_data)
2282
return;
2283
2284
for (i = 0; i < ARRAY_SIZE(reg_dump_values); i++)
2285
crash_data->registers[i] = __cpu_to_le32(reg_dump_values[i]);
2286
}
2287
2288
static int ath10k_sdio_dump_memory_section(struct ath10k *ar,
2289
const struct ath10k_mem_region *mem_region,
2290
u8 *buf, size_t buf_len)
2291
{
2292
const struct ath10k_mem_section *cur_section, *next_section;
2293
unsigned int count, section_size, skip_size;
2294
int ret, i, j;
2295
2296
if (!mem_region || !buf)
2297
return 0;
2298
2299
cur_section = &mem_region->section_table.sections[0];
2300
2301
if (mem_region->start > cur_section->start) {
2302
ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
2303
mem_region->start, cur_section->start);
2304
return 0;
2305
}
2306
2307
skip_size = cur_section->start - mem_region->start;
2308
2309
/* fill the gap between the first register section and register
2310
* start address
2311
*/
2312
for (i = 0; i < skip_size; i++) {
2313
*buf = ATH10K_MAGIC_NOT_COPIED;
2314
buf++;
2315
}
2316
2317
count = 0;
2318
i = 0;
2319
for (; cur_section; cur_section = next_section) {
2320
section_size = cur_section->end - cur_section->start;
2321
2322
if (section_size <= 0) {
2323
ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
2324
cur_section->start,
2325
cur_section->end);
2326
break;
2327
}
2328
2329
if (++i == mem_region->section_table.size) {
2330
/* last section */
2331
next_section = NULL;
2332
skip_size = 0;
2333
} else {
2334
next_section = cur_section + 1;
2335
2336
if (cur_section->end > next_section->start) {
2337
ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
2338
next_section->start,
2339
cur_section->end);
2340
break;
2341
}
2342
2343
skip_size = next_section->start - cur_section->end;
2344
}
2345
2346
if (buf_len < (skip_size + section_size)) {
2347
ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
2348
break;
2349
}
2350
2351
buf_len -= skip_size + section_size;
2352
2353
/* read section to dest memory */
2354
ret = ath10k_sdio_read_mem(ar, cur_section->start,
2355
buf, section_size);
2356
if (ret) {
2357
ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
2358
cur_section->start, ret);
2359
break;
2360
}
2361
2362
buf += section_size;
2363
count += section_size;
2364
2365
/* fill in the gap between this section and the next */
2366
for (j = 0; j < skip_size; j++) {
2367
*buf = ATH10K_MAGIC_NOT_COPIED;
2368
buf++;
2369
}
2370
2371
count += skip_size;
2372
}
2373
2374
return count;
2375
}
2376
2377
/* if an error happened returns < 0, otherwise the length */
2378
static int ath10k_sdio_dump_memory_generic(struct ath10k *ar,
2379
const struct ath10k_mem_region *current_region,
2380
u8 *buf,
2381
bool fast_dump)
2382
{
2383
int ret;
2384
2385
if (current_region->section_table.size > 0)
2386
/* Copy each section individually. */
2387
return ath10k_sdio_dump_memory_section(ar,
2388
current_region,
2389
buf,
2390
current_region->len);
2391
2392
/* No individiual memory sections defined so we can
2393
* copy the entire memory region.
