Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/dev/athk/key.c
48254 views
1
/*
2
* Copyright (c) 2009 Atheros Communications Inc.
3
* Copyright (c) 2010 Bruno Randolf <[email protected]>
4
*
5
* Permission to use, copy, modify, and/or distribute this software for any
6
* purpose with or without fee is hereby granted, provided that the above
7
* copyright notice and this permission notice appear in all copies.
8
*
9
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16
*/
17
18
#include <linux/export.h>
19
#include <asm/unaligned.h>
20
#include <net/mac80211.h>
21
22
#include "ath.h"
23
#include "reg.h"
24
25
#define REG_READ (common->ops->read)
26
#define REG_WRITE(_ah, _reg, _val) (common->ops->write)(_ah, _val, _reg)
27
#define ENABLE_REGWRITE_BUFFER(_ah) \
28
if (common->ops->enable_write_buffer) \
29
common->ops->enable_write_buffer((_ah));
30
31
#define REGWRITE_BUFFER_FLUSH(_ah) \
32
if (common->ops->write_flush) \
33
common->ops->write_flush((_ah));
34
35
36
#define IEEE80211_WEP_NKID 4 /* number of key ids */
37
38
/************************/
39
/* Key Cache Management */
40
/************************/
41
42
bool ath_hw_keyreset(struct ath_common *common, u16 entry)
43
{
44
u32 keyType;
45
void *ah = common->ah;
46
47
if (entry >= common->keymax) {
48
ath_err(common, "keyreset: keycache entry %u out of range\n",
49
entry);
50
return false;
51
}
52
53
keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
54
55
ENABLE_REGWRITE_BUFFER(ah);
56
57
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
58
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
59
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
60
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
61
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
62
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
63
REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
64
REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
65
66
if (keyType == AR_KEYTABLE_TYPE_TKIP) {
67
u16 micentry = entry + 64;
68
69
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
70
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
71
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
72
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
73
if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
74
REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
75
REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
76
AR_KEYTABLE_TYPE_CLR);
77
}
78
79
}
80
81
REGWRITE_BUFFER_FLUSH(ah);
82
83
return true;
84
}
85
EXPORT_SYMBOL(ath_hw_keyreset);
86
87
bool ath_hw_keysetmac(struct ath_common *common, u16 entry, const u8 *mac)
88
{
89
u32 macHi, macLo;
90
u32 unicast_flag = AR_KEYTABLE_VALID;
91
void *ah = common->ah;
92
93
if (entry >= common->keymax) {
94
ath_err(common, "keysetmac: keycache entry %u out of range\n",
95
entry);
96
return false;
97
}
98
99
if (mac != NULL) {
100
/*
101
* AR_KEYTABLE_VALID indicates that the address is a unicast
102
* address, which must match the transmitter address for
103
* decrypting frames.
104
* Not setting this bit allows the hardware to use the key
105
* for multicast frame decryption.
106
*/
107
if (mac[0] & 0x01)
108
unicast_flag = 0;
109
110
macLo = get_unaligned_le32(mac);
111
macHi = get_unaligned_le16(mac + 4);
112
macLo >>= 1;
113
macLo |= (macHi & 1) << 31;
114
macHi >>= 1;
115
} else {
116
macLo = macHi = 0;
117
}
118
ENABLE_REGWRITE_BUFFER(ah);
119
120
REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
121
REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
122
123
REGWRITE_BUFFER_FLUSH(ah);
124
125
return true;
126
}
127
EXPORT_SYMBOL(ath_hw_keysetmac);
128
129
static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
130
const struct ath_keyval *k,
131
const u8 *mac)
132
{
133
void *ah = common->ah;
134
u32 key0, key1, key2, key3, key4;
135
u32 keyType;
136
137
if (entry >= common->keymax) {
138
ath_err(common, "set-entry: keycache entry %u out of range\n",
139
entry);
140
return false;
141
}
142
143
switch (k->kv_type) {
144
case ATH_CIPHER_AES_OCB:
145
keyType = AR_KEYTABLE_TYPE_AES;
146
break;
147
case ATH_CIPHER_AES_CCM:
148
if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
149
ath_dbg(common, ANY,
150
"AES-CCM not supported by this mac rev\n");
151
return false;
152
}
153
keyType = AR_KEYTABLE_TYPE_CCM;
154
break;
155
case ATH_CIPHER_TKIP:
156
keyType = AR_KEYTABLE_TYPE_TKIP;
157
if (entry + 64 >= common->keymax) {
158
ath_dbg(common, ANY,
159
"entry %u inappropriate for TKIP\n", entry);
160
return false;
161
}
162
break;
163
case ATH_CIPHER_WEP:
164
if (k->kv_len < WLAN_KEY_LEN_WEP40) {
165
ath_dbg(common, ANY, "WEP key length %u too small\n",
166
k->kv_len);
167
return false;
168
}
169
if (k->kv_len <= WLAN_KEY_LEN_WEP40)
170
keyType = AR_KEYTABLE_TYPE_40;
171
else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
172
keyType = AR_KEYTABLE_TYPE_104;
173
else
174
keyType = AR_KEYTABLE_TYPE_128;
175
break;
176
case ATH_CIPHER_CLR:
177
keyType = AR_KEYTABLE_TYPE_CLR;
178
break;
179
default:
180
ath_err(common, "cipher %u not supported\n", k->kv_type);
181
return false;
182
}
183
184
key0 = get_unaligned_le32(k->kv_val + 0);
185
key1 = get_unaligned_le16(k->kv_val + 4);
186
key2 = get_unaligned_le32(k->kv_val + 6);
187
key3 = get_unaligned_le16(k->kv_val + 10);
188
key4 = get_unaligned_le32(k->kv_val + 12);
189
if (k->kv_len <= WLAN_KEY_LEN_WEP104)
190
key4 &= 0xff;
191
192
/*
193
* Note: Key cache registers access special memory area that requires
194
* two 32-bit writes to actually update the values in the internal
195
* memory. Consequently, the exact order and pairs used here must be
196
* maintained.
