Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/dev/athk/dfs_pri_detector.c
48254 views
1
/*
2
* Copyright (c) 2012 Neratec Solutions AG
3
*
4
* Permission to use, copy, modify, and/or distribute this software for any
5
* purpose with or without fee is hereby granted, provided that the above
6
* copyright notice and this permission notice appear in all copies.
7
*
8
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15
*/
16
17
#include <linux/slab.h>
18
#include <linux/spinlock.h>
19
20
#include "ath.h"
21
#include "dfs_pattern_detector.h"
22
#include "dfs_pri_detector.h"
23
24
struct ath_dfs_pool_stats global_dfs_pool_stats = {};
25
26
#define DFS_POOL_STAT_INC(c) (global_dfs_pool_stats.c++)
27
#define DFS_POOL_STAT_DEC(c) (global_dfs_pool_stats.c--)
28
#define GET_PRI_TO_USE(MIN, MAX, RUNTIME) \
29
(MIN + PRI_TOLERANCE == MAX - PRI_TOLERANCE ? \
30
MIN + PRI_TOLERANCE : RUNTIME)
31
32
/*
33
* struct pulse_elem - elements in pulse queue
34
*/
35
struct pulse_elem {
36
struct list_head head;
37
u64 ts;
38
};
39
40
/*
41
* pde_get_multiple() - get number of multiples considering a given tolerance
42
* Return value: factor if abs(val - factor*fraction) <= tolerance, 0 otherwise
43
*/
44
static u32 pde_get_multiple(u32 val, u32 fraction, u32 tolerance)
45
{
46
u32 remainder;
47
u32 factor;
48
u32 delta;
49
50
if (fraction == 0)
51
return 0;
52
53
delta = (val < fraction) ? (fraction - val) : (val - fraction);
54
55
if (delta <= tolerance)
56
/* val and fraction are within tolerance */
57
return 1;
58
59
factor = val / fraction;
60
remainder = val % fraction;
61
if (remainder > tolerance) {
62
/* no exact match */
63
if ((fraction - remainder) <= tolerance)
64
/* remainder is within tolerance */
65
factor++;
66
else
67
factor = 0;
68
}
69
return factor;
70
}
71
72
/*
73
* DOC: Singleton Pulse and Sequence Pools
74
*
75
* Instances of pri_sequence and pulse_elem are kept in singleton pools to
76
* reduce the number of dynamic allocations. They are shared between all
77
* instances and grow up to the peak number of simultaneously used objects.
78
*
79
* Memory is freed after all references to the pools are released.
80
*/
81
static u32 singleton_pool_references;
82
static LIST_HEAD(pulse_pool);
83
static LIST_HEAD(pseq_pool);
84
static DEFINE_SPINLOCK(pool_lock);
85
86
static void pool_register_ref(void)
87
{
88
spin_lock_bh(&pool_lock);
89
singleton_pool_references++;
90
DFS_POOL_STAT_INC(pool_reference);
91
spin_unlock_bh(&pool_lock);
92
}
93
94
static void pool_deregister_ref(void)
95
{
96
spin_lock_bh(&pool_lock);
97
singleton_pool_references--;
98
DFS_POOL_STAT_DEC(pool_reference);
99
if (singleton_pool_references == 0) {
100
/* free singleton pools with no references left */
101
struct pri_sequence *ps, *ps0;
102
struct pulse_elem *p, *p0;
103
104
list_for_each_entry_safe(p, p0, &pulse_pool, head) {
105
list_del(&p->head);
106
DFS_POOL_STAT_DEC(pulse_allocated);
107
kfree(p);
108
}
109
list_for_each_entry_safe(ps, ps0, &pseq_pool, head) {
110
list_del(&ps->head);
111
DFS_POOL_STAT_DEC(pseq_allocated);
112
kfree(ps);
113
}
114
}
115
spin_unlock_bh(&pool_lock);
116
}
117
118
static void pool_put_pulse_elem(struct pulse_elem *pe)
119
{
120
spin_lock_bh(&pool_lock);
121
list_add(&pe->head, &pulse_pool);
122
DFS_POOL_STAT_DEC(pulse_used);
123
spin_unlock_bh(&pool_lock);
124
}
125
126
static void pool_put_pseq_elem(struct pri_sequence *pse)
127
{
128
spin_lock_bh(&pool_lock);
129
list_add(&pse->head, &pseq_pool);
130
DFS_POOL_STAT_DEC(pseq_used);
131
spin_unlock_bh(&pool_lock);
132
}
133
134
static struct pri_sequence *pool_get_pseq_elem(void)
135
{
136
struct pri_sequence *pse = NULL;
137
spin_lock_bh(&pool_lock);
138
if (!list_empty(&pseq_pool)) {
139
pse = list_first_entry(&pseq_pool, struct pri_sequence, head);
140
list_del(&pse->head);
141
DFS_POOL_STAT_INC(pseq_used);
142
}
143
spin_unlock_bh(&pool_lock);