2394
*/
2395
if (fast_dump)
2396
ret = ath10k_bmi_read_memory(ar,
2397
current_region->start,
2398
buf,
2399
current_region->len);
2400
else
2401
ret = ath10k_sdio_read_mem(ar,
2402
current_region->start,
2403
buf,
2404
current_region->len);
2405
2406
if (ret) {
2407
ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
2408
current_region->name, ret);
2409
return ret;
2410
}
2411
2412
return current_region->len;
2413
}
2414
2415
static void ath10k_sdio_dump_memory(struct ath10k *ar,
2416
struct ath10k_fw_crash_data *crash_data,
2417
bool fast_dump)
2418
{
2419
const struct ath10k_hw_mem_layout *mem_layout;
2420
const struct ath10k_mem_region *current_region;
2421
struct ath10k_dump_ram_data_hdr *hdr;
2422
u32 count;
2423
size_t buf_len;
2424
int ret, i;
2425
u8 *buf;
2426
2427
if (!crash_data)
2428
return;
2429
2430
mem_layout = ath10k_coredump_get_mem_layout(ar);
2431
if (!mem_layout)
2432
return;
2433
2434
current_region = &mem_layout->region_table.regions[0];
2435
2436
buf = crash_data->ramdump_buf;
2437
buf_len = crash_data->ramdump_buf_len;
2438
2439
memset(buf, 0, buf_len);
2440
2441
for (i = 0; i < mem_layout->region_table.size; i++) {
2442
count = 0;
2443
2444
if (current_region->len > buf_len) {
2445
ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
2446
current_region->name,
2447
current_region->len,
2448
buf_len);
2449
break;
2450
}
2451
2452
/* Reserve space for the header. */
2453
hdr = (void *)buf;
2454
buf += sizeof(*hdr);
2455
buf_len -= sizeof(*hdr);
2456
2457
ret = ath10k_sdio_dump_memory_generic(ar, current_region, buf,
2458
fast_dump);
2459
if (ret >= 0)
2460
count = ret;
2461
2462
hdr->region_type = cpu_to_le32(current_region->type);
2463
hdr->start = cpu_to_le32(current_region->start);
2464
hdr->length = cpu_to_le32(count);
2465
2466
if (count == 0)
2467
/* Note: the header remains, just with zero length. */
2468
break;
2469
2470
buf += count;
2471
buf_len -= count;
2472
2473
current_region++;
2474
}
2475
}
2476
2477
void ath10k_sdio_fw_crashed_dump(struct ath10k *ar)
2478
{
2479
struct ath10k_fw_crash_data *crash_data;
2480
char guid[UUID_STRING_LEN + 1];
2481
bool fast_dump;
2482
2483
fast_dump = ath10k_sdio_is_fast_dump_supported(ar);
2484
2485
if (fast_dump)
2486
ath10k_bmi_start(ar);
2487
2488
ar->stats.fw_crash_counter++;
2489
2490
ath10k_sdio_disable_intrs(ar);
2491
2492
crash_data = ath10k_coredump_new(ar);
2493
2494
if (crash_data)
2495
scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
2496
else
2497
scnprintf(guid, sizeof(guid), "n/a");
2498
2499
ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
2500
ath10k_print_driver_info(ar);
2501
ath10k_sdio_dump_registers(ar, crash_data, fast_dump);
2502
ath10k_sdio_dump_memory(ar, crash_data, fast_dump);
2503
2504
ath10k_sdio_enable_intrs(ar);
2505
2506
ath10k_core_start_recovery(ar);
2507
}
2508
2509
static int ath10k_sdio_probe(struct sdio_func *func,
2510
const struct sdio_device_id *id)
2511
{
2512
struct ath10k_sdio *ar_sdio;
2513
struct ath10k *ar;
2514
enum ath10k_hw_rev hw_rev;
2515
u32 dev_id_base;
2516
struct ath10k_bus_params bus_params = {};
2517
int ret, i;
2518
2519
/* Assumption: All SDIO based chipsets (so far) are QCA6174 based.
2520
* If there will be newer chipsets that does not use the hw reg
2521
* setup as defined in qca6174_regs and qca6174_values, this
2522
* assumption is no longer valid and hw_rev must be setup differently
2523
* depending on chipset.
2524
*/
2525
hw_rev = ATH10K_HW_QCA6174;
2526
2527
ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO,
2528
hw_rev, &ath10k_sdio_hif_ops);
2529
if (!ar) {
2530
dev_err(&func->dev, "failed to allocate core\n");
2531
return -ENOMEM;
2532
}
2533
2534
netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_sdio_napi_poll);
2535
2536
ath10k_dbg(ar, ATH10K_DBG_BOOT,
2537
"sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
2538
func->num, func->vendor, func->device,
2539
func->max_blksize, func->cur_blksize);
2540
2541
ar_sdio = ath10k_sdio_priv(ar);
2542
2543
ar_sdio->irq_data.irq_proc_reg =
2544
devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs),
2545
GFP_KERNEL);
2546
if (!ar_sdio->irq_data.irq_proc_reg) {
2547
ret = -ENOMEM;
2548
goto err_core_destroy;
2549
