Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/dev/mediatek/mt76/mt7603/mac.c
48525 views
1
// SPDX-License-Identifier: ISC
2
3
#include <linux/etherdevice.h>
4
#include <linux/timekeeping.h>
5
#include "mt7603.h"
6
#include "mac.h"
7
#include "../trace.h"
8
9
#define MT_PSE_PAGE_SIZE 128
10
11
static u32
12
mt7603_ac_queue_mask0(u32 mask)
13
{
14
u32 ret = 0;
15
16
ret |= GENMASK(3, 0) * !!(mask & BIT(0));
17
ret |= GENMASK(8, 5) * !!(mask & BIT(1));
18
ret |= GENMASK(13, 10) * !!(mask & BIT(2));
19
ret |= GENMASK(19, 16) * !!(mask & BIT(3));
20
return ret;
21
}
22
23
static void
24
mt76_stop_tx_ac(struct mt7603_dev *dev, u32 mask)
25
{
26
mt76_set(dev, MT_WF_ARB_TX_STOP_0, mt7603_ac_queue_mask0(mask));
27
}
28
29
static void
30
mt76_start_tx_ac(struct mt7603_dev *dev, u32 mask)
31
{
32
mt76_set(dev, MT_WF_ARB_TX_START_0, mt7603_ac_queue_mask0(mask));
33
}
34
35
void mt7603_mac_reset_counters(struct mt7603_dev *dev)
36
{
37
int i;
38
39
for (i = 0; i < 2; i++)
40
mt76_rr(dev, MT_TX_AGG_CNT(i));
41
42
memset(dev->mphy.aggr_stats, 0, sizeof(dev->mphy.aggr_stats));
43
}
44
45
void mt7603_mac_set_timing(struct mt7603_dev *dev)
46
{
47
u32 cck = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 231) |
48
FIELD_PREP(MT_TIMEOUT_VAL_CCA, 48);
49
u32 ofdm = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 60) |
50
FIELD_PREP(MT_TIMEOUT_VAL_CCA, 24);
51
int offset = 3 * dev->coverage_class;
52
u32 reg_offset = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, offset) |
53
FIELD_PREP(MT_TIMEOUT_VAL_CCA, offset);
54
bool is_5ghz = dev->mphy.chandef.chan->band == NL80211_BAND_5GHZ;
55
int sifs;
56
u32 val;
57
58
if (is_5ghz)
59
sifs = 16;
60
else
61
sifs = 10;
62
63
mt76_set(dev, MT_ARB_SCR,
64
MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE);
65
udelay(1);
66
67
mt76_wr(dev, MT_TIMEOUT_CCK, cck + reg_offset);
68
mt76_wr(dev, MT_TIMEOUT_OFDM, ofdm + reg_offset);
69
mt76_wr(dev, MT_IFS,
70
FIELD_PREP(MT_IFS_EIFS, 360) |
71
FIELD_PREP(MT_IFS_RIFS, 2) |
72
FIELD_PREP(MT_IFS_SIFS, sifs) |
73
FIELD_PREP(MT_IFS_SLOT, dev->slottime));
74
75
if (dev->slottime < 20 || is_5ghz)
76
val = MT7603_CFEND_RATE_DEFAULT;
77
else
78
val = MT7603_CFEND_RATE_11B;
79
80
mt76_rmw_field(dev, MT_AGG_CONTROL, MT_AGG_CONTROL_CFEND_RATE, val);
81
82
mt76_clear(dev, MT_ARB_SCR,
83
MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE);
84
}
85
86
static void
87
mt7603_wtbl_update(struct mt7603_dev *dev, int idx, u32 mask)
88
{
89
mt76_rmw(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_WLAN_IDX,
90
FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, idx) | mask);
91
92
mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
93
}
94
95
static u32
96
mt7603_wtbl1_addr(int idx)
97
{
98
return MT_WTBL1_BASE + idx * MT_WTBL1_SIZE;
99
}
100
101
static u32
102
mt7603_wtbl2_addr(int idx)
103
{
104
/* Mapped to WTBL2 */
105
return MT_PCIE_REMAP_BASE_1 + idx * MT_WTBL2_SIZE;
106
}
107
108
static u32
109
mt7603_wtbl3_addr(int idx)
110
{
111
u32 base = mt7603_wtbl2_addr(MT7603_WTBL_SIZE);
112
113
return base + idx * MT_WTBL3_SIZE;
114
}
115
116
static u32
117
mt7603_wtbl4_addr(int idx)
118
{
119
u32 base = mt7603_wtbl3_addr(MT7603_WTBL_SIZE);
120
121
return base + idx * MT_WTBL4_SIZE;
122
}
123
124
void mt7603_wtbl_init(struct mt7603_dev *dev, int idx, int vif,
125
const u8 *mac_addr)
126
{
127
const void *_mac = mac_addr;
128
u32 addr = mt7603_wtbl1_addr(idx);
129
u32 w0 = 0, w1 = 0;
130
int i;
131
132
if (_mac) {
133
w0 = FIELD_PREP(MT_WTBL1_W0_ADDR_HI,
134
get_unaligned_le16(_mac + 4));
135
w1 = FIELD_PREP(MT_WTBL1_W1_ADDR_LO,
136
get_unaligned_le32(_mac));
137
}
138
139
if (vif < 0)
140
vif = 0;
141
else
142
w0 |= MT_WTBL1_W0_RX_CHECK_A1;
143
w0 |= FIELD_PREP(MT_WTBL1_W0_MUAR_IDX, vif);
144
145
mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
146
147
mt76_set(dev, addr + 0 * 4, w0);
148
mt76_set(dev, addr + 1 * 4, w1);
149
mt76_set(dev, addr + 2 * 4, MT_WTBL1_W2_ADMISSION_CONTROL);
150
151
mt76_stop_tx_ac(dev, GENMASK(3, 0));
152
addr = mt7603_wtbl2_addr(idx);
153
for (i = 0; i < MT_WTBL2_SIZE; i += 4)
154
mt76_wr(dev, addr + i, 0);
155
mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_WTBL2);
156
mt76_start_tx_ac(dev, GENMASK(3, 0));
157
158
addr = mt7603_wtbl3_addr(idx);
159
for (i = 0; i < MT_WTBL3_SIZE; i += 4)
160
mt76_wr(dev, addr + i, 0);
161
162
addr = mt7603_wtbl4_addr(idx);
163
for (i = 0; i < MT_WTBL4_SIZE; i += 4)
164
mt76_wr(dev, addr + i, 0);
165
166
mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
167
}
168
169
static void
170
mt7603_wtbl_set_skip_tx(struct mt7603_dev *dev, int idx, bool enabled)
171
{
172
u32 addr = mt7603_wtbl1_addr(idx);
173
u32 val = mt76_rr(dev, addr + 3 * 4);
174
175
val &= ~MT_WTBL1_W3_SKIP_TX;
176
val |= enabled * MT_WTBL1_W3_SKIP_TX;
177
178
mt76_wr(dev, addr + 3 * 4, val);
179
}
180
181
void mt7603_filter_tx(struct mt7603_dev *dev, int mac_idx, int idx, bool abort)
182
{
183
u32 flush_mask;
184
int i, port, queue;
185
186
if (abort) {
187
port = 3; /* PSE */
188
queue = 8; /* free queue */
189
} else {
190
port = 0; /* HIF */
191
queue = 1; /* MCU queue */
192
}
193
194
mt7603_wtbl_set_skip_tx(dev, idx, true);
195
196
mt76_wr(dev, MT_TX_ABORT, MT_TX_ABORT_EN |
197
FIELD_PREP(MT_TX_ABORT_WCID, idx));
198
199
flush_mask = MT_WF_ARB_TX_FLUSH_AC0 |
200
MT_WF_ARB_TX_FLUSH_AC1 |
201
MT_WF_ARB_TX_FLUSH_AC2 |
202
MT_WF_ARB_TX_FLUSH_AC3;
203
flush_mask <<= mac_idx;
204
205
mt76_wr(dev, MT_WF_ARB_TX_FLUSH_0, flush_mask);
206
mt76_poll(dev, MT_WF_ARB_TX_FLUSH_0, flush_mask, 0, 20000);
207
mt76_wr(dev, MT_WF_ARB_TX_START_0, flush_mask);
208
209
mt76_wr(dev, MT_TX_ABORT, 0);
210
211
for (i = 0; i < 4; i++) {
212
mt76_wr(dev, MT_DMA_FQCR0, MT_DMA_FQCR0_BUSY |
213
FIELD_PREP(MT_DMA_FQCR0_TARGET_WCID, idx) |
214
FIELD_PREP(MT_DMA_FQCR0_TARGET_QID, i) |
215
FIELD_PREP(MT_DMA_FQCR0_DEST_PORT_ID, port) |
216
FIELD_PREP(MT_DMA_FQCR0_DEST_QUEUE_ID, queue));
217
218
mt76_poll(dev, MT_DMA_FQCR0, MT_DMA_FQCR0_BUSY, 0, 5000);
219
}
220
221
WARN_ON_ONCE(mt76_rr(dev, MT_DMA_FQCR0) & MT_DMA_FQCR0_BUSY);
222
223
mt7603_wtbl_set_skip_tx(dev, idx, false);
224
}
225
226
void mt7603_wtbl_set_smps(struct mt7603_dev *dev, struct mt7603_sta *sta,
227
bool enabled)
228
{
229
u32 addr = mt7603_wtbl1_addr(sta->wcid.idx);
230
231
if (sta->smps == enabled)
232
return;
233
234
mt76_rmw_field(dev, addr + 2 * 4, MT_WTBL1_W2_SMPS, enabled);
235
sta->smps = enabled;
236
}
237
238
void mt7603_wtbl_set_ps(struct mt7603_dev *dev, struct mt7603_sta *sta,
239
bool enabled)
240
{
241
int idx = sta->wcid.idx;
242
u32 addr;
243
244
spin_lock_bh(&dev->ps_lock);
245
246
if (sta->ps == enabled)
247
goto out;
248
249
mt76_wr(dev, MT_PSE_RTA,
250
FIELD_PREP(MT_PSE_RTA_TAG_ID, idx) |
251
FIELD_PREP(MT_PSE_RTA_PORT_ID, 0) |
252
FIELD_PREP(MT_PSE_RTA_QUEUE_ID, 1) |
253
FIELD_PREP(MT_PSE_RTA_REDIRECT_EN, enabled) |
254
MT_PSE_RTA_WRITE | MT_PSE_RTA_BUSY);
255
256
mt76_poll(dev, MT_PSE_RTA, MT_PSE_RTA_BUSY, 0, 5000);
257
258
if (enabled)
259
mt7603_filter_tx(dev, sta->vif->idx, idx, false);
260
261
addr = mt7603_wtbl1_addr(idx);
262
mt76_set(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE);
263
mt76_rmw(dev, addr + 3 * 4, MT_WTBL1_W3_POWER_SAVE,
264
enabled * MT_WTBL1_W3_POWER_SAVE);
265
