Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/dev/iwlwifi/pcie/gen1_2/rx.c
48406 views
1
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2
/*
3
* Copyright (C) 2003-2014, 2018-2024 Intel Corporation
4
* Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5
* Copyright (C) 2016-2017 Intel Deutschland GmbH
6
*/
7
#include <linux/sched.h>
8
#include <linux/wait.h>
9
#include <linux/gfp.h>
10
11
#include "iwl-prph.h"
12
#include "iwl-io.h"
13
#include "internal.h"
14
#include "iwl-op-mode.h"
15
#include "pcie/iwl-context-info-v2.h"
16
#include "fw/dbg.h"
17
18
/******************************************************************************
19
*
20
* RX path functions
21
*
22
******************************************************************************/
23
24
/*
25
* Rx theory of operation
26
*
27
* Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
28
* each of which point to Receive Buffers to be filled by the NIC. These get
29
* used not only for Rx frames, but for any command response or notification
30
* from the NIC. The driver and NIC manage the Rx buffers by means
31
* of indexes into the circular buffer.
32
*
33
* Rx Queue Indexes
34
* The host/firmware share two index registers for managing the Rx buffers.
35
*
36
* The READ index maps to the first position that the firmware may be writing
37
* to -- the driver can read up to (but not including) this position and get
38
* good data.
39
* The READ index is managed by the firmware once the card is enabled.
40
*
41
* The WRITE index maps to the last position the driver has read from -- the
42
* position preceding WRITE is the last slot the firmware can place a packet.
43
*
44
* The queue is empty (no good data) if WRITE = READ - 1, and is full if
45
* WRITE = READ.
46
*
47
* During initialization, the host sets up the READ queue position to the first
48
* INDEX position, and WRITE to the last (READ - 1 wrapped)
49
*
50
* When the firmware places a packet in a buffer, it will advance the READ index
51
* and fire the RX interrupt. The driver can then query the READ index and
52
* process as many packets as possible, moving the WRITE index forward as it
53
* resets the Rx queue buffers with new memory.
54
*
55
* The management in the driver is as follows:
56
* + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
57
* When the interrupt handler is called, the request is processed.
58
* The page is either stolen - transferred to the upper layer
59
* or reused - added immediately to the iwl->rxq->rx_free list.
60
* + When the page is stolen - the driver updates the matching queue's used
61
* count, detaches the RBD and transfers it to the queue used list.
62
* When there are two used RBDs - they are transferred to the allocator empty
63
* list. Work is then scheduled for the allocator to start allocating
64
* eight buffers.
65
* When there are another 6 used RBDs - they are transferred to the allocator
66
* empty list and the driver tries to claim the pre-allocated buffers and
67
* add them to iwl->rxq->rx_free. If it fails - it continues to claim them
68
* until ready.
69
* When there are 8+ buffers in the free list - either from allocation or from
70
* 8 reused unstolen pages - restock is called to update the FW and indexes.
71
* + In order to make sure the allocator always has RBDs to use for allocation
72
* the allocator has initial pool in the size of num_queues*(8-2) - the
73
* maximum missing RBDs per allocation request (request posted with 2
74
* empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
75
* The queues supplies the recycle of the rest of the RBDs.
76
* + A received packet is processed and handed to the kernel network stack,
77
* detached from the iwl->rxq. The driver 'processed' index is updated.
78
* + If there are no allocated buffers in iwl->rxq->rx_free,
79
* the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
80
* If there were enough free buffers and RX_STALLED is set it is cleared.
81
*
82
*
83
* Driver sequence:
84
*
85
* iwl_rxq_alloc() Allocates rx_free
86
* iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
87
* iwl_pcie_rxq_restock.
88
* Used only during initialization.
89
* iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
90
* queue, updates firmware pointers, and updates
91
* the WRITE index.
92
* iwl_pcie_rx_allocator() Background work for allocating pages.
93
*
94
* -- enable interrupts --
95
* ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
96
* READ INDEX, detaching the SKB from the pool.
97
* Moves the packet buffer from queue to rx_used.
98
* Posts and claims requests to the allocator.
99
* Calls iwl_pcie_rxq_restock to refill any empty
100
* slots.
101
*
102
* RBD life-cycle:
103
*
104
* Init:
105
* rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
106
*
107
* Regular Receive interrupt:
108
* Page Stolen:
109
* rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
110
* allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
111
* Page not Stolen:
112
* rxq.queue -> rxq.rx_free -> rxq.queue
113
* ...
114
*
115
*/
116
117
/*
118
* iwl_rxq_space - Return number of free slots available in queue.
119
*/
120
static int iwl_rxq_space(const struct iwl_rxq *rxq)
121
{
122
/* Make sure rx queue size is a power of 2 */
123
WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
124
125
/*
126
* There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
127
* between empty and completely full queues.
128
* The following is equivalent to modulo by RX_QUEUE_SIZE and is well
129
* defined for negative dividends.
130
*/
131
return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
132
}
133
134
/*
135
* iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
136
*/
137
static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
138
{
139
return cpu_to_le32((u32)(dma_addr >> 8));
140
}
141
142
/*
143
* iwl_pcie_rx_stop - stops the Rx DMA
144
*/
145
int iwl_pcie_rx_stop(struct iwl_trans *trans)
146
{
147
if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
148
/* TODO: remove this once fw does it */
149
iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_AX210, 0);
150
return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_AX210,
151
RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
152
} else if (trans->mac_cfg->mq_rx_supported) {
153
iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
154
return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
155
RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
156
} else {
157
iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
158
return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
159
FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
160
1000);
161
}
162
}
163
164
/*
165
* iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
166
*/
167
static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
168
struct iwl_rxq *rxq)
169
{
170
u32 reg;
171
172
lockdep_assert_held(&rxq->lock);
173
174
/*
175
* explicitly wake up the NIC if:
176
* 1. shadow registers aren't enabled
177
* 2. there is a chance that the NIC is asleep
178
*/
179
if (!trans->mac_cfg->base->shadow_reg_enable &&
180
test_bit(STATUS_TPOWER_PMI, &trans->status)) {
181
reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
182
183
if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
184
IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
185
reg);
186
iwl_set_bit(trans, CSR_GP_CNTRL,
187
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
188
rxq->need_update = true;
189
return;
190
}
191
}
192
193
rxq->write_actual = round_down(rxq->write, 8);
194
if (!trans->mac_cfg->mq_rx_supported)
195
iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
196
else if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
197
iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual |
198
HBUS_TARG_WRPTR_RX_Q(rxq->id));
199
else
200
iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
201
rxq->write_actual);
202
}
203
204
static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
205
{
206
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
207
int i;
208
209
for (i = 0; i < trans->info.num_rxqs; i++) {
210
struct iwl_rxq *rxq = &trans_pcie->rxq[i];
211
212
if (!rxq->need_update)
213
continue;
214
spin_lock_bh(&rxq->lock);
215
iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
216
rxq->need_update = false;
217
spin_unlock_bh(&rxq->lock);
218
}
219
}
220
221
static void iwl_pcie_restock_bd(struct iwl_trans *trans,
222
struct iwl_rxq *rxq,
223
struct iwl_rx_mem_buffer *rxb)
224
{
225
if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
226
struct iwl_rx_transfer_desc *bd = rxq->bd;
227
228
BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
229
230
bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
231
bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
232
} else {
233
__le64 *bd = rxq->bd;
234
235
bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
236
}
237
238
IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
239
(u32)rxb->vid, rxq->id, rxq->write);
240
}
241
242
/*
243
* iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
244
*/
245
static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
246
struct iwl_rxq *rxq)
247
{
248
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
249
struct iwl_rx_mem_buffer *rxb;
250
251
/*
252
* If the device isn't enabled - no need to try to add buffers...
253
* This can happen when we stop the device and still have an interrupt
254
* pending. We stop the APM before we sync the interrupts because we
255
* have to (see comment there). On the other hand, since the APM is
256
* stopped, we cannot access the HW (in particular not prph).
257
* So don't try to restock if the APM has been already stopped.
258
*/
259
if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
260
return;
261
262
spin_lock_bh(&rxq->lock);
263
while (rxq->free_count) {
264
/* Get next free Rx buffer, remove from free list */
265
rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
266
list);
267
list_del(&rxb->list);
268
rxb->invalid = false;
269
/* some low bits are expected to be unset (depending on hw) */
270
WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
271
/* Point to Rx buffer via next RBD in circular buffer */
272
iwl_pcie_restock_bd(trans, rxq, rxb);
273
rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
274
rxq->free_count--;
275
}
276
spin_unlock_bh(&rxq->lock);
277
278
/*
279
* If we've added more space for the firmware to place data, tell it.
280
* Increment device's write pointer in multiples of 8.
281
*/
282
if (rxq->write_actual != (rxq->write & ~0x7)) {
283
spin_lock_bh(&rxq->lock);
284
iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
285
spin_unlock_bh(&rxq->lock);
286
}
287
}
288
289
/*
290
* iwl_pcie_rxsq_restock - restock implementation for single queue rx
291
*/
292
static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
293
struct iwl_rxq *rxq)
294
{
295
struct iwl_rx_mem_buffer *rxb;
296
297
/*
298
* If the device isn't enabled - not need to try to add buffers...
299
* This can happen when we stop the device and still have an interrupt
300
* pending. We stop the APM before we sync the interrupts because we
301
* have to (see comment there). On the other hand, since the APM is
302
* stopped, we cannot access the HW (in particular not prph).
303
* So don't try to restock if the APM has been already stopped.
304
*/
305
if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
306
return;
307
308
spin_lock_bh(&rxq->lock);
309
while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
310
__le32 *bd = (__le32 *)rxq->bd;
311
/* The overwritten rxb must be a used one */
312
rxb = rxq->queue[rxq->write];
313
BUG_ON(rxb && rxb->page);
314
315
/* Get next free Rx buffer, remove from free list */
316
rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
317
list);
318
list_del(&rxb->list);
319
rxb->invalid = false;
320
321
/* Point to Rx buffer via next RBD in circular buffer */
322
bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
323
rxq->queue[rxq->write] = rxb;
324
rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
325
rxq->free_count--;
326
}
327
spin_unlock_bh(&rxq->lock);
328
329
/* If we've added more space for the firmware to place data, tell it.