144
return pse;
145
}
146
147
static struct pulse_elem *pool_get_pulse_elem(void)
148
{
149
struct pulse_elem *pe = NULL;
150
spin_lock_bh(&pool_lock);
151
if (!list_empty(&pulse_pool)) {
152
pe = list_first_entry(&pulse_pool, struct pulse_elem, head);
153
list_del(&pe->head);
154
DFS_POOL_STAT_INC(pulse_used);
155
}
156
spin_unlock_bh(&pool_lock);
157
return pe;
158
}
159
160
static struct pulse_elem *pulse_queue_get_tail(struct pri_detector *pde)
161
{
162
struct list_head *l = &pde->pulses;
163
if (list_empty(l))
164
return NULL;
165
return list_entry(l->prev, struct pulse_elem, head);
166
}
167
168
static bool pulse_queue_dequeue(struct pri_detector *pde)
169
{
170
struct pulse_elem *p = pulse_queue_get_tail(pde);
171
if (p != NULL) {
172
list_del_init(&p->head);
173
pde->count--;
174
/* give it back to pool */
175
pool_put_pulse_elem(p);
176
}
177
return (pde->count > 0);
178
}
179
180
/* remove pulses older than window */
181
static void pulse_queue_check_window(struct pri_detector *pde)
182
{
183
u64 min_valid_ts;
184
struct pulse_elem *p;
185
186
/* there is no delta time with less than 2 pulses */
187
if (pde->count < 2)
188
return;
189
190
if (pde->last_ts <= pde->window_size)
191
return;
192
193
min_valid_ts = pde->last_ts - pde->window_size;
194
while ((p = pulse_queue_get_tail(pde)) != NULL) {
195
if (p->ts >= min_valid_ts)
196
return;
197
pulse_queue_dequeue(pde);
198
}
199
}
200
201
static bool pulse_queue_enqueue(struct pri_detector *pde, u64 ts)
202
{
203
struct pulse_elem *p = pool_get_pulse_elem();
204
if (p == NULL) {
205
p = kmalloc(sizeof(*p), GFP_ATOMIC);
206
if (p == NULL) {
207
DFS_POOL_STAT_INC(pulse_alloc_error);
208
return false;
209
}
210
DFS_POOL_STAT_INC(pulse_allocated);
211
DFS_POOL_STAT_INC(pulse_used);
212
}
213
INIT_LIST_HEAD(&p->head);
214
p->ts = ts;
215
list_add(&p->head, &pde->pulses);
216
pde->count++;
217
pde->last_ts = ts;
218
pulse_queue_check_window(pde);
219
if (pde->count >= pde->max_count)
220
pulse_queue_dequeue(pde);
221
return true;
222
}
223
224
static bool pseq_handler_create_sequences(struct pri_detector *pde,
225
u64 ts, u32 min_count)
226
{
227
struct pulse_elem *p;
228
list_for_each_entry(p, &pde->pulses, head) {
229
struct pri_sequence ps, *new_ps;
230
struct pulse_elem *p2;
231
u32 tmp_false_count;
232
u64 min_valid_ts;
233
u32 delta_ts = ts - p->ts;
234
235
if (delta_ts < pde->rs->pri_min)
236
/* ignore too small pri */
237
continue;
238
239
if (delta_ts > pde->rs->pri_max)
240
/* stop on too large pri (sorted list) */
241
break;
242
243
/* build a new sequence with new potential pri */
244
ps.count = 2;
245
ps.count_falses = 0;
246
ps.first_ts = p->ts;
247
ps.last_ts = ts;
248
ps.pri = GET_PRI_TO_USE(pde->rs->pri_min,
249
pde->rs->pri_max, ts - p->ts);
250
ps.dur = ps.pri * (pde->rs->ppb - 1)
251
+ 2 * pde->rs->max_pri_tolerance;
252
253
p2 = p;
254
tmp_false_count = 0;
255
min_valid_ts = ts - ps.dur;
256
/* check which past pulses are candidates for new sequence */
257
list_for_each_entry_continue(p2, &pde->pulses, head) {
258
u32 factor;
259
if (p2->ts < min_valid_ts)
260
/* stop on crossing window border */
261
break;
262
/* check if pulse match (multi)PRI */
263
factor = pde_get_multiple(ps.last_ts - p2->ts, ps.pri,
264
pde->rs->max_pri_tolerance);
265
if (factor > 0) {
266
ps.count++;
267
ps.first_ts = p2->ts;
268
/*
269
* on match, add the intermediate falses
270
* and reset counter
271
*/
272
ps.count_falses += tmp_false_count;
273
tmp_false_count = 0;
274
} else {
275
/* this is a potential false one */
276
tmp_false_count++;
277
}
278
}
279
if (ps.count <= min_count)
280
/* did not reach minimum count, drop sequence */
281
continue;
282
283
/* this is a valid one, add it */
284
ps.deadline_ts = ps.first_ts + ps.dur;
285
new_ps = pool_get_pseq_elem();
286
if (new_ps == NULL) {
287
new_ps = kmalloc(sizeof(*new_ps), GFP_ATOMIC);
288