mt76_clear(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE);
266
sta->ps = enabled;
267
268
out:
269
spin_unlock_bh(&dev->ps_lock);
270
}
271
272
void mt7603_wtbl_clear(struct mt7603_dev *dev, int idx)
273
{
274
int wtbl2_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL2_SIZE;
275
int wtbl2_frame = idx / wtbl2_frame_size;
276
int wtbl2_entry = idx % wtbl2_frame_size;
277
278
int wtbl3_base_frame = MT_WTBL3_OFFSET / MT_PSE_PAGE_SIZE;
279
int wtbl3_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL3_SIZE;
280
int wtbl3_frame = wtbl3_base_frame + idx / wtbl3_frame_size;
281
int wtbl3_entry = (idx % wtbl3_frame_size) * 2;
282
283
int wtbl4_base_frame = MT_WTBL4_OFFSET / MT_PSE_PAGE_SIZE;
284
int wtbl4_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL4_SIZE;
285
int wtbl4_frame = wtbl4_base_frame + idx / wtbl4_frame_size;
286
int wtbl4_entry = idx % wtbl4_frame_size;
287
288
u32 addr = MT_WTBL1_BASE + idx * MT_WTBL1_SIZE;
289
int i;
290
291
mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
292
293
mt76_wr(dev, addr + 0 * 4,
294
MT_WTBL1_W0_RX_CHECK_A1 |
295
MT_WTBL1_W0_RX_CHECK_A2 |
296
MT_WTBL1_W0_RX_VALID);
297
mt76_wr(dev, addr + 1 * 4, 0);
298
mt76_wr(dev, addr + 2 * 4, 0);
299
300
mt76_set(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE);
301
302
mt76_wr(dev, addr + 3 * 4,
303
FIELD_PREP(MT_WTBL1_W3_WTBL2_FRAME_ID, wtbl2_frame) |
304
FIELD_PREP(MT_WTBL1_W3_WTBL2_ENTRY_ID, wtbl2_entry) |
305
FIELD_PREP(MT_WTBL1_W3_WTBL4_FRAME_ID, wtbl4_frame) |
306
MT_WTBL1_W3_I_PSM | MT_WTBL1_W3_KEEP_I_PSM);
307
mt76_wr(dev, addr + 4 * 4,
308
FIELD_PREP(MT_WTBL1_W4_WTBL3_FRAME_ID, wtbl3_frame) |
309
FIELD_PREP(MT_WTBL1_W4_WTBL3_ENTRY_ID, wtbl3_entry) |
310
FIELD_PREP(MT_WTBL1_W4_WTBL4_ENTRY_ID, wtbl4_entry));
311
312
mt76_clear(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE);
313
314
addr = mt7603_wtbl2_addr(idx);
315
316
/* Clear BA information */
317
mt76_wr(dev, addr + (15 * 4), 0);
318
319
mt76_stop_tx_ac(dev, GENMASK(3, 0));
320
for (i = 2; i <= 4; i++)
321
mt76_wr(dev, addr + (i * 4), 0);
322
mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_WTBL2);
323
mt76_start_tx_ac(dev, GENMASK(3, 0));
324
325
mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_RX_COUNT_CLEAR);
326
mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_TX_COUNT_CLEAR);
327
mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
328
}
329
330
void mt7603_wtbl_update_cap(struct mt7603_dev *dev, struct ieee80211_sta *sta)
331
{
332
struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv;
333
int idx = msta->wcid.idx;
334
u8 ampdu_density;
335
u32 addr;
336
u32 val;
337
338
addr = mt7603_wtbl1_addr(idx);
339
340
ampdu_density = sta->deflink.ht_cap.ampdu_density;
341
if (ampdu_density < IEEE80211_HT_MPDU_DENSITY_4)
342
ampdu_density = IEEE80211_HT_MPDU_DENSITY_4;
343
344
val = mt76_rr(dev, addr + 2 * 4);
345
val &= MT_WTBL1_W2_KEY_TYPE | MT_WTBL1_W2_ADMISSION_CONTROL;
346
val |= FIELD_PREP(MT_WTBL1_W2_AMPDU_FACTOR,
347
sta->deflink.ht_cap.ampdu_factor) |
348
FIELD_PREP(MT_WTBL1_W2_MPDU_DENSITY,
349
sta->deflink.ht_cap.ampdu_density) |
350
MT_WTBL1_W2_TXS_BAF_REPORT;
351
352
if (sta->deflink.ht_cap.cap)
353
val |= MT_WTBL1_W2_HT;
354
if (sta->deflink.vht_cap.cap)
355
val |= MT_WTBL1_W2_VHT;
356
357
mt76_wr(dev, addr + 2 * 4, val);
358
359
addr = mt7603_wtbl2_addr(idx);
360
val = mt76_rr(dev, addr + 9 * 4);
361
val &= ~(MT_WTBL2_W9_SHORT_GI_20 | MT_WTBL2_W9_SHORT_GI_40 |
362
MT_WTBL2_W9_SHORT_GI_80);
363
if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20)
364
val |= MT_WTBL2_W9_SHORT_GI_20;
365
if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
366
val |= MT_WTBL2_W9_SHORT_GI_40;
367
mt76_wr(dev, addr + 9 * 4, val);
368
}
369
370
void mt7603_mac_rx_ba_reset(struct mt7603_dev *dev, void *addr, u8 tid)
371
{
372
mt76_wr(dev, MT_BA_CONTROL_0, get_unaligned_le32(addr));
373
mt76_wr(dev, MT_BA_CONTROL_1,
374
(get_unaligned_le16(addr + 4) |
375
FIELD_PREP(MT_BA_CONTROL_1_TID, tid) |
376
MT_BA_CONTROL_1_RESET));
377
}
378
379
void mt7603_mac_tx_ba_reset(struct mt7603_dev *dev, int wcid, int tid,
380
int ba_size)
381
{
382
u32 addr = mt7603_wtbl2_addr(wcid);
383
u32 tid_mask = FIELD_PREP(MT_WTBL2_W15_BA_EN_TIDS, BIT(tid)) |
384
(MT_WTBL2_W15_BA_WIN_SIZE <<
385
(tid * MT_WTBL2_W15_BA_WIN_SIZE_SHIFT));
386
u32 tid_val;
387
int i;
388
389
if (ba_size < 0) {
390
/* disable */
391
mt76_clear(dev, addr + (15 * 4), tid_mask);
392
return;
393
}
394
395
for (i = 7; i > 0; i--) {
396
if (ba_size >= MT_AGG_SIZE_LIMIT(i))
397
break;
398
}
399
400
tid_val = FIELD_PREP(MT_WTBL2_W15_BA_EN_TIDS, BIT(tid)) |
401
i << (tid * MT_WTBL2_W15_BA_WIN_SIZE_SHIFT);
402
403
mt76_rmw(dev, addr + (15 * 4), tid_mask, tid_val);
404
}
405
406
void mt7603_mac_sta_poll(struct mt7603_dev *dev)
407
{
408
static const u8 ac_to_tid[4] = {
409
[IEEE80211_AC_BE] = 0,
410
[IEEE80211_AC_BK] = 1,
411
[IEEE80211_AC_VI] = 4,
412
[IEEE80211_AC_VO] = 6
413
};
414
struct ieee80211_sta *sta;
415
struct mt7603_sta *msta;
416
u32 total_airtime = 0;
417
u32 airtime[4];
418
u32 addr;
419
int i;
420
421
rcu_read_lock();
422
423
while (1) {
424
bool clear = false;
425
426
spin_lock_bh(&dev->mt76.sta_poll_lock);
427
if (list_empty(&dev->mt76.sta_poll_list)) {
428
spin_unlock_bh(&dev->mt76.sta_poll_lock);
429
break;
430
}
431
432
msta = list_first_entry(&dev->mt76.sta_poll_list,
433
struct mt7603_sta, wcid.poll_list);
434
list_del_init(&msta->wcid.poll_list);
435
spin_unlock_bh(&dev->mt76.sta_poll_lock);
436
437
addr = mt7603_wtbl4_addr(msta->wcid.idx);
438
for (i = 0; i < 4; i++) {
439
u32 airtime_last = msta->tx_airtime_ac[i];
440
441
msta->tx_airtime_ac[i] = mt76_rr(dev, addr + i * 8);
442
airtime[i] = msta->tx_airtime_ac[i] - airtime_last;
443
airtime[i] *= 32;
444
total_airtime += airtime[i];
445
446
if (msta->tx_airtime_ac[i] & BIT(22))
447
clear = true;
448
}
449
450
if (clear) {
451
mt7603_wtbl_update(dev, msta->wcid.idx,
452
MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
453
memset(msta->tx_airtime_ac, 0,
454
sizeof(msta->tx_airtime_ac));
455
}
456
457
if (!msta->wcid.sta)
458
continue;
459
460
sta = container_of((void *)msta, struct ieee80211_sta, drv_priv);
461
for (i = 0; i < 4; i++) {
462
struct mt76_queue *q = dev->mphy.q_tx[i];
463
u8 qidx = q->hw_idx;
464
u8 tid = ac_to_tid[i];
465
u32 txtime = airtime[qidx];
466
467
if (!txtime)
468
continue;
469
470
ieee80211_sta_register_airtime(sta, tid, txtime, 0);
471
}
472
}
473
474
rcu_read_unlock();
475
476
if (!total_airtime)
477
return;
478
479
spin_lock_bh(&dev->mt76.cc_lock);
480
dev->mphy.chan_state->cc_tx += total_airtime;
481
spin_unlock_bh(&dev->mt76.cc_lock);
482
}
483
484
static struct mt76_wcid *
485
mt7603_rx_get_wcid(struct mt7603_dev *dev, u8 idx, bool unicast)
486
{
487
struct mt7603_sta *sta;
488
struct mt76_wcid *wcid;
489
490
wcid = mt76_wcid_ptr(dev, idx);
491
if (unicast || !wcid)
492
return wcid;
493
494
if (!wcid->sta)
495
return NULL;
496
497
sta = container_of(wcid, struct mt7603_sta, wcid);
498
if (!sta->vif)
499
return NULL;
500
501
return &sta->vif->sta.wcid;
502
}
503
504
int
505
mt7603_mac_fill_rx(struct mt7603_dev *dev, struct sk_buff *skb)
506
{
507
struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb;
508
struct ieee80211_supported_band *sband;