197
*/
198
199
if (keyType == AR_KEYTABLE_TYPE_TKIP) {
200
u16 micentry = entry + 64;
201
202
/*
203
* Write inverted key[47:0] first to avoid Michael MIC errors
204
* on frames that could be sent or received at the same time.
205
* The correct key will be written in the end once everything
206
* else is ready.
207
*/
208
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
209
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
210
211
/* Write key[95:48] */
212
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
213
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
214
215
/* Write key[127:96] and key type */
216
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
217
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
218
219
/* Write MAC address for the entry */
220
(void) ath_hw_keysetmac(common, entry, mac);
221
222
if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
223
/*
224
* TKIP uses two key cache entries:
225
* Michael MIC TX/RX keys in the same key cache entry
226
* (idx = main index + 64):
227
* key0 [31:0] = RX key [31:0]
228
* key1 [15:0] = TX key [31:16]
229
* key1 [31:16] = reserved
230
* key2 [31:0] = RX key [63:32]
231
* key3 [15:0] = TX key [15:0]
232
* key3 [31:16] = reserved
233
* key4 [31:0] = TX key [63:32]
234
*/
235
u32 mic0, mic1, mic2, mic3, mic4;
236
237
mic0 = get_unaligned_le32(k->kv_mic + 0);
238
mic2 = get_unaligned_le32(k->kv_mic + 4);
239
mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
240
mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
241
mic4 = get_unaligned_le32(k->kv_txmic + 4);
242
243
ENABLE_REGWRITE_BUFFER(ah);
244
245
/* Write RX[31:0] and TX[31:16] */
246
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
247
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
248
249
/* Write RX[63:32] and TX[15:0] */
250
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
251
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
252
253
/* Write TX[63:32] and keyType(reserved) */
254
REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
255
REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
256
AR_KEYTABLE_TYPE_CLR);
257
258
REGWRITE_BUFFER_FLUSH(ah);
259
260
} else {
261
/*
262
* TKIP uses four key cache entries (two for group
263
* keys):
264
* Michael MIC TX/RX keys are in different key cache
265
* entries (idx = main index + 64 for TX and
266
* main index + 32 + 96 for RX):
267
* key0 [31:0] = TX/RX MIC key [31:0]
268
* key1 [31:0] = reserved
269
* key2 [31:0] = TX/RX MIC key [63:32]
270
* key3 [31:0] = reserved
271
* key4 [31:0] = reserved
272
*
273
* Upper layer code will call this function separately
274
* for TX and RX keys when these registers offsets are
275
* used.
276
*/
277
u32 mic0, mic2;
278
279
mic0 = get_unaligned_le32(k->kv_mic + 0);
280
mic2 = get_unaligned_le32(k->kv_mic + 4);
281
282
ENABLE_REGWRITE_BUFFER(ah);
283
284
/* Write MIC key[31:0] */
285
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
286
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
287
288
/* Write MIC key[63:32] */
289
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
290
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
291
292
/* Write TX[63:32] and keyType(reserved) */
293
REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
294
REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
295
AR_KEYTABLE_TYPE_CLR);
296
297
REGWRITE_BUFFER_FLUSH(ah);
298
}
299
300
ENABLE_REGWRITE_BUFFER(ah);
301
302
/* MAC address registers are reserved for the MIC entry */
303
REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
304
REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
305
306
/*
307
* Write the correct (un-inverted) key[47:0] last to enable
308
* TKIP now that all other registers are set with correct
309
* values.