if (new_ps == NULL) {
289
DFS_POOL_STAT_INC(pseq_alloc_error);
290
return false;
291
}
292
DFS_POOL_STAT_INC(pseq_allocated);
293
DFS_POOL_STAT_INC(pseq_used);
294
}
295
memcpy(new_ps, &ps, sizeof(ps));
296
INIT_LIST_HEAD(&new_ps->head);
297
list_add(&new_ps->head, &pde->sequences);
298
}
299
return true;
300
}
301
302
/* check new ts and add to all matching existing sequences */
303
static u32
304
pseq_handler_add_to_existing_seqs(struct pri_detector *pde, u64 ts)
305
{
306
u32 max_count = 0;
307
struct pri_sequence *ps, *ps2;
308
list_for_each_entry_safe(ps, ps2, &pde->sequences, head) {
309
u32 delta_ts;
310
u32 factor;
311
312
/* first ensure that sequence is within window */
313
if (ts > ps->deadline_ts) {
314
list_del_init(&ps->head);
315
pool_put_pseq_elem(ps);
316
continue;
317
}
318
319
delta_ts = ts - ps->last_ts;
320
factor = pde_get_multiple(delta_ts, ps->pri,
321
pde->rs->max_pri_tolerance);
322
if (factor > 0) {
323
ps->last_ts = ts;
324
ps->count++;
325
326
if (max_count < ps->count)
327
max_count = ps->count;
328
} else {
329
ps->count_falses++;
330
}
331
}
332
return max_count;
333
}
334
335
static struct pri_sequence *
336
pseq_handler_check_detection(struct pri_detector *pde)
337
{
338
struct pri_sequence *ps;
339
340
if (list_empty(&pde->sequences))
341
return NULL;
342
343
list_for_each_entry(ps, &pde->sequences, head) {
344
/*
345
* we assume to have enough matching confidence if we
346
* 1) have enough pulses
347
* 2) have more matching than false pulses
348
*/
349
if ((ps->count >= pde->rs->ppb_thresh) &&
350
(ps->count * pde->rs->num_pri >= ps->count_falses))
351
return ps;
352
}
353
return NULL;
354
}
355
356
357
/* free pulse queue and sequences list and give objects back to pools */
358
static void pri_detector_reset(struct pri_detector *pde, u64 ts)
359
{
360
struct pri_sequence *ps, *ps0;
361
struct pulse_elem *p, *p0;
362
list_for_each_entry_safe(ps, ps0, &pde->sequences, head) {
363
list_del_init(&ps->head);
364
pool_put_pseq_elem(ps);
365
}
366
list_for_each_entry_safe(p, p0, &pde->pulses, head) {
367
list_del_init(&p->head);
368
pool_put_pulse_elem(p);
369
}
370
pde->count = 0;
371
pde->last_ts = ts;
372
}
373
374
static void pri_detector_exit(struct pri_detector *de)
375
{
376
pri_detector_reset(de, 0);
377
pool_deregister_ref();
378
kfree(de);
379
}
380
381
static struct pri_sequence *pri_detector_add_pulse(struct pri_detector *de,
382
struct pulse_event *event)
383
{
384
u32 max_updated_seq;
385
struct pri_sequence *ps;
386
u64 ts = event->ts;
387
const struct radar_detector_specs *rs = de->rs;
388
389
/* ignore pulses not within width range */
390
if ((rs->width_min > event->width) || (rs->width_max < event->width))
391
return NULL;
392
393
if ((ts - de->last_ts) < rs->max_pri_tolerance)
394
/* if delta to last pulse is too short, don't use this pulse */
395
return NULL;
396
/* radar detector spec needs chirp, but not detected */
397
if (rs->chirp && rs->chirp != event->chirp)
398
return NULL;
399
400
de->last_ts = ts;
401
402
max_updated_seq = pseq_handler_add_to_existing_seqs(de, ts);
403
404
if (!pseq_handler_create_sequences(de, ts, max_updated_seq)) {
405
pri_detector_reset(de, ts);
406
return NULL;
407
}
408
409
ps = pseq_handler_check_detection(de);
410
411
if (ps == NULL)
412
pulse_queue_enqueue(de, ts);
413
414
return ps;
415
}
416
417
struct pri_detector *pri_detector_init(const struct radar_detector_specs *rs)
418
{
419
struct pri_detector *de;
420
421
de = kzalloc(sizeof(*de), GFP_ATOMIC);
422
if (de == NULL)
423
return NULL;
424
de->exit = pri_detector_exit;
425
de->add_pulse = pri_detector_add_pulse;
426
de->reset = pri_detector_reset;
427
428
INIT_LIST_HEAD(&de->sequences);
429
INIT_LIST_HEAD(&de->pulses);
430
de->window_size = rs->pri_max * rs->ppb * rs->num_pri;
431
de->max_count = rs->ppb * 2;
432
de->rs = rs;
433
434
pool_register_ref();
435
return de;
436
}
437
438