Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/cmd/zdb/zdb.c
48378 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
23
/*
24
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25
* Copyright (c) 2011, 2019 by Delphix. All rights reserved.
26
* Copyright (c) 2014 Integros [integros.com]
27
* Copyright 2016 Nexenta Systems, Inc.
28
* Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
29
* Copyright (c) 2015, 2017, Intel Corporation.
30
* Copyright (c) 2020 Datto Inc.
31
* Copyright (c) 2020, The FreeBSD Foundation [1]
32
*
33
* [1] Portions of this software were developed by Allan Jude
34
* under sponsorship from the FreeBSD Foundation.
35
* Copyright (c) 2021 Allan Jude
36
* Copyright (c) 2021 Toomas Soome <[email protected]>
37
* Copyright (c) 2023, 2024, Klara Inc.
38
* Copyright (c) 2023, Rob Norris <[email protected]>
39
*/
40
41
#include <stdio.h>
42
#include <unistd.h>
43
#include <stdlib.h>
44
#include <ctype.h>
45
#include <getopt.h>
46
#include <openssl/evp.h>
47
#include <sys/zfs_context.h>
48
#include <sys/spa.h>
49
#include <sys/spa_impl.h>
50
#include <sys/dmu.h>
51
#include <sys/zap.h>
52
#include <sys/zap_impl.h>
53
#include <sys/fs/zfs.h>
54
#include <sys/zfs_znode.h>
55
#include <sys/zfs_sa.h>
56
#include <sys/sa.h>
57
#include <sys/sa_impl.h>
58
#include <sys/vdev.h>
59
#include <sys/vdev_impl.h>
60
#include <sys/metaslab_impl.h>
61
#include <sys/dmu_objset.h>
62
#include <sys/dsl_dir.h>
63
#include <sys/dsl_dataset.h>
64
#include <sys/dsl_pool.h>
65
#include <sys/dsl_bookmark.h>
66
#include <sys/dbuf.h>
67
#include <sys/zil.h>
68
#include <sys/zil_impl.h>
69
#include <sys/stat.h>
70
#include <sys/resource.h>
71
#include <sys/dmu_send.h>
72
#include <sys/dmu_traverse.h>
73
#include <sys/zio_checksum.h>
74
#include <sys/zio_compress.h>
75
#include <sys/zfs_fuid.h>
76
#include <sys/arc.h>
77
#include <sys/arc_impl.h>
78
#include <sys/ddt.h>
79
#include <sys/ddt_impl.h>
80
#include <sys/zfeature.h>
81
#include <sys/abd.h>
82
#include <sys/blkptr.h>
83
#include <sys/dsl_crypt.h>
84
#include <sys/dsl_scan.h>
85
#include <sys/btree.h>
86
#include <sys/brt.h>
87
#include <sys/brt_impl.h>
88
#include <zfs_comutil.h>
89
#include <sys/zstd/zstd.h>
90
#include <sys/backtrace.h>
91
92
#include <libnvpair.h>
93
#include <libzutil.h>
94
#include <libzfs_core.h>
95
96
#include <libzdb.h>
97
98
#include "zdb.h"
99
100
101
extern int reference_tracking_enable;
102
extern int zfs_recover;
103
extern uint_t zfs_vdev_async_read_max_active;
104
extern boolean_t spa_load_verify_dryrun;
105
extern boolean_t spa_mode_readable_spacemaps;
106
extern uint_t zfs_reconstruct_indirect_combinations_max;
107
extern uint_t zfs_btree_verify_intensity;
108
109
enum {
110
ARG_ALLOCATED = 256,
111
ARG_BLOCK_BIN_MODE,
112
ARG_BLOCK_CLASSES,
113
};
114
115
static const char cmdname[] = "zdb";
116
uint8_t dump_opt[512];
117
118
typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
119
120
static uint64_t *zopt_metaslab = NULL;
121
static unsigned zopt_metaslab_args = 0;
122
123
124
static zopt_object_range_t *zopt_object_ranges = NULL;
125
static unsigned zopt_object_args = 0;
126
127
static int flagbits[256];
128
129
130
static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
131
static int leaked_objects = 0;
132
static zfs_range_tree_t *mos_refd_objs;
133
static spa_t *spa;
134
static objset_t *os;
135
static boolean_t kernel_init_done;
136
static boolean_t corruption_found = B_FALSE;
137
138
static enum {
139
BIN_AUTO = 0,
140
BIN_PSIZE,
141
BIN_LSIZE,
142
BIN_ASIZE,
143
} block_bin_mode = BIN_AUTO;
144
145
static enum {
146
CLASS_NORMAL = 1 << 1,
147
CLASS_SPECIAL = 1 << 2,
148
CLASS_DEDUP = 1 << 3,
149
CLASS_OTHER = 1 << 4,
150
} block_classes = 0;
151
152
static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
153
boolean_t);
154
static void mos_obj_refd(uint64_t);
155
static void mos_obj_refd_multiple(uint64_t);
156
static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
157
dmu_tx_t *tx);
158
159
160
161
static void zdb_print_blkptr(const blkptr_t *bp, int flags);
162
static void zdb_exit(int reason);
163
164
typedef struct sublivelist_verify_block_refcnt {
165
/* block pointer entry in livelist being verified */
166
blkptr_t svbr_blk;
167
168
/*
169
* Refcount gets incremented to 1 when we encounter the first
170
* FREE entry for the svfbr block pointer and a node for it
171
* is created in our ZDB verification/tracking metadata.
172
*
173
* As we encounter more FREE entries we increment this counter
174
* and similarly decrement it whenever we find the respective
175
* ALLOC entries for this block.
176
*
177
* When the refcount gets to 0 it means that all the FREE and
178
* ALLOC entries of this block have paired up and we no longer
179
* need to track it in our verification logic (e.g. the node
180
* containing this struct in our verification data structure
181
* should be freed).
182
*
183
* [refer to sublivelist_verify_blkptr() for the actual code]
184
*/
185
uint32_t svbr_refcnt;
186
} sublivelist_verify_block_refcnt_t;
187
188
static int
189
sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
190
{
191
const sublivelist_verify_block_refcnt_t *l = larg;
192
const sublivelist_verify_block_refcnt_t *r = rarg;
193
return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
194
}
195
196
static int
197
sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
198
dmu_tx_t *tx)
199
{
200
ASSERT0P(tx);
201
struct sublivelist_verify *sv = arg;
202
sublivelist_verify_block_refcnt_t current = {
203
.svbr_blk = *bp,
204
205
/*
206
* Start with 1 in case this is the first free entry.
207
* This field is not used for our B-Tree comparisons
208
* anyway.
209
*/
210
.svbr_refcnt = 1,
211
};
212
213
zfs_btree_index_t where;
214
sublivelist_verify_block_refcnt_t *pair =
215
zfs_btree_find(&sv->sv_pair, &current, &where);
216
if (free) {
217
if (pair == NULL) {
218
/* first free entry for this block pointer */
219
zfs_btree_add(&sv->sv_pair, &current);
220
} else {
221
pair->svbr_refcnt++;
222
}
223
} else {
224
if (pair == NULL) {
225
/* block that is currently marked as allocated */
226
for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
227
if (DVA_IS_EMPTY(&bp->blk_dva[i]))
228
break;
229
sublivelist_verify_block_t svb = {
230
.svb_dva = bp->blk_dva[i],
231
.svb_allocated_txg =
232
BP_GET_BIRTH(bp)
233
};
234
235
if (zfs_btree_find(&sv->sv_leftover, &svb,
236
&where) == NULL) {
237
zfs_btree_add_idx(&sv->sv_leftover,
238
&svb, &where);
239
}
240
}
241
} else {
242
/* alloc matches a free entry */
243
pair->svbr_refcnt--;
244
if (pair->svbr_refcnt == 0) {
245
/* all allocs and frees have been matched */
246
zfs_btree_remove_idx(&sv->sv_pair, &where);
247
}
248
}
249
}
250
251
return (0);
252
}
253
254
static int
255
sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
256
{
257
int err;
258
struct sublivelist_verify *sv = args;
259
260
zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL,
261
sizeof (sublivelist_verify_block_refcnt_t));
262
263
err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
264
sv, NULL);
265
266
sublivelist_verify_block_refcnt_t *e;
267
zfs_btree_index_t *cookie = NULL;
268
while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
269
char blkbuf[BP_SPRINTF_LEN];
270
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
271
&e->svbr_blk, B_TRUE);
272
(void) printf("\tERROR: %d unmatched FREE(s): %s\n",
273
e->svbr_refcnt, blkbuf);
274
corruption_found = B_TRUE;
275
}
276
zfs_btree_destroy(&sv->sv_pair);
277
278
return (err);
279
}
280
281
static int
282
livelist_block_compare(const void *larg, const void *rarg)
283
{
284
const sublivelist_verify_block_t *l = larg;
285
const sublivelist_verify_block_t *r = rarg;
286
287
if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
288
return (-1);
289
else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
290
return (+1);
291
292
if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
293
return (-1);
294
else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
295
return (+1);
296
297
if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
298
return (-1);
299
else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
300
return (+1);
301
302
return (0);
303
}
304
305
/*
306
* Check for errors in a livelist while tracking all unfreed ALLOCs in the
307
* sublivelist_verify_t: sv->sv_leftover
308
*/
309
static void
310
livelist_verify(dsl_deadlist_t *dl, void *arg)
311
{
312
sublivelist_verify_t *sv = arg;
313
dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
314
}
315
316
/*
317
* Check for errors in the livelist entry and discard the intermediary
318
* data structures
319
*/
320
static int
321
sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
322
{
323
(void) args;
324
sublivelist_verify_t sv;
325
zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
326
sizeof (sublivelist_verify_block_t));
327
int err = sublivelist_verify_func(&sv, dle);
328
zfs_btree_clear(&sv.sv_leftover);
329
zfs_btree_destroy(&sv.sv_leftover);
330
return (err);
331
}
332
333
typedef struct metaslab_verify {
334
/*
335
* Tree containing all the leftover ALLOCs from the livelists
336
* that are part of this metaslab.
337
*/
338
zfs_btree_t mv_livelist_allocs;
339
340
/*
341
* Metaslab information.
342
*/
343
uint64_t mv_vdid;
344
uint64_t mv_msid;
345
uint64_t mv_start;
346
uint64_t mv_end;
347
348
/*
349
* What's currently allocated for this metaslab.
350
*/
351
zfs_range_tree_t *mv_allocated;
352
} metaslab_verify_t;
353
354
typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
355
356
typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
357
void *arg);
358
359
typedef struct unflushed_iter_cb_arg {
360
spa_t *uic_spa;
361
uint64_t uic_txg;
362
void *uic_arg;
363
zdb_log_sm_cb_t uic_cb;
364
} unflushed_iter_cb_arg_t;
365
366
static int
367
iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
368
{
369
unflushed_iter_cb_arg_t *uic = arg;
370
return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
371
}
372
373
static void
374
iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
375
{
376
if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
377
return;
378
379
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
380
for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
381
sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
382
space_map_t *sm = NULL;
383
VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
384
sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
385
386
unflushed_iter_cb_arg_t uic = {
387
.uic_spa = spa,
388
.uic_txg = sls->sls_txg,
389
.uic_arg = arg,
390
.uic_cb = cb
391
};
392
VERIFY0(space_map_iterate(sm, space_map_length(sm),
393
iterate_through_spacemap_logs_cb, &uic));
394
space_map_close(sm);
395
}
396
spa_config_exit(spa, SCL_CONFIG, FTAG);
397
}
398
399
static void
400
verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
401
uint64_t offset, uint64_t size)
402
{
403
sublivelist_verify_block_t svb = {{{0}}};
404
DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
405
DVA_SET_OFFSET(&svb.svb_dva, offset);
406
DVA_SET_ASIZE(&svb.svb_dva, 0);
407
zfs_btree_index_t where;
408
uint64_t end_offset = offset + size;
409
410
/*
411
* Look for an exact match for spacemap entry in the livelist entries.
412
* Then, look for other livelist entries that fall within the range
413
* of the spacemap entry as it may have been condensed
414
*/
415
sublivelist_verify_block_t *found =
416
zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
417
if (found == NULL) {
418
found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
419
}
420
for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
421
DVA_GET_OFFSET(&found->svb_dva) < end_offset;
422
found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
423
if (found->svb_allocated_txg <= txg) {
424
(void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
425
"from TXG %llx FREED at TXG %llx\n",
426
(u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
427
(u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
428
(u_longlong_t)found->svb_allocated_txg,
429
(u_longlong_t)txg);
430
corruption_found = B_TRUE;
431
}
432
}
433
}
434
435
static int
436
metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
437
{
438
metaslab_verify_t *mv = arg;
439
uint64_t offset = sme->sme_offset;
440
uint64_t size = sme->sme_run;
441
uint64_t txg = sme->sme_txg;
442
443
if (sme->sme_type == SM_ALLOC) {
444
if (zfs_range_tree_contains(mv->mv_allocated,
445
offset, size)) {
446
(void) printf("ERROR: DOUBLE ALLOC: "
447
"%llu [%llx:%llx] "
448
"%llu:%llu LOG_SM\n",
449
(u_longlong_t)txg, (u_longlong_t)offset,
450
(u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
451
(u_longlong_t)mv->mv_msid);
452
corruption_found = B_TRUE;
453
} else {
454
zfs_range_tree_add(mv->mv_allocated,
455
offset, size);
456
}
457
} else {
458
if (!zfs_range_tree_contains(mv->mv_allocated,
459
offset, size)) {
460
(void) printf("ERROR: DOUBLE FREE: "
461
"%llu [%llx:%llx] "
462
"%llu:%llu LOG_SM\n",
463
(u_longlong_t)txg, (u_longlong_t)offset,
464
(u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
465
(u_longlong_t)mv->mv_msid);
466
corruption_found = B_TRUE;
467
} else {
468
zfs_range_tree_remove(mv->mv_allocated,
469
offset, size);
470
}
471
}
472
473
if (sme->sme_type != SM_ALLOC) {
474
/*
475
* If something is freed in the spacemap, verify that
476
* it is not listed as allocated in the livelist.