509
struct ieee80211_hdr *hdr;
510
__le32 *rxd = (__le32 *)skb->data;
511
u32 rxd0 = le32_to_cpu(rxd[0]);
512
u32 rxd1 = le32_to_cpu(rxd[1]);
513
u32 rxd2 = le32_to_cpu(rxd[2]);
514
bool unicast = rxd1 & MT_RXD1_NORMAL_U2M;
515
bool insert_ccmp_hdr = false;
516
bool remove_pad;
517
int idx;
518
int i;
519
520
memset(status, 0, sizeof(*status));
521
522
i = FIELD_GET(MT_RXD1_NORMAL_CH_FREQ, rxd1);
523
sband = (i & 1) ? &dev->mphy.sband_5g.sband : &dev->mphy.sband_2g.sband;
524
i >>= 1;
525
526
idx = FIELD_GET(MT_RXD2_NORMAL_WLAN_IDX, rxd2);
527
status->wcid = mt7603_rx_get_wcid(dev, idx, unicast);
528
529
status->band = sband->band;
530
if (i < sband->n_channels)
531
status->freq = sband->channels[i].center_freq;
532
533
if (rxd2 & MT_RXD2_NORMAL_FCS_ERR)
534
status->flag |= RX_FLAG_FAILED_FCS_CRC;
535
536
if (rxd2 & MT_RXD2_NORMAL_TKIP_MIC_ERR)
537
status->flag |= RX_FLAG_MMIC_ERROR;
538
539
/* ICV error or CCMP/BIP/WPI MIC error */
540
if (rxd2 & MT_RXD2_NORMAL_ICV_ERR)
541
status->flag |= RX_FLAG_ONLY_MONITOR;
542
543
if (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2) != 0 &&
544
!(rxd2 & (MT_RXD2_NORMAL_CLM | MT_RXD2_NORMAL_CM))) {
545
status->flag |= RX_FLAG_DECRYPTED;
546
status->flag |= RX_FLAG_IV_STRIPPED;
547
status->flag |= RX_FLAG_MMIC_STRIPPED | RX_FLAG_MIC_STRIPPED;
548
}
549
550
remove_pad = rxd1 & MT_RXD1_NORMAL_HDR_OFFSET;
551
552
if (rxd2 & MT_RXD2_NORMAL_MAX_LEN_ERROR)
553
return -EINVAL;
554
555
if (!sband->channels)
556
return -EINVAL;
557
558
rxd += 4;
559
if (rxd0 & MT_RXD0_NORMAL_GROUP_4) {
560
rxd += 4;
561
if ((u8 *)rxd - skb->data >= skb->len)
562
return -EINVAL;
563
}
564
if (rxd0 & MT_RXD0_NORMAL_GROUP_1) {
565
u8 *data = (u8 *)rxd;
566
567
if (status->flag & RX_FLAG_DECRYPTED) {
568
switch (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2)) {
569
case MT_CIPHER_AES_CCMP:
570
case MT_CIPHER_CCMP_CCX:
571
case MT_CIPHER_CCMP_256:
572
insert_ccmp_hdr =
573
FIELD_GET(MT_RXD2_NORMAL_FRAG, rxd2);
574
fallthrough;
575
case MT_CIPHER_TKIP:
576
case MT_CIPHER_TKIP_NO_MIC:
577
case MT_CIPHER_GCMP:
578
case MT_CIPHER_GCMP_256:
579
status->iv[0] = data[5];
580
status->iv[1] = data[4];
581
status->iv[2] = data[3];
582
status->iv[3] = data[2];
583
status->iv[4] = data[1];
584
status->iv[5] = data[0];
585
break;
586
default:
587
break;
588
}
589
}
590
591
rxd += 4;
592
if ((u8 *)rxd - skb->data >= skb->len)
593
return -EINVAL;
594
}
595
if (rxd0 & MT_RXD0_NORMAL_GROUP_2) {
596
status->timestamp = le32_to_cpu(rxd[0]);
597
status->flag |= RX_FLAG_MACTIME_START;
598
599
if (!(rxd2 & (MT_RXD2_NORMAL_NON_AMPDU_SUB |
600
MT_RXD2_NORMAL_NON_AMPDU))) {
601
status->flag |= RX_FLAG_AMPDU_DETAILS;
602
603
/* all subframes of an A-MPDU have the same timestamp */
604
if (dev->rx_ampdu_ts != status->timestamp) {
605
if (!++dev->ampdu_ref)
606
dev->ampdu_ref++;
607
}
608
dev->rx_ampdu_ts = status->timestamp;
609
610
status->ampdu_ref = dev->ampdu_ref;
611
}
612
613
rxd += 2;
614
if ((u8 *)rxd - skb->data >= skb->len)
615
return -EINVAL;
616
}
617
if (rxd0 & MT_RXD0_NORMAL_GROUP_3) {
618
u32 rxdg0 = le32_to_cpu(rxd[0]);
619
u32 rxdg3 = le32_to_cpu(rxd[3]);
620
bool cck = false;
621
622
i = FIELD_GET(MT_RXV1_TX_RATE, rxdg0);
623
switch (FIELD_GET(MT_RXV1_TX_MODE, rxdg0)) {
624
case MT_PHY_TYPE_CCK:
625
cck = true;
626
fallthrough;
627
case MT_PHY_TYPE_OFDM:
628
i = mt76_get_rate(&dev->mt76, sband, i, cck);
629
break;
630
case MT_PHY_TYPE_HT_GF:
631
case MT_PHY_TYPE_HT:
632
status->encoding = RX_ENC_HT;
633
if (i > 15)
634
return -EINVAL;
635
break;
636
default:
637
return -EINVAL;
638
}
639
640
if (rxdg0 & MT_RXV1_HT_SHORT_GI)
641
status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
642
if (rxdg0 & MT_RXV1_HT_AD_CODE)
643
status->enc_flags |= RX_ENC_FLAG_LDPC;
644
645
status->enc_flags |= RX_ENC_FLAG_STBC_MASK *
646
FIELD_GET(MT_RXV1_HT_STBC, rxdg0);
647
648
status->rate_idx = i;
649
650
status->chains = dev->mphy.antenna_mask;
651
status->chain_signal[0] = FIELD_GET(MT_RXV4_IB_RSSI0, rxdg3) +
652
dev->rssi_offset[0];
653
status->chain_signal[1] = FIELD_GET(MT_RXV4_IB_RSSI1, rxdg3) +
654
dev->rssi_offset[1];
655
656
if (FIELD_GET(MT_RXV1_FRAME_MODE, rxdg0) == 1)
657
status->bw = RATE_INFO_BW_40;
658
659
rxd += 6;
660
if ((u8 *)rxd - skb->data >= skb->len)
661
return -EINVAL;
662
} else {
663
return -EINVAL;
664
}
665
666
skb_pull(skb, (u8 *)rxd - skb->data + 2 * remove_pad);
667
668
if (insert_ccmp_hdr) {
669
u8 key_id = FIELD_GET(MT_RXD1_NORMAL_KEY_ID, rxd1);
670
671
mt76_insert_ccmp_hdr(skb, key_id);
672
}
673
674
hdr = (struct ieee80211_hdr *)skb->data;
675
if (!status->wcid || !ieee80211_is_data_qos(hdr->frame_control))
676
return 0;
677
678
status->aggr = unicast &&
679
!ieee80211_is_qos_nullfunc(hdr->frame_control);
680
status->qos_ctl = *ieee80211_get_qos_ctl(hdr);
681
status->seqno = IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl));
682
683
return 0;
684
}
685
686
static u16
687
mt7603_mac_tx_rate_val(struct mt7603_dev *dev,
688
const struct ieee80211_tx_rate *rate, bool stbc, u8 *bw)
689
{
690
u8 phy, nss, rate_idx;
691
u16 rateval;
692
693
*bw = 0;
694
if (rate->flags & IEEE80211_TX_RC_MCS) {
695
rate_idx = rate->idx;
696
nss = 1 + (rate->idx >> 3);
697
phy = MT_PHY_TYPE_HT;
698
if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
699
phy = MT_PHY_TYPE_HT_GF;
700
if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
701
*bw = 1;
702
} else {
703
const struct ieee80211_rate *r;
704
int band = dev->mphy.chandef.chan->band;
705
u16 val;
706
707
nss = 1;
708
r = &mt76_hw(dev)->wiphy->bands[band]->bitrates[rate->idx];
709
if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
710
val = r->hw_value_short;
711
else
712
val = r->hw_value;
713
714
phy = val >> 8;
715
rate_idx = val & 0xff;
716
}
717
718
rateval = (FIELD_PREP(MT_TX_RATE_IDX, rate_idx) |
719
FIELD_PREP(MT_TX_RATE_MODE, phy));
720
721
if (stbc && nss == 1)
722
rateval |= MT_TX_RATE_STBC;
723
724
return rateval;
725
}
726
727
void mt7603_wtbl_set_rates(struct mt7603_dev *dev, struct mt7603_sta *sta,
728
struct ieee80211_tx_rate *probe_rate,
729
struct ieee80211_tx_rate *rates)
730
{
731
struct ieee80211_tx_rate *ref;
732
int wcid = sta->wcid.idx;
733
u32 addr = mt7603_wtbl2_addr(wcid);
734
bool stbc = false;
735
int n_rates = sta->n_rates;
736
u8 bw, bw_prev, bw_idx = 0;
737
u16 val[4];
738
u16 probe_val;
739
u32 w9 = mt76_rr(dev, addr + 9 * 4);
740
bool rateset;
741
int i, k;
742
743
if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000))
744
return;
745
746
for (i = n_rates; i < 4; i++)
747
rates[i] = rates[n_rates - 1];
748
749
rateset = !(sta->rate_set_tsf & BIT(0));
750
memcpy(sta->rateset[rateset].rates, rates,
751
sizeof(sta->rateset[rateset].rates));
752
if (probe_rate) {
753
sta->rateset[rateset].probe_rate = *probe_rate;
754
ref = &sta->rateset[rateset].probe_rate;
755
} else {
756
sta->rateset[rateset].probe_rate.idx = -1;
757
ref = &sta->rateset[rateset].rates[0];
758
}
759
760
rates = sta->rateset[rateset].rates;
761
for (i = 0; i < ARRAY_SIZE(sta->rateset[rateset].rates); i++) {
762
/*
763
* We don't support switching between short and long GI
764
* within the rate set. For accurate tx status reporting, we
765
* need to make sure that flags match.