330
* Increment device's write pointer in multiples of 8. */
331
if (rxq->write_actual != (rxq->write & ~0x7)) {
332
spin_lock_bh(&rxq->lock);
333
iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
334
spin_unlock_bh(&rxq->lock);
335
}
336
}
337
338
/*
339
* iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
340
*
341
* If there are slots in the RX queue that need to be restocked,
342
* and we have free pre-allocated buffers, fill the ranks as much
343
* as we can, pulling from rx_free.
344
*
345
* This moves the 'write' index forward to catch up with 'processed', and
346
* also updates the memory address in the firmware to reference the new
347
* target buffer.
348
*/
349
static
350
void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
351
{
352
if (trans->mac_cfg->mq_rx_supported)
353
iwl_pcie_rxmq_restock(trans, rxq);
354
else
355
iwl_pcie_rxsq_restock(trans, rxq);
356
}
357
358
/*
359
* iwl_pcie_rx_alloc_page - allocates and returns a page.
360
*
361
*/
362
static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
363
u32 *offset, gfp_t priority)
364
{
365
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
366
unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
367
unsigned int rbsize = trans_pcie->rx_buf_bytes;
368
struct page *page;
369
gfp_t gfp_mask = priority;
370
371
if (trans_pcie->rx_page_order > 0)
372
gfp_mask |= __GFP_COMP;
373
374
if (trans_pcie->alloc_page) {
375
spin_lock_bh(&trans_pcie->alloc_page_lock);
376
/* recheck */
377
if (trans_pcie->alloc_page) {
378
*offset = trans_pcie->alloc_page_used;
379
page = trans_pcie->alloc_page;
380
trans_pcie->alloc_page_used += rbsize;
381
if (trans_pcie->alloc_page_used >= allocsize)
382
trans_pcie->alloc_page = NULL;
383
else
384
get_page(page);
385
spin_unlock_bh(&trans_pcie->alloc_page_lock);
386
return page;
387
}
388
spin_unlock_bh(&trans_pcie->alloc_page_lock);
389
}
390
391
/* Alloc a new receive buffer */
392
page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
393
if (!page) {
394
if (net_ratelimit())
395
IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
396
trans_pcie->rx_page_order);
397
/*
398
* Issue an error if we don't have enough pre-allocated
399
* buffers.
400
*/
401
if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
402
IWL_CRIT(trans,
403
"Failed to alloc_pages\n");
404
return NULL;
405
}
406
407
if (2 * rbsize <= allocsize) {
408
spin_lock_bh(&trans_pcie->alloc_page_lock);
409
if (!trans_pcie->alloc_page) {
410
get_page(page);
411
trans_pcie->alloc_page = page;
412
trans_pcie->alloc_page_used = rbsize;
413
}
414
spin_unlock_bh(&trans_pcie->alloc_page_lock);
415
}
416
417
*offset = 0;
418
return page;
419
}
420
421
/*
422
* iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
423
*
424
* A used RBD is an Rx buffer that has been given to the stack. To use it again
425
* a page must be allocated and the RBD must point to the page. This function
426
* doesn't change the HW pointer but handles the list of pages that is used by
427
* iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
428
* allocated buffers.
429
*/
430
void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
431
struct iwl_rxq *rxq)
432
{
433
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
434
struct iwl_rx_mem_buffer *rxb;
435
struct page *page;
436
437
while (1) {
438
unsigned int offset;
439
440
spin_lock_bh(&rxq->lock);
441
if (list_empty(&rxq->rx_used)) {
442
spin_unlock_bh(&rxq->lock);
443
return;
444
}
445
spin_unlock_bh(&rxq->lock);
446
447
page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
448
if (!page)
449
return;
450
451
spin_lock_bh(&rxq->lock);
452
453
if (list_empty(&rxq->rx_used)) {
454
spin_unlock_bh(&rxq->lock);
455
__free_pages(page, trans_pcie->rx_page_order);
456
return;
457
}
458
rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
459
list);
460
list_del(&rxb->list);
461
spin_unlock_bh(&rxq->lock);
462
463
BUG_ON(rxb->page);
464
rxb->page = page;
465
rxb->offset = offset;
466
/* Get physical address of the RB */
467
rxb->page_dma =
468
dma_map_page(trans->dev, page, rxb->offset,
469
trans_pcie->rx_buf_bytes,
470
DMA_FROM_DEVICE);
471
if (dma_mapping_error(trans->dev, rxb->page_dma)) {
472
rxb->page = NULL;
473
spin_lock_bh(&rxq->lock);
474
list_add(&rxb->list, &rxq->rx_used);
475
spin_unlock_bh(&rxq->lock);
476
__free_pages(page, trans_pcie->rx_page_order);
477
return;
478
}
479
480
spin_lock_bh(&rxq->lock);
481
482
list_add_tail(&rxb->list, &rxq->rx_free);
483
rxq->free_count++;
484
485
spin_unlock_bh(&rxq->lock);
486
}
487
}
488
489
void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
490
{
491
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
492
int i;
493
494
if (!trans_pcie->rx_pool)
495
return;
496
497
for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
498
if (!trans_pcie->rx_pool[i].page)
499
continue;
500
dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
501
trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
502
__free_pages(trans_pcie->rx_pool[i].page,
503
trans_pcie->rx_page_order);
504
trans_pcie->rx_pool[i].page = NULL;
505
}
506
}
507
508
/*
509
* iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
510
*
511
* Allocates for each received request 8 pages
512
* Called as a scheduled work item.
513
*/
514
static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
515
{
516
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
517
struct iwl_rb_allocator *rba = &trans_pcie->rba;
518
struct list_head local_empty;
519
int pending = atomic_read(&rba->req_pending);
520
521
IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
522
523
/* If we were scheduled - there is at least one request */
524
spin_lock_bh(&rba->lock);
525
/* swap out the rba->rbd_empty to a local list */
526
list_replace_init(&rba->rbd_empty, &local_empty);
527
spin_unlock_bh(&rba->lock);
528
529
while (pending) {
530
int i;
531
LIST_HEAD(local_allocated);
532
gfp_t gfp_mask = GFP_KERNEL;
533
534
/* Do not post a warning if there are only a few requests */
535
if (pending < RX_PENDING_WATERMARK)
536
gfp_mask |= __GFP_NOWARN;
537
538
for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
539
struct iwl_rx_mem_buffer *rxb;
540
struct page *page;
541
542
/* List should never be empty - each reused RBD is
543
* returned to the list, and initial pool covers any
544
* possible gap between the time the page is allocated
545
* to the time the RBD is added.
546
*/
547
BUG_ON(list_empty(&local_empty));
548
/* Get the first rxb from the rbd list */
549
rxb = list_first_entry(&local_empty,
550
struct iwl_rx_mem_buffer, list);
551
BUG_ON(rxb->page);
552
553
/* Alloc a new receive buffer */
554
page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
555
gfp_mask);
556
if (!page)
557
continue;
558
rxb->page = page;
559
560
/* Get physical address of the RB */
561
rxb->page_dma = dma_map_page(trans->dev, page,
562
rxb->offset,
563
trans_pcie->rx_buf_bytes,
564
DMA_FROM_DEVICE);
565
if (dma_mapping_error(trans->dev, rxb->page_dma)) {
566
rxb->page = NULL;
567
__free_pages(page, trans_pcie->rx_page_order);
568
continue;
569
}
570
571
/* move the allocated entry to the out list */
572
list_move(&rxb->list, &local_allocated);
573
i++;
574
}
575
576
atomic_dec(&rba->req_pending);
577
pending--;
578
579
if (!pending) {
580
pending = atomic_read(&rba->req_pending);
581
if (pending)
582
IWL_DEBUG_TPT(trans,
583
"Got more pending allocation requests = %d\n",
584
pending);
585
}
586
587
spin_lock_bh(&rba->lock);
588
/* add the allocated rbds to the allocator allocated list */
589
list_splice_tail(&local_allocated, &rba->rbd_allocated);
590
/* get more empty RBDs for current pending requests */
591
list_splice_tail_init(&rba->rbd_empty, &local_empty);
592
spin_unlock_bh(&rba->lock);
593
594
atomic_inc(&rba->req_ready);
595
596
}
597
598
spin_lock_bh(&rba->lock);
599
/* return unused rbds to the allocator empty list */
600
list_splice_tail(&local_empty, &rba->rbd_empty);
601
spin_unlock_bh(&rba->lock);
602
603
IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
604
}
605
606
/*
607
* iwl_pcie_rx_allocator_get - returns the pre-allocated pages
608
.*
609
.* Called by queue when the queue posted allocation request and
610
* has freed 8 RBDs in order to restock itself.
611
* This function directly moves the allocated RBs to the queue's ownership
612
* and updates the relevant counters.
613
*/
614
static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
615
struct iwl_rxq *rxq)
616
{
617
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
618
struct iwl_rb_allocator *rba = &trans_pcie->rba;
619
int i;
620
621
lockdep_assert_held(&rxq->lock);
622
623
/*
624
* atomic_dec_if_positive returns req_ready - 1 for any scenario.
625
* If req_ready is 0 atomic_dec_if_positive will return -1 and this
626
* function will return early, as there are no ready requests.
627
* atomic_dec_if_positive will perofrm the *actual* decrement only if
628
* req_ready > 0, i.e. - there are ready requests and the function
629
* hands one request to the caller.
630
*/
631
if (atomic_dec_if_positive(&rba->req_ready) < 0)
632
return;
633
634
spin_lock(&rba->lock);
635
for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
636
/* Get next free Rx buffer, remove it from free list */
637
struct iwl_rx_mem_buffer *rxb =
638
list_first_entry(&rba->rbd_allocated,
639
struct iwl_rx_mem_buffer, list);
640
641
list_move(&rxb->list, &rxq->rx_free);
642
}
643
spin_unlock(&rba->lock);
644
645
rxq->used_count -= RX_CLAIM_REQ_ALLOC;
646
rxq->free_count += RX_CLAIM_REQ_ALLOC;
647
}
648
649
void iwl_pcie_rx_allocator_work(struct work_struct *data)
650
{
651
struct iwl_rb_allocator *rba_p =
652
container_of(data, struct iwl_rb_allocator, rx_alloc);
653
struct iwl_trans_pcie *trans_pcie =
654
container_of(rba_p, struct iwl_trans_pcie, rba);
655
656
iwl_pcie_rx_allocator(trans_pcie->trans);
657
}
658
659
static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
660
{
661
if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
662
return sizeof(struct iwl_rx_transfer_desc);
663
664
return trans->mac_cfg->mq_rx_supported ?