477
*/
478
verify_livelist_allocs(mv, txg, offset, size);
479
}
480
return (0);
481
}
482
483
static int
484
spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
485
uint64_t txg, void *arg)
486
{
487
metaslab_verify_t *mv = arg;
488
uint64_t offset = sme->sme_offset;
489
uint64_t vdev_id = sme->sme_vdev;
490
491
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
492
493
/* skip indirect vdevs */
494
if (!vdev_is_concrete(vd))
495
return (0);
496
497
if (vdev_id != mv->mv_vdid)
498
return (0);
499
500
metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
501
if (ms->ms_id != mv->mv_msid)
502
return (0);
503
504
if (txg < metaslab_unflushed_txg(ms))
505
return (0);
506
507
508
ASSERT3U(txg, ==, sme->sme_txg);
509
return (metaslab_spacemap_validation_cb(sme, mv));
510
}
511
512
static void
513
spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
514
{
515
iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
516
}
517
518
static void
519
spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv)
520
{
521
if (sm == NULL)
522
return;
523
524
VERIFY0(space_map_iterate(sm, space_map_length(sm),
525
metaslab_spacemap_validation_cb, mv));
526
}
527
528
static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
529
530
/*
531
* Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
532
* they are part of that metaslab (mv_msid).
533
*/
534
static void
535
mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
536
{
537
zfs_btree_index_t where;
538
sublivelist_verify_block_t *svb;
539
ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
540
for (svb = zfs_btree_first(&sv->sv_leftover, &where);
541
svb != NULL;
542
svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
543
if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
544
continue;
545
546
if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
547
(DVA_GET_OFFSET(&svb->svb_dva) +
548
DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
549
(void) printf("ERROR: Found block that crosses "
550
"metaslab boundary: <%llu:%llx:%llx>\n",
551
(u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
552
(u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
553
(u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
554
corruption_found = B_TRUE;
555
continue;
556
}
557
558
if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
559
continue;
560
561
if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
562
continue;
563
564
if ((DVA_GET_OFFSET(&svb->svb_dva) +
565
DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
566
(void) printf("ERROR: Found block that crosses "
567
"metaslab boundary: <%llu:%llx:%llx>\n",
568
(u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
569
(u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
570
(u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
571
corruption_found = B_TRUE;
572
continue;
573
}
574
575
zfs_btree_add(&mv->mv_livelist_allocs, svb);
576
}
577
578
for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
579
svb != NULL;
580
svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
581
zfs_btree_remove(&sv->sv_leftover, svb);
582
}
583
}
584
585
/*
586
* [Livelist Check]
587
* Iterate through all the sublivelists and:
588
* - report leftover frees (**)
589
* - record leftover ALLOCs together with their TXG [see Cross Check]
590
*
591
* (**) Note: Double ALLOCs are valid in datasets that have dedup
592
* enabled. Similarly double FREEs are allowed as well but
593
* only if they pair up with a corresponding ALLOC entry once
594
* we our done with our sublivelist iteration.
595
*
596
* [Spacemap Check]
597
* for each metaslab:
598
* - iterate over spacemap and then the metaslab's entries in the
599
* spacemap log, then report any double FREEs and ALLOCs (do not
600
* blow up).
601
*
602
* [Cross Check]
603
* After finishing the Livelist Check phase and while being in the
604
* Spacemap Check phase, we find all the recorded leftover ALLOCs
605
* of the livelist check that are part of the metaslab that we are
606
* currently looking at in the Spacemap Check. We report any entries
607
* that are marked as ALLOCs in the livelists but have been actually
608
* freed (and potentially allocated again) after their TXG stamp in
609
* the spacemaps. Also report any ALLOCs from the livelists that
610
* belong to indirect vdevs (e.g. their vdev completed removal).
611
*
612
* Note that this will miss Log Spacemap entries that cancelled each other
613
* out before being flushed to the metaslab, so we are not guaranteed
614
* to match all erroneous ALLOCs.
615
*/
616
static void
617
livelist_metaslab_validate(spa_t *spa)
618
{
619
(void) printf("Verifying deleted livelist entries\n");
620
621
sublivelist_verify_t sv;
622
zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
623
sizeof (sublivelist_verify_block_t));
624
iterate_deleted_livelists(spa, livelist_verify, &sv);
625
626
(void) printf("Verifying metaslab entries\n");
627
vdev_t *rvd = spa->spa_root_vdev;
628
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
629
vdev_t *vd = rvd->vdev_child[c];
630
631
if (!vdev_is_concrete(vd))
632
continue;
633
634
for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
635
metaslab_t *m = vd->vdev_ms[mid];
636
637
(void) fprintf(stderr,
638
"\rverifying concrete vdev %llu, "
639
"metaslab %llu of %llu ...",
640
(longlong_t)vd->vdev_id,
641
(longlong_t)mid,
642
(longlong_t)vd->vdev_ms_count);
643
644
uint64_t shift, start;
645
zfs_range_seg_type_t type =
646
metaslab_calculate_range_tree_type(vd, m,
647
&start, &shift);
648
metaslab_verify_t mv;
649
mv.mv_allocated = zfs_range_tree_create_flags(
650
NULL, type, NULL, start, shift,
651
0, "livelist_metaslab_validate:mv_allocated");
652
mv.mv_vdid = vd->vdev_id;
653
mv.mv_msid = m->ms_id;
654
mv.mv_start = m->ms_start;
655
mv.mv_end = m->ms_start + m->ms_size;
656
zfs_btree_create(&mv.mv_livelist_allocs,
657
livelist_block_compare, NULL,
658
sizeof (sublivelist_verify_block_t));
659
660
mv_populate_livelist_allocs(&mv, &sv);
661
662
spacemap_check_ms_sm(m->ms_sm, &mv);
663
spacemap_check_sm_log(spa, &mv);
664
665
zfs_range_tree_vacate(mv.mv_allocated, NULL, NULL);
666
zfs_range_tree_destroy(mv.mv_allocated);
667
zfs_btree_clear(&mv.mv_livelist_allocs);
668
zfs_btree_destroy(&mv.mv_livelist_allocs);
669
}
670
}
671
(void) fprintf(stderr, "\n");
672
673
/*
674
* If there are any segments in the leftover tree after we walked
675
* through all the metaslabs in the concrete vdevs then this means
676
* that we have segments in the livelists that belong to indirect
677
* vdevs and are marked as allocated.
678
*/
679
if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
680
zfs_btree_destroy(&sv.sv_leftover);
681
return;
682
}
683
(void) printf("ERROR: Found livelist blocks marked as allocated "
684
"for indirect vdevs:\n");
685
corruption_found = B_TRUE;
686
687
zfs_btree_index_t *where = NULL;
688
sublivelist_verify_block_t *svb;
689
while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
690
NULL) {
691
int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
692
ASSERT3U(vdev_id, <, rvd->vdev_children);
693
vdev_t *vd = rvd->vdev_child[vdev_id];
694
ASSERT(!vdev_is_concrete(vd));
695
(void) printf("<%d:%llx:%llx> TXG %llx\n",
696
vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
697
(u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
698
(u_longlong_t)svb->svb_allocated_txg);
699
}
700
(void) printf("\n");
701
zfs_btree_destroy(&sv.sv_leftover);
702
}
703
704
/*
705
* These libumem hooks provide a reasonable set of defaults for the allocator's
706
* debugging facilities.
707
*/
708
const char *
709
_umem_debug_init(void)
710
{
711
return ("default,verbose"); /* $UMEM_DEBUG setting */
712
}
713
714
const char *
715
_umem_logging_init(void)
716
{
717
return ("fail,contents"); /* $UMEM_LOGGING setting */
718
}
719
720
static void
721
usage(void)
722
{
723
(void) fprintf(stderr,
724
"Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
725
"[-I <inflight I/Os>]\n"
726
"\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
727
"\t\t[-K <key>]\n"
728
"\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
729
"\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n"
730
"\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
731
"\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n"
732
"\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
733
"\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n"
734
"\t%s [-v] <bookmark>\n"
735
"\t%s -C [-A] [-U <cache>] [<poolname>]\n"
736
"\t%s -l [-Aqu] <device>\n"
737
"\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
738
"[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
739
"\t%s -O [-K <key>] <dataset> <path>\n"
740
"\t%s -r [-K <key>] <dataset> <path> <destination>\n"
741
"\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
742
"\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
743
"\t%s -E [-A] word0:word1:...:word15\n"
744
"\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
745
"<poolname>\n\n",
746
cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
747
cmdname, cmdname, cmdname, cmdname, cmdname);
748
749
(void) fprintf(stderr, " Dataset name must include at least one "
750
"separator character '/' or '@'\n");
751
(void) fprintf(stderr, " If dataset name is specified, only that "
752
"dataset is dumped\n");
753
(void) fprintf(stderr, " If object numbers or object number "
754
"ranges are specified, only those\n"
755
" objects or ranges are dumped.\n\n");
756
(void) fprintf(stderr,
757
" Object ranges take the form <start>:<end>[:<flags>]\n"
758
" start Starting object number\n"
759
" end Ending object number, or -1 for no upper bound\n"
760
" flags Optional flags to select object types:\n"
761
" A All objects (this is the default)\n"
762
" d ZFS directories\n"
763
" f ZFS files \n"
764
" m SPA space maps\n"
765
" z ZAPs\n"
766
" - Negate effect of next flag\n\n");
767
(void) fprintf(stderr, " Options to control amount of output:\n");
768
(void) fprintf(stderr, " -b --block-stats "
769
"block statistics\n");
770
(void) fprintf(stderr, " --bin=(lsize|psize|asize) "
771
"bin blocks based on this size in all three columns\n");
772
(void) fprintf(stderr,
773
" --class=(normal|special|dedup|other)[,...]\n"
774
" only consider blocks from "
775
"these allocation classes\n");
776
(void) fprintf(stderr, " -B --backup "
777
"backup stream\n");
778
(void) fprintf(stderr, " -c --checksum "
779
"checksum all metadata (twice for all data) blocks\n");
780
(void) fprintf(stderr, " -C --config "
781
"config (or cachefile if alone)\n");
782
(void) fprintf(stderr, " -d --datasets "
783
"dataset(s)\n");
784
(void) fprintf(stderr, " -D --dedup-stats "
785
"dedup statistics\n");
786
(void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n"
787
" decode and display block "
788
"from an embedded block pointer\n");
789
(void) fprintf(stderr, " -h --history "
790
"pool history\n");
791
(void) fprintf(stderr, " -i --intent-logs "
792
"intent logs\n");
793
(void) fprintf(stderr, " -l --label "
794
"read label contents\n");
795
(void) fprintf(stderr, " -k --checkpointed-state "
796
"examine the checkpointed state of the pool\n");
797
(void) fprintf(stderr, " -L --disable-leak-tracking "
798
"disable leak tracking (do not load spacemaps)\n");
799
(void) fprintf(stderr, " -m --metaslabs "
800
"metaslabs\n");
801
(void) fprintf(stderr, " -M --metaslab-groups "
802
"metaslab groups\n");
803
(void) fprintf(stderr, " -O --object-lookups "
804
"perform object lookups by path\n");
805
(void) fprintf(stderr, " -r --copy-object "
806
"copy an object by path to file\n");
807
(void) fprintf(stderr, " -R --read-block "
808
"read and display block from a device\n");
809
(void) fprintf(stderr, " -s --io-stats "
810
"report stats on zdb's I/O\n");
811
(void) fprintf(stderr, " -S --simulate-dedup "
812
"simulate dedup to measure effect\n");
813
(void) fprintf(stderr, " -v --verbose "
814
"verbose (applies to all others)\n");
815
(void) fprintf(stderr, " -y --livelist "
816
"perform livelist and metaslab validation on any livelists being "
817
"deleted\n\n");
818
(void) fprintf(stderr, " Below options are intended for use "
819
"with other options:\n");
820
(void) fprintf(stderr, " -A --ignore-assertions "
821
"ignore assertions (-A), enable panic recovery (-AA) or both "
822
"(-AAA)\n");
823
(void) fprintf(stderr, " -e --exported "
824
"pool is exported/destroyed/has altroot/not in a cachefile\n");
825
(void) fprintf(stderr, " -F --automatic-rewind "
826
"attempt automatic rewind within safe range of transaction "
827
"groups\n");
828
(void) fprintf(stderr, " -G --dump-debug-msg "
829
"dump zfs_dbgmsg buffer before exiting\n");
830
(void) fprintf(stderr, " -I --inflight=INTEGER "
831
"specify the maximum number of checksumming I/Os "
832
"[default is 200]\n");
833
(void) fprintf(stderr, " -K --key=KEY "
834
"decryption key for encrypted dataset\n");
835
(void) fprintf(stderr, " -o --option=\"NAME=VALUE\" "
836
"set the named tunable to the given value\n");
837
(void) fprintf(stderr, " -p --path==PATH "
838
"use one or more with -e to specify path to vdev dir\n");
839
(void) fprintf(stderr, " -P --parseable "
840
"print numbers in parseable form\n");
841
(void) fprintf(stderr, " -q --skip-label "
842
"don't print label contents\n");
843
(void) fprintf(stderr, " -t --txg=INTEGER "
844
"highest txg to use when searching for uberblocks\n");
845
(void) fprintf(stderr, " -T --brt-stats "
846
"BRT statistics\n");
847
(void) fprintf(stderr, " -u --uberblock "
848
"uberblock\n");
849
(void) fprintf(stderr, " -U --cachefile=PATH "
850
"use alternate cachefile\n");
851
(void) fprintf(stderr, " -V --verbatim "
852
"do verbatim import\n");
853
(void) fprintf(stderr, " -x --dump-blocks=PATH "
854
"dump all read blocks into specified directory\n");
855
(void) fprintf(stderr, " -X --extreme-rewind "
856
"attempt extreme rewind (does not work with dataset)\n");
857
(void) fprintf(stderr, " -Y --all-reconstruction "
858
"attempt all reconstruction combinations for split blocks\n");
859
(void) fprintf(stderr, " -Z --zstd-headers "
860
"show ZSTD headers \n");
861
(void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
862
"to make only that option verbose\n");
863
(void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
864
zdb_exit(2);
865
}
866
867
static void
868
dump_debug_buffer(void)
869
{
870
ssize_t ret __attribute__((unused));
871
872
if (!dump_opt['G'])
873
return;
874
/*
875
* We use write() instead of printf() so that this function
876
* is safe to call from a signal handler.
877
*/
878
ret = write(STDERR_FILENO, "\n", 1);
879
zfs_dbgmsg_print(STDERR_FILENO, "zdb");
880
}
881
882
static void sig_handler(int signo)
883
{
884
struct sigaction action;
885
886
libspl_backtrace(STDERR_FILENO);
887
dump_debug_buffer();
888
889
/*
890
* Restore default action and re-raise signal so SIGSEGV and
891
* SIGABRT can trigger a core dump.