766
* For improved performance, avoid duplicate entries by
767
* decrementing the MCS index if necessary
768
*/
769
if ((ref->flags ^ rates[i].flags) & IEEE80211_TX_RC_SHORT_GI)
770
rates[i].flags ^= IEEE80211_TX_RC_SHORT_GI;
771
772
for (k = 0; k < i; k++) {
773
if (rates[i].idx != rates[k].idx)
774
continue;
775
if ((rates[i].flags ^ rates[k].flags) &
776
IEEE80211_TX_RC_40_MHZ_WIDTH)
777
continue;
778
779
if (!rates[i].idx)
780
continue;
781
782
rates[i].idx--;
783
}
784
}
785
786
w9 &= MT_WTBL2_W9_SHORT_GI_20 | MT_WTBL2_W9_SHORT_GI_40 |
787
MT_WTBL2_W9_SHORT_GI_80;
788
789
val[0] = mt7603_mac_tx_rate_val(dev, &rates[0], stbc, &bw);
790
bw_prev = bw;
791
792
if (probe_rate) {
793
probe_val = mt7603_mac_tx_rate_val(dev, probe_rate, stbc, &bw);
794
if (bw)
795
bw_idx = 1;
796
else
797
bw_prev = 0;
798
} else {
799
probe_val = val[0];
800
}
801
802
w9 |= FIELD_PREP(MT_WTBL2_W9_CC_BW_SEL, bw);
803
w9 |= FIELD_PREP(MT_WTBL2_W9_BW_CAP, bw);
804
805
val[1] = mt7603_mac_tx_rate_val(dev, &rates[1], stbc, &bw);
806
if (bw_prev) {
807
bw_idx = 3;
808
bw_prev = bw;
809
}
810
811
val[2] = mt7603_mac_tx_rate_val(dev, &rates[2], stbc, &bw);
812
if (bw_prev) {
813
bw_idx = 5;
814
bw_prev = bw;
815
}
816
817
val[3] = mt7603_mac_tx_rate_val(dev, &rates[3], stbc, &bw);
818
if (bw_prev)
819
bw_idx = 7;
820
821
w9 |= FIELD_PREP(MT_WTBL2_W9_CHANGE_BW_RATE,
822
bw_idx ? bw_idx - 1 : 7);
823
824
mt76_wr(dev, MT_WTBL_RIUCR0, w9);
825
826
mt76_wr(dev, MT_WTBL_RIUCR1,
827
FIELD_PREP(MT_WTBL_RIUCR1_RATE0, probe_val) |
828
FIELD_PREP(MT_WTBL_RIUCR1_RATE1, val[0]) |
829
FIELD_PREP(MT_WTBL_RIUCR1_RATE2_LO, val[1]));
830
831
mt76_wr(dev, MT_WTBL_RIUCR2,
832
FIELD_PREP(MT_WTBL_RIUCR2_RATE2_HI, val[1] >> 8) |
833
FIELD_PREP(MT_WTBL_RIUCR2_RATE3, val[1]) |
834
FIELD_PREP(MT_WTBL_RIUCR2_RATE4, val[2]) |
835
FIELD_PREP(MT_WTBL_RIUCR2_RATE5_LO, val[2]));
836
837
mt76_wr(dev, MT_WTBL_RIUCR3,
838
FIELD_PREP(MT_WTBL_RIUCR3_RATE5_HI, val[2] >> 4) |
839
FIELD_PREP(MT_WTBL_RIUCR3_RATE6, val[3]) |
840
FIELD_PREP(MT_WTBL_RIUCR3_RATE7, val[3]));
841
842
mt76_set(dev, MT_LPON_T0CR, MT_LPON_T0CR_MODE); /* TSF read */
843
sta->rate_set_tsf = (mt76_rr(dev, MT_LPON_UTTR0) & ~BIT(0)) | rateset;
844
845
mt76_wr(dev, MT_WTBL_UPDATE,
846
FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, wcid) |
847
MT_WTBL_UPDATE_RATE_UPDATE |
848
MT_WTBL_UPDATE_TX_COUNT_CLEAR);
849
850
if (!(sta->wcid.tx_info & MT_WCID_TX_INFO_SET))
851
mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
852
853
sta->rate_count = 2 * MT7603_RATE_RETRY * n_rates;
854
sta->wcid.tx_info |= MT_WCID_TX_INFO_SET;
855
}
856
857
static enum mt76_cipher_type
858
mt7603_mac_get_key_info(struct ieee80211_key_conf *key, u8 *key_data)
859
{
860
memset(key_data, 0, 32);
861
if (!key)
862
return MT_CIPHER_NONE;
863
864
if (key->keylen > 32)
865
return MT_CIPHER_NONE;
866
867
memcpy(key_data, key->key, key->keylen);
868
869
switch (key->cipher) {
870
case WLAN_CIPHER_SUITE_WEP40:
871
return MT_CIPHER_WEP40;
872
case WLAN_CIPHER_SUITE_WEP104:
873
return MT_CIPHER_WEP104;
874
case WLAN_CIPHER_SUITE_TKIP:
875
/* Rx/Tx MIC keys are swapped */
876
memcpy(key_data + 16, key->key + 24, 8);
877
memcpy(key_data + 24, key->key + 16, 8);
878
return MT_CIPHER_TKIP;
879
case WLAN_CIPHER_SUITE_CCMP:
880
return MT_CIPHER_AES_CCMP;
881
default:
882
return MT_CIPHER_NONE;
883
}
884
}
885
886
int mt7603_wtbl_set_key(struct mt7603_dev *dev, int wcid,
887
struct ieee80211_key_conf *key)
888
{
889
enum mt76_cipher_type cipher;
890
u32 addr = mt7603_wtbl3_addr(wcid);
891
u8 key_data[32];
892
int key_len = sizeof(key_data);
893
894
cipher = mt7603_mac_get_key_info(key, key_data);
895
if (cipher == MT_CIPHER_NONE && key)
896
return -EOPNOTSUPP;
897
898
if (key && (cipher == MT_CIPHER_WEP40 || cipher == MT_CIPHER_WEP104)) {
899
addr += key->keyidx * 16;
900
key_len = 16;
901
}
902
903
mt76_wr_copy(dev, addr, key_data, key_len);
904
905
addr = mt7603_wtbl1_addr(wcid);
906
mt76_rmw_field(dev, addr + 2 * 4, MT_WTBL1_W2_KEY_TYPE, cipher);
907
if (key)
908
mt76_rmw_field(dev, addr, MT_WTBL1_W0_KEY_IDX, key->keyidx);
909
mt76_rmw_field(dev, addr, MT_WTBL1_W0_RX_KEY_VALID, !!key);
910
911
return 0;
912
}
913
914
static int
915
mt7603_mac_write_txwi(struct mt7603_dev *dev, __le32 *txwi,
916
struct sk_buff *skb, enum mt76_txq_id qid,
917
struct mt76_wcid *wcid, struct ieee80211_sta *sta,
918
int pid, struct ieee80211_key_conf *key)
919
{
920
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
921
struct ieee80211_tx_rate *rate = &info->control.rates[0];
922
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
923
struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
924
struct ieee80211_vif *vif = info->control.vif;
925
struct mt76_queue *q = dev->mphy.q_tx[qid];
926
struct mt7603_vif *mvif;
927
int wlan_idx;
928
int hdr_len = ieee80211_get_hdrlen_from_skb(skb);
929
int tx_count = 8;
930
u8 frame_type, frame_subtype;
931
u16 fc = le16_to_cpu(hdr->frame_control);
932
u16 seqno = 0;
933
u8 vif_idx = 0;
934
u32 val;
935
u8 bw;
936
937
if (vif) {
938
mvif = (struct mt7603_vif *)vif->drv_priv;
939
vif_idx = mvif->idx;
940
if (vif_idx && qid >= MT_TXQ_BEACON)
941
vif_idx += 0x10;
942
}
943
944
if (sta) {
945
struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv;
946
947
tx_count = msta->rate_count;
948
}
949
950
if (wcid)
951
wlan_idx = wcid->idx;
952
else
953
wlan_idx = MT7603_WTBL_RESERVED;
954
955
frame_type = (fc & IEEE80211_FCTL_FTYPE) >> 2;
956
frame_subtype = (fc & IEEE80211_FCTL_STYPE) >> 4;
957
958
val = FIELD_PREP(MT_TXD0_TX_BYTES, skb->len + MT_TXD_SIZE) |
959
FIELD_PREP(MT_TXD0_Q_IDX, q->hw_idx);
960
txwi[0] = cpu_to_le32(val);
961
962
val = MT_TXD1_LONG_FORMAT |
963
FIELD_PREP(MT_TXD1_OWN_MAC, vif_idx) |
964
FIELD_PREP(MT_TXD1_TID,
965
skb->priority & IEEE80211_QOS_CTL_TID_MASK) |
966
FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_802_11) |
967
FIELD_PREP(MT_TXD1_HDR_INFO, hdr_len / 2) |
968
FIELD_PREP(MT_TXD1_WLAN_IDX, wlan_idx) |
969
FIELD_PREP(MT_TXD1_PROTECTED, !!key);
970
txwi[1] = cpu_to_le32(val);
971
972
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
973
txwi[1] |= cpu_to_le32(MT_TXD1_NO_ACK);
974
975
val = FIELD_PREP(MT_TXD2_FRAME_TYPE, frame_type) |
976
FIELD_PREP(MT_TXD2_SUB_TYPE, frame_subtype) |
977
FIELD_PREP(MT_TXD2_MULTICAST,
978
is_multicast_ether_addr(hdr->addr1));