310
*/
311
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
312
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
313
314
REGWRITE_BUFFER_FLUSH(ah);
315
} else {
316
ENABLE_REGWRITE_BUFFER(ah);
317
318
/* Write key[47:0] */
319
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
320
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
321
322
/* Write key[95:48] */
323
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
324
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
325
326
/* Write key[127:96] and key type */
327
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
328
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
329
330
REGWRITE_BUFFER_FLUSH(ah);
331
332
/* Write MAC address for the entry */
333
(void) ath_hw_keysetmac(common, entry, mac);
334
}
335
336
return true;
337
}
338
339
static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
340
struct ath_keyval *hk, const u8 *addr,
341
bool authenticator)
342
{
343
const u8 *key_rxmic;
344
const u8 *key_txmic;
345
346
key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
347
key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
348
349
if (addr == NULL) {
350
/*
351
* Group key installation - only two key cache entries are used
352
* regardless of splitmic capability since group key is only
353
* used either for TX or RX.
354
*/
355
if (authenticator) {
356
memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
357
memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
358
} else {
359
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
360
memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
361
}
362
return ath_hw_set_keycache_entry(common, keyix, hk, addr);
363
}
364
if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
365
/* TX and RX keys share the same key cache entry. */
366
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
367
memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
368
return ath_hw_set_keycache_entry(common, keyix, hk, addr);
369
}
370
371
/* Separate key cache entries for TX and RX */
372
373
/* TX key goes at first index, RX key at +32. */
374
memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
375
if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
376
/* TX MIC entry failed. No need to proceed further */
377
ath_err(common, "Setting TX MIC Key Failed\n");
378
return 0;
379
}
380
381
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
382
/* XXX delete tx key on failure? */
383
return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
384
}
385
386
static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
387
{
388
int i;
389
390
for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
391
if (test_bit(i, common->keymap) ||
392
test_bit(i + 64, common->keymap))
393
continue; /* At least one part of TKIP key allocated */
394
if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
395
(test_bit(i + 32, common->keymap) ||
396
test_bit(i + 64 + 32, common->keymap)))
397
continue; /* At least one part of TKIP key allocated */
398
399
/* Found a free slot for a TKIP key */
400
return i;
401
}
402
return -1;
403
}
404
405
static int ath_reserve_key_cache_slot(struct ath_common *common,
406
u32 cipher)
407
{
408
int i;
409
410
if (cipher == WLAN_CIPHER_SUITE_TKIP)
411
return ath_reserve_key_cache_slot_tkip(common);
412
413
/* First, try to find slots that would not be available for TKIP. */
414
if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
415
for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
416
if (!test_bit(i, common->keymap) &&
417
(test_bit(i + 32, common->keymap) ||
418
test_bit(i + 64, common->keymap) ||
419
test_bit(i + 64 + 32, common->keymap)))
420
return i;
421
if (!test_bit(i + 32, common->keymap) &&
422
(test_bit(i, common->keymap) ||
423
test_bit(i + 64, common->keymap) ||
424
test_bit(i + 64 + 32, common->keymap)))
425
return i + 32;
426
if (!test_bit(i + 64, common->keymap) &&
427
(test_bit(i , common->keymap) ||
428
test_bit(i + 32, common->keymap) ||
429
test_bit(i + 64 + 32, common->keymap)))
430
return i + 64;
431
if (!test_bit(i + 64 + 32, common->keymap) &&
432
(test_bit(i, common->keymap) ||
433
test_bit(i + 32, common->keymap) ||
434
test_bit(i + 64, common->keymap)))
435
return i + 64 + 32;
436
}
437
} else {
438
for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
439
if (!test_bit(i, common->keymap) &&
440
test_bit(i + 64, common->keymap))
441
return i;
442
if (test_bit(i, common->keymap) &&
443
!test_bit(i + 64, common->keymap))
444
return i + 64;
445
}
446
}
447
448
/* No partially used TKIP slots, pick any available slot */
449
for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
450
/* Do not allow slots that could be needed for TKIP group keys
451
* to be used. This limitation could be removed if we know that
452
* TKIP will not be used. */
453
if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
454
continue;
455
if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
456
if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
457
continue;
458
if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
459
continue;
460
}
461
462
if (!test_bit(i, common->keymap))
463
return i; /* Found a free slot for a key */
464
}
465
466
/* No free slot found */
467
return -1;
468
}
469
470
/*
471
* Configure encryption in the HW.