665
sizeof(__le64) : sizeof(__le32);
666
}
667
668
static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
669
{
670
if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
671
return sizeof(struct iwl_rx_completion_desc_bz);
672
673
if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
674
return sizeof(struct iwl_rx_completion_desc);
675
676
return sizeof(__le32);
677
}
678
679
static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
680
struct iwl_rxq *rxq)
681
{
682
int free_size = iwl_pcie_free_bd_size(trans);
683
684
if (rxq->bd)
685
dma_free_coherent(trans->dev,
686
free_size * rxq->queue_size,
687
rxq->bd, rxq->bd_dma);
688
rxq->bd_dma = 0;
689
rxq->bd = NULL;
690
691
rxq->rb_stts_dma = 0;
692
rxq->rb_stts = NULL;
693
694
if (rxq->used_bd)
695
dma_free_coherent(trans->dev,
696
iwl_pcie_used_bd_size(trans) *
697
rxq->queue_size,
698
rxq->used_bd, rxq->used_bd_dma);
699
rxq->used_bd_dma = 0;
700
rxq->used_bd = NULL;
701
}
702
703
static size_t iwl_pcie_rb_stts_size(struct iwl_trans *trans)
704
{
705
bool use_rx_td = (trans->mac_cfg->device_family >=
706
IWL_DEVICE_FAMILY_AX210);
707
708
if (use_rx_td)
709
return sizeof(__le16);
710
711
return sizeof(struct iwl_rb_status);
712
}
713
714
static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
715
struct iwl_rxq *rxq)
716
{
717
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
718
size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
719
struct device *dev = trans->dev;
720
int i;
721
int free_size;
722
723
spin_lock_init(&rxq->lock);
724
if (trans->mac_cfg->mq_rx_supported)
725
rxq->queue_size = iwl_trans_get_num_rbds(trans);
726
else
727
rxq->queue_size = RX_QUEUE_SIZE;
728
729
free_size = iwl_pcie_free_bd_size(trans);
730
731
/*
732
* Allocate the circular buffer of Read Buffer Descriptors
733
* (RBDs)
734
*/
735
rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
736
&rxq->bd_dma, GFP_KERNEL);
737
if (!rxq->bd)
738
goto err;
739
740
if (trans->mac_cfg->mq_rx_supported) {
741
rxq->used_bd = dma_alloc_coherent(dev,
742
iwl_pcie_used_bd_size(trans) *
743
rxq->queue_size,
744
&rxq->used_bd_dma,
745
GFP_KERNEL);
746
if (!rxq->used_bd)
747
goto err;
748
}
749
750
rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
751
rxq->rb_stts_dma =
752
trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
753
754
return 0;
755
756
err:
757
for (i = 0; i < trans->info.num_rxqs; i++) {
758
struct iwl_rxq *rxq = &trans_pcie->rxq[i];
759
760
iwl_pcie_free_rxq_dma(trans, rxq);
761
}
762
763
return -ENOMEM;
764
}
765
766
static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
767
{
768
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
769
size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
770
struct iwl_rb_allocator *rba = &trans_pcie->rba;
771
int i, ret;
772
773
if (WARN_ON(trans_pcie->rxq))
774
return -EINVAL;
775
776
trans_pcie->rxq = kcalloc(trans->info.num_rxqs, sizeof(struct iwl_rxq),
777
GFP_KERNEL);
778
trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
779
sizeof(trans_pcie->rx_pool[0]),
780
GFP_KERNEL);
781
trans_pcie->global_table =
782
kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
783
sizeof(trans_pcie->global_table[0]),
784
GFP_KERNEL);
785
if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
786
!trans_pcie->global_table) {
787
ret = -ENOMEM;
788
goto err;
789
}
790
791
spin_lock_init(&rba->lock);
792
793
/*
794
* Allocate the driver's pointer to receive buffer status.
795
* Allocate for all queues continuously (HW requirement).
796
*/
797
trans_pcie->base_rb_stts =
798
dma_alloc_coherent(trans->dev,
799
rb_stts_size * trans->info.num_rxqs,
800
&trans_pcie->base_rb_stts_dma,
801
GFP_KERNEL);
802
if (!trans_pcie->base_rb_stts) {
803
ret = -ENOMEM;
804
goto err;
805
}
806
807
for (i = 0; i < trans->info.num_rxqs; i++) {
808
struct iwl_rxq *rxq = &trans_pcie->rxq[i];
809
810
rxq->id = i;
811
ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
812
if (ret)
813
goto err;
814
}
815
return 0;
816
817
err:
818
if (trans_pcie->base_rb_stts) {
819
dma_free_coherent(trans->dev,
820
rb_stts_size * trans->info.num_rxqs,
821
trans_pcie->base_rb_stts,
822
trans_pcie->base_rb_stts_dma);
823
trans_pcie->base_rb_stts = NULL;
824
trans_pcie->base_rb_stts_dma = 0;
825
}
826
kfree(trans_pcie->rx_pool);
827
trans_pcie->rx_pool = NULL;
828
kfree(trans_pcie->global_table);
829
trans_pcie->global_table = NULL;
830
kfree(trans_pcie->rxq);
831
trans_pcie->rxq = NULL;
832
833
return ret;
834
}
835
836
static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
837
{
838
u32 rb_size;
839
const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
840
841
switch (trans->conf.rx_buf_size) {
842
case IWL_AMSDU_4K:
843
rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
844
break;
845
case IWL_AMSDU_8K:
846
rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
847
break;
848
case IWL_AMSDU_12K:
849
rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
850
break;
851
default:
852
WARN_ON(1);
853
rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
854
}
855
856
if (!iwl_trans_grab_nic_access(trans))
857
return;
858
859
/* Stop Rx DMA */
860
iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
861
/* reset and flush pointers */
862
iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
863
iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
864
iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
865
866
/* Reset driver's Rx queue write index */
867
iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
868
869
/* Tell device where to find RBD circular buffer in DRAM */
870
iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
871
(u32)(rxq->bd_dma >> 8));
872
873
/* Tell device where in DRAM to update its Rx status */
874
iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
875
rxq->rb_stts_dma >> 4);
876
877
/* Enable Rx DMA
878
* FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
879
* the credit mechanism in 5000 HW RX FIFO
880
* Direct rx interrupts to hosts
881
* Rx buffer size 4 or 8k or 12k
882
* RB timeout 0x10
883
* 256 RBDs
884
*/
885
iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
886
FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
887
FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
888
FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
889
rb_size |
890
(RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
891
(rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
892
893
iwl_trans_release_nic_access(trans);
894
895
/* Set interrupt coalescing timer to default (2048 usecs) */
896
iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
897
898
/* W/A for interrupt coalescing bug in 7260 and 3160 */
899
if (trans->cfg->host_interrupt_operation_mode)
900
iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
901
}
902
903
static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
904
{
905
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
906
u32 rb_size, enabled = 0;
907
int i;
908
909
switch (trans->conf.rx_buf_size) {
910
case IWL_AMSDU_2K:
911
rb_size = RFH_RXF_DMA_RB_SIZE_2K;
912
break;
913
case IWL_AMSDU_4K:
914
rb_size = RFH_RXF_DMA_RB_SIZE_4K;
915
break;
916
case IWL_AMSDU_8K:
917
rb_size = RFH_RXF_DMA_RB_SIZE_8K;
918
break;
919
case IWL_AMSDU_12K:
920
rb_size = RFH_RXF_DMA_RB_SIZE_12K;
921
break;
922
default:
923
WARN_ON(1);
924
rb_size = RFH_RXF_DMA_RB_SIZE_4K;
925
}
926
927
if (!iwl_trans_grab_nic_access(trans))
928
return;
929
930
/* Stop Rx DMA */
931
iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
932
/* disable free amd used rx queue operation */
933
iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
934
935
for (i = 0; i < trans->info.num_rxqs; i++) {
936
/* Tell device where to find RBD free table in DRAM */
937
iwl_write_prph64_no_grab(trans,
938
RFH_Q_FRBDCB_BA_LSB(i),
939
trans_pcie->rxq[i].bd_dma);
940
/* Tell device where to find RBD used table in DRAM */
941
iwl_write_prph64_no_grab(trans,
942
RFH_Q_URBDCB_BA_LSB(i),
943
trans_pcie->rxq[i].used_bd_dma);
944
/* Tell device where in DRAM to update its Rx status */
945
iwl_write_prph64_no_grab(trans,
946
RFH_Q_URBD_STTS_WPTR_LSB(i),
947
trans_pcie->rxq[i].rb_stts_dma);
948
/* Reset device indice tables */
949
iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
950
iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
951
iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
952
953
enabled |= BIT(i) | BIT(i + 16);
954
}
955
956
/*
957
* Enable Rx DMA
958
* Rx buffer size 4 or 8k or 12k
959
* Min RB size 4 or 8
960
* Drop frames that exceed RB size
961
* 512 RBDs
962
*/
963
iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
964
RFH_DMA_EN_ENABLE_VAL | rb_size |
965
RFH_RXF_DMA_MIN_RB_4_8 |
966
RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
967
RFH_RXF_DMA_RBDCB_SIZE_512);
968
969
/*
970
* Activate DMA snooping.
971
* Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
972
* Default queue is 0
973
*/
974
iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
975
RFH_GEN_CFG_RFH_DMA_SNOOP |
976
RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
977
RFH_GEN_CFG_SERVICE_DMA_SNOOP |
978
RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
979
trans->mac_cfg->integrated ?