979
txwi[2] = cpu_to_le32(val);
980
981
if (!(info->flags & IEEE80211_TX_CTL_AMPDU))
982
txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE);
983
984
txwi[4] = 0;
985
986
val = MT_TXD5_TX_STATUS_HOST | MT_TXD5_SW_POWER_MGMT |
987
FIELD_PREP(MT_TXD5_PID, pid);
988
txwi[5] = cpu_to_le32(val);
989
990
txwi[6] = 0;
991
992
if (rate->idx >= 0 && rate->count &&
993
!(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
994
bool stbc = info->flags & IEEE80211_TX_CTL_STBC;
995
u16 rateval = mt7603_mac_tx_rate_val(dev, rate, stbc, &bw);
996
997
txwi[2] |= cpu_to_le32(MT_TXD2_FIX_RATE);
998
999
val = MT_TXD6_FIXED_BW |
1000
FIELD_PREP(MT_TXD6_BW, bw) |
1001
FIELD_PREP(MT_TXD6_TX_RATE, rateval);
1002
txwi[6] |= cpu_to_le32(val);
1003
1004
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1005
txwi[6] |= cpu_to_le32(MT_TXD6_SGI);
1006
1007
if (!(rate->flags & IEEE80211_TX_RC_MCS))
1008
txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE);
1009
1010
tx_count = rate->count;
1011
}
1012
1013
/* use maximum tx count for beacons and buffered multicast */
1014
if (qid >= MT_TXQ_BEACON)
1015
tx_count = 0x1f;
1016
1017
val = FIELD_PREP(MT_TXD3_REM_TX_COUNT, tx_count) |
1018
MT_TXD3_SN_VALID;
1019
1020
if (ieee80211_is_data_qos(hdr->frame_control))
1021
seqno = le16_to_cpu(hdr->seq_ctrl);
1022
else if (ieee80211_is_back_req(hdr->frame_control))
1023
seqno = le16_to_cpu(bar->start_seq_num);
1024
else
1025
val &= ~MT_TXD3_SN_VALID;
1026
1027
val |= FIELD_PREP(MT_TXD3_SEQ, seqno >> 4);
1028
1029
txwi[3] = cpu_to_le32(val);
1030
1031
if (key) {
1032
u64 pn = atomic64_inc_return(&key->tx_pn);
1033
1034
txwi[3] |= cpu_to_le32(MT_TXD3_PN_VALID);
1035
txwi[4] = cpu_to_le32(pn & GENMASK(31, 0));
1036
txwi[5] |= cpu_to_le32(FIELD_PREP(MT_TXD5_PN_HIGH, pn >> 32));
1037
}
1038
1039
txwi[7] = 0;
1040
1041
return 0;
1042
}
1043
1044
int mt7603_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr,
1045
enum mt76_txq_id qid, struct mt76_wcid *wcid,
1046
struct ieee80211_sta *sta,
1047
struct mt76_tx_info *tx_info)
1048
{
1049
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
1050
struct mt7603_sta *msta = container_of(wcid, struct mt7603_sta, wcid);
1051
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_info->skb);
1052
struct ieee80211_key_conf *key = info->control.hw_key;
1053
int pid;
1054
1055
if (!wcid)
1056
wcid = &dev->global_sta.wcid;
1057
1058
if (sta) {
1059
msta = (struct mt7603_sta *)sta->drv_priv;
1060
1061
if ((info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER |
1062
IEEE80211_TX_CTL_CLEAR_PS_FILT)) ||
1063
(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE))
1064
mt7603_wtbl_set_ps(dev, msta, false);
1065
1066
mt76_tx_check_agg_ssn(sta, tx_info->skb);
1067
}
1068
1069
pid = mt76_tx_status_skb_add(mdev, wcid, tx_info->skb);
1070
1071
if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) {
1072
spin_lock_bh(&dev->mt76.lock);
1073
mt7603_wtbl_set_rates(dev, msta, &info->control.rates[0],
1074
msta->rates);
1075
msta->rate_probe = true;
1076
spin_unlock_bh(&dev->mt76.lock);
1077
}
1078
1079
mt7603_mac_write_txwi(dev, txwi_ptr, tx_info->skb, qid, wcid,
1080
sta, pid, key);
1081
1082
return 0;
1083
}
1084
1085
static bool
1086
mt7603_fill_txs(struct mt7603_dev *dev, struct mt7603_sta *sta,
1087
struct ieee80211_tx_info *info, __le32 *txs_data)
1088
{
1089
struct ieee80211_supported_band *sband;
1090
struct mt7603_rate_set *rs;
1091
int first_idx = 0, last_idx;
1092
u32 rate_set_tsf;
1093
u32 final_rate;
1094
u32 final_rate_flags;
1095
bool rs_idx;
1096
bool ack_timeout;
1097
bool fixed_rate;
1098
bool probe;
1099
bool ampdu;
1100
bool cck = false;
1101
int count;
1102
u32 txs;
1103
int idx;
1104
int i;
1105
1106
fixed_rate = info->status.rates[0].count;
1107
probe = !!(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
1108
1109
txs = le32_to_cpu(txs_data[4]);
1110
ampdu = !fixed_rate && (txs & MT_TXS4_AMPDU);
1111
count = FIELD_GET(MT_TXS4_TX_COUNT, txs);
1112
last_idx = FIELD_GET(MT_TXS4_LAST_TX_RATE, txs);
1113
1114
txs = le32_to_cpu(txs_data[0]);
1115
final_rate = FIELD_GET(MT_TXS0_TX_RATE, txs);
1116
ack_timeout = txs & MT_TXS0_ACK_TIMEOUT;
1117
1118
if (!ampdu && (txs & MT_TXS0_RTS_TIMEOUT))
1119
return false;
1120
1121
if (txs & MT_TXS0_QUEUE_TIMEOUT)
1122
return false;
1123
1124
if (!ack_timeout)
1125
info->flags |= IEEE80211_TX_STAT_ACK;
1126
1127
info->status.ampdu_len = 1;
1128
info->status.ampdu_ack_len = !!(info->flags &
1129
IEEE80211_TX_STAT_ACK);
1130
1131
if (ampdu || (info->flags & IEEE80211_TX_CTL_AMPDU))
1132
info->flags |= IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_CTL_AMPDU;
1133
1134
first_idx = max_t(int, 0, last_idx - (count - 1) / MT7603_RATE_RETRY);
1135
1136
if (fixed_rate && !probe) {
1137
info->status.rates[0].count = count;
1138
i = 0;
1139
goto out;
1140
}
1141
1142
rate_set_tsf = READ_ONCE(sta->rate_set_tsf);
1143
rs_idx = !((u32)(le32_get_bits(txs_data[1], MT_TXS1_F0_TIMESTAMP) -
1144
rate_set_tsf) < 1000000);
1145
rs_idx ^= rate_set_tsf & BIT(0);
1146
rs = &sta->rateset[rs_idx];
1147
1148
if (!first_idx && rs->probe_rate.idx >= 0) {
1149
info->status.rates[0] = rs->probe_rate;
1150
1151
spin_lock_bh(&dev->mt76.lock);
1152
if (sta->rate_probe) {
1153
mt7603_wtbl_set_rates(dev, sta, NULL,
1154
sta->rates);
1155
sta->rate_probe = false;
1156
}
1157
spin_unlock_bh(&dev->mt76.lock);
1158
} else {
1159
info->status.rates[0] = rs->rates[first_idx / 2];
1160
}
1161
info->status.rates[0].count = 0;
1162
1163
for (i = 0, idx = first_idx; count && idx <= last_idx; idx++) {
1164
struct ieee80211_tx_rate *cur_rate;
1165
int cur_count;
1166
1167
cur_rate = &rs->rates[idx / 2];
1168
cur_count = min_t(int, MT7603_RATE_RETRY, count);
1169
count -= cur_count;
1170
1171
if (idx && (cur_rate->idx != info->status.rates[i].idx ||
1172
cur_rate->flags != info->status.rates[i].flags)) {
1173
i++;
1174
if (i == ARRAY_SIZE(info->status.rates)) {
1175
i--;
1176
break;
1177
}
1178
1179
info->status.rates[i] = *cur_rate;
1180
info->status.rates[i].count = 0;
1181
}
1182
1183
info->status.rates[i].count += cur_count;
1184
}
1185
1186
out:
1187
final_rate_flags = info->status.rates[i].flags;
1188
1189
switch (FIELD_GET(MT_TX_RATE_MODE, final_rate)) {
1190
case MT_PHY_TYPE_CCK:
1191
cck = true;
1192
fallthrough;
1193
case MT_PHY_TYPE_OFDM:
1194