}
2550
2551
ar_sdio->vsg_buffer = devm_kmalloc(ar->dev, ATH10K_SDIO_VSG_BUF_SIZE, GFP_KERNEL);
2552
if (!ar_sdio->vsg_buffer) {
2553
ret = -ENOMEM;
2554
goto err_core_destroy;
2555
}
2556
2557
ar_sdio->irq_data.irq_en_reg =
2558
devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs),
2559
GFP_KERNEL);
2560
if (!ar_sdio->irq_data.irq_en_reg) {
2561
ret = -ENOMEM;
2562
goto err_core_destroy;
2563
}
2564
2565
ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_LARGE_CMDBUF_SIZE, GFP_KERNEL);
2566
if (!ar_sdio->bmi_buf) {
2567
ret = -ENOMEM;
2568
goto err_core_destroy;
2569
}
2570
2571
ar_sdio->func = func;
2572
sdio_set_drvdata(func, ar_sdio);
2573
2574
ar_sdio->is_disabled = true;
2575
ar_sdio->ar = ar;
2576
2577
spin_lock_init(&ar_sdio->lock);
2578
spin_lock_init(&ar_sdio->wr_async_lock);
2579
mutex_init(&ar_sdio->irq_data.mtx);
2580
2581
INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
2582
INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
2583
2584
INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work);
2585
ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq");
2586
if (!ar_sdio->workqueue) {
2587
ret = -ENOMEM;
2588
goto err_core_destroy;
2589
}
2590
2591
for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++)
2592
ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]);
2593
2594
skb_queue_head_init(&ar_sdio->rx_head);
2595
INIT_WORK(&ar_sdio->async_work_rx, ath10k_rx_indication_async_work);
2596
2597
dev_id_base = (id->device & 0x0F00);
2598
if (dev_id_base != (SDIO_DEVICE_ID_ATHEROS_AR6005 & 0x0F00) &&
2599
dev_id_base != (SDIO_DEVICE_ID_ATHEROS_QCA9377 & 0x0F00)) {
2600
ret = -ENODEV;
2601
ath10k_err(ar, "unsupported device id %u (0x%x)\n",
2602
dev_id_base, id->device);
2603
goto err_free_wq;
2604
}
2605
2606
ar->dev_id = QCA9377_1_0_DEVICE_ID;
2607
ar->id.vendor = id->vendor;
2608
ar->id.device = id->device;
2609
2610
ath10k_sdio_set_mbox_info(ar);
2611
2612
bus_params.dev_type = ATH10K_DEV_TYPE_HL;
2613
/* TODO: don't know yet how to get chip_id with SDIO */
2614
bus_params.chip_id = 0;
2615
bus_params.hl_msdu_ids = true;
2616
2617
ar->hw->max_mtu = ETH_DATA_LEN;
2618
2619
ret = ath10k_core_register(ar, &bus_params);
2620
if (ret) {
2621
ath10k_err(ar, "failed to register driver core: %d\n", ret);
2622
goto err_free_wq;
2623
}
2624
2625
timer_setup(&ar_sdio->sleep_timer, ath10k_sdio_sleep_timer_handler, 0);
2626
2627
return 0;
2628
2629
err_free_wq:
2630
destroy_workqueue(ar_sdio->workqueue);
2631
err_core_destroy:
2632
ath10k_core_destroy(ar);
2633
2634
return ret;
2635
}
2636
2637
static void ath10k_sdio_remove(struct sdio_func *func)
2638
{
2639
struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
2640
struct ath10k *ar = ar_sdio->ar;
2641
2642
ath10k_dbg(ar, ATH10K_DBG_BOOT,
2643
"sdio removed func %d vendor 0x%x device 0x%x\n",
2644
func->num, func->vendor, func->device);
2645
2646
ath10k_core_unregister(ar);
2647
2648
netif_napi_del(&ar->napi);
2649
2650
ath10k_core_destroy(ar);
2651
2652
destroy_workqueue(ar_sdio->workqueue);
2653
}
2654
2655
static const struct sdio_device_id ath10k_sdio_devices[] = {
2656
{SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6005)},
2657
{SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_QCA9377)},
2658
{},
2659
};
2660
2661
MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices);
2662
2663
static struct sdio_driver ath10k_sdio_driver = {
2664
.name = "ath10k_sdio",
2665
.id_table = ath10k_sdio_devices,
2666
.probe = ath10k_sdio_probe,
2667
.remove = ath10k_sdio_remove,
2668
.drv = {
2669
.owner = THIS_MODULE,
2670
.pm = ATH10K_SDIO_PM_OPS,
2671
},
2672
};
2673
2674
static int __init ath10k_sdio_init(void)
2675
{
2676
int ret;
2677
2678
ret = sdio_register_driver(&ath10k_sdio_driver);
2679
if (ret)
2680
pr_err("sdio driver registration failed: %d\n", ret);
2681
2682
return ret;
2683
}
2684
2685
static void __exit ath10k_sdio_exit(void)
2686
{
2687
sdio_unregister_driver(&ath10k_sdio_driver);
2688
}
2689
2690
module_init(ath10k_sdio_init);
2691
module_exit(ath10k_sdio_exit);
2692
2693
MODULE_AUTHOR("Qualcomm Atheros");
2694
MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices");
2695
MODULE_LICENSE("Dual BSD/GPL");
2696
2697