980
RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
981
RFH_GEN_CFG_RB_CHUNK_SIZE_128));
982
/* Enable the relevant rx queues */
983
iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
984
985
iwl_trans_release_nic_access(trans);
986
987
/* Set interrupt coalescing timer to default (2048 usecs) */
988
iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
989
}
990
991
void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
992
{
993
lockdep_assert_held(&rxq->lock);
994
995
INIT_LIST_HEAD(&rxq->rx_free);
996
INIT_LIST_HEAD(&rxq->rx_used);
997
rxq->free_count = 0;
998
rxq->used_count = 0;
999
}
1000
1001
static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
1002
1003
static inline struct iwl_trans_pcie *iwl_netdev_to_trans_pcie(struct net_device *dev)
1004
{
1005
return *(struct iwl_trans_pcie **)netdev_priv(dev);
1006
}
1007
1008
static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
1009
{
1010
struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1011
struct iwl_trans_pcie *trans_pcie;
1012
struct iwl_trans *trans;
1013
int ret;
1014
1015
trans_pcie = iwl_netdev_to_trans_pcie(napi->dev);
1016
trans = trans_pcie->trans;
1017
1018
ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1019
1020
IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
1021
rxq->id, ret, budget);
1022
1023
if (ret < budget) {
1024
spin_lock(&trans_pcie->irq_lock);
1025
if (test_bit(STATUS_INT_ENABLED, &trans->status))
1026
_iwl_enable_interrupts(trans);
1027
spin_unlock(&trans_pcie->irq_lock);
1028
1029
napi_complete_done(&rxq->napi, ret);
1030
}
1031
1032
return ret;
1033
}
1034
1035
static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1036
{
1037
struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1038
struct iwl_trans_pcie *trans_pcie;
1039
struct iwl_trans *trans;
1040
int ret;
1041
1042
trans_pcie = iwl_netdev_to_trans_pcie(napi->dev);
1043
trans = trans_pcie->trans;
1044
1045
ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1046
IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1047
budget);
1048
1049
if (ret < budget) {
1050
int irq_line = rxq->id;
1051
1052
/* FIRST_RSS is shared with line 0 */
1053
if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1054
rxq->id == 1)
1055
irq_line = 0;
1056
1057
spin_lock(&trans_pcie->irq_lock);
1058
iwl_pcie_clear_irq(trans, irq_line);
1059
spin_unlock(&trans_pcie->irq_lock);
1060
1061
napi_complete_done(&rxq->napi, ret);
1062
}
1063
1064
return ret;
1065
}
1066
1067
void iwl_pcie_rx_napi_sync(struct iwl_trans *trans)
1068
{
1069
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1070
int i;
1071
1072
if (unlikely(!trans_pcie->rxq))
1073
return;
1074
1075
for (i = 0; i < trans->info.num_rxqs; i++) {
1076
struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1077
1078
if (rxq && rxq->napi.poll)
1079
napi_synchronize(&rxq->napi);
1080
}
1081
}
1082
1083
static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1084
{
1085
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1086
struct iwl_rxq *def_rxq;
1087
struct iwl_rb_allocator *rba = &trans_pcie->rba;
1088
int i, err, queue_size, allocator_pool_size, num_alloc;
1089
1090
if (!trans_pcie->rxq) {
1091
err = iwl_pcie_rx_alloc(trans);
1092
if (err)
1093
return err;
1094
}
1095
def_rxq = trans_pcie->rxq;
1096
1097
cancel_work_sync(&rba->rx_alloc);
1098
1099
spin_lock_bh(&rba->lock);
1100
atomic_set(&rba->req_pending, 0);
1101
atomic_set(&rba->req_ready, 0);
1102
INIT_LIST_HEAD(&rba->rbd_allocated);
1103
INIT_LIST_HEAD(&rba->rbd_empty);
1104
spin_unlock_bh(&rba->lock);
1105
1106
/* free all first - we overwrite everything here */
1107
iwl_pcie_free_rbs_pool(trans);
1108
1109
for (i = 0; i < RX_QUEUE_SIZE; i++)
1110
def_rxq->queue[i] = NULL;
1111
1112
for (i = 0; i < trans->info.num_rxqs; i++) {
1113
struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1114
1115
spin_lock_bh(&rxq->lock);
1116
/*
1117
* Set read write pointer to reflect that we have processed
1118
* and used all buffers, but have not restocked the Rx queue
1119
* with fresh buffers
1120
*/
1121
rxq->read = 0;
1122
rxq->write = 0;
1123
rxq->write_actual = 0;
1124
memset(rxq->rb_stts, 0,
1125
(trans->mac_cfg->device_family >=
1126
IWL_DEVICE_FAMILY_AX210) ?
1127
sizeof(__le16) : sizeof(struct iwl_rb_status));
1128
1129
iwl_pcie_rx_init_rxb_lists(rxq);
1130
1131
spin_unlock_bh(&rxq->lock);
1132
1133
if (!rxq->napi.poll) {
1134
int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1135
1136
if (trans_pcie->msix_enabled)
1137
poll = iwl_pcie_napi_poll_msix;
1138
1139
netif_napi_add(trans_pcie->napi_dev, &rxq->napi,
1140
poll);
1141
napi_enable(&rxq->napi);
1142
}
1143
1144
}
1145
1146
/* move the pool to the default queue and allocator ownerships */
1147
queue_size = trans->mac_cfg->mq_rx_supported ?
1148
trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1149
allocator_pool_size = trans->info.num_rxqs *
1150
(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1151
num_alloc = queue_size + allocator_pool_size;
1152
1153
for (i = 0; i < num_alloc; i++) {
1154
struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1155
1156
if (i < allocator_pool_size)
1157
list_add(&rxb->list, &rba->rbd_empty);
1158
else
1159
list_add(&rxb->list, &def_rxq->rx_used);
1160
trans_pcie->global_table[i] = rxb;
1161
rxb->vid = (u16)(i + 1);
1162
rxb->invalid = true;
1163
}
1164
1165
iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1166
1167
return 0;
1168
}
1169
1170
int iwl_pcie_rx_init(struct iwl_trans *trans)
1171
{
1172
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1173
int ret = _iwl_pcie_rx_init(trans);
1174
1175
if (ret)
1176
return ret;
1177
1178
if (trans->mac_cfg->mq_rx_supported)
1179
iwl_pcie_rx_mq_hw_init(trans);
1180
else
1181
iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1182
1183
iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1184
1185
spin_lock_bh(&trans_pcie->rxq->lock);
1186
iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1187
spin_unlock_bh(&trans_pcie->rxq->lock);
1188
1189
return 0;
1190
}
1191
1192
int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1193
{
1194
/* Set interrupt coalescing timer to default (2048 usecs) */
1195
iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1196
1197
/*
1198
* We don't configure the RFH.
1199
* Restock will be done at alive, after firmware configured the RFH.
1200
*/
1201
return _iwl_pcie_rx_init(trans);
1202
}
1203
1204
void iwl_pcie_rx_free(struct iwl_trans *trans)
1205
{
1206
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1207
size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
1208
struct iwl_rb_allocator *rba = &trans_pcie->rba;
1209
int i;
1210
1211
/*
1212
* if rxq is NULL, it means that nothing has been allocated,
1213
* exit now
1214
*/
1215
if (!trans_pcie->rxq) {
1216
IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1217
return;
1218
}
1219
1220
cancel_work_sync(&rba->rx_alloc);
1221
1222
iwl_pcie_free_rbs_pool(trans);
1223
1224
if (trans_pcie->base_rb_stts) {
1225
dma_free_coherent(trans->dev,
1226
rb_stts_size * trans->info.num_rxqs,
1227
trans_pcie->base_rb_stts,
1228
trans_pcie->base_rb_stts_dma);
1229
trans_pcie->base_rb_stts = NULL;
1230
trans_pcie->base_rb_stts_dma = 0;
1231
}
1232
1233
for (i = 0; i < trans->info.num_rxqs; i++) {
1234
struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1235
1236
iwl_pcie_free_rxq_dma(trans, rxq);
1237
1238
if (rxq->napi.poll) {
1239
napi_disable(&rxq->napi);
1240
netif_napi_del(&rxq->napi);
1241
}
1242
}
1243
kfree(trans_pcie->rx_pool);
1244
kfree(trans_pcie->global_table);
1245
kfree(trans_pcie->rxq);
1246
1247
if (trans_pcie->alloc_page)
1248
__free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1249
}
1250
1251
static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1252
struct iwl_rb_allocator *rba)
1253
{
1254
spin_lock(&rba->lock);
1255
list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1256
spin_unlock(&rba->lock);
1257
}
1258
1259
/*
1260
* iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1261
*
1262
* Called when a RBD can be reused. The RBD is transferred to the allocator.
1263
* When there are 2 empty RBDs - a request for allocation is posted
1264
*/
1265
static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1266
struct iwl_rx_mem_buffer *rxb,
1267
struct iwl_rxq *rxq, bool emergency)
1268
{
1269
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1270
struct iwl_rb_allocator *rba = &trans_pcie->rba;
1271
1272
/* Move the RBD to the used list, will be moved to allocator in batches
1273
* before claiming or posting a request*/
1274
list_add_tail(&rxb->list, &rxq->rx_used);
1275
1276
if (unlikely(emergency))
1277
return;
1278
1279
/* Count the allocator owned RBDs */
1280
rxq->used_count++;
1281
1282
/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1283
* issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1284
* used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1285
* after but we still need to post another request.
1286
*/
1287
if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1288
/* Move the 2 RBDs to the allocator ownership.