if (dev->mphy.chandef.chan->band == NL80211_BAND_5GHZ)
1195
sband = &dev->mphy.sband_5g.sband;
1196
else
1197
sband = &dev->mphy.sband_2g.sband;
1198
final_rate &= GENMASK(5, 0);
1199
final_rate = mt76_get_rate(&dev->mt76, sband, final_rate,
1200
cck);
1201
final_rate_flags = 0;
1202
break;
1203
case MT_PHY_TYPE_HT_GF:
1204
case MT_PHY_TYPE_HT:
1205
final_rate_flags |= IEEE80211_TX_RC_MCS;
1206
final_rate &= GENMASK(5, 0);
1207
if (final_rate > 15)
1208
return false;
1209
break;
1210
default:
1211
return false;
1212
}
1213
1214
info->status.rates[i].idx = final_rate;
1215
info->status.rates[i].flags = final_rate_flags;
1216
1217
return true;
1218
}
1219
1220
static bool
1221
mt7603_mac_add_txs_skb(struct mt7603_dev *dev, struct mt7603_sta *sta, int pid,
1222
__le32 *txs_data)
1223
{
1224
struct mt76_dev *mdev = &dev->mt76;
1225
struct sk_buff_head list;
1226
struct sk_buff *skb;
1227
1228
if (pid < MT_PACKET_ID_FIRST)
1229
return false;
1230
1231
trace_mac_txdone(mdev, sta->wcid.idx, pid);
1232
1233
mt76_tx_status_lock(mdev, &list);
1234
skb = mt76_tx_status_skb_get(mdev, &sta->wcid, pid, &list);
1235
if (skb) {
1236
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1237
1238
if (!mt7603_fill_txs(dev, sta, info, txs_data)) {
1239
info->status.rates[0].count = 0;
1240
info->status.rates[0].idx = -1;
1241
}
1242
1243
mt76_tx_status_skb_done(mdev, skb, &list);
1244
}
1245
mt76_tx_status_unlock(mdev, &list);
1246
1247
return !!skb;
1248
}
1249
1250
void mt7603_mac_add_txs(struct mt7603_dev *dev, void *data)
1251
{
1252
struct ieee80211_tx_info info = {};
1253
struct ieee80211_sta *sta = NULL;
1254
struct mt7603_sta *msta = NULL;
1255
struct mt76_wcid *wcid;
1256
__le32 *txs_data = data;
1257
u8 wcidx;
1258
u8 pid;
1259
1260
pid = le32_get_bits(txs_data[4], MT_TXS4_PID);
1261
wcidx = le32_get_bits(txs_data[3], MT_TXS3_WCID);
1262
1263
if (pid == MT_PACKET_ID_NO_ACK)
1264
return;
1265
1266
rcu_read_lock();
1267
1268
wcid = mt76_wcid_ptr(dev, wcidx);
1269
if (!wcid)
1270
goto out;
1271
1272
msta = container_of(wcid, struct mt7603_sta, wcid);
1273
sta = wcid_to_sta(wcid);
1274
mt76_wcid_add_poll(&dev->mt76, &msta->wcid);
1275
1276
if (mt7603_mac_add_txs_skb(dev, msta, pid, txs_data))
1277
goto out;
1278
1279
if (wcidx >= MT7603_WTBL_STA || !sta)
1280
goto out;
1281
1282
if (mt7603_fill_txs(dev, msta, &info, txs_data)) {
1283
spin_lock_bh(&dev->mt76.rx_lock);
1284
ieee80211_tx_status_noskb(mt76_hw(dev), sta, &info);
1285
spin_unlock_bh(&dev->mt76.rx_lock);
1286
}
1287
1288
out:
1289
rcu_read_unlock();
1290
}
1291
1292
void mt7603_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue_entry *e)
1293
{
1294
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
1295
struct sk_buff *skb = e->skb;
1296
1297
if (!e->txwi) {
1298
dev_kfree_skb_any(skb);
1299
return;
1300
}
1301
1302
dev->tx_hang_check = 0;
1303
mt76_tx_complete_skb(mdev, e->wcid, skb);
1304
}
1305
1306
static bool
1307
wait_for_wpdma(struct mt7603_dev *dev)
1308
{
1309
return mt76_poll(dev, MT_WPDMA_GLO_CFG,
1310
MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
1311
MT_WPDMA_GLO_CFG_RX_DMA_BUSY,
1312
0, 1000);
1313
}
1314
1315
static void mt7603_pse_reset(struct mt7603_dev *dev)
1316
{
1317
/* Clear previous reset result */
1318
if (!dev->reset_cause[RESET_CAUSE_RESET_FAILED])
1319
mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE_S);
1320
1321
/* Reset PSE */
1322
mt76_set(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE);
1323
1324
if (!mt76_poll_msec(dev, MT_MCU_DEBUG_RESET,
1325
MT_MCU_DEBUG_RESET_PSE_S,
1326
MT_MCU_DEBUG_RESET_PSE_S, 500)) {
1327
dev->reset_cause[RESET_CAUSE_RESET_FAILED]++;
1328
mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE);
1329
} else {
1330
dev->reset_cause[RESET_CAUSE_RESET_FAILED] = 0;
1331
mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_QUEUES);
1332
}
1333
1334
if (dev->reset_cause[RESET_CAUSE_RESET_FAILED] >= 3)
1335
dev->reset_cause[RESET_CAUSE_RESET_FAILED] = 0;
1336
}
1337
1338
void mt7603_mac_dma_start(struct mt7603_dev *dev)
1339
{
1340
mt7603_mac_start(dev);
1341
1342
wait_for_wpdma(dev);
1343
usleep_range(50, 100);
1344
1345
mt76_set(dev, MT_WPDMA_GLO_CFG,
1346
(MT_WPDMA_GLO_CFG_TX_DMA_EN |
1347
MT_WPDMA_GLO_CFG_RX_DMA_EN |
1348
FIELD_PREP(MT_WPDMA_GLO_CFG_DMA_BURST_SIZE, 3) |
1349
MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE));
1350
1351
mt7603_irq_enable(dev, MT_INT_RX_DONE_ALL | MT_INT_TX_DONE_ALL);
1352
}
1353
1354
void mt7603_mac_start(struct mt7603_dev *dev)
1355
{
1356
mt76_clear(dev, MT_ARB_SCR,
1357
MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE);
1358
mt76_wr(dev, MT_WF_ARB_TX_START_0, ~0);
1359
mt76_set(dev, MT_WF_ARB_RQCR, MT_WF_ARB_RQCR_RX_START);
1360
}
1361
1362
void mt7603_mac_stop(struct mt7603_dev *dev)
1363
{
1364
mt76_set(dev, MT_ARB_SCR,
1365
MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE);
1366
mt76_wr(dev, MT_WF_ARB_TX_START_0, 0);
1367
mt76_clear(dev, MT_WF_ARB_RQCR, MT_WF_ARB_RQCR_RX_START);
1368
}
1369
1370
void mt7603_pse_client_reset(struct mt7603_dev *dev)
1371
{
1372
u32 addr;
1373
1374
addr = mt7603_reg_map(dev, MT_CLIENT_BASE_PHYS_ADDR +
1375
MT_CLIENT_RESET_TX);
1376
1377
/* Clear previous reset state */
1378
mt76_clear(dev, addr,
1379
MT_CLIENT_RESET_TX_R_E_1 |
1380
MT_CLIENT_RESET_TX_R_E_2 |
1381
MT_CLIENT_RESET_TX_R_E_1_S |
1382
MT_CLIENT_RESET_TX_R_E_2_S);
1383
1384
/* Start PSE client TX abort */
1385
mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_FORCE_TX_EOF);
1386
mt76_set(dev, addr, MT_CLIENT_RESET_TX_R_E_1);
1387
mt76_poll_msec(dev, addr, MT_CLIENT_RESET_TX_R_E_1_S,
1388
MT_CLIENT_RESET_TX_R_E_1_S, 500);
1389
1390
mt76_set(dev, addr, MT_CLIENT_RESET_TX_R_E_2);
1391
mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_SW_RESET);
1392
1393
/* Wait for PSE client to clear TX FIFO */
1394
mt76_poll_msec(dev, addr, MT_CLIENT_RESET_TX_R_E_2_S,
1395
MT_CLIENT_RESET_TX_R_E_2_S, 500);
1396
1397
/* Clear PSE client TX abort state */
1398
mt76_clear(dev, addr,
1399
MT_CLIENT_RESET_TX_R_E_1 |
1400
MT_CLIENT_RESET_TX_R_E_2);
1401
}
1402
1403
static void mt7603_dma_sched_reset(struct mt7603_dev *dev)
1404
{
1405
if (!is_mt7628(dev))
1406
return;
1407
1408
mt76_set(dev, MT_SCH_4, MT_SCH_4_RESET);
1409
mt76_clear(dev, MT_SCH_4, MT_SCH_4_RESET);
1410
}
1411
1412