892
*/
893
action.sa_handler = SIG_DFL;
894
sigemptyset(&action.sa_mask);
895
action.sa_flags = 0;
896
(void) sigaction(signo, &action, NULL);
897
raise(signo);
898
}
899
900
/*
901
* Called for usage errors that are discovered after a call to spa_open(),
902
* dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
903
*/
904
905
static void
906
fatal(const char *fmt, ...)
907
{
908
va_list ap;
909
910
va_start(ap, fmt);
911
(void) fprintf(stderr, "%s: ", cmdname);
912
(void) vfprintf(stderr, fmt, ap);
913
va_end(ap);
914
(void) fprintf(stderr, "\n");
915
916
dump_debug_buffer();
917
918
zdb_exit(1);
919
}
920
921
static void
922
dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
923
{
924
(void) size;
925
nvlist_t *nv;
926
size_t nvsize = *(uint64_t *)data;
927
char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
928
929
VERIFY0(dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
930
931
VERIFY0(nvlist_unpack(packed, nvsize, &nv, 0));
932
933
umem_free(packed, nvsize);
934
935
dump_nvlist(nv, 8);
936
937
nvlist_free(nv);
938
}
939
940
static void
941
dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
942
{
943
(void) os, (void) object, (void) size;
944
spa_history_phys_t *shp = data;
945
946
if (shp == NULL)
947
return;
948
949
(void) printf("\t\tpool_create_len = %llu\n",
950
(u_longlong_t)shp->sh_pool_create_len);
951
(void) printf("\t\tphys_max_off = %llu\n",
952
(u_longlong_t)shp->sh_phys_max_off);
953
(void) printf("\t\tbof = %llu\n",
954
(u_longlong_t)shp->sh_bof);
955
(void) printf("\t\teof = %llu\n",
956
(u_longlong_t)shp->sh_eof);
957
(void) printf("\t\trecords_lost = %llu\n",
958
(u_longlong_t)shp->sh_records_lost);
959
}
960
961
static void
962
zdb_nicenum(uint64_t num, char *buf, size_t buflen)
963
{
964
if (dump_opt['P'])
965
(void) snprintf(buf, buflen, "%llu", (longlong_t)num);
966
else
967
nicenum(num, buf, buflen);
968
}
969
970
static void
971
zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen)
972
{
973
if (dump_opt['P'])
974
(void) snprintf(buf, buflen, "%llu", (longlong_t)bytes);
975
else
976
zfs_nicebytes(bytes, buf, buflen);
977
}
978
979
static const char histo_stars[] = "****************************************";
980
static const uint64_t histo_width = sizeof (histo_stars) - 1;
981
982
static void
983
dump_histogram(const uint64_t *histo, int size, int offset)
984
{
985
int i;
986
int minidx = size - 1;
987
int maxidx = 0;
988
uint64_t max = 0;
989
990
for (i = 0; i < size; i++) {
991
if (histo[i] == 0)
992
continue;
993
if (histo[i] > max)
994
max = histo[i];
995
if (i > maxidx)
996
maxidx = i;
997
if (i < minidx)
998
minidx = i;
999
}
1000
1001
if (max < histo_width)
1002
max = histo_width;
1003
1004
for (i = minidx; i <= maxidx; i++) {
1005
(void) printf("\t\t\t%3u: %6llu %s\n",
1006
i + offset, (u_longlong_t)histo[i],
1007
&histo_stars[(max - histo[i]) * histo_width / max]);
1008
}
1009
}
1010
1011
static void
1012
dump_zap_stats(objset_t *os, uint64_t object)
1013
{
1014
int error;
1015
zap_stats_t zs;
1016
1017
error = zap_get_stats(os, object, &zs);
1018
if (error)
1019
return;
1020
1021
if (zs.zs_ptrtbl_len == 0) {
1022
ASSERT(zs.zs_num_blocks == 1);
1023
(void) printf("\tmicrozap: %llu bytes, %llu entries\n",
1024
(u_longlong_t)zs.zs_blocksize,
1025
(u_longlong_t)zs.zs_num_entries);
1026
return;
1027
}
1028
1029
(void) printf("\tFat ZAP stats:\n");
1030
1031
(void) printf("\t\tPointer table:\n");
1032
(void) printf("\t\t\t%llu elements\n",
1033
(u_longlong_t)zs.zs_ptrtbl_len);
1034
(void) printf("\t\t\tzt_blk: %llu\n",
1035
(u_longlong_t)zs.zs_ptrtbl_zt_blk);
1036
(void) printf("\t\t\tzt_numblks: %llu\n",
1037
(u_longlong_t)zs.zs_ptrtbl_zt_numblks);
1038
(void) printf("\t\t\tzt_shift: %llu\n",
1039
(u_longlong_t)zs.zs_ptrtbl_zt_shift);
1040
(void) printf("\t\t\tzt_blks_copied: %llu\n",
1041
(u_longlong_t)zs.zs_ptrtbl_blks_copied);
1042
(void) printf("\t\t\tzt_nextblk: %llu\n",
1043
(u_longlong_t)zs.zs_ptrtbl_nextblk);
1044
1045
(void) printf("\t\tZAP entries: %llu\n",
1046
(u_longlong_t)zs.zs_num_entries);
1047
(void) printf("\t\tLeaf blocks: %llu\n",
1048
(u_longlong_t)zs.zs_num_leafs);
1049
(void) printf("\t\tTotal blocks: %llu\n",
1050
(u_longlong_t)zs.zs_num_blocks);
1051
(void) printf("\t\tzap_block_type: 0x%llx\n",
1052
(u_longlong_t)zs.zs_block_type);
1053
(void) printf("\t\tzap_magic: 0x%llx\n",
1054
(u_longlong_t)zs.zs_magic);
1055
(void) printf("\t\tzap_salt: 0x%llx\n",
1056
(u_longlong_t)zs.zs_salt);
1057
1058
(void) printf("\t\tLeafs with 2^n pointers:\n");
1059
dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
1060
1061
(void) printf("\t\tBlocks with n*5 entries:\n");
1062
dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
1063
1064
(void) printf("\t\tBlocks n/10 full:\n");
1065
dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
1066
1067
(void) printf("\t\tEntries with n chunks:\n");
1068
dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
1069
1070
(void) printf("\t\tBuckets with n entries:\n");
1071
dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
1072
}
1073
1074
static void
1075
dump_none(objset_t *os, uint64_t object, void *data, size_t size)
1076
{
1077
(void) os, (void) object, (void) data, (void) size;
1078
}
1079
1080
static void
1081
dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
1082
{
1083
(void) os, (void) object, (void) data, (void) size;
1084
(void) printf("\tUNKNOWN OBJECT TYPE\n");
1085
}
1086
1087
static void
1088
dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
1089
{
1090
(void) os, (void) object, (void) data, (void) size;
1091
}
1092
1093
static void
1094
dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
1095
{
1096
uint64_t *arr;
1097
uint64_t oursize;
1098
if (dump_opt['d'] < 6)
1099
return;
1100
1101
if (data == NULL) {
1102
dmu_object_info_t doi;
1103
1104
VERIFY0(dmu_object_info(os, object, &doi));
1105
size = doi.doi_max_offset;
1106
/*
1107
* We cap the size at 1 mebibyte here to prevent
1108
* allocation failures and nigh-infinite printing if the
1109
* object is extremely large.
1110
*/
1111
oursize = MIN(size, 1 << 20);
1112
arr = kmem_alloc(oursize, KM_SLEEP);
1113
1114
int err = dmu_read(os, object, 0, oursize, arr, 0);
1115
if (err != 0) {
1116
(void) printf("got error %u from dmu_read\n", err);
1117
kmem_free(arr, oursize);
1118
return;
1119
}
1120
} else {
1121
/*
1122
* Even though the allocation is already done in this code path,
1123
* we still cap the size to prevent excessive printing.
1124
*/
1125
oursize = MIN(size, 1 << 20);
1126
arr = data;
1127
}
1128
1129
if (size == 0) {
1130
if (data == NULL)
1131
kmem_free(arr, oursize);
1132
(void) printf("\t\t[]\n");
1133
return;
1134
}
1135
1136
(void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
1137
for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
1138
if (i % 4 != 0)
1139
(void) printf(", %0llx", (u_longlong_t)arr[i]);
1140
else
1141
(void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
1142
}
1143
if (oursize != size)
1144
(void) printf(", ... ");
1145
(void) printf("]\n");
1146
1147
if (data == NULL)
1148
kmem_free(arr, oursize);
1149
}
1150
1151
static void
1152
dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
1153
{
1154
(void) data, (void) size;
1155
zap_cursor_t zc;
1156
zap_attribute_t *attrp = zap_attribute_long_alloc();
1157
void *prop;
1158
unsigned i;
1159
1160
dump_zap_stats(os, object);
1161
(void) printf("\n");
1162
1163
for (zap_cursor_init(&zc, os, object);
1164
zap_cursor_retrieve(&zc, attrp) == 0;
1165
zap_cursor_advance(&zc)) {
1166
boolean_t key64 =
1167
!!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY);
1168
1169
if (key64)
1170
(void) printf("\t\t0x%010" PRIu64 "x = ",
1171
*(uint64_t *)attrp->za_name);
1172
else
1173
(void) printf("\t\t%s = ", attrp->za_name);
1174
1175
if (attrp->za_num_integers == 0) {
1176
(void) printf("\n");
1177
continue;
1178
}
1179
prop = umem_zalloc(attrp->za_num_integers *
1180
attrp->za_integer_length, UMEM_NOFAIL);
1181
1182
if (key64)
1183
(void) zap_lookup_uint64(os, object,
1184
(const uint64_t *)attrp->za_name, 1,
1185
attrp->za_integer_length, attrp->za_num_integers,
1186
prop);
1187
else
1188
(void) zap_lookup(os, object, attrp->za_name,
1189
attrp->za_integer_length, attrp->za_num_integers,
1190
prop);
1191
1192
if (attrp->za_integer_length == 1 && !key64) {
1193
if (strcmp(attrp->za_name,
1194
DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
1195
strcmp(attrp->za_name,
1196
DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
1197
strcmp(attrp->za_name, DSL_CRYPTO_KEY_IV) == 0 ||
1198
strcmp(attrp->za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
1199
strcmp(attrp->za_name,
1200
DMU_POOL_CHECKSUM_SALT) == 0) {
1201
uint8_t *u8 = prop;
1202
1203
for (i = 0; i < attrp->za_num_integers; i++) {
1204
(void) printf("%02x", u8[i]);
1205
}
1206
} else {
1207
(void) printf("%s", (char *)prop);
1208
}
1209
} else {
1210
for (i = 0; i < attrp->za_num_integers; i++) {
1211
switch (attrp->za_integer_length) {
1212
case 1:
1213
(void) printf("%u ",
1214
((uint8_t *)prop)[i]);
1215
break;
1216
case 2:
1217
(void) printf("%u ",
1218
((uint16_t *)prop)[i]);
1219
break;
1220
case 4:
1221
(void) printf("%u ",
1222
((uint32_t *)prop)[i]);
1223
break;
1224
case 8:
1225
(void) printf("%lld ",
1226
(u_longlong_t)((int64_t *)prop)[i]);
1227
break;
1228
}
1229
}
1230
}
1231
(void) printf("\n");
1232
umem_free(prop,
1233
attrp->za_num_integers * attrp->za_integer_length);
1234
}
1235
zap_cursor_fini(&zc);
1236
zap_attribute_free(attrp);
1237
}
1238
1239
static void
1240
dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
1241
{
1242
bpobj_phys_t *bpop = data;
1243
uint64_t i;
1244
char bytes[32], comp[32], uncomp[32];
1245
1246
/* make sure the output won't get truncated */
1247
_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
1248
_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
1249
_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
1250
1251
if (bpop == NULL)
1252
return;
1253
1254
zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
1255
zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
1256
zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
1257
1258
(void) printf("\t\tnum_blkptrs = %llu\n",
1259
(u_longlong_t)bpop->bpo_num_blkptrs);
1260
(void) printf("\t\tbytes = %s\n", bytes);
1261
if (size >= BPOBJ_SIZE_V1) {
1262
(void) printf("\t\tcomp = %s\n", comp);
1263
(void) printf("\t\tuncomp = %s\n", uncomp);
1264
}
1265
if (size >= BPOBJ_SIZE_V2) {
1266
(void) printf("\t\tsubobjs = %llu\n",
1267
(u_longlong_t)bpop->bpo_subobjs);
1268
(void) printf("\t\tnum_subobjs = %llu\n",
1269
(u_longlong_t)bpop->bpo_num_subobjs);
1270
}
1271
if (size >= sizeof (*bpop)) {
1272
(void) printf("\t\tnum_freed = %llu\n",
1273
(u_longlong_t)bpop->bpo_num_freed);
1274
}
1275
1276
if (dump_opt['d'] < 5)
1277
return;
1278
1279
for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
1280
char blkbuf[BP_SPRINTF_LEN];
1281
blkptr_t bp;
1282
1283
int err = dmu_read(os, object,
1284
i * sizeof (bp), sizeof (bp), &bp, 0);
1285
if (err != 0) {
1286
(void) printf("got error %u from dmu_read\n", err);
1287
break;
1288
}
1289
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
1290
BP_GET_FREE(&bp));
1291
(void) printf("\t%s\n", blkbuf);
1292
}
1293
}
1294
1295
static void
1296
dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
1297
{
1298
(void) data, (void) size;
1299
dmu_object_info_t doi;
1300
int64_t i;
1301
1302
VERIFY0(dmu_object_info(os, object, &doi));
1303
uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
1304
1305
int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
1306
if (err != 0) {
1307
(void) printf("got error %u from dmu_read\n", err);
1308
kmem_free(subobjs, doi.doi_max_offset);
1309
return;
1310
}
1311
1312
int64_t last_nonzero = -1;
1313
for (i = 0; i < doi.doi_max_offset / 8; i++) {
1314
if (subobjs[i] != 0)
1315
last_nonzero = i;
1316
}
1317
1318
for (i = 0; i <= last_nonzero; i++) {
1319
(void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
1320
}
1321
kmem_free(subobjs, doi.doi_max_offset);
1322
}
1323
1324
static void
1325
dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
1326
{
1327
(void) data, (void) size;
1328
dump_zap_stats(os, object);
1329
/* contents are printed elsewhere, properly decoded */
1330
}
1331
1332
static void
1333
dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
1334
{
1335
(void) data, (void) size;
1336
zap_cursor_t zc;
1337
zap_attribute_t *attrp = zap_attribute_alloc();
1338
1339
dump_zap_stats(os, object);
1340
(void) printf("\n");
1341
1342
for (zap_cursor_init(&zc, os, object);
1343
zap_cursor_retrieve(&zc, attrp) == 0;
1344
zap_cursor_advance(&zc)) {
1345
(void) printf("\t\t%s = ", attrp->za_name);
1346
if (attrp->za_num_integers == 0) {
1347
(void) printf("\n");
1348
continue;
1349
}
1350