1289
Allocator has another 6 from pool for the request completion*/
1290
iwl_pcie_rx_move_to_allocator(rxq, rba);
1291
1292
atomic_inc(&rba->req_pending);
1293
queue_work(rba->alloc_wq, &rba->rx_alloc);
1294
}
1295
}
1296
1297
static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1298
struct iwl_rxq *rxq,
1299
struct iwl_rx_mem_buffer *rxb,
1300
bool emergency,
1301
int i)
1302
{
1303
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1304
struct iwl_txq *txq = trans_pcie->txqs.txq[trans->conf.cmd_queue];
1305
bool page_stolen = false;
1306
int max_len = trans_pcie->rx_buf_bytes;
1307
u32 offset = 0;
1308
1309
if (WARN_ON(!rxb))
1310
return;
1311
1312
dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1313
1314
while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1315
struct iwl_rx_packet *pkt;
1316
bool reclaim;
1317
int len;
1318
struct iwl_rx_cmd_buffer rxcb = {
1319
._offset = rxb->offset + offset,
1320
._rx_page_order = trans_pcie->rx_page_order,
1321
._page = rxb->page,
1322
._page_stolen = false,
1323
.truesize = max_len,
1324
};
1325
1326
pkt = rxb_addr(&rxcb);
1327
1328
if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1329
IWL_DEBUG_RX(trans,
1330
"Q %d: RB end marker at offset %d\n",
1331
rxq->id, offset);
1332
break;
1333
}
1334
1335
WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1336
FH_RSCSR_RXQ_POS != rxq->id,
1337
"frame on invalid queue - is on %d and indicates %d\n",
1338
rxq->id,
1339
(le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1340
FH_RSCSR_RXQ_POS);
1341
1342
IWL_DEBUG_RX(trans,
1343
"Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1344
rxq->id, offset,
1345
iwl_get_cmd_string(trans,
1346
WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)),
1347
pkt->hdr.group_id, pkt->hdr.cmd,
1348
le16_to_cpu(pkt->hdr.sequence));
1349
1350
len = iwl_rx_packet_len(pkt);
1351
len += sizeof(u32); /* account for status word */
1352
1353
offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1354
1355
/* check that what the device tells us made sense */
1356
if (len < sizeof(*pkt) || offset > max_len)
1357
break;
1358
1359
maybe_trace_iwlwifi_dev_rx(trans, pkt, len);
1360
1361
/* Reclaim a command buffer only if this packet is a response
1362
* to a (driver-originated) command.
1363
* If the packet (e.g. Rx frame) originated from uCode,
1364
* there is no command buffer to reclaim.
1365
* Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1366
* but apparently a few don't get set; catch them here. */
1367
reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1368
if (reclaim && !pkt->hdr.group_id) {
1369
int i;
1370
1371
for (i = 0; i < trans->conf.n_no_reclaim_cmds; i++) {
1372
if (trans->conf.no_reclaim_cmds[i] ==
1373
pkt->hdr.cmd) {
1374
reclaim = false;
1375
break;
1376
}
1377
}
1378
}
1379
1380
if (rxq->id == IWL_DEFAULT_RX_QUEUE)
1381
iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1382
&rxcb);
1383
else
1384
iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1385
&rxcb, rxq->id);
1386
1387
/*
1388
* After here, we should always check rxcb._page_stolen,
1389
* if it is true then one of the handlers took the page.
1390
*/
1391
1392
if (reclaim && txq) {
1393
u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1394
int index = SEQ_TO_INDEX(sequence);
1395
int cmd_index = iwl_txq_get_cmd_index(txq, index);
1396
1397
kfree_sensitive(txq->entries[cmd_index].free_buf);
1398
txq->entries[cmd_index].free_buf = NULL;
1399
1400
/* Invoke any callbacks, transfer the buffer to caller,
1401
* and fire off the (possibly) blocking
1402
* iwl_trans_send_cmd()
1403
* as we reclaim the driver command queue */
1404
if (!rxcb._page_stolen)
1405
iwl_pcie_hcmd_complete(trans, &rxcb);
1406
else
1407
IWL_WARN(trans, "Claim null rxb?\n");
1408
}
1409
1410
page_stolen |= rxcb._page_stolen;
1411
if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1412
break;
1413
}
1414
1415
/* page was stolen from us -- free our reference */
1416
if (page_stolen) {
1417
__free_pages(rxb->page, trans_pcie->rx_page_order);
1418
rxb->page = NULL;
1419
}
1420
1421
/* Reuse the page if possible. For notification packets and
1422
* SKBs that fail to Rx correctly, add them back into the
1423
* rx_free list for reuse later. */
1424
if (rxb->page != NULL) {
1425
rxb->page_dma =
1426
dma_map_page(trans->dev, rxb->page, rxb->offset,
1427
trans_pcie->rx_buf_bytes,
1428
DMA_FROM_DEVICE);
1429
if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1430
/*
1431
* free the page(s) as well to not break
1432
* the invariant that the items on the used
1433
* list have no page(s)
1434
*/
1435
__free_pages(rxb->page, trans_pcie->rx_page_order);
1436
rxb->page = NULL;
1437
iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1438
} else {
1439
list_add_tail(&rxb->list, &rxq->rx_free);
1440
rxq->free_count++;
1441
}
1442
} else
1443
iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1444
}
1445
1446
static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1447
struct iwl_rxq *rxq, int i,
1448
bool *join)
1449
{
1450
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1451
struct iwl_rx_mem_buffer *rxb;
1452
u16 vid;
1453
1454
BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1455
BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);
1456
1457
if (!trans->mac_cfg->mq_rx_supported) {
1458
rxb = rxq->queue[i];
1459
rxq->queue[i] = NULL;
1460
return rxb;
1461
}
1462
1463
if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
1464
struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;
1465
1466
vid = le16_to_cpu(cd[i].rbid);
1467
*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1468
} else if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1469
struct iwl_rx_completion_desc *cd = rxq->used_bd;
1470
1471
vid = le16_to_cpu(cd[i].rbid);
1472
*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1473
} else {
1474
__le32 *cd = rxq->used_bd;
1475
1476
vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
1477
}
1478
1479
if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1480
goto out_err;
1481
1482
rxb = trans_pcie->global_table[vid - 1];
1483
if (rxb->invalid)
1484
goto out_err;
1485
1486
IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1487
1488
rxb->invalid = true;
1489
1490
return rxb;
1491
1492
out_err:
1493
WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1494
iwl_force_nmi(trans);
1495
return NULL;
1496
}
1497
1498
/*
1499
* iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1500
*/
1501
static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1502
{
1503
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1504
struct iwl_rxq *rxq;
1505
u32 r, i, count = 0, handled = 0;
1506
bool emergency = false;
1507
1508
if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1509
return budget;
1510
1511
rxq = &trans_pcie->rxq[queue];
1512
1513
restart:
1514
spin_lock(&rxq->lock);
1515
/* uCode's read index (stored in shared DRAM) indicates the last Rx
1516
* buffer that the driver may process (last buffer filled by ucode). */
1517
r = iwl_get_closed_rb_stts(trans, rxq);
1518
i = rxq->read;
1519
1520
/* W/A 9000 device step A0 wrap-around bug */
1521
r &= (rxq->queue_size - 1);
1522
1523
/* Rx interrupt, but nothing sent from uCode */
1524
if (i == r)
1525
IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1526
1527
while (i != r && ++handled < budget) {
1528
struct iwl_rb_allocator *rba = &trans_pcie->rba;
1529
struct iwl_rx_mem_buffer *rxb;
1530
/* number of RBDs still waiting for page allocation */
1531
u32 rb_pending_alloc =
1532
atomic_read(&trans_pcie->rba.req_pending) *
1533
RX_CLAIM_REQ_ALLOC;
1534
bool join = false;
1535
1536
if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1537
!emergency)) {
1538
iwl_pcie_rx_move_to_allocator(rxq, rba);
1539
emergency = true;
1540
IWL_DEBUG_TPT(trans,
1541
"RX path is in emergency. Pending allocations %d\n",
1542
rb_pending_alloc);
1543
}
1544
1545
IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1546
1547
rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1548
if (!rxb)
1549
goto out;
1550
1551
if (unlikely(join || rxq->next_rb_is_fragment)) {
1552
rxq->next_rb_is_fragment = join;
1553
/*
1554
* We can only get a multi-RB in the following cases:
1555
* - firmware issue, sending a too big notification
1556
* - sniffer mode with a large A-MSDU
1557
* - large MTU frames (>2k)
1558
* since the multi-RB functionality is limited to newer
1559
* hardware that cannot put multiple entries into a
1560
* single RB.
1561
*
1562
* Right now, the higher layers aren't set up to deal
1563
* with that, so discard all of these.
1564
*/
1565
list_add_tail(&rxb->list, &rxq->rx_free);
1566
rxq->free_count++;
1567
} else {
1568
iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1569
}
1570
1571
i = (i + 1) & (rxq->queue_size - 1);
1572
1573
/*
1574
* If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1575
* try to claim the pre-allocated buffers from the allocator.
1576
* If not ready - will try to reclaim next time.
1577
* There is no need to reschedule work - allocator exits only
1578
* on success
1579
*/
1580
if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1581
iwl_pcie_rx_allocator_get(trans, rxq);
1582
1583
if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1584
/* Add the remaining empty RBDs for allocator use */
1585
iwl_pcie_rx_move_to_allocator(rxq, rba);
1586
} else if (emergency) {
1587
count++;
1588
if (count == 8) {
1589
count = 0;
1590
if (rb_pending_alloc < rxq->queue_size / 3) {
1591
IWL_DEBUG_TPT(trans,
1592
"RX path exited emergency. Pending allocations %d\n",
1593
rb_pending_alloc);
1594
emergency = false;
1595
}
1596
1597
rxq->read = i;
1598
spin_unlock(&rxq->lock);
1599
iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1600
iwl_pcie_rxq_restock(trans, rxq);
1601
goto restart;
1602
}
1603
}
1604
}
1605
out:
1606
/* Backtrack one entry */
1607
rxq->read = i;
1608
spin_unlock(&rxq->lock);
1609
1610
/*
1611
* handle a case where in emergency there are some unallocated RBDs.
1612
* those RBDs are in the used list, but are not tracked by the queue's
1613
* used_count which counts allocator owned RBDs.
1614
* unallocated emergency RBDs must be allocated on exit, otherwise
1615
* when called again the function may not be in emergency mode and
1616
* they will be handed to the allocator with no tracking in the RBD
1617
* allocator counters, which will lead to them never being claimed back
1618
* by the queue.
1619
* by allocating them here, they are now in the queue free list, and
1620
* will be restocked by the next call of iwl_pcie_rxq_restock.