static void mt7603_mac_watchdog_reset(struct mt7603_dev *dev)
1413
{
1414
int beacon_int = dev->mt76.beacon_int;
1415
u32 mask = dev->mt76.mmio.irqmask;
1416
int i;
1417
1418
ieee80211_stop_queues(dev->mt76.hw);
1419
set_bit(MT76_RESET, &dev->mphy.state);
1420
1421
/* lock/unlock all queues to ensure that no tx is pending */
1422
mt76_txq_schedule_all(&dev->mphy);
1423
1424
mt76_worker_disable(&dev->mt76.tx_worker);
1425
tasklet_disable(&dev->mt76.pre_tbtt_tasklet);
1426
napi_disable(&dev->mt76.napi[0]);
1427
napi_disable(&dev->mt76.napi[1]);
1428
napi_disable(&dev->mt76.tx_napi);
1429
1430
mutex_lock(&dev->mt76.mutex);
1431
1432
mt7603_beacon_set_timer(dev, -1, 0);
1433
1434
mt7603_mac_stop(dev);
1435
1436
mt76_clear(dev, MT_WPDMA_GLO_CFG,
1437
MT_WPDMA_GLO_CFG_RX_DMA_EN | MT_WPDMA_GLO_CFG_TX_DMA_EN |
1438
MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE);
1439
usleep_range(1000, 2000);
1440
1441
mt7603_irq_disable(dev, mask);
1442
1443
mt7603_pse_client_reset(dev);
1444
1445
mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_WM], true);
1446
for (i = 0; i < __MT_TXQ_MAX; i++)
1447
mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], true);
1448
1449
mt7603_dma_sched_reset(dev);
1450
1451
mt76_tx_status_check(&dev->mt76, true);
1452
1453
mt76_for_each_q_rx(&dev->mt76, i) {
1454
mt76_queue_rx_reset(dev, i);
1455
}
1456
1457
if (dev->reset_cause[RESET_CAUSE_RESET_FAILED] ||
1458
dev->cur_reset_cause == RESET_CAUSE_RX_PSE_BUSY)
1459
mt7603_pse_reset(dev);
1460
1461
if (!dev->reset_cause[RESET_CAUSE_RESET_FAILED]) {
1462
mt7603_mac_dma_start(dev);
1463
1464
mt7603_irq_enable(dev, mask);
1465
1466
clear_bit(MT76_RESET, &dev->mphy.state);
1467
}
1468
1469
mutex_unlock(&dev->mt76.mutex);
1470
1471
mt76_worker_enable(&dev->mt76.tx_worker);
1472
1473
tasklet_enable(&dev->mt76.pre_tbtt_tasklet);
1474
mt7603_beacon_set_timer(dev, -1, beacon_int);
1475
1476
napi_enable(&dev->mt76.tx_napi);
1477
napi_enable(&dev->mt76.napi[0]);
1478
napi_enable(&dev->mt76.napi[1]);
1479
1480
local_bh_disable();
1481
napi_schedule(&dev->mt76.tx_napi);
1482
napi_schedule(&dev->mt76.napi[0]);
1483
napi_schedule(&dev->mt76.napi[1]);
1484
local_bh_enable();
1485
1486
ieee80211_wake_queues(dev->mt76.hw);
1487
mt76_txq_schedule_all(&dev->mphy);
1488
}
1489
1490
static u32 mt7603_dma_debug(struct mt7603_dev *dev, u8 index)
1491
{
1492
u32 val;
1493
1494
mt76_wr(dev, MT_WPDMA_DEBUG,
1495
FIELD_PREP(MT_WPDMA_DEBUG_IDX, index) |
1496
MT_WPDMA_DEBUG_SEL);
1497
1498
val = mt76_rr(dev, MT_WPDMA_DEBUG);
1499
return FIELD_GET(MT_WPDMA_DEBUG_VALUE, val);
1500
}
1501
1502
static bool mt7603_rx_fifo_busy(struct mt7603_dev *dev)
1503
{
1504
if (is_mt7628(dev))
1505
return mt7603_dma_debug(dev, 9) & BIT(9);
1506
1507
return mt7603_dma_debug(dev, 2) & BIT(8);
1508
}
1509
1510
static bool mt7603_rx_dma_busy(struct mt7603_dev *dev)
1511
{
1512
if (!(mt76_rr(dev, MT_WPDMA_GLO_CFG) & MT_WPDMA_GLO_CFG_RX_DMA_BUSY))
1513
return false;
1514
1515
return mt7603_rx_fifo_busy(dev);
1516
}
1517
1518
static bool mt7603_tx_dma_busy(struct mt7603_dev *dev)
1519
{
1520
u32 val;
1521
1522
if (!(mt76_rr(dev, MT_WPDMA_GLO_CFG) & MT_WPDMA_GLO_CFG_TX_DMA_BUSY))
1523
return false;
1524
1525
val = mt7603_dma_debug(dev, 9);
1526
return (val & BIT(8)) && (val & 0xf) != 0xf;
1527
}
1528
1529
static bool mt7603_tx_hang(struct mt7603_dev *dev)
1530
{
1531
struct mt76_queue *q;
1532
u32 dma_idx, prev_dma_idx;
1533
int i;
1534
1535
for (i = 0; i < 4; i++) {
1536
q = dev->mphy.q_tx[i];
1537
1538
if (!q->queued)
1539
continue;
1540
1541
prev_dma_idx = dev->tx_dma_idx[i];
1542
dma_idx = readl(&q->regs->dma_idx);
1543
dev->tx_dma_idx[i] = dma_idx;
1544
1545
if (dma_idx == prev_dma_idx &&
1546
dma_idx != readl(&q->regs->cpu_idx))
1547
break;
1548
}
1549
1550
return i < 4;
1551
}
1552
1553
static bool mt7603_rx_pse_busy(struct mt7603_dev *dev)
1554
{
1555
u32 addr, val;
1556
1557
if (mt7603_rx_fifo_busy(dev))
1558
goto out;
1559
1560
addr = mt7603_reg_map(dev, MT_CLIENT_BASE_PHYS_ADDR + MT_CLIENT_STATUS);
1561
mt76_wr(dev, addr, 3);
1562
val = mt76_rr(dev, addr) >> 16;
1563
1564
if (!(val & BIT(0)))
1565
return false;
1566
1567
if (is_mt7628(dev))
1568
val &= 0xa000;
1569
else
1570
val &= 0x8000;
1571
if (!val)
1572
return false;
1573
1574
out:
1575
if (mt76_rr(dev, MT_INT_SOURCE_CSR) &
1576
(MT_INT_RX_DONE(0) | MT_INT_RX_DONE(1)))
1577
return false;
1578
1579
return true;
1580
}
1581
1582
static bool
1583
mt7603_watchdog_check(struct mt7603_dev *dev, u8 *counter,
1584
enum mt7603_reset_cause cause,
1585
bool (*check)(struct mt7603_dev *dev))
1586
{
1587
if (dev->reset_test == cause + 1) {
1588
dev->reset_test = 0;
1589
goto trigger;
1590
}
1591
1592
if (check) {
1593
if (!check(dev) && *counter < MT7603_WATCHDOG_TIMEOUT) {
1594
*counter = 0;
1595
return false;
1596
}
1597
1598
(*counter)++;
1599
}
1600
1601
if (*counter < MT7603_WATCHDOG_TIMEOUT)
1602
return false;
1603
trigger:
1604
dev->cur_reset_cause = cause;
1605
dev->reset_cause[cause]++;
1606
return true;
1607
}
1608
1609
void mt7603_update_channel(struct mt76_phy *mphy)
1610
{
1611
struct mt7603_dev *dev = container_of(mphy->dev, struct mt7603_dev, mt76);
1612
struct mt76_channel_state *state;
1613
1614
state = mphy->chan_state;
1615
state->cc_busy += mt76_rr(dev, MT_MIB_STAT_CCA);
1616
}
1617
1618
void
1619
mt7603_edcca_set_strict(struct mt7603_dev *dev, bool val)
1620
{
1621
u32 rxtd_6 = 0xd7c80000;
1622
1623
if (val == dev->ed_strict_mode)
1624
return;
1625
1626
dev->ed_strict_mode = val;
1627
1628
/* Ensure that ED/CCA does not trigger if disabled */
1629
if (!dev->ed_monitor)
1630
rxtd_6 |= FIELD_PREP(MT_RXTD_6_CCAED_TH, 0x34);
1631
else
1632
rxtd_6 |= FIELD_PREP(MT_RXTD_6_CCAED_TH, 0x7d);
1633
1634
if (dev->ed_monitor && !dev->ed_strict_mode)
1635
rxtd_6 |= FIELD_PREP(MT_RXTD_6_ACI_TH, 0x0f);
1636
else
1637
rxtd_6 |= FIELD_PREP(MT_RXTD_6_ACI_TH, 0x10);
1638
1639
mt76_wr(dev, MT_RXTD(6), rxtd_6);
1640
1641
mt76_rmw_field(dev, MT_RXTD(13), MT_RXTD_13_ACI_TH_EN,
1642
dev->ed_monitor && !dev->ed_strict_mode);
1643
}
1644
1645
static void
1646
mt7603_edcca_check(struct mt7603_dev *dev)
1647
{
1648
u32 val = mt76_rr(dev, MT_AGC(41));
1649
ktime_t cur_time;
1650
int rssi0, rssi1;
1651
u32 active;
1652
u32 ed_busy;
1653
1654
if (!dev->ed_monitor)
1655
return;
1656
1657
rssi0 = FIELD_GET(MT_AGC_41_RSSI_0, val);
1658
if (rssi0 > 128)