(void) printf(" %llx : [%d:%d:%d]\n",
1351
(u_longlong_t)attrp->za_first_integer,
1352
(int)ATTR_LENGTH(attrp->za_first_integer),
1353
(int)ATTR_BSWAP(attrp->za_first_integer),
1354
(int)ATTR_NUM(attrp->za_first_integer));
1355
}
1356
zap_cursor_fini(&zc);
1357
zap_attribute_free(attrp);
1358
}
1359
1360
static void
1361
dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
1362
{
1363
(void) data, (void) size;
1364
zap_cursor_t zc;
1365
zap_attribute_t *attrp = zap_attribute_alloc();
1366
uint16_t *layout_attrs;
1367
unsigned i;
1368
1369
dump_zap_stats(os, object);
1370
(void) printf("\n");
1371
1372
for (zap_cursor_init(&zc, os, object);
1373
zap_cursor_retrieve(&zc, attrp) == 0;
1374
zap_cursor_advance(&zc)) {
1375
(void) printf("\t\t%s = [", attrp->za_name);
1376
if (attrp->za_num_integers == 0) {
1377
(void) printf("\n");
1378
continue;
1379
}
1380
1381
VERIFY(attrp->za_integer_length == 2);
1382
layout_attrs = umem_zalloc(attrp->za_num_integers *
1383
attrp->za_integer_length, UMEM_NOFAIL);
1384
1385
VERIFY(zap_lookup(os, object, attrp->za_name,
1386
attrp->za_integer_length,
1387
attrp->za_num_integers, layout_attrs) == 0);
1388
1389
for (i = 0; i != attrp->za_num_integers; i++)
1390
(void) printf(" %d ", (int)layout_attrs[i]);
1391
(void) printf("]\n");
1392
umem_free(layout_attrs,
1393
attrp->za_num_integers * attrp->za_integer_length);
1394
}
1395
zap_cursor_fini(&zc);
1396
zap_attribute_free(attrp);
1397
}
1398
1399
static void
1400
dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
1401
{
1402
(void) data, (void) size;
1403
zap_cursor_t zc;
1404
zap_attribute_t *attrp = zap_attribute_long_alloc();
1405
const char *typenames[] = {
1406
/* 0 */ "not specified",
1407
/* 1 */ "FIFO",
1408
/* 2 */ "Character Device",
1409
/* 3 */ "3 (invalid)",
1410
/* 4 */ "Directory",
1411
/* 5 */ "5 (invalid)",
1412
/* 6 */ "Block Device",
1413
/* 7 */ "7 (invalid)",
1414
/* 8 */ "Regular File",
1415
/* 9 */ "9 (invalid)",
1416
/* 10 */ "Symbolic Link",
1417
/* 11 */ "11 (invalid)",
1418
/* 12 */ "Socket",
1419
/* 13 */ "Door",
1420
/* 14 */ "Event Port",
1421
/* 15 */ "15 (invalid)",
1422
};
1423
1424
dump_zap_stats(os, object);
1425
(void) printf("\n");
1426
1427
for (zap_cursor_init(&zc, os, object);
1428
zap_cursor_retrieve(&zc, attrp) == 0;
1429
zap_cursor_advance(&zc)) {
1430
(void) printf("\t\t%s = %lld (type: %s)\n",
1431
attrp->za_name, ZFS_DIRENT_OBJ(attrp->za_first_integer),
1432
typenames[ZFS_DIRENT_TYPE(attrp->za_first_integer)]);
1433
}
1434
zap_cursor_fini(&zc);
1435
zap_attribute_free(attrp);
1436
}
1437
1438
static int
1439
get_dtl_refcount(vdev_t *vd)
1440
{
1441
int refcount = 0;
1442
1443
if (vd->vdev_ops->vdev_op_leaf) {
1444
space_map_t *sm = vd->vdev_dtl_sm;
1445
1446
if (sm != NULL &&
1447
sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1448
return (1);
1449
return (0);
1450
}
1451
1452
for (unsigned c = 0; c < vd->vdev_children; c++)
1453
refcount += get_dtl_refcount(vd->vdev_child[c]);
1454
return (refcount);
1455
}
1456
1457
static int
1458
get_metaslab_refcount(vdev_t *vd)
1459
{
1460
int refcount = 0;
1461
1462
if (vd->vdev_top == vd) {
1463
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1464
space_map_t *sm = vd->vdev_ms[m]->ms_sm;
1465
1466
if (sm != NULL &&
1467
sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1468
refcount++;
1469
}
1470
}
1471
for (unsigned c = 0; c < vd->vdev_children; c++)
1472
refcount += get_metaslab_refcount(vd->vdev_child[c]);
1473
1474
return (refcount);
1475
}
1476
1477
static int
1478
get_obsolete_refcount(vdev_t *vd)
1479
{
1480
uint64_t obsolete_sm_object;
1481
int refcount = 0;
1482
1483
VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1484
if (vd->vdev_top == vd && obsolete_sm_object != 0) {
1485
dmu_object_info_t doi;
1486
VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
1487
obsolete_sm_object, &doi));
1488
if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1489
refcount++;
1490
}
1491
} else {
1492
ASSERT0P(vd->vdev_obsolete_sm);
1493
ASSERT0(obsolete_sm_object);
1494
}
1495
for (unsigned c = 0; c < vd->vdev_children; c++) {
1496
refcount += get_obsolete_refcount(vd->vdev_child[c]);
1497
}
1498
1499
return (refcount);
1500
}
1501
1502
static int
1503
get_prev_obsolete_spacemap_refcount(spa_t *spa)
1504
{
1505
uint64_t prev_obj =
1506
spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
1507
if (prev_obj != 0) {
1508
dmu_object_info_t doi;
1509
VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
1510
if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1511
return (1);
1512
}
1513
}
1514
return (0);
1515
}
1516
1517
static int
1518
get_checkpoint_refcount(vdev_t *vd)
1519
{
1520
int refcount = 0;
1521
1522
if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
1523
zap_contains(spa_meta_objset(vd->vdev_spa),
1524
vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
1525
refcount++;
1526
1527
for (uint64_t c = 0; c < vd->vdev_children; c++)
1528
refcount += get_checkpoint_refcount(vd->vdev_child[c]);
1529
1530
return (refcount);
1531
}
1532
1533
static int
1534
get_log_spacemap_refcount(spa_t *spa)
1535
{
1536
return (avl_numnodes(&spa->spa_sm_logs_by_txg));
1537
}
1538
1539
static int
1540
verify_spacemap_refcounts(spa_t *spa)
1541
{
1542
uint64_t expected_refcount = 0;
1543
uint64_t actual_refcount;
1544
1545
(void) feature_get_refcount(spa,
1546
&spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
1547
&expected_refcount);
1548
actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
1549
actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
1550
actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
1551
actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
1552
actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
1553
actual_refcount += get_log_spacemap_refcount(spa);
1554
1555
if (expected_refcount != actual_refcount) {
1556
(void) printf("space map refcount mismatch: expected %lld != "
1557
"actual %lld\n",
1558
(longlong_t)expected_refcount,
1559
(longlong_t)actual_refcount);
1560
return (2);
1561
}
1562
return (0);
1563
}
1564
1565
static void
1566
dump_spacemap(objset_t *os, space_map_t *sm)
1567
{
1568
const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1569
"INVALID", "INVALID", "INVALID", "INVALID" };
1570
1571
if (sm == NULL)
1572
return;
1573
1574
(void) printf("space map object %llu:\n",
1575
(longlong_t)sm->sm_object);
1576
(void) printf(" smp_length = 0x%llx\n",
1577
(longlong_t)sm->sm_phys->smp_length);
1578
(void) printf(" smp_alloc = 0x%llx\n",
1579
(longlong_t)sm->sm_phys->smp_alloc);
1580
1581
if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
1582
return;
1583
1584
/*
1585
* Print out the freelist entries in both encoded and decoded form.
1586
*/
1587
uint8_t mapshift = sm->sm_shift;
1588
int64_t alloc = 0;
1589
uint64_t word, entry_id = 0;
1590
for (uint64_t offset = 0; offset < space_map_length(sm);
1591
offset += sizeof (word)) {
1592
1593
VERIFY0(dmu_read(os, space_map_object(sm), offset,
1594
sizeof (word), &word, DMU_READ_PREFETCH));
1595
1596
if (sm_entry_is_debug(word)) {
1597
uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
1598
uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
1599
if (de_txg == 0) {
1600
(void) printf(
1601
"\t [%6llu] PADDING\n",
1602
(u_longlong_t)entry_id);
1603
} else {
1604
(void) printf(
1605
"\t [%6llu] %s: txg %llu pass %llu\n",
1606
(u_longlong_t)entry_id,
1607
ddata[SM_DEBUG_ACTION_DECODE(word)],
1608
(u_longlong_t)de_txg,
1609
(u_longlong_t)de_sync_pass);
1610
}
1611
entry_id++;
1612
continue;
1613
}
1614
1615
char entry_type;
1616
uint64_t entry_off, entry_run, entry_vdev;
1617
1618
if (sm_entry_is_single_word(word)) {
1619
entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
1620
'A' : 'F';
1621
entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
1622
sm->sm_start;
1623
entry_run = SM_RUN_DECODE(word) << mapshift;
1624
1625
(void) printf("\t [%6llu] %c "
1626
"range: %012llx-%012llx size: %08llx\n",
1627
(u_longlong_t)entry_id, entry_type,
1628
(u_longlong_t)entry_off,
1629
(u_longlong_t)(entry_off + entry_run - 1),
1630
(u_longlong_t)entry_run);
1631
} else {
1632
/* it is a two-word entry so we read another word */
1633
ASSERT(sm_entry_is_double_word(word));
1634
1635
uint64_t extra_word;
1636
offset += sizeof (extra_word);
1637
ASSERT3U(offset, <, space_map_length(sm));
1638
VERIFY0(dmu_read(os, space_map_object(sm), offset,
1639
sizeof (extra_word), &extra_word,
1640
DMU_READ_PREFETCH));
1641
1642
entry_run = SM2_RUN_DECODE(word) << mapshift;
1643
entry_vdev = SM2_VDEV_DECODE(word);
1644
entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
1645
'A' : 'F';
1646
entry_off = (SM2_OFFSET_DECODE(extra_word) <<
1647
mapshift) + sm->sm_start;
1648
1649
if (zopt_metaslab_args == 0 ||
1650
zopt_metaslab[0] == entry_vdev) {
1651
(void) printf("\t [%6llu] %c "
1652
"range: %012llx-%012llx size: %08llx "
1653
"vdev: %llu\n",
1654
(u_longlong_t)entry_id, entry_type,
1655
(u_longlong_t)entry_off,
1656
(u_longlong_t)(entry_off + entry_run - 1),
1657
(u_longlong_t)entry_run,
1658
(u_longlong_t)entry_vdev);
1659
}
1660
}
1661
1662
if (entry_type == 'A')
1663
alloc += entry_run;
1664
else
1665
alloc -= entry_run;
1666
entry_id++;
1667
}
1668
if (alloc != space_map_allocated(sm)) {
1669
(void) printf("space_map_object alloc (%lld) INCONSISTENT "
1670
"with space map summary (%lld)\n",
1671
(longlong_t)space_map_allocated(sm), (longlong_t)alloc);
1672
}
1673
}
1674
1675
static void
1676
dump_metaslab_stats(metaslab_t *msp)
1677
{
1678
char maxbuf[32];
1679
zfs_range_tree_t *rt = msp->ms_allocatable;
1680
zfs_btree_t *t = &msp->ms_allocatable_by_size;
1681
int free_pct = zfs_range_tree_space(rt) * 100 / msp->ms_size;
1682
1683
/* max sure nicenum has enough space */
1684
_Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
1685
1686
zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
1687
1688
(void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n",
1689
"segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
1690
"freepct", free_pct);
1691
(void) printf("\tIn-memory histogram:\n");
1692
dump_histogram(rt->rt_histogram, ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0);
1693
}
1694
1695
static void
1696
dump_allocated(void *arg, uint64_t start, uint64_t size)
1697
{
1698
uint64_t *off = arg;
1699
if (*off != start)
1700
(void) printf("ALLOC: %"PRIu64" %"PRIu64"\n", *off,
1701
start - *off);
1702
*off = start + size;
1703
}
1704
1705
static void
1706
dump_metaslab(metaslab_t *msp)
1707
{
1708
vdev_t *vd = msp->ms_group->mg_vd;
1709
spa_t *spa = vd->vdev_spa;
1710
space_map_t *sm = msp->ms_sm;
1711
char freebuf[32];
1712
1713
zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
1714
sizeof (freebuf));
1715
1716
(void) printf(
1717
"\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n",
1718
(u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
1719
(u_longlong_t)space_map_object(sm), freebuf);
1720
1721
if (dump_opt[ARG_ALLOCATED] ||
1722
(dump_opt['m'] > 2 && !dump_opt['L'])) {
1723
mutex_enter(&msp->ms_lock);
1724
VERIFY0(metaslab_load(msp));
1725
}
1726
1727
if (dump_opt['m'] > 2 && !dump_opt['L']) {
1728
zfs_range_tree_stat_verify(msp->ms_allocatable);
1729
dump_metaslab_stats(msp);
1730
}
1731
1732
if (dump_opt[ARG_ALLOCATED]) {
1733
uint64_t off = msp->ms_start;
1734
zfs_range_tree_walk(msp->ms_allocatable, dump_allocated,
1735
&off);
1736
if (off != msp->ms_start + msp->ms_size)
1737
(void) printf("ALLOC: %"PRIu64" %"PRIu64"\n", off,
1738
msp->ms_size - off);
1739
}
1740
1741
if (dump_opt['m'] > 1 && sm != NULL &&
1742
spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
1743
/*
1744
* The space map histogram represents free space in chunks
1745
* of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1746
*/
1747
(void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1748
(u_longlong_t)msp->ms_fragmentation);
1749
dump_histogram(sm->sm_phys->smp_histogram,
1750
SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
1751
}
1752
1753
if (dump_opt[ARG_ALLOCATED] ||
1754
(dump_opt['m'] > 2 && !dump_opt['L'])) {
1755
metaslab_unload(msp);
1756
mutex_exit(&msp->ms_lock);
1757
}
1758
1759
if (vd->vdev_ops == &vdev_draid_ops)
1760
ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
1761
else
1762
ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
1763
1764
dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
1765
1766
if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
1767
(void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1768
(u_longlong_t)metaslab_unflushed_txg(msp));
1769
}
1770
}
1771
1772
static void
1773
print_vdev_metaslab_header(vdev_t *vd)
1774
{
1775
vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
1776
const char *bias_str = "";
1777
if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
1778