1621
*/
1622
if (unlikely(emergency && count))
1623
iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1624
1625
iwl_pcie_rxq_restock(trans, rxq);
1626
1627
return handled;
1628
}
1629
1630
static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1631
{
1632
u8 queue = entry->entry;
1633
struct msix_entry *entries = entry - queue;
1634
1635
return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1636
}
1637
1638
/*
1639
* iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1640
* This interrupt handler should be used with RSS queue only.
1641
*/
1642
irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1643
{
1644
struct msix_entry *entry = dev_id;
1645
struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1646
struct iwl_trans *trans = trans_pcie->trans;
1647
struct iwl_rxq *rxq;
1648
1649
trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1650
1651
if (WARN_ON(entry->entry >= trans->info.num_rxqs))
1652
return IRQ_NONE;
1653
1654
if (!trans_pcie->rxq) {
1655
if (net_ratelimit())
1656
IWL_ERR(trans,
1657
"[%d] Got MSI-X interrupt before we have Rx queues\n",
1658
entry->entry);
1659
return IRQ_NONE;
1660
}
1661
1662
rxq = &trans_pcie->rxq[entry->entry];
1663
lock_map_acquire(&trans->sync_cmd_lockdep_map);
1664
IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1665
1666
local_bh_disable();
1667
if (!napi_schedule(&rxq->napi))
1668
iwl_pcie_clear_irq(trans, entry->entry);
1669
local_bh_enable();
1670
1671
lock_map_release(&trans->sync_cmd_lockdep_map);
1672
1673
return IRQ_HANDLED;
1674
}
1675
1676
/*
1677
* iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1678
*/
1679
static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1680
{
1681
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1682
int i;
1683
1684
/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1685
if (trans->cfg->internal_wimax_coex &&
1686
!trans->mac_cfg->base->apmg_not_supported &&
1687
(!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1688
APMS_CLK_VAL_MRB_FUNC_MODE) ||
1689
(iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1690
APMG_PS_CTRL_VAL_RESET_REQ))) {
1691
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1692
iwl_op_mode_wimax_active(trans->op_mode);
1693
wake_up(&trans_pcie->wait_command_queue);
1694
return;
1695
}
1696
1697
for (i = 0; i < trans->mac_cfg->base->num_of_queues; i++) {
1698
if (!trans_pcie->txqs.txq[i])
1699
continue;
1700
timer_delete(&trans_pcie->txqs.txq[i]->stuck_timer);
1701
}
1702
1703
if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_SC) {
1704
u32 val = iwl_read32(trans, CSR_IPC_STATE);
1705
1706
if (val & CSR_IPC_STATE_TOP_RESET_REQ) {
1707
IWL_ERR(trans, "FW requested TOP reset for FSEQ\n");
1708
trans->do_top_reset = 1;
1709
}
1710
}
1711
1712
/* The STATUS_FW_ERROR bit is set in this function. This must happen
1713
* before we wake up the command caller, to ensure a proper cleanup. */
1714
iwl_trans_fw_error(trans, IWL_ERR_TYPE_IRQ);
1715
1716
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1717
wake_up(&trans_pcie->wait_command_queue);
1718
}
1719
1720
static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1721
{
1722
u32 inta;
1723
1724
lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1725
1726
trace_iwlwifi_dev_irq(trans->dev);
1727
1728
/* Discover which interrupts are active/pending */
1729
inta = iwl_read32(trans, CSR_INT);
1730
1731
/* the thread will service interrupts and re-enable them */
1732
return inta;
1733
}
1734
1735
/* a device (PCI-E) page is 4096 bytes long */
1736
#define ICT_SHIFT 12
1737
#define ICT_SIZE (1 << ICT_SHIFT)
1738
#define ICT_COUNT (ICT_SIZE / sizeof(u32))
1739
1740
/* interrupt handler using ict table, with this interrupt driver will
1741
* stop using INTA register to get device's interrupt, reading this register
1742
* is expensive, device will write interrupts in ICT dram table, increment
1743
* index then will fire interrupt to driver, driver will OR all ICT table
1744
* entries from current index up to table entry with 0 value. the result is
1745
* the interrupt we need to service, driver will set the entries back to 0 and
1746
* set index.
1747
*/
1748
static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1749
{
1750
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1751
u32 inta;
1752
u32 val = 0;
1753
u32 read;
1754
1755
trace_iwlwifi_dev_irq(trans->dev);
1756
1757
/* Ignore interrupt if there's nothing in NIC to service.
1758
* This may be due to IRQ shared with another device,
1759
* or due to sporadic interrupts thrown from our NIC. */
1760
read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1761
trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1762
if (!read)
1763
return 0;
1764
1765
/*
1766
* Collect all entries up to the first 0, starting from ict_index;
1767
* note we already read at ict_index.
1768
*/
1769
do {
1770
val |= read;
1771
IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1772
trans_pcie->ict_index, read);
1773
trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1774
trans_pcie->ict_index =
1775
((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1776
1777
read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1778
trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1779
read);
1780
} while (read);
1781
1782
/* We should not get this value, just ignore it. */
1783
if (val == 0xffffffff)
1784
val = 0;
1785
1786
/*
1787
* this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1788
* (bit 15 before shifting it to 31) to clear when using interrupt
1789
* coalescing. fortunately, bits 18 and 19 stay set when this happens
1790
* so we use them to decide on the real state of the Rx bit.
1791
* In order words, bit 15 is set if bit 18 or bit 19 are set.
1792
*/
1793
if (val & 0xC0000)
1794
val |= 0x8000;
1795
1796
inta = (0xff & val) | ((0xff00 & val) << 16);
1797
return inta;
1798
}
1799
1800
void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq)
1801
{
1802
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1803
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1804
bool hw_rfkill, prev, report;
1805
1806
mutex_lock(&trans_pcie->mutex);
1807
prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1808
hw_rfkill = iwl_is_rfkill_set(trans);
1809
if (hw_rfkill) {
1810
set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1811
set_bit(STATUS_RFKILL_HW, &trans->status);
1812
}
1813
if (trans_pcie->opmode_down)
1814
report = hw_rfkill;
1815
else
1816
report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1817
1818
IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1819
hw_rfkill ? "disable radio" : "enable radio");
1820
1821
isr_stats->rfkill++;
1822
1823
if (prev != report)
1824
iwl_trans_pcie_rf_kill(trans, report, from_irq);
1825
mutex_unlock(&trans_pcie->mutex);
1826
1827
if (hw_rfkill) {
1828
if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1829
&trans->status))
1830
IWL_DEBUG_RF_KILL(trans,
1831
"Rfkill while SYNC HCMD in flight\n");
1832
wake_up(&trans_pcie->wait_command_queue);
1833
} else {
1834
clear_bit(STATUS_RFKILL_HW, &trans->status);
1835
if (trans_pcie->opmode_down)
1836
clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1837
}
1838
}
1839
1840
static void iwl_trans_pcie_handle_reset_interrupt(struct iwl_trans *trans)
1841
{
1842
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1843
u32 state;
1844
1845
if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_SC) {
1846
u32 val = iwl_read32(trans, CSR_IPC_STATE);
1847
1848
state = u32_get_bits(val, CSR_IPC_STATE_RESET);
1849
IWL_DEBUG_ISR(trans, "IPC state = 0x%x/%d\n", val, state);
1850
} else {
1851
state = CSR_IPC_STATE_RESET_SW_READY;
1852
}
1853
1854
switch (state) {
1855
case CSR_IPC_STATE_RESET_SW_READY:
1856
if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
1857
IWL_DEBUG_ISR(trans, "Reset flow completed\n");
1858
trans_pcie->fw_reset_state = FW_RESET_OK;
1859
wake_up(&trans_pcie->fw_reset_waitq);
1860
break;
1861
}
1862
fallthrough;
1863
case CSR_IPC_STATE_RESET_TOP_READY:
1864
if (trans_pcie->fw_reset_state == FW_RESET_TOP_REQUESTED) {
1865
IWL_DEBUG_ISR(trans, "TOP Reset continues\n");
1866
trans_pcie->fw_reset_state = FW_RESET_OK;
1867
wake_up(&trans_pcie->fw_reset_waitq);
1868
break;
1869
}
1870
fallthrough;
1871
case CSR_IPC_STATE_RESET_NONE:
1872
IWL_FW_CHECK_FAILED(trans,
1873
"Invalid reset interrupt (state=%d)!\n",
1874
state);
1875
break;
1876
case CSR_IPC_STATE_RESET_TOP_FOLLOWER:
1877
if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
1878
/* if we were in reset, wake that up */
1879
IWL_INFO(trans,
1880
"TOP reset from BT while doing reset\n");
1881
trans_pcie->fw_reset_state = FW_RESET_OK;
1882
wake_up(&trans_pcie->fw_reset_waitq);
1883
} else {
1884
IWL_INFO(trans, "TOP reset from BT\n");
1885
trans->state = IWL_TRANS_NO_FW;
1886
iwl_trans_schedule_reset(trans,
1887
IWL_ERR_TYPE_TOP_RESET_BY_BT);
1888
}
1889
break;
1890
}
1891
}
1892
1893
irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1894
{
1895
struct iwl_trans *trans = dev_id;
1896
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1897
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1898
u32 inta = 0;
1899
u32 handled = 0;
1900
bool polling = false;
1901
1902
lock_map_acquire(&trans->sync_cmd_lockdep_map);
1903
1904
spin_lock_bh(&trans_pcie->irq_lock);
1905
1906
/* dram interrupt table not set yet,
1907
* use legacy interrupt.
1908
*/
1909
if (likely(trans_pcie->use_ict))
1910
inta = iwl_pcie_int_cause_ict(trans);
1911
else
1912
inta = iwl_pcie_int_cause_non_ict(trans);
1913
1914
#ifdef CONFIG_IWLWIFI_DEBUG
1915
if (iwl_have_debug_level(IWL_DL_ISR)) {
1916
IWL_DEBUG_ISR(trans,
1917
"ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1918
inta, trans_pcie->inta_mask,
1919
iwl_read32(trans, CSR_INT_MASK),
1920
iwl_read32(trans, CSR_FH_INT_STATUS));
1921
if (inta & (~trans_pcie->inta_mask))
1922
IWL_DEBUG_ISR(trans,
1923
"We got a masked interrupt (0x%08x)\n",
1924
inta & (~trans_pcie->inta_mask));
1925
}
1926
#endif
1927
1928
inta &= trans_pcie->inta_mask;
1929
1930
/*
1931
* Ignore interrupt if there's nothing in NIC to service.