472
*/
473
int ath_key_config(struct ath_common *common,
474
struct ieee80211_vif *vif,
475
struct ieee80211_sta *sta,
476
struct ieee80211_key_conf *key)
477
{
478
struct ath_keyval hk;
479
const u8 *mac = NULL;
480
u8 gmac[ETH_ALEN];
481
int ret = 0;
482
int idx;
483
484
memset(&hk, 0, sizeof(hk));
485
486
switch (key->cipher) {
487
case 0:
488
hk.kv_type = ATH_CIPHER_CLR;
489
break;
490
case WLAN_CIPHER_SUITE_WEP40:
491
case WLAN_CIPHER_SUITE_WEP104:
492
hk.kv_type = ATH_CIPHER_WEP;
493
break;
494
case WLAN_CIPHER_SUITE_TKIP:
495
hk.kv_type = ATH_CIPHER_TKIP;
496
break;
497
case WLAN_CIPHER_SUITE_CCMP:
498
hk.kv_type = ATH_CIPHER_AES_CCM;
499
break;
500
default:
501
return -EOPNOTSUPP;
502
}
503
504
hk.kv_len = key->keylen;
505
if (key->keylen)
506
memcpy(&hk.kv_values, key->key, key->keylen);
507
508
if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
509
switch (vif->type) {
510
case NL80211_IFTYPE_AP:
511
memcpy(gmac, vif->addr, ETH_ALEN);
512
gmac[0] |= 0x01;
513
mac = gmac;
514
idx = ath_reserve_key_cache_slot(common, key->cipher);
515
break;
516
case NL80211_IFTYPE_ADHOC:
517
if (!sta) {
518
idx = key->keyidx;
519
break;
520
}
521
memcpy(gmac, sta->addr, ETH_ALEN);
522
gmac[0] |= 0x01;
523
mac = gmac;
524
idx = ath_reserve_key_cache_slot(common, key->cipher);
525
break;
526
default:
527
idx = key->keyidx;
528
break;
529
}
530
} else if (key->keyidx) {
531
if (WARN_ON(!sta))
532
return -EOPNOTSUPP;
533
mac = sta->addr;
534
535
if (vif->type != NL80211_IFTYPE_AP) {
536
/* Only keyidx 0 should be used with unicast key, but
537
* allow this for client mode for now. */
538
idx = key->keyidx;
539
} else
540
return -EIO;
541
} else {
542
if (WARN_ON(!sta))
543
return -EOPNOTSUPP;
544
mac = sta->addr;
545
546
idx = ath_reserve_key_cache_slot(common, key->cipher);
547
}
548
549
if (idx < 0)
550
return -ENOSPC; /* no free key cache entries */
551
552
if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
553
ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
554
vif->type == NL80211_IFTYPE_AP);
555
else
556
ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
557
558
if (!ret)
559
return -EIO;
560
561
set_bit(idx, common->keymap);
562
if (key->cipher == WLAN_CIPHER_SUITE_CCMP)
563
set_bit(idx, common->ccmp_keymap);
564
565
if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
566
set_bit(idx + 64, common->keymap);
567
set_bit(idx, common->tkip_keymap);
568
set_bit(idx + 64, common->tkip_keymap);
569
if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
570
set_bit(idx + 32, common->keymap);
571
set_bit(idx + 64 + 32, common->keymap);
572
set_bit(idx + 32, common->tkip_keymap);
573
set_bit(idx + 64 + 32, common->tkip_keymap);
574
}
575
}
576
577
return idx;
578
}
579
EXPORT_SYMBOL(ath_key_config);
580
581
/*
582
* Delete Key.
583
*/
584
void ath_key_delete(struct ath_common *common, u8 hw_key_idx)
585
{
586
/* Leave CCMP and TKIP (main key) configured to avoid disabling
587
* encryption for potentially pending frames already in a TXQ with the
588
* keyix pointing to this key entry. Instead, only clear the MAC address
589
* to prevent RX processing from using this key cache entry.
590
*/
591
if (test_bit(hw_key_idx, common->ccmp_keymap) ||
592
test_bit(hw_key_idx, common->tkip_keymap))
593
ath_hw_keysetmac(common, hw_key_idx, NULL);
594
else
595
ath_hw_keyreset(common, hw_key_idx);
596
if (hw_key_idx < IEEE80211_WEP_NKID)
597
return;
598
599
clear_bit(hw_key_idx, common->keymap);
600
clear_bit(hw_key_idx, common->ccmp_keymap);
601
if (!test_bit(hw_key_idx, common->tkip_keymap))
602
return;
603
604
clear_bit(hw_key_idx + 64, common->keymap);
605
606
clear_bit(hw_key_idx, common->tkip_keymap);
607
clear_bit(hw_key_idx + 64, common->tkip_keymap);
608
609
if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
610
ath_hw_keyreset(common, hw_key_idx + 32);
611
clear_bit(hw_key_idx + 32, common->keymap);
612
clear_bit(hw_key_idx + 64 + 32, common->keymap);
613
614
clear_bit(hw_key_idx + 32, common->tkip_keymap);
615
clear_bit(hw_key_idx + 64 + 32, common->tkip_keymap);
616
}
617
}
618
EXPORT_SYMBOL(ath_key_delete);
619
620