bias_str = VDEV_ALLOC_BIAS_LOG;
1779
} else if (alloc_bias == VDEV_BIAS_SPECIAL) {
1780
bias_str = VDEV_ALLOC_BIAS_SPECIAL;
1781
} else if (alloc_bias == VDEV_BIAS_DEDUP) {
1782
bias_str = VDEV_ALLOC_BIAS_DEDUP;
1783
}
1784
1785
uint64_t ms_flush_data_obj = 0;
1786
if (vd->vdev_top_zap != 0) {
1787
int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
1788
vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1789
sizeof (uint64_t), 1, &ms_flush_data_obj);
1790
if (error != ENOENT) {
1791
ASSERT0(error);
1792
}
1793
}
1794
1795
(void) printf("\tvdev %10llu\t%s metaslab shift %4llu",
1796
(u_longlong_t)vd->vdev_id, bias_str,
1797
(u_longlong_t)vd->vdev_ms_shift);
1798
1799
if (ms_flush_data_obj != 0) {
1800
(void) printf(" ms_unflushed_phys object %llu",
1801
(u_longlong_t)ms_flush_data_obj);
1802
}
1803
1804
(void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n",
1805
"metaslabs", (u_longlong_t)vd->vdev_ms_count,
1806
"offset", "spacemap", "free");
1807
(void) printf("\t%15s %19s %15s %12s\n",
1808
"---------------", "-------------------",
1809
"---------------", "------------");
1810
}
1811
1812
static void
1813
dump_metaslab_groups(spa_t *spa, boolean_t show_special)
1814
{
1815
vdev_t *rvd = spa->spa_root_vdev;
1816
metaslab_class_t *mc = spa_normal_class(spa);
1817
metaslab_class_t *smc = spa_special_class(spa);
1818
uint64_t fragmentation;
1819
1820
metaslab_class_histogram_verify(mc);
1821
1822
for (unsigned c = 0; c < rvd->vdev_children; c++) {
1823
vdev_t *tvd = rvd->vdev_child[c];
1824
metaslab_group_t *mg = tvd->vdev_mg;
1825
1826
if (mg == NULL || (mg->mg_class != mc &&
1827
(!show_special || mg->mg_class != smc)))
1828
continue;
1829
1830
metaslab_group_histogram_verify(mg);
1831
mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1832
1833
(void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1834
"fragmentation",
1835
(u_longlong_t)tvd->vdev_id,
1836
(u_longlong_t)tvd->vdev_ms_count);
1837
if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
1838
(void) printf("%3s\n", "-");
1839
} else {
1840
(void) printf("%3llu%%\n",
1841
(u_longlong_t)mg->mg_fragmentation);
1842
}
1843
dump_histogram(mg->mg_histogram,
1844
ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0);
1845
}
1846
1847
(void) printf("\tpool %s\tfragmentation", spa_name(spa));
1848
fragmentation = metaslab_class_fragmentation(mc);
1849
if (fragmentation == ZFS_FRAG_INVALID)
1850
(void) printf("\t%3s\n", "-");
1851
else
1852
(void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
1853
dump_histogram(mc->mc_histogram, ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0);
1854
}
1855
1856
static void
1857
print_vdev_indirect(vdev_t *vd)
1858
{
1859
vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1860
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1861
vdev_indirect_births_t *vib = vd->vdev_indirect_births;
1862
1863
if (vim == NULL) {
1864
ASSERT0P(vib);
1865
return;
1866
}
1867
1868
ASSERT3U(vdev_indirect_mapping_object(vim), ==,
1869
vic->vic_mapping_object);
1870
ASSERT3U(vdev_indirect_births_object(vib), ==,
1871
vic->vic_births_object);
1872
1873
(void) printf("indirect births obj %llu:\n",
1874
(longlong_t)vic->vic_births_object);
1875
(void) printf(" vib_count = %llu\n",
1876
(longlong_t)vdev_indirect_births_count(vib));
1877
for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
1878
vdev_indirect_birth_entry_phys_t *cur_vibe =
1879
&vib->vib_entries[i];
1880
(void) printf("\toffset %llx -> txg %llu\n",
1881
(longlong_t)cur_vibe->vibe_offset,
1882
(longlong_t)cur_vibe->vibe_phys_birth_txg);
1883
}
1884
(void) printf("\n");
1885
1886
(void) printf("indirect mapping obj %llu:\n",
1887
(longlong_t)vic->vic_mapping_object);
1888
(void) printf(" vim_max_offset = 0x%llx\n",
1889
(longlong_t)vdev_indirect_mapping_max_offset(vim));
1890
(void) printf(" vim_bytes_mapped = 0x%llx\n",
1891
(longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
1892
(void) printf(" vim_count = %llu\n",
1893
(longlong_t)vdev_indirect_mapping_num_entries(vim));
1894
1895
if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
1896
return;
1897
1898
uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
1899
1900
for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
1901
vdev_indirect_mapping_entry_phys_t *vimep =
1902
&vim->vim_entries[i];
1903
(void) printf("\t<%llx:%llx:%llx> -> "
1904
"<%llx:%llx:%llx> (%x obsolete)\n",
1905
(longlong_t)vd->vdev_id,
1906
(longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
1907
(longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1908
(longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
1909
(longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
1910
(longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1911
counts[i]);
1912
}
1913
(void) printf("\n");
1914
1915
uint64_t obsolete_sm_object;
1916
VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1917
if (obsolete_sm_object != 0) {
1918
objset_t *mos = vd->vdev_spa->spa_meta_objset;
1919
(void) printf("obsolete space map object %llu:\n",
1920
(u_longlong_t)obsolete_sm_object);
1921
ASSERT(vd->vdev_obsolete_sm != NULL);
1922
ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
1923
obsolete_sm_object);
1924
dump_spacemap(mos, vd->vdev_obsolete_sm);
1925
(void) printf("\n");
1926
}
1927
}
1928
1929
static void
1930
dump_metaslabs(spa_t *spa)
1931
{
1932
vdev_t *vd, *rvd = spa->spa_root_vdev;
1933
uint64_t m, c = 0, children = rvd->vdev_children;
1934
1935
(void) printf("\nMetaslabs:\n");
1936
1937
if (zopt_metaslab_args > 0) {
1938
c = zopt_metaslab[0];
1939
1940
if (c >= children)
1941
(void) fatal("bad vdev id: %llu", (u_longlong_t)c);
1942
1943
if (zopt_metaslab_args > 1) {
1944
vd = rvd->vdev_child[c];
1945
print_vdev_metaslab_header(vd);
1946
1947
for (m = 1; m < zopt_metaslab_args; m++) {
1948
if (zopt_metaslab[m] < vd->vdev_ms_count)
1949
dump_metaslab(
1950
vd->vdev_ms[zopt_metaslab[m]]);
1951
else
1952
(void) fprintf(stderr, "bad metaslab "
1953
"number %llu\n",
1954
(u_longlong_t)zopt_metaslab[m]);
1955
}
1956
(void) printf("\n");
1957
return;
1958
}
1959
children = c + 1;
1960
}
1961
for (; c < children; c++) {
1962
vd = rvd->vdev_child[c];
1963
print_vdev_metaslab_header(vd);
1964
1965
print_vdev_indirect(vd);
1966
1967
for (m = 0; m < vd->vdev_ms_count; m++)
1968
dump_metaslab(vd->vdev_ms[m]);
1969
(void) printf("\n");
1970
}
1971
}
1972
1973
static void
1974
dump_log_spacemaps(spa_t *spa)
1975
{
1976
if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1977
return;
1978
1979
(void) printf("\nLog Space Maps in Pool:\n");
1980
for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1981
sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1982
space_map_t *sm = NULL;
1983
VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
1984
sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
1985
1986
(void) printf("Log Spacemap object %llu txg %llu\n",
1987
(u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
1988
dump_spacemap(spa->spa_meta_objset, sm);
1989
space_map_close(sm);
1990
}
1991
(void) printf("\n");
1992
}
1993
1994
static void
1995
dump_ddt_entry(const ddt_t *ddt, const ddt_lightweight_entry_t *ddlwe,
1996
uint64_t index)
1997
{
1998
const ddt_key_t *ddk = &ddlwe->ddlwe_key;
1999
char blkbuf[BP_SPRINTF_LEN];
2000
blkptr_t blk;
2001
int p;
2002
2003
for (p = 0; p < DDT_NPHYS(ddt); p++) {
2004
const ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys;
2005
ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
2006
2007
if (ddt_phys_birth(ddp, v) == 0)
2008
continue;
2009
ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk);
2010
snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
2011
(void) printf("index %llx refcnt %llu phys %d %s\n",
2012
(u_longlong_t)index, (u_longlong_t)ddt_phys_refcnt(ddp, v),
2013
p, blkbuf);
2014
}
2015
}
2016
2017
static void
2018
dump_dedup_ratio(const ddt_stat_t *dds)
2019
{
2020
double rL, rP, rD, D, dedup, compress, copies;
2021
2022
if (dds->dds_blocks == 0)
2023
return;
2024
2025
rL = (double)dds->dds_ref_lsize;
2026
rP = (double)dds->dds_ref_psize;
2027
rD = (double)dds->dds_ref_dsize;
2028
D = (double)dds->dds_dsize;
2029
2030
dedup = rD / D;
2031
compress = rL / rP;
2032
copies = rD / rP;
2033
2034
(void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
2035
"dedup * compress / copies = %.2f\n\n",
2036
dedup, compress, copies, dedup * compress / copies);
2037
}
2038
2039
static void
2040
dump_ddt_log(ddt_t *ddt)
2041
{
2042
if (ddt->ddt_version != DDT_VERSION_FDT ||
2043
!(ddt->ddt_flags & DDT_FLAG_LOG))
2044
return;
2045
2046
for (int n = 0; n < 2; n++) {
2047
ddt_log_t *ddl = &ddt->ddt_log[n];
2048
2049
char flagstr[64] = {0};
2050
if (ddl->ddl_flags > 0) {
2051
flagstr[0] = ' ';
2052
int c = 1;
2053
if (ddl->ddl_flags & DDL_FLAG_FLUSHING)
2054
c += strlcpy(&flagstr[c], " FLUSHING",
2055
sizeof (flagstr) - c);
2056
if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT)
2057
c += strlcpy(&flagstr[c], " CHECKPOINT",
2058
sizeof (flagstr) - c);
2059
if (ddl->ddl_flags &
2060
~(DDL_FLAG_FLUSHING|DDL_FLAG_CHECKPOINT))
2061
c += strlcpy(&flagstr[c], " UNKNOWN",
2062
sizeof (flagstr) - c);
2063
flagstr[1] = '[';
2064
flagstr[c] = ']';
2065
}
2066
2067
uint64_t count = avl_numnodes(&ddl->ddl_tree);
2068
2069
printf(DMU_POOL_DDT_LOG ": flags=0x%02x%s; obj=%llu; "
2070
"len=%llu; txg=%llu; entries=%llu\n",
2071
zio_checksum_table[ddt->ddt_checksum].ci_name, n,
2072
ddl->ddl_flags, flagstr,
2073
(u_longlong_t)ddl->ddl_object,
2074
(u_longlong_t)ddl->ddl_length,
2075
(u_longlong_t)ddl->ddl_first_txg, (u_longlong_t)count);
2076
2077
if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT) {
2078
const ddt_key_t *ddk = &ddl->ddl_checkpoint;
2079
printf(" checkpoint: "
2080
"%016llx:%016llx:%016llx:%016llx:%016llx\n",
2081
(u_longlong_t)ddk->ddk_cksum.zc_word[0],
2082
(u_longlong_t)ddk->ddk_cksum.zc_word[1],
2083
(u_longlong_t)ddk->ddk_cksum.zc_word[2],
2084
(u_longlong_t)ddk->ddk_cksum.zc_word[3],
2085
(u_longlong_t)ddk->ddk_prop);
2086
}
2087
2088
if (count == 0 || dump_opt['D'] < 4)
2089
continue;
2090
2091
ddt_lightweight_entry_t ddlwe;
2092
uint64_t index = 0;
2093
for (ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree);
2094
ddle; ddle = AVL_NEXT(&ddl->ddl_tree, ddle)) {
2095
DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe);
2096
dump_ddt_entry(ddt, &ddlwe, index++);
2097
}
2098
}
2099
}
2100
2101
static void
2102
dump_ddt_object(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
2103
{
2104
char name[DDT_NAMELEN];
2105
ddt_lightweight_entry_t ddlwe;
2106
uint64_t walk = 0;
2107
dmu_object_info_t doi;
2108
uint64_t count, dspace, mspace;
2109
int error;
2110
2111
error = ddt_object_info(ddt, type, class, &doi);
2112
2113
if (error == ENOENT)
2114
return;
2115
ASSERT0(error);
2116
2117
error = ddt_object_count(ddt, type, class, &count);
2118
ASSERT0(error);
2119
if (count == 0)
2120
return;
2121
2122
dspace = doi.doi_physical_blocks_512 << 9;
2123
mspace = doi.doi_fill_count * doi.doi_data_block_size;
2124
2125
ddt_object_name(ddt, type, class, name);
2126
2127
(void) printf("%s: dspace=%llu; mspace=%llu; entries=%llu\n", name,
2128
(u_longlong_t)dspace, (u_longlong_t)mspace, (u_longlong_t)count);
2129
2130
if (dump_opt['D'] < 3)
2131
return;
2132
2133
(void) printf("%s: object=%llu\n", name,
2134
(u_longlong_t)ddt->ddt_object[type][class]);
2135
zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
2136
2137
if (dump_opt['D'] < 4)
2138
return;
2139
2140
if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
2141
return;
2142
2143
(void) printf("%s contents:\n\n", name);
2144
2145
while ((error = ddt_object_walk(ddt, type, class, &walk, &ddlwe)) == 0)
2146
dump_ddt_entry(ddt, &ddlwe, walk);
2147
2148
ASSERT3U(error, ==, ENOENT);
2149
2150
(void) printf("\n");
2151
}
2152
2153
static void
2154
dump_ddt(ddt_t *ddt)
2155
{
2156
if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED)
2157
return;
2158
2159
char flagstr[64] = {0};
2160
if (ddt->ddt_flags > 0) {
2161
flagstr[0] = ' ';
2162
int c = 1;
2163
if (ddt->ddt_flags & DDT_FLAG_FLAT)
2164
c += strlcpy(&flagstr[c], " FLAT",
2165
sizeof (flagstr) - c);
2166
if (ddt->ddt_flags & DDT_FLAG_LOG)
2167
c += strlcpy(&flagstr[c], " LOG",
2168
sizeof (flagstr) - c);
2169
if (ddt->ddt_flags & ~DDT_FLAG_MASK)
2170
c += strlcpy(&flagstr[c], " UNKNOWN",
2171
sizeof (flagstr) - c);
2172
flagstr[1] = '[';
2173
flagstr[c] = ']';
2174
}
2175
2176
printf("DDT-%s: version=%llu [%s]; flags=0x%02llx%s; rootobj=%llu\n",
2177
zio_checksum_table[ddt->ddt_checksum].ci_name,
2178
(u_longlong_t)ddt->ddt_version,
2179
(ddt->ddt_version == 0) ? "LEGACY" :
2180
(ddt->ddt_version == 1) ? "FDT" : "UNKNOWN",
2181
(u_longlong_t)ddt->ddt_flags, flagstr,
2182
(u_longlong_t)ddt->ddt_dir_object);
2183
2184
for (ddt_type_t type = 0; type < DDT_TYPES; type++)