1932
* This may be due to IRQ shared with another device,
1933
* or due to sporadic interrupts thrown from our NIC.
1934
*/
1935
if (unlikely(!inta)) {
1936
IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1937
/*
1938
* Re-enable interrupts here since we don't
1939
* have anything to service
1940
*/
1941
if (test_bit(STATUS_INT_ENABLED, &trans->status))
1942
_iwl_enable_interrupts(trans);
1943
spin_unlock_bh(&trans_pcie->irq_lock);
1944
lock_map_release(&trans->sync_cmd_lockdep_map);
1945
return IRQ_NONE;
1946
}
1947
1948
if (unlikely(inta == 0xFFFFFFFF || iwl_trans_is_hw_error_value(inta))) {
1949
/*
1950
* Hardware disappeared. It might have
1951
* already raised an interrupt.
1952
*/
1953
IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1954
spin_unlock_bh(&trans_pcie->irq_lock);
1955
goto out;
1956
}
1957
1958
/* Ack/clear/reset pending uCode interrupts.
1959
* Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1960
*/
1961
/* There is a hardware bug in the interrupt mask function that some
1962
* interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1963
* they are disabled in the CSR_INT_MASK register. Furthermore the
1964
* ICT interrupt handling mechanism has another bug that might cause
1965
* these unmasked interrupts fail to be detected. We workaround the
1966
* hardware bugs here by ACKing all the possible interrupts so that
1967
* interrupt coalescing can still be achieved.
1968
*/
1969
iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1970
1971
#ifdef CONFIG_IWLWIFI_DEBUG
1972
if (iwl_have_debug_level(IWL_DL_ISR))
1973
IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1974
inta, iwl_read32(trans, CSR_INT_MASK));
1975
#endif
1976
1977
spin_unlock_bh(&trans_pcie->irq_lock);
1978
1979
/* Now service all interrupt bits discovered above. */
1980
if (inta & CSR_INT_BIT_HW_ERR) {
1981
IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1982
1983
/* Tell the device to stop sending interrupts */
1984
iwl_disable_interrupts(trans);
1985
1986
isr_stats->hw++;
1987
iwl_pcie_irq_handle_error(trans);
1988
1989
handled |= CSR_INT_BIT_HW_ERR;
1990
1991
goto out;
1992
}
1993
1994
/* NIC fires this, but we don't use it, redundant with WAKEUP */
1995
if (inta & CSR_INT_BIT_SCD) {
1996
IWL_DEBUG_ISR(trans,
1997
"Scheduler finished to transmit the frame/frames.\n");
1998
isr_stats->sch++;
1999
}
2000
2001
/* Alive notification via Rx interrupt will do the real work */
2002
if (inta & CSR_INT_BIT_ALIVE) {
2003
IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2004
isr_stats->alive++;
2005
if (trans->mac_cfg->gen2) {
2006
/*
2007
* We can restock, since firmware configured
2008
* the RFH
2009
*/
2010
iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2011
}
2012
2013
handled |= CSR_INT_BIT_ALIVE;
2014
}
2015
2016
if (inta & CSR_INT_BIT_RESET_DONE) {
2017
iwl_trans_pcie_handle_reset_interrupt(trans);
2018
handled |= CSR_INT_BIT_RESET_DONE;
2019
}
2020
2021
/* Safely ignore these bits for debug checks below */
2022
inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
2023
2024
/* HW RF KILL switch toggled */
2025
if (inta & CSR_INT_BIT_RF_KILL) {
2026
iwl_pcie_handle_rfkill_irq(trans, true);
2027
handled |= CSR_INT_BIT_RF_KILL;
2028
}
2029
2030
/* Chip got too hot and stopped itself */
2031
if (inta & CSR_INT_BIT_CT_KILL) {
2032
IWL_ERR(trans, "Microcode CT kill error detected.\n");
2033
isr_stats->ctkill++;
2034
handled |= CSR_INT_BIT_CT_KILL;
2035
}
2036
2037
/* Error detected by uCode */
2038
if (inta & CSR_INT_BIT_SW_ERR) {
2039
IWL_ERR(trans, "Microcode SW error detected. "
2040
" Restarting 0x%X.\n", inta);
2041
isr_stats->sw++;
2042
if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
2043
trans_pcie->fw_reset_state = FW_RESET_ERROR;
2044
wake_up(&trans_pcie->fw_reset_waitq);
2045
} else {
2046
iwl_pcie_irq_handle_error(trans);
2047
}
2048
handled |= CSR_INT_BIT_SW_ERR;
2049
}
2050
2051
/* uCode wakes up after power-down sleep */
2052
if (inta & CSR_INT_BIT_WAKEUP) {
2053
IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2054
iwl_pcie_rxq_check_wrptr(trans);
2055
iwl_pcie_txq_check_wrptrs(trans);
2056
2057
isr_stats->wakeup++;
2058
2059
handled |= CSR_INT_BIT_WAKEUP;
2060
}
2061
2062
/* All uCode command responses, including Tx command responses,
2063
* Rx "responses" (frame-received notification), and other
2064
* notifications from uCode come through here*/
2065
if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
2066
CSR_INT_BIT_RX_PERIODIC)) {
2067
IWL_DEBUG_ISR(trans, "Rx interrupt\n");
2068
if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
2069
handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
2070
iwl_write32(trans, CSR_FH_INT_STATUS,
2071
CSR_FH_INT_RX_MASK);
2072
}
2073
if (inta & CSR_INT_BIT_RX_PERIODIC) {
2074
handled |= CSR_INT_BIT_RX_PERIODIC;
2075
iwl_write32(trans,
2076
CSR_INT, CSR_INT_BIT_RX_PERIODIC);
2077
}
2078
/* Sending RX interrupt require many steps to be done in the
2079
* device:
2080
* 1- write interrupt to current index in ICT table.
2081
* 2- dma RX frame.
2082
* 3- update RX shared data to indicate last write index.
2083
* 4- send interrupt.
2084
* This could lead to RX race, driver could receive RX interrupt
2085
* but the shared data changes does not reflect this;
2086
* periodic interrupt will detect any dangling Rx activity.
2087
*/
2088
2089
/* Disable periodic interrupt; we use it as just a one-shot. */
2090
iwl_write8(trans, CSR_INT_PERIODIC_REG,
2091
CSR_INT_PERIODIC_DIS);
2092
2093
/*
2094
* Enable periodic interrupt in 8 msec only if we received
2095
* real RX interrupt (instead of just periodic int), to catch
2096
* any dangling Rx interrupt. If it was just the periodic
2097
* interrupt, there was no dangling Rx activity, and no need
2098
* to extend the periodic interrupt; one-shot is enough.
2099
*/
2100
if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2101
iwl_write8(trans, CSR_INT_PERIODIC_REG,
2102
CSR_INT_PERIODIC_ENA);
2103
2104
isr_stats->rx++;
2105
2106
local_bh_disable();
2107
if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2108
polling = true;
2109
__napi_schedule(&trans_pcie->rxq[0].napi);
2110
}
2111
local_bh_enable();
2112
}
2113
2114
/* This "Tx" DMA channel is used only for loading uCode */
2115
if (inta & CSR_INT_BIT_FH_TX) {
2116
iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2117
IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2118
isr_stats->tx++;
2119
handled |= CSR_INT_BIT_FH_TX;
2120
/* Wake up uCode load routine, now that load is complete */
2121
trans_pcie->ucode_write_complete = true;
2122
wake_up(&trans_pcie->ucode_write_waitq);
2123
/* Wake up IMR write routine, now that write to SRAM is complete */
2124
if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2125
trans_pcie->imr_status = IMR_D2S_COMPLETED;
2126
wake_up(&trans_pcie->ucode_write_waitq);
2127
}
2128
}
2129
2130
if (inta & ~handled) {
2131
IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2132
isr_stats->unhandled++;
2133
}
2134
2135
if (inta & ~(trans_pcie->inta_mask)) {
2136
IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2137
inta & ~trans_pcie->inta_mask);
2138
}
2139
2140
if (!polling) {
2141
spin_lock_bh(&trans_pcie->irq_lock);
2142
/* only Re-enable all interrupt if disabled by irq */
2143
if (test_bit(STATUS_INT_ENABLED, &trans->status))
2144
_iwl_enable_interrupts(trans);
2145
/* we are loading the firmware, enable FH_TX interrupt only */
2146
else if (handled & CSR_INT_BIT_FH_TX)
2147
iwl_enable_fw_load_int(trans);
2148
/* Re-enable RF_KILL if it occurred */
2149
else if (handled & CSR_INT_BIT_RF_KILL)
2150
iwl_enable_rfkill_int(trans);
2151
/* Re-enable the ALIVE / Rx interrupt if it occurred */
2152
else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2153
iwl_enable_fw_load_int_ctx_info(trans, false);
2154
spin_unlock_bh(&trans_pcie->irq_lock);
2155
}
2156
2157
out:
2158
lock_map_release(&trans->sync_cmd_lockdep_map);
2159
return IRQ_HANDLED;
2160
}
2161
2162
/******************************************************************************
2163
*
2164
* ICT functions
2165
*
2166
******************************************************************************/
2167
2168
/* Free dram table */
2169
void iwl_pcie_free_ict(struct iwl_trans *trans)
2170
{
2171
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2172
2173
if (trans_pcie->ict_tbl) {
2174
dma_free_coherent(trans->dev, ICT_SIZE,
2175
trans_pcie->ict_tbl,
2176
trans_pcie->ict_tbl_dma);
2177
trans_pcie->ict_tbl = NULL;
2178
trans_pcie->ict_tbl_dma = 0;
2179
}
2180
}
2181
2182
/*
2183
* allocate dram shared table, it is an aligned memory
2184
* block of ICT_SIZE.
2185
* also reset all data related to ICT table interrupt.