1659
rssi0 -= 256;
1660
1661
if (dev->mphy.antenna_mask & BIT(1)) {
1662
rssi1 = FIELD_GET(MT_AGC_41_RSSI_1, val);
1663
if (rssi1 > 128)
1664
rssi1 -= 256;
1665
} else {
1666
rssi1 = rssi0;
1667
}
1668
1669
if (max(rssi0, rssi1) >= -40 &&
1670
dev->ed_strong_signal < MT7603_EDCCA_BLOCK_TH)
1671
dev->ed_strong_signal++;
1672
else if (dev->ed_strong_signal > 0)
1673
dev->ed_strong_signal--;
1674
1675
cur_time = ktime_get_boottime();
1676
ed_busy = mt76_rr(dev, MT_MIB_STAT_ED) & MT_MIB_STAT_ED_MASK;
1677
1678
active = ktime_to_us(ktime_sub(cur_time, dev->ed_time));
1679
dev->ed_time = cur_time;
1680
1681
if (!active)
1682
return;
1683
1684
if (100 * ed_busy / active > 90) {
1685
if (dev->ed_trigger < 0)
1686
dev->ed_trigger = 0;
1687
dev->ed_trigger++;
1688
} else {
1689
if (dev->ed_trigger > 0)
1690
dev->ed_trigger = 0;
1691
dev->ed_trigger--;
1692
}
1693
1694
if (dev->ed_trigger > MT7603_EDCCA_BLOCK_TH ||
1695
dev->ed_strong_signal < MT7603_EDCCA_BLOCK_TH / 2) {
1696
mt7603_edcca_set_strict(dev, true);
1697
} else if (dev->ed_trigger < -MT7603_EDCCA_BLOCK_TH) {
1698
mt7603_edcca_set_strict(dev, false);
1699
}
1700
1701
if (dev->ed_trigger > MT7603_EDCCA_BLOCK_TH)
1702
dev->ed_trigger = MT7603_EDCCA_BLOCK_TH;
1703
else if (dev->ed_trigger < -MT7603_EDCCA_BLOCK_TH)
1704
dev->ed_trigger = -MT7603_EDCCA_BLOCK_TH;
1705
}
1706
1707
void mt7603_cca_stats_reset(struct mt7603_dev *dev)
1708
{
1709
mt76_set(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_RESET);
1710
mt76_clear(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_RESET);
1711
mt76_set(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_EN);
1712
}
1713
1714
static void
1715
mt7603_adjust_sensitivity(struct mt7603_dev *dev)
1716
{
1717
u32 agc0 = dev->agc0, agc3 = dev->agc3;
1718
u32 adj;
1719
1720
if (!dev->sensitivity || dev->sensitivity < -100) {
1721
dev->sensitivity = 0;
1722
} else if (dev->sensitivity <= -84) {
1723
adj = 7 + (dev->sensitivity + 92) / 2;
1724
1725
agc0 = 0x56f0076f;
1726
agc0 |= adj << 12;
1727
agc0 |= adj << 16;
1728
agc3 = 0x81d0d5e3;
1729
} else if (dev->sensitivity <= -72) {
1730
adj = 7 + (dev->sensitivity + 80) / 2;
1731
1732
agc0 = 0x6af0006f;
1733
agc0 |= adj << 8;
1734
agc0 |= adj << 12;
1735
agc0 |= adj << 16;
1736
1737
agc3 = 0x8181d5e3;
1738
} else {
1739
if (dev->sensitivity > -54)
1740
dev->sensitivity = -54;
1741
1742
adj = 7 + (dev->sensitivity + 80) / 2;
1743
1744
agc0 = 0x7ff0000f;
1745
agc0 |= adj << 4;
1746
agc0 |= adj << 8;
1747
agc0 |= adj << 12;
1748
agc0 |= adj << 16;
1749
1750
agc3 = 0x818181e3;
1751
}
1752
1753
mt76_wr(dev, MT_AGC(0), agc0);
1754
mt76_wr(dev, MT_AGC1(0), agc0);
1755
1756
mt76_wr(dev, MT_AGC(3), agc3);
1757
mt76_wr(dev, MT_AGC1(3), agc3);
1758
}
1759
1760
static void
1761
mt7603_false_cca_check(struct mt7603_dev *dev)
1762
{
1763
int pd_cck, pd_ofdm, mdrdy_cck, mdrdy_ofdm;
1764
int false_cca;
1765
int min_signal;
1766
u32 val;
1767
1768
if (!dev->dynamic_sensitivity)
1769
return;
1770
1771
val = mt76_rr(dev, MT_PHYCTRL_STAT_PD);
1772
pd_cck = FIELD_GET(MT_PHYCTRL_STAT_PD_CCK, val);
1773
pd_ofdm = FIELD_GET(MT_PHYCTRL_STAT_PD_OFDM, val);
1774
1775
val = mt76_rr(dev, MT_PHYCTRL_STAT_MDRDY);
1776
mdrdy_cck = FIELD_GET(MT_PHYCTRL_STAT_MDRDY_CCK, val);
1777
mdrdy_ofdm = FIELD_GET(MT_PHYCTRL_STAT_MDRDY_OFDM, val);
1778
1779
dev->false_cca_ofdm = pd_ofdm - mdrdy_ofdm;
1780
dev->false_cca_cck = pd_cck - mdrdy_cck;
1781
1782
mt7603_cca_stats_reset(dev);
1783
1784
min_signal = mt76_get_min_avg_rssi(&dev->mt76, 0);
1785
if (!min_signal) {
1786
dev->sensitivity = 0;
1787
dev->last_cca_adj = jiffies;
1788
goto out;
1789
}
1790
1791
min_signal -= 15;
1792
1793
false_cca = dev->false_cca_ofdm + dev->false_cca_cck;
1794
if (false_cca > 600 &&
1795
dev->sensitivity < -100 + dev->sensitivity_limit) {
1796
if (!dev->sensitivity)
1797
dev->sensitivity = -92;
1798
else
1799
dev->sensitivity += 2;
1800
dev->last_cca_adj = jiffies;
1801
} else if (false_cca < 100 ||
1802
time_after(jiffies, dev->last_cca_adj + 10 * HZ)) {
1803
dev->last_cca_adj = jiffies;
1804
if (!dev->sensitivity)
1805
goto out;
1806
1807
dev->sensitivity -= 2;
1808
}
1809
1810
if (dev->sensitivity && dev->sensitivity > min_signal) {
1811
dev->sensitivity = min_signal;
1812
dev->last_cca_adj = jiffies;
1813
}
1814
1815
out:
1816
mt7603_adjust_sensitivity(dev);
1817
}
1818
1819
void mt7603_mac_work(struct work_struct *work)
1820
{
1821
struct mt7603_dev *dev = container_of(work, struct mt7603_dev,
1822
mphy.mac_work.work);
1823
bool reset = false;
1824
int i, idx;
1825
1826
mt76_tx_status_check(&dev->mt76, false);
1827
1828
mutex_lock(&dev->mt76.mutex);
1829
1830
dev->mphy.mac_work_count++;
1831
mt76_update_survey(&dev->mphy);
1832
mt7603_edcca_check(dev);
1833
1834
for (i = 0, idx = 0; i < 2; i++) {
1835
u32 val = mt76_rr(dev, MT_TX_AGG_CNT(i));
1836
1837
dev->mphy.aggr_stats[idx++] += val & 0xffff;
1838
dev->mphy.aggr_stats[idx++] += val >> 16;
1839
}
1840
1841
if (dev->mphy.mac_work_count == 10)
1842
mt7603_false_cca_check(dev);
1843
1844
if (mt7603_watchdog_check(dev, &dev->rx_pse_check,
1845
RESET_CAUSE_RX_PSE_BUSY,
1846
mt7603_rx_pse_busy) ||
1847
mt7603_watchdog_check(dev, &dev->beacon_check,
1848
RESET_CAUSE_BEACON_STUCK,
1849
NULL) ||
1850
mt7603_watchdog_check(dev, &dev->tx_hang_check,
1851
RESET_CAUSE_TX_HANG,
1852
mt7603_tx_hang) ||
1853
mt7603_watchdog_check(dev, &dev->tx_dma_check,
1854
RESET_CAUSE_TX_BUSY,
1855
mt7603_tx_dma_busy) ||
1856
mt7603_watchdog_check(dev, &dev->rx_dma_check,
1857
RESET_CAUSE_RX_BUSY,
1858
mt7603_rx_dma_busy) ||
1859
mt7603_watchdog_check(dev, &dev->mcu_hang,
1860
RESET_CAUSE_MCU_HANG,
1861
NULL) ||
1862
dev->reset_cause[RESET_CAUSE_RESET_FAILED]) {
1863
dev->beacon_check = 0;
1864
dev->tx_dma_check = 0;
1865
dev->tx_hang_check = 0;
1866
dev->rx_dma_check = 0;
1867
dev->rx_pse_check = 0;
1868
dev->mcu_hang = 0;
1869
dev->rx_dma_idx = ~0;
1870
memset(dev->tx_dma_idx, 0xff, sizeof(dev->tx_dma_idx));
1871
reset = true;
1872
dev->mphy.mac_work_count = 0;
1873
}
1874
1875
if (dev->mphy.mac_work_count >= 10)
1876
dev->mphy.mac_work_count = 0;
1877
1878
mutex_unlock(&dev->mt76.mutex);
1879
1880
if (reset)
1881
mt7603_mac_watchdog_reset(dev);
1882
1883
ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work,
1884
msecs_to_jiffies(MT7603_WATCHDOG_TIME));
1885
}
1886
1887