2185
for (ddt_class_t class = 0; class < DDT_CLASSES; class++)
2186
dump_ddt_object(ddt, type, class);
2187
2188
dump_ddt_log(ddt);
2189
}
2190
2191
static void
2192
dump_all_ddts(spa_t *spa)
2193
{
2194
ddt_histogram_t ddh_total = {{{0}}};
2195
ddt_stat_t dds_total = {0};
2196
2197
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++)
2198
dump_ddt(spa->spa_ddt[c]);
2199
2200
ddt_get_dedup_stats(spa, &dds_total);
2201
2202
if (dds_total.dds_blocks == 0) {
2203
(void) printf("All DDTs are empty\n");
2204
return;
2205
}
2206
2207
(void) printf("\n");
2208
2209
if (dump_opt['D'] > 1) {
2210
(void) printf("DDT histogram (aggregated over all DDTs):\n");
2211
ddt_get_dedup_histogram(spa, &ddh_total);
2212
zpool_dump_ddt(&dds_total, &ddh_total);
2213
}
2214
2215
dump_dedup_ratio(&dds_total);
2216
2217
/*
2218
* Dump a histogram of unique class entry age
2219
*/
2220
if (dump_opt['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL) {
2221
ddt_age_histo_t histogram;
2222
2223
(void) printf("DDT walk unique, building age histogram...\n");
2224
ddt_prune_walk(spa, 0, &histogram);
2225
2226
/*
2227
* print out histogram for unique entry class birth
2228
*/
2229
if (histogram.dah_entries > 0) {
2230
(void) printf("%5s %9s %4s\n",
2231
"age", "blocks", "amnt");
2232
(void) printf("%5s %9s %4s\n",
2233
"-----", "---------", "----");
2234
for (int i = 0; i < HIST_BINS; i++) {
2235
(void) printf("%5d %9d %4d%%\n", 1 << i,
2236
(int)histogram.dah_age_histo[i],
2237
(int)((histogram.dah_age_histo[i] * 100) /
2238
histogram.dah_entries));
2239
}
2240
}
2241
}
2242
}
2243
2244
static void
2245
dump_brt(spa_t *spa)
2246
{
2247
if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) {
2248
printf("BRT: unsupported on this pool\n");
2249
return;
2250
}
2251
2252
if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
2253
printf("BRT: empty\n");
2254
return;
2255
}
2256
2257
char count[32], used[32], saved[32];
2258
zdb_nicebytes(brt_get_used(spa), used, sizeof (used));
2259
zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved));
2260
uint64_t ratio = brt_get_ratio(spa);
2261
printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved,
2262
(u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100));
2263
2264
if (dump_opt['T'] < 2)
2265
return;
2266
2267
for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
2268
brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
2269
if (!brtvd->bv_initiated) {
2270
printf("BRT: vdev %" PRIu64 ": empty\n", vdevid);
2271
continue;
2272
}
2273
2274
zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count));
2275
zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used));
2276
zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved));
2277
printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n",
2278
vdevid, count, used, saved);
2279
}
2280
2281
if (dump_opt['T'] < 3)
2282
return;
2283
2284
/* -TTT shows a per-vdev histograms; -TTTT shows all entries */
2285
boolean_t do_histo = dump_opt['T'] == 3;
2286
2287
char dva[64];
2288
2289
if (!do_histo)
2290
printf("\n%-16s %-10s\n", "DVA", "REFCNT");
2291
2292
for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
2293
brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
2294
if (!brtvd->bv_initiated)
2295
continue;
2296
2297
uint64_t counts[64] = {};
2298
2299
zap_cursor_t zc;
2300
zap_attribute_t *za = zap_attribute_alloc();
2301
for (zap_cursor_init(&zc, spa->spa_meta_objset,
2302
brtvd->bv_mos_entries);
2303
zap_cursor_retrieve(&zc, za) == 0;
2304
zap_cursor_advance(&zc)) {
2305
uint64_t refcnt;
2306
VERIFY0(zap_lookup_uint64(spa->spa_meta_objset,
2307
brtvd->bv_mos_entries,
2308
(const uint64_t *)za->za_name, 1,
2309
za->za_integer_length, za->za_num_integers,
2310
&refcnt));
2311
2312
if (do_histo)
2313
counts[highbit64(refcnt)]++;
2314
else {
2315
uint64_t offset =
2316
*(const uint64_t *)za->za_name;
2317
2318
snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx",
2319
vdevid, (u_longlong_t)offset);
2320
printf("%-16s %-10llu\n", dva,
2321
(u_longlong_t)refcnt);
2322
}
2323
}
2324
zap_cursor_fini(&zc);
2325
zap_attribute_free(za);
2326
2327
if (do_histo) {
2328
printf("\nBRT: vdev %" PRIu64
2329
": DVAs with 2^n refcnts:\n", vdevid);
2330
dump_histogram(counts, 64, 0);
2331
}
2332
}
2333
}
2334
2335
static void
2336
dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
2337
{
2338
char *prefix = arg;
2339
2340
(void) printf("%s [%llu,%llu) length %llu\n",
2341
prefix,
2342
(u_longlong_t)start,
2343
(u_longlong_t)(start + size),
2344
(u_longlong_t)(size));
2345
}
2346
2347
static void
2348
dump_dtl(vdev_t *vd, int indent)
2349
{
2350
spa_t *spa = vd->vdev_spa;
2351
boolean_t required;
2352
const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
2353
"outage" };
2354
char prefix[256];
2355
2356
spa_vdev_state_enter(spa, SCL_NONE);
2357
required = vdev_dtl_required(vd);
2358
(void) spa_vdev_state_exit(spa, NULL, 0);
2359
2360
if (indent == 0)
2361
(void) printf("\nDirty time logs:\n\n");
2362
2363
(void) printf("\t%*s%s [%s]\n", indent, "",
2364
vd->vdev_path ? vd->vdev_path :
2365
vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
2366
required ? "DTL-required" : "DTL-expendable");
2367
2368
for (int t = 0; t < DTL_TYPES; t++) {
2369
zfs_range_tree_t *rt = vd->vdev_dtl[t];
2370
if (zfs_range_tree_space(rt) == 0)
2371
continue;
2372
(void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
2373
indent + 2, "", name[t]);
2374
zfs_range_tree_walk(rt, dump_dtl_seg, prefix);
2375
if (dump_opt['d'] > 5 && vd->vdev_children == 0)
2376
dump_spacemap(spa->spa_meta_objset,
2377
vd->vdev_dtl_sm);
2378
}
2379
2380
for (unsigned c = 0; c < vd->vdev_children; c++)
2381
dump_dtl(vd->vdev_child[c], indent + 4);
2382
}
2383
2384
static void
2385
dump_history(spa_t *spa)
2386
{
2387
nvlist_t **events = NULL;
2388
char *buf;
2389
uint64_t resid, len, off = 0;
2390
uint_t num = 0;
2391
int error;
2392
char tbuf[30];
2393
2394
if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
2395
(void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
2396
__func__);
2397
return;
2398
}
2399
2400
do {
2401
len = SPA_OLD_MAXBLOCKSIZE;
2402
2403
if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
2404
(void) fprintf(stderr, "Unable to read history: "
2405
"error %d\n", error);
2406
free(buf);
2407
return;
2408
}
2409
2410
if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
2411
break;
2412
2413
off -= resid;
2414
} while (len != 0);
2415
2416
(void) printf("\nHistory:\n");
2417
for (unsigned i = 0; i < num; i++) {
2418
boolean_t printed = B_FALSE;
2419
2420
if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
2421
time_t tsec;
2422
struct tm t;
2423
2424
tsec = fnvlist_lookup_uint64(events[i],
2425
ZPOOL_HIST_TIME);
2426
(void) localtime_r(&tsec, &t);
2427
(void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
2428
} else {
2429
tbuf[0] = '\0';
2430
}
2431
2432
if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
2433
(void) printf("%s %s\n", tbuf,
2434
fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
2435
} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
2436
uint64_t ievent;
2437
2438
ievent = fnvlist_lookup_uint64(events[i],
2439
ZPOOL_HIST_INT_EVENT);
2440
if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
2441
goto next;
2442
2443
(void) printf(" %s [internal %s txg:%ju] %s\n",
2444
tbuf,
2445
zfs_history_event_names[ievent],
2446
fnvlist_lookup_uint64(events[i],
2447
ZPOOL_HIST_TXG),
2448
fnvlist_lookup_string(events[i],
2449
ZPOOL_HIST_INT_STR));
2450
} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
2451
(void) printf("%s [txg:%ju] %s", tbuf,
2452
fnvlist_lookup_uint64(events[i],
2453
ZPOOL_HIST_TXG),
2454
fnvlist_lookup_string(events[i],
2455
ZPOOL_HIST_INT_NAME));
2456
2457
if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
2458
(void) printf(" %s (%llu)",
2459
fnvlist_lookup_string(events[i],
2460
ZPOOL_HIST_DSNAME),
2461
(u_longlong_t)fnvlist_lookup_uint64(
2462
events[i],
2463
ZPOOL_HIST_DSID));
2464
}
2465
2466
(void) printf(" %s\n", fnvlist_lookup_string(events[i],
2467
ZPOOL_HIST_INT_STR));
2468
} else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
2469
(void) printf("%s ioctl %s\n", tbuf,
2470
fnvlist_lookup_string(events[i],
2471
ZPOOL_HIST_IOCTL));
2472
2473
if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
2474
(void) printf(" input:\n");
2475
dump_nvlist(fnvlist_lookup_nvlist(events[i],
2476
ZPOOL_HIST_INPUT_NVL), 8);
2477
}
2478
if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
2479
(void) printf(" output:\n");
2480
dump_nvlist(fnvlist_lookup_nvlist(events[i],
2481
ZPOOL_HIST_OUTPUT_NVL), 8);
2482
}
2483
if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
2484
(void) printf(" errno: %lld\n",
2485
(longlong_t)fnvlist_lookup_int64(events[i],
2486
ZPOOL_HIST_ERRNO));
2487
}
2488
} else {
2489
goto next;
2490
}
2491
2492
printed = B_TRUE;
2493
next:
2494
if (dump_opt['h'] > 1) {
2495
if (!printed)
2496
(void) printf("unrecognized record:\n");
2497
dump_nvlist(events[i], 2);
2498
}
2499
}
2500
free(buf);
2501
}
2502
2503
static void
2504
dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
2505
{
2506
(void) os, (void) object, (void) data, (void) size;
2507
}
2508
2509
static uint64_t
2510
blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
2511
const zbookmark_phys_t *zb)
2512
{
2513
if (dnp == NULL) {
2514
ASSERT(zb->zb_level < 0);
2515
if (zb->zb_object == 0)
2516
return (zb->zb_blkid);
2517
return (zb->zb_blkid * BP_GET_LSIZE(bp));
2518
}
2519
2520
ASSERT(zb->zb_level >= 0);
2521
2522
return ((zb->zb_blkid <<
2523
(zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
2524
dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
2525
}
2526
2527
static void
2528
snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
2529
const blkptr_t *bp)
2530
{
2531
static abd_t *pabd = NULL;
2532
void *buf;
2533
zio_t *zio;
2534
zfs_zstdhdr_t zstd_hdr;
2535
int error;
2536
2537
if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
2538
return;
2539
2540
if (BP_IS_HOLE(bp))
2541
return;
2542
2543
if (BP_IS_EMBEDDED(bp)) {
2544
buf = malloc(SPA_MAXBLOCKSIZE);
2545
if (buf == NULL) {
2546
(void) fprintf(stderr, "out of memory\n");
2547
zdb_exit(1);
2548
}
2549
decode_embedded_bp_compressed(bp, buf);
2550
memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2551
free(buf);
2552
zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2553
zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2554
(void) snprintf(blkbuf + strlen(blkbuf),
2555
buflen - strlen(blkbuf),
2556
" ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2557
zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2558
zfs_get_hdrlevel(&zstd_hdr));
2559
return;
2560
}
2561
2562
if (!pabd)
2563
pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
2564
zio = zio_root(spa, NULL, NULL, 0);
2565
2566
/* Decrypt but don't decompress so we can read the compression header */
2567
zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
2568
ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
2569
NULL));
2570
error = zio_wait(zio);
2571
if (error) {
2572
(void) fprintf(stderr, "read failed: %d\n", error);
2573
return;
2574
}
2575
buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
2576
memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2577
zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2578
zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2579
2580
(void) snprintf(blkbuf + strlen(blkbuf),
2581
buflen - strlen(blkbuf),
2582
" ZSTD:size=%u:version=%u:level=%u:NORMAL",
2583
zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2584
zfs_get_hdrlevel(&zstd_hdr));
2585
2586
abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
2587
}
2588
2589
static void
2590
snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
2591
boolean_t bp_freed)
2592
{
2593
const dva_t *dva = bp->blk_dva;
2594
int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
2595
int i;
2596
2597
if (dump_opt['b'] >= 6) {
2598
snprintf_blkptr(blkbuf, buflen, bp);
2599
if (bp_freed) {
2600
(void) snprintf(blkbuf + strlen(blkbuf),
2601
buflen - strlen(blkbuf), " %s", "FREE");
2602
}
2603
return;
2604
}
2605
2606
if (BP_IS_EMBEDDED(bp)) {
2607
(void) sprintf(blkbuf,
2608
"EMBEDDED et=%u %llxL/%llxP B=%llu",
2609
(int)BPE_GET_ETYPE(bp),
2610
(u_longlong_t)BPE_GET_LSIZE(bp),
2611
(u_longlong_t)BPE_GET_PSIZE(bp),
2612
(u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));
2613
return;
2614
}
2615
2616
blkbuf[0] = '\0';
2617
2618
for (i = 0; i < ndvas; i++) {
2619
(void) snprintf(blkbuf + strlen(blkbuf),
2620
buflen - strlen(blkbuf), "%llu:%llx:%llx%s ",
2621
(u_longlong_t)DVA_GET_VDEV(&dva[i]),
2622
(u_longlong_t)DVA_GET_OFFSET(&dva[i]),
2623
(u_longlong_t)DVA_GET_ASIZE(&dva[i]),
2624
(DVA_GET_GANG(&dva[i]) ? "G" : ""));
2625
}
2626
2627