2186
*/
2187
int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2188
{
2189
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2190
2191
trans_pcie->ict_tbl =
2192
dma_alloc_coherent(trans->dev, ICT_SIZE,
2193
&trans_pcie->ict_tbl_dma, GFP_KERNEL);
2194
if (!trans_pcie->ict_tbl)
2195
return -ENOMEM;
2196
2197
/* just an API sanity check ... it is guaranteed to be aligned */
2198
if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2199
iwl_pcie_free_ict(trans);
2200
return -EINVAL;
2201
}
2202
2203
return 0;
2204
}
2205
2206
/* Device is going up inform it about using ICT interrupt table,
2207
* also we need to tell the driver to start using ICT interrupt.
2208
*/
2209
void iwl_pcie_reset_ict(struct iwl_trans *trans)
2210
{
2211
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2212
u32 val;
2213
2214
if (!trans_pcie->ict_tbl)
2215
return;
2216
2217
spin_lock_bh(&trans_pcie->irq_lock);
2218
_iwl_disable_interrupts(trans);
2219
2220
memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2221
2222
val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2223
2224
val |= CSR_DRAM_INT_TBL_ENABLE |
2225
CSR_DRAM_INIT_TBL_WRAP_CHECK |
2226
CSR_DRAM_INIT_TBL_WRITE_POINTER;
2227
2228
IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2229
2230
iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2231
trans_pcie->use_ict = true;
2232
trans_pcie->ict_index = 0;
2233
iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2234
_iwl_enable_interrupts(trans);
2235
spin_unlock_bh(&trans_pcie->irq_lock);
2236
}
2237
2238
/* Device is going down disable ict interrupt usage */
2239
void iwl_pcie_disable_ict(struct iwl_trans *trans)
2240
{
2241
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2242
2243
spin_lock_bh(&trans_pcie->irq_lock);
2244
trans_pcie->use_ict = false;
2245
spin_unlock_bh(&trans_pcie->irq_lock);
2246
}
2247
2248
irqreturn_t iwl_pcie_isr(int irq, void *data)
2249
{
2250
struct iwl_trans *trans = data;
2251
2252
if (!trans)
2253
return IRQ_NONE;
2254
2255
/* Disable (but don't clear!) interrupts here to avoid
2256
* back-to-back ISRs and sporadic interrupts from our NIC.
2257
* If we have something to service, the tasklet will re-enable ints.
2258
* If we *don't* have something, we'll re-enable before leaving here.
2259
*/
2260
iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2261
2262
return IRQ_WAKE_THREAD;
2263
}
2264
2265
irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2266
{
2267
return IRQ_WAKE_THREAD;
2268
}
2269
2270
irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2271
{
2272
struct msix_entry *entry = dev_id;
2273
struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2274
struct iwl_trans *trans = trans_pcie->trans;
2275
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2276
u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2277
u32 inta_fh, inta_hw;
2278
bool polling = false;
2279
bool sw_err;
2280
2281
if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2282
inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2283
2284
if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2285
inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2286
2287
lock_map_acquire(&trans->sync_cmd_lockdep_map);
2288
2289
spin_lock_bh(&trans_pcie->irq_lock);
2290
inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2291
inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2292
/*
2293
* Clear causes registers to avoid being handling the same cause.
2294
*/
2295
iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2296
iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2297
spin_unlock_bh(&trans_pcie->irq_lock);
2298
2299
trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2300
2301
if (unlikely(!(inta_fh | inta_hw))) {
2302
IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2303
lock_map_release(&trans->sync_cmd_lockdep_map);
2304
return IRQ_NONE;
2305
}
2306
2307
#ifdef CONFIG_IWLWIFI_DEBUG
2308
if (iwl_have_debug_level(IWL_DL_ISR)) {
2309
IWL_DEBUG_ISR(trans,
2310
"ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2311
entry->entry, inta_fh, trans_pcie->fh_mask,
2312
iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2313
if (inta_fh & ~trans_pcie->fh_mask)
2314
IWL_DEBUG_ISR(trans,
2315
"We got a masked interrupt (0x%08x)\n",
2316
inta_fh & ~trans_pcie->fh_mask);
2317
}
2318
#endif
2319
2320
inta_fh &= trans_pcie->fh_mask;
2321
2322
if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2323
inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2324
local_bh_disable();
2325
if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2326
polling = true;
2327
__napi_schedule(&trans_pcie->rxq[0].napi);
2328
}
2329
local_bh_enable();
2330
}
2331
2332
if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2333
inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2334
local_bh_disable();
2335
if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2336
polling = true;
2337
__napi_schedule(&trans_pcie->rxq[1].napi);
2338
}
2339
local_bh_enable();
2340
}
2341
2342
/* This "Tx" DMA channel is used only for loading uCode */
2343
if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM &&
2344
trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2345
IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n");
2346
isr_stats->tx++;
2347
2348
/* Wake up IMR routine once write to SRAM is complete */
2349
if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2350
trans_pcie->imr_status = IMR_D2S_COMPLETED;
2351
wake_up(&trans_pcie->ucode_write_waitq);
2352
}
2353
} else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2354
IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2355
isr_stats->tx++;
2356
/*
2357
* Wake up uCode load routine,
2358
* now that load is complete
2359
*/
2360
trans_pcie->ucode_write_complete = true;
2361
wake_up(&trans_pcie->ucode_write_waitq);
2362
2363
/* Wake up IMR routine once write to SRAM is complete */
2364
if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2365
trans_pcie->imr_status = IMR_D2S_COMPLETED;
2366
wake_up(&trans_pcie->ucode_write_waitq);
2367
}
2368
}
2369
2370
if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
2371
sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ;
2372
else
2373
sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR;
2374
2375
if (inta_hw & MSIX_HW_INT_CAUSES_REG_TOP_FATAL_ERR) {
2376
IWL_ERR(trans, "TOP Fatal error detected, inta_hw=0x%x.\n",
2377
inta_hw);
2378
if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
2379
trans->request_top_reset = 1;
2380
iwl_op_mode_nic_error(trans->op_mode,
2381
IWL_ERR_TYPE_TOP_FATAL_ERROR);
2382
iwl_trans_schedule_reset(trans,
2383
IWL_ERR_TYPE_TOP_FATAL_ERROR);
2384
}
2385
}
2386
2387
/* Error detected by uCode */
2388
if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) {
2389
IWL_ERR(trans,
2390
"Microcode SW error detected. Restarting 0x%X.\n",
2391
inta_fh);
2392
isr_stats->sw++;
2393
/* during FW reset flow report errors from there */
2394
if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2395
trans_pcie->imr_status = IMR_D2S_ERROR;
2396
wake_up(&trans_pcie->imr_waitq);
2397
} else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
2398
trans_pcie->fw_reset_state = FW_RESET_ERROR;
2399
wake_up(&trans_pcie->fw_reset_waitq);
2400
} else {
2401
iwl_pcie_irq_handle_error(trans);
2402
}
2403
2404
if (trans_pcie->sx_state == IWL_SX_WAITING) {
2405
trans_pcie->sx_state = IWL_SX_ERROR;
2406
wake_up(&trans_pcie->sx_waitq);
2407
}
2408
}
2409
2410
/* After checking FH register check HW register */
2411
#ifdef CONFIG_IWLWIFI_DEBUG
2412
if (iwl_have_debug_level(IWL_DL_ISR)) {
2413
IWL_DEBUG_ISR(trans,
2414
"ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2415
entry->entry, inta_hw, trans_pcie->hw_mask,
2416
iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2417
if (inta_hw & ~trans_pcie->hw_mask)
2418
IWL_DEBUG_ISR(trans,
2419
"We got a masked interrupt 0x%08x\n",
2420
inta_hw & ~trans_pcie->hw_mask);
2421
}
2422
#endif
2423
2424
inta_hw &= trans_pcie->hw_mask;
2425
2426
/* Alive notification via Rx interrupt will do the real work */
2427
if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2428
IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2429
isr_stats->alive++;
2430
if (trans->mac_cfg->gen2) {
2431
/* We can restock, since firmware configured the RFH */
2432
iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2433
}
2434
}
2435
2436
/*
2437
* In some rare cases when the HW is in a bad state, we may
2438
* get this interrupt too early, when prph_info is still NULL.
2439
* So make sure that it's not NULL to prevent crashing.
2440
*/
2441
if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
2442
u32 sleep_notif =
2443
le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2444
2445
if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2446
sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2447
IWL_DEBUG_ISR(trans,
2448
"Sx interrupt: sleep notification = 0x%x\n",
2449
sleep_notif);
2450
if (trans_pcie->sx_state == IWL_SX_WAITING) {
2451
trans_pcie->sx_state = IWL_SX_COMPLETE;
2452
wake_up(&trans_pcie->sx_waitq);
2453
} else {
2454
IWL_ERR(trans,
2455
"unexpected Sx interrupt (0x%x)\n",
2456
sleep_notif);
2457
}
2458
} else {
2459
/* uCode wakes up after power-down sleep */
2460
IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2461
iwl_pcie_rxq_check_wrptr(trans);
2462
iwl_pcie_txq_check_wrptrs(trans);
2463
2464
isr_stats->wakeup++;
2465
}
2466
}
2467
2468
/* Chip got too hot and stopped itself */
2469
if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2470
IWL_ERR(trans, "Microcode CT kill error detected.\n");
2471
isr_stats->ctkill++;
2472
}
2473
2474
/* HW RF KILL switch toggled */
2475
if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2476
iwl_pcie_handle_rfkill_irq(trans, true);
2477
2478
if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2479
IWL_ERR(trans,
2480
"Hardware error detected. Restarting.\n");
2481
2482
isr_stats->hw++;
2483
trans->dbg.hw_error = true;
2484
iwl_pcie_irq_handle_error(trans);
2485
}
2486
2487
if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE)
2488
iwl_trans_pcie_handle_reset_interrupt(trans);
2489
2490
if (!polling)
2491
iwl_pcie_clear_irq(trans, entry->entry);
2492
2493
lock_map_release(&trans->sync_cmd_lockdep_map);
2494
2495
return IRQ_HANDLED;
2496
}
2497
2498