if (BP_IS_HOLE(bp)) {
2628
(void) snprintf(blkbuf + strlen(blkbuf),
2629
buflen - strlen(blkbuf),
2630
"%llxL B=%llu",
2631
(u_longlong_t)BP_GET_LSIZE(bp),
2632
(u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));
2633
} else {
2634
(void) snprintf(blkbuf + strlen(blkbuf),
2635
buflen - strlen(blkbuf),
2636
"%llxL/%llxP F=%llu B=%llu/%llu",
2637
(u_longlong_t)BP_GET_LSIZE(bp),
2638
(u_longlong_t)BP_GET_PSIZE(bp),
2639
(u_longlong_t)BP_GET_FILL(bp),
2640
(u_longlong_t)BP_GET_LOGICAL_BIRTH(bp),
2641
(u_longlong_t)BP_GET_PHYSICAL_BIRTH(bp));
2642
if (bp_freed)
2643
(void) snprintf(blkbuf + strlen(blkbuf),
2644
buflen - strlen(blkbuf), " %s", "FREE");
2645
(void) snprintf(blkbuf + strlen(blkbuf),
2646
buflen - strlen(blkbuf),
2647
" cksum=%016llx:%016llx:%016llx:%016llx",
2648
(u_longlong_t)bp->blk_cksum.zc_word[0],
2649
(u_longlong_t)bp->blk_cksum.zc_word[1],
2650
(u_longlong_t)bp->blk_cksum.zc_word[2],
2651
(u_longlong_t)bp->blk_cksum.zc_word[3]);
2652
}
2653
}
2654
2655
static u_longlong_t
2656
print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
2657
const dnode_phys_t *dnp)
2658
{
2659
char blkbuf[BP_SPRINTF_LEN];
2660
u_longlong_t offset;
2661
int l;
2662
2663
offset = (u_longlong_t)blkid2offset(dnp, bp, zb);
2664
2665
(void) printf("%16llx ", offset);
2666
2667
ASSERT(zb->zb_level >= 0);
2668
2669
for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
2670
if (l == zb->zb_level) {
2671
(void) printf("L%llx", (u_longlong_t)zb->zb_level);
2672
} else {
2673
(void) printf(" ");
2674
}
2675
}
2676
2677
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
2678
if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
2679
snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
2680
(void) printf("%s", blkbuf);
2681
2682
if (!BP_IS_EMBEDDED(bp)) {
2683
if (BP_GET_TYPE(bp) != dnp->dn_type) {
2684
(void) printf(" (ERROR: Block pointer type "
2685
"(%llu) does not match dnode type (%hhu))",
2686
BP_GET_TYPE(bp), dnp->dn_type);
2687
corruption_found = B_TRUE;
2688
}
2689
if (BP_GET_LEVEL(bp) != zb->zb_level) {
2690
(void) printf(" (ERROR: Block pointer level "
2691
"(%llu) does not match bookmark level (%lld))",
2692
BP_GET_LEVEL(bp), (longlong_t)zb->zb_level);
2693
corruption_found = B_TRUE;
2694
}
2695
}
2696
(void) printf("\n");
2697
2698
return (offset);
2699
}
2700
2701
static int
2702
visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
2703
blkptr_t *bp, const zbookmark_phys_t *zb)
2704
{
2705
u_longlong_t offset;
2706
int err = 0;
2707
2708
if (BP_GET_BIRTH(bp) == 0)
2709
return (0);
2710
2711
offset = print_indirect(spa, bp, zb, dnp);
2712
2713
if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
2714
arc_flags_t flags = ARC_FLAG_WAIT;
2715
int i;
2716
blkptr_t *cbp;
2717
int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2718
arc_buf_t *buf;
2719
uint64_t fill = 0;
2720
ASSERT(!BP_IS_REDACTED(bp));
2721
2722
err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2723
ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
2724
if (err)
2725
return (err);
2726
ASSERT(buf->b_data);
2727
2728
/* recursively visit blocks below this */
2729
cbp = buf->b_data;
2730
for (i = 0; i < epb; i++, cbp++) {
2731
zbookmark_phys_t czb;
2732
2733
SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2734
zb->zb_level - 1,
2735
zb->zb_blkid * epb + i);
2736
err = visit_indirect(spa, dnp, cbp, &czb);
2737
if (err)
2738
break;
2739
fill += BP_GET_FILL(cbp);
2740
}
2741
if (!err) {
2742
if (fill != BP_GET_FILL(bp)) {
2743
(void) printf("%16llx: Block pointer "
2744
"fill (%llu) does not match calculated "
2745
"value (%llu)\n", offset, BP_GET_FILL(bp),
2746
(u_longlong_t)fill);
2747
corruption_found = B_TRUE;
2748
}
2749
}
2750
arc_buf_destroy(buf, &buf);
2751
}
2752
2753
return (err);
2754
}
2755
2756
static void
2757
dump_indirect(dnode_t *dn)
2758
{
2759
dnode_phys_t *dnp = dn->dn_phys;
2760
zbookmark_phys_t czb;
2761
2762
(void) printf("Indirect blocks:\n");
2763
2764
SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
2765
dn->dn_object, dnp->dn_nlevels - 1, 0);
2766
for (int j = 0; j < dnp->dn_nblkptr; j++) {
2767
czb.zb_blkid = j;
2768
(void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
2769
&dnp->dn_blkptr[j], &czb);
2770
}
2771
2772
(void) printf("\n");
2773
}
2774
2775
static void
2776
dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
2777
{
2778
(void) os, (void) object;
2779
dsl_dir_phys_t *dd = data;
2780
time_t crtime;
2781
char nice[32];
2782
2783
/* make sure nicenum has enough space */
2784
_Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
2785
2786
if (dd == NULL)
2787
return;
2788
2789
ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
2790
2791
crtime = dd->dd_creation_time;
2792
(void) printf("\t\tcreation_time = %s", ctime(&crtime));
2793
(void) printf("\t\thead_dataset_obj = %llu\n",
2794
(u_longlong_t)dd->dd_head_dataset_obj);
2795
(void) printf("\t\tparent_dir_obj = %llu\n",
2796
(u_longlong_t)dd->dd_parent_obj);
2797
(void) printf("\t\torigin_obj = %llu\n",
2798
(u_longlong_t)dd->dd_origin_obj);
2799
(void) printf("\t\tchild_dir_zapobj = %llu\n",
2800
(u_longlong_t)dd->dd_child_dir_zapobj);
2801
zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
2802
(void) printf("\t\tused_bytes = %s\n", nice);
2803
zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
2804
(void) printf("\t\tcompressed_bytes = %s\n", nice);
2805
zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
2806
(void) printf("\t\tuncompressed_bytes = %s\n", nice);
2807
zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
2808
(void) printf("\t\tquota = %s\n", nice);
2809
zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
2810
(void) printf("\t\treserved = %s\n", nice);
2811
(void) printf("\t\tprops_zapobj = %llu\n",
2812
(u_longlong_t)dd->dd_props_zapobj);
2813
(void) printf("\t\tdeleg_zapobj = %llu\n",
2814
(u_longlong_t)dd->dd_deleg_zapobj);
2815
(void) printf("\t\tflags = %llx\n",
2816
(u_longlong_t)dd->dd_flags);
2817
2818
#define DO(which) \
2819
zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2820
sizeof (nice)); \
2821
(void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2822
DO(HEAD);
2823
DO(SNAP);
2824
DO(CHILD);
2825
DO(CHILD_RSRV);
2826
DO(REFRSRV);
2827
#undef DO
2828
(void) printf("\t\tclones = %llu\n",
2829
(u_longlong_t)dd->dd_clones);
2830
}
2831
2832
static void
2833
dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
2834
{
2835
(void) os, (void) object;
2836
dsl_dataset_phys_t *ds = data;
2837
time_t crtime;
2838
char used[32], compressed[32], uncompressed[32], unique[32];
2839
char blkbuf[BP_SPRINTF_LEN];
2840
2841
/* make sure nicenum has enough space */
2842
_Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
2843
_Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
2844
"compressed truncated");
2845
_Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
2846
"uncompressed truncated");
2847
_Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
2848
2849
if (ds == NULL)
2850
return;
2851
2852
ASSERT(size == sizeof (*ds));
2853
crtime = ds->ds_creation_time;
2854
zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
2855
zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
2856
zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
2857
sizeof (uncompressed));
2858
zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
2859
snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
2860
2861
(void) printf("\t\tdir_obj = %llu\n",
2862
(u_longlong_t)ds->ds_dir_obj);
2863
(void) printf("\t\tprev_snap_obj = %llu\n",
2864
(u_longlong_t)ds->ds_prev_snap_obj);
2865
(void) printf("\t\tprev_snap_txg = %llu\n",
2866
(u_longlong_t)ds->ds_prev_snap_txg);
2867
(void) printf("\t\tnext_snap_obj = %llu\n",
2868
(u_longlong_t)ds->ds_next_snap_obj);
2869
(void) printf("\t\tsnapnames_zapobj = %llu\n",
2870
(u_longlong_t)ds->ds_snapnames_zapobj);
2871
(void) printf("\t\tnum_children = %llu\n",
2872
(u_longlong_t)ds->ds_num_children);
2873
(void) printf("\t\tuserrefs_obj = %llu\n",
2874
(u_longlong_t)ds->ds_userrefs_obj);
2875
(void) printf("\t\tcreation_time = %s", ctime(&crtime));
2876
(void) printf("\t\tcreation_txg = %llu\n",
2877
(u_longlong_t)ds->ds_creation_txg);
2878
(void) printf("\t\tdeadlist_obj = %llu\n",
2879
(u_longlong_t)ds->ds_deadlist_obj);
2880
(void) printf("\t\tused_bytes = %s\n", used);
2881
(void) printf("\t\tcompressed_bytes = %s\n", compressed);
2882
(void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
2883
(void) printf("\t\tunique = %s\n", unique);
2884
(void) printf("\t\tfsid_guid = %llu\n",
2885
(u_longlong_t)ds->ds_fsid_guid);
2886
(void) printf("\t\tguid = %llu\n",
2887
(u_longlong_t)ds->ds_guid);
2888
(void) printf("\t\tflags = %llx\n",
2889
(u_longlong_t)ds->ds_flags);
2890
(void) printf("\t\tnext_clones_obj = %llu\n",
2891
(u_longlong_t)ds->ds_next_clones_obj);
2892
(void) printf("\t\tprops_obj = %llu\n",
2893
(u_longlong_t)ds->ds_props_obj);
2894
(void) printf("\t\tbp = %s\n", blkbuf);
2895
}
2896
2897
static int
2898
dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2899
{
2900
(void) arg, (void) tx;
2901
char blkbuf[BP_SPRINTF_LEN];
2902
2903
if (BP_GET_BIRTH(bp) != 0) {
2904
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
2905
(void) printf("\t%s\n", blkbuf);
2906
}
2907
return (0);
2908
}
2909
2910
static void
2911
dump_bptree(objset_t *os, uint64_t obj, const char *name)
2912
{
2913
char bytes[32];
2914
bptree_phys_t *bt;
2915
dmu_buf_t *db;
2916
2917
/* make sure nicenum has enough space */
2918
_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2919
2920
if (dump_opt['d'] < 3)
2921
return;
2922
2923
VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
2924
bt = db->db_data;
2925
zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
2926
(void) printf("\n %s: %llu datasets, %s\n",
2927
name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
2928
dmu_buf_rele(db, FTAG);
2929
2930
if (dump_opt['d'] < 5)
2931
return;
2932
2933
(void) printf("\n");
2934
2935
(void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
2936
}
2937
2938
static int
2939
dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
2940
{
2941
(void) arg, (void) tx;
2942
char blkbuf[BP_SPRINTF_LEN];
2943
2944
ASSERT(BP_GET_BIRTH(bp) != 0);
2945
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
2946
(void) printf("\t%s\n", blkbuf);
2947
return (0);
2948
}
2949
2950
static void
2951
dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
2952
{
2953
char bytes[32];
2954
char comp[32];
2955
char uncomp[32];
2956
uint64_t i;
2957
2958
/* make sure nicenum has enough space */
2959
_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2960
_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2961
_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2962
2963
if (dump_opt['d'] < 3)
2964
return;
2965
2966
zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
2967
if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2968
zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
2969
zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
2970
if (bpo->bpo_havefreed) {
2971
(void) printf(" %*s: object %llu, %llu local "
2972
"blkptrs, %llu freed, %llu subobjs in object %llu, "
2973
"%s (%s/%s comp)\n",
2974
indent * 8, name,
2975
(u_longlong_t)bpo->bpo_object,
2976
(u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2977
(u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2978
(u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2979
(u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2980
bytes, comp, uncomp);
2981
} else {
2982
(void) printf(" %*s: object %llu, %llu local "
2983
"blkptrs, %llu subobjs in object %llu, "
2984
"%s (%s/%s comp)\n",
2985
indent * 8, name,
2986
(u_longlong_t)bpo->bpo_object,
2987
(u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2988
(u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2989
(u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2990
bytes, comp, uncomp);
2991
}
2992
2993
for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2994
uint64_t subobj;
2995
bpobj_t subbpo;
2996
int error;
2997
VERIFY0(dmu_read(bpo->bpo_os,
2998
bpo->bpo_phys->bpo_subobjs,
2999
i * sizeof (subobj), sizeof (subobj), &subobj, 0));
3000
error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
3001
if (error != 0) {
3002
(void) printf("ERROR %u while trying to open "
3003
"subobj id %llu\n",
3004
error, (u_longlong_t)subobj);
3005
corruption_found = B_TRUE;
3006
continue;
3007
}
3008
dump_full_bpobj(&subbpo, "subobj", indent + 1);
3009
bpobj_close(&subbpo);
3010
}
3011
} else {
3012
if (bpo->bpo_havefreed) {
3013
(void) printf(" %*s: object %llu, %llu blkptrs, "
3014
"%llu freed, %s\n",
3015
indent * 8, name,
3016
(u_longlong_t)bpo->bpo_object,
3017
(u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
3018
(u_longlong_t)bpo->bpo_phys->bpo_num_freed,
3019
bytes);
3020
} else {
3021
(void) printf(" %*s: object %llu, %llu blkptrs, "
3022
"%s\n",
3023
indent * 8, name,
3024
(u_longlong_t)bpo->bpo_object,
3025
(u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
3026
bytes);
3027
}
3028
}
3029
3030
if (dump_opt['d'] < 5)
3031
return;
3032
3033
3034
if (indent == 0) {
3035
(void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
3036
(void) printf("\n");
3037
}
3038
}
3039
3040
static int
3041
dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
3042
boolean_t print_list)
3043
{
3044
int err = 0;
3045
zfs_bookmark_phys_t prop;
3046
objset_t *mos = dp->dp_spa->spa_meta_objset;
3047
err = dsl_bookmark_lookup(dp, name, NULL, &prop);
3048
3049
if (err != 0) {
3050
return (err);
3051
}
3052
3053
(void) printf("\t#%s: ", strchr(name, '#') + 1);
3054
(void) printf("{guid: %llx creation_txg: %llu creation_time: "
3055
"%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
3056
(u_longlong_t)prop.zbm_creation_txg,
3057
(u_longlong_t)prop.zbm_creation_time,
3058
(u_longlong_t)prop.zbm_redaction_obj);
3059
3060
IMPLY(print_list, print_redact);
3061
if (!print_redact || prop.zbm_redaction_obj == 0)
3062
return (0);
3063
3064
redaction_list_t *rl;
3065
VERIFY0(dsl_redaction_list_hold_obj(dp,
3066
prop.zbm_redaction_obj, FTAG, &rl));
3067
3068
redaction_list_phys_t *rlp = rl->rl_phys;
3069
(void) printf("\tRedacted:\n\t\tProgress: ");
3070
if (rlp->rlp_last_object != UINT64_MAX ||
3071
rlp->rlp_last_blkid != UINT64_MAX) {
3072
(void) printf("%llu %llu (incomplete)\n",
3073
(u_longlong_t)rlp->rlp_last_object,
3074
(u_longlong_t)rlp->rlp_last_blkid);
3075
} else {
3076
(void) printf("complete\n");
3077
}
3078
(void) printf("\t\tSnapshots: [");
3079
for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
3080
if (i > 0)
3081
(void) printf(", ");
3082
(void) printf("%0llu",
3083
(u_longlong_t)rlp->rlp_snaps[i]);
3084
}
3085
(void) printf("]\n\t\tLength: %llu\n",
3086
(u_longlong_t)rlp->rlp_num_entries);
3087
3088
if (!print_list) {
3089
dsl_redaction_list_rele(rl, FTAG);
3090
return (0);
3091
}
3092
3093
if (rlp->rlp_num_entries == 0) {
3094
dsl_redaction_list_rele(rl, FTAG);
3095
(void) printf("\t\tRedaction List: []\n\n");
3096
return (0);
3097
}
3098
3099
redact_block_phys_t *rbp_buf;
3100
uint64_t size;
3101
dmu_object_info_t doi;
3102
3103
VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
3104
size = doi.doi_max_offset;
3105
rbp_buf = kmem_alloc(size, KM_SLEEP);
3106
3107
err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
3108
rbp_buf, 0);
3109
if (err != 0) {
3110
dsl_redaction_list_rele(rl, FTAG);
3111
kmem_free(rbp_buf, size);
3112
return (err);
3113
}
3114
3115
(void) printf("\t\tRedaction List: [{object: %llx, offset: "
3116
"%llx, blksz: %x, count: %llx}",
3117
(u_longlong_t)rbp_buf[0].rbp_object,
3118
(u_longlong_t)rbp_buf[0].rbp_blkid,
3119
(uint_t)(redact_block_get_size(&rbp_buf[0])),
3120
(u_longlong_t)redact_block_get_count(&rbp_buf[0]));
3121
3122
for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
3123
(void) printf(",\n\t\t{object: %llx, offset: %llx, "
3124
"blksz: %x, count: %llx}",
3125
(u_longlong_t)rbp_buf[i].rbp_object,
3126
(u_longlong_t)rbp_buf[i].rbp_blkid,
3127
(uint_t)(redact_block_get_size(&rbp_buf[i])),
3128
(u_longlong_t)redact_block_get_count(&rbp_buf[i]));
3129
}
3130
dsl_redaction_list_rele(rl, FTAG);
3131
kmem_free(rbp_buf, size);
3132
(void) printf("]\n\n");
3133
return (0);
3134
}
3135
3136
static void
3137
dump_bookmarks(objset_t *os, int verbosity)
3138
{
3139
zap_cursor_t zc;
3140
zap_attribute_t *attrp;
3141
dsl_dataset_t *ds = dmu_objset_ds(os);
3142
dsl_pool_t *dp = spa_get_dsl(os->os_spa);
3143
objset_t *mos = os->os_spa->spa_meta_objset;
3144
if (verbosity < 4)
3145
return;
3146
attrp = zap_attribute_alloc();
3147
dsl_pool_config_enter(dp, FTAG);
3148
3149
for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
3150
zap_cursor_retrieve(&zc, attrp) == 0;
3151
zap_cursor_advance(&zc)) {
3152
char osname[ZFS_MAX_DATASET_NAME_LEN];
3153
char buf[ZFS_MAX_DATASET_NAME_LEN];
3154
int len;
3155
dmu_objset_name(os, osname);
3156
len = snprintf(buf, sizeof (buf), "%s#%s", osname,
3157
attrp->za_name);
3158
VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN);
3159
(void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
3160
}
3161
zap_cursor_fini(&zc);
3162
dsl_pool_config_exit(dp, FTAG);
3163
zap_attribute_free(attrp);
3164
}
3165
3166
static void
3167
bpobj_count_refd(bpobj_t *bpo)
3168
{
3169
mos_obj_refd(bpo->bpo_object);
3170
3171
if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
3172
mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
3173
for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
3174
uint64_t subobj;
3175
bpobj_t subbpo;
3176
int error;
3177
VERIFY0(dmu_read(bpo->bpo_os,
3178
bpo->bpo_phys->bpo_subobjs,
3179
i * sizeof (subobj), sizeof (subobj), &subobj, 0));
3180
error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
3181
if (error != 0) {
3182
(void) printf("ERROR %u while trying to open "
3183
"subobj id %llu\n",
3184
error, (u_longlong_t)subobj);
3185
corruption_found = B_TRUE;
3186
continue;
3187
}
3188
bpobj_count_refd(&subbpo);
3189
bpobj_close(&subbpo);
3190
}
3191
}
3192
}
3193
3194
static int
3195
dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
3196
{
3197
spa_t *spa = arg;
3198
uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3199
if (dle->dle_bpobj.bpo_object != empty_bpobj)
3200
bpobj_count_refd(&dle->dle_bpobj);
3201
return (0);
3202
}
3203
3204
static int
3205
dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
3206
{
3207
ASSERT0P(arg);
3208
if (dump_opt['d'] >= 5) {
3209
char buf[128];
3210
(void) snprintf(buf, sizeof (buf),
3211
"mintxg %llu -> obj %llu",
3212
(longlong_t)dle->dle_mintxg,
3213
(longlong_t)dle->dle_bpobj.bpo_object);
3214
3215
dump_full_bpobj(&dle->dle_bpobj, buf, 0);
3216
} else {
3217
(void) printf("mintxg %llu -> obj %llu\n",
3218
(longlong_t)dle->dle_mintxg,
3219
(longlong_t)dle->dle_bpobj.bpo_object);
3220
}
3221
return (0);
3222
}
3223
3224
static void
3225
dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
3226
{
3227
char bytes[32];
3228
char comp[32];
3229
char uncomp[32];
3230
char entries[32];
3231
spa_t *spa = dmu_objset_spa(dl->dl_os);
3232
uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3233
3234
if (dl->dl_oldfmt) {
3235
if (dl->dl_bpobj.bpo_object != empty_bpobj)
3236
bpobj_count_refd(&dl->dl_bpobj);
3237
} else {
3238
mos_obj_refd(dl->dl_object);
3239
dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
3240
}
3241
3242
/* make sure nicenum has enough space */
3243
_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
3244
_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
3245
_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
3246
_Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
3247
3248
if (dump_opt['d'] < 3)
3249
return;
3250
3251
if (dl->dl_oldfmt) {
3252
dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
3253
return;
3254
}
3255
3256
zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
3257
zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
3258
zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
3259
zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
3260
(void) printf("\n %s: %s (%s/%s comp), %s entries\n",
3261
name, bytes, comp, uncomp, entries);
3262
3263
if (dump_opt['d'] < 4)
3264
return;
3265
3266
(void) putchar('\n');
3267
3268
dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
3269
}
3270
3271
static int
3272
verify_dd_livelist(objset_t *os)
3273
{
3274
uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
3275
dsl_pool_t *dp = spa_get_dsl(os->os_spa);
3276
dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
3277
3278
ASSERT(!dmu_objset_is_snapshot(os));
3279
if (!dsl_deadlist_is_open(&dd->dd_livelist))
3280
return (0);
3281
3282
/* Iterate through the livelist to check for duplicates */
3283
dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
3284
NULL);
3285
3286
dsl_pool_config_enter(dp, FTAG);
3287
dsl_deadlist_space(&dd->dd_livelist, &ll_used,
3288
&ll_comp, &ll_uncomp);
3289
3290
dsl_dataset_t *origin_ds;
3291
ASSERT(dsl_pool_config_held(dp));
3292
VERIFY0(dsl_dataset_hold_obj(dp,
3293
dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
3294
VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
3295
&used, &comp, &uncomp));
3296
dsl_dataset_rele(origin_ds, FTAG);
3297
dsl_pool_config_exit(dp, FTAG);
3298
/*
3299
* It's possible that the dataset's uncomp space is larger than the
3300
* livelist's because livelists do not track embedded block pointers
3301
*/
3302
if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
3303
char nice_used[32], nice_comp[32], nice_uncomp[32];
3304
(void) printf("Discrepancy in space accounting:\n");
3305
zdb_nicenum(used, nice_used, sizeof (nice_used));
3306
zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
3307
zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
3308
(void) printf("dir: used %s, comp %s, uncomp %s\n",
3309
nice_used, nice_comp, nice_uncomp);
3310
zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
3311
zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
3312
zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
3313
(void) printf("livelist: used %s, comp %s, uncomp %s\n",
3314
nice_used, nice_comp, nice_uncomp);
3315
return (1);
3316
}
3317
return (0);
3318
}
3319
3320
static char *key_material = NULL;
3321
3322
static boolean_t
3323
zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out)
3324
{
3325
uint64_t keyformat, salt, iters;
3326
int i;
3327
unsigned char c;
3328
FILE *f;
3329
3330
VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3331
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t),
3332
1, &keyformat));
3333
3334
switch (keyformat) {
3335
case ZFS_KEYFORMAT_HEX:
3336
for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) {
3337
if (!isxdigit(key_material[i]) ||
3338
!isxdigit(key_material[i+1]))
3339
return (B_FALSE);
3340
if (sscanf(&key_material[i], "%02hhx", &c) != 1)
3341
return (B_FALSE);
3342
key_out[i / 2] = c;
3343
}
3344
break;
3345
3346
case ZFS_KEYFORMAT_PASSPHRASE:
3347
VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3348
dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
3349
sizeof (uint64_t), 1, &salt));
3350
VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3351
dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
3352
sizeof (uint64_t), 1, &iters));
3353
3354
if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material),
3355
((uint8_t *)&salt), sizeof (uint64_t), iters,
3356
WRAPPING_KEY_LEN, key_out) != 1)
3357
return (B_FALSE);
3358
3359
break;
3360
3361
case ZFS_KEYFORMAT_RAW:
3362
if ((f = fopen(key_material, "r")) == NULL)
3363
return (B_FALSE);
3364
3365
if (fread(key_out, 1, WRAPPING_KEY_LEN, f) !=
3366
WRAPPING_KEY_LEN) {
3367
(void) fclose(f);
3368
return (B_FALSE);
3369
}
3370
3371
/* Check the key length */
3372
if (fgetc(f) != EOF) {
3373
(void) fclose(f);
3374
return (B_FALSE);
3375
}
3376
3377
(void) fclose(f);
3378
break;
3379
3380
default:
3381
fatal("no support for key format %u\n",
3382
(unsigned int) keyformat);
3383
}
3384
3385
return (B_TRUE);
3386
}
3387
3388
static char encroot[ZFS_MAX_DATASET_NAME_LEN];
3389
static boolean_t key_loaded = B_FALSE;
3390
3391
static void
3392
zdb_load_key(objset_t *os)
3393
{
3394
dsl_pool_t *dp;
3395
dsl_dir_t *dd, *rdd;
3396
uint8_t key[WRAPPING_KEY_LEN];
3397
uint64_t rddobj;
3398
int err;
3399
3400
dp = spa_get_dsl(os->os_spa);
3401
dd = os->os_dsl_dataset->ds_dir;
3402
3403
dsl_pool_config_enter(dp, FTAG);
3404
VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3405
DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj));
3406
VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd));
3407
dsl_dir_name(rdd, encroot);
3408
dsl_dir_rele(rdd, FTAG);
3409
3410
if (!zdb_derive_key(dd, key))
3411
fatal("couldn't derive encryption key");
3412
3413
dsl_pool_config_exit(dp, FTAG);
3414
3415
ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE);
3416
3417
dsl_crypto_params_t *dcp;
3418
nvlist_t *crypto_args;
3419
3420
crypto_args = fnvlist_alloc();
3421
fnvlist_add_uint8_array(crypto_args, "wkeydata",
3422
(uint8_t *)key, WRAPPING_KEY_LEN);
3423
VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
3424
NULL, crypto_args, &dcp));
3425
err = spa_keystore_load_wkey(encroot, dcp, B_FALSE);
3426
3427
dsl_crypto_params_free(dcp, (err != 0));
3428
fnvlist_free(crypto_args);
3429
3430
if (err != 0)
3431
fatal(
3432
"couldn't load encryption key for %s: %s",
3433
encroot, err == ZFS_ERR_CRYPTO_NOTSUP ?
3434
"crypto params not supported" : strerror(err));
3435
3436
ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE);
3437
3438
printf("Unlocked encryption root: %s\n", encroot);
3439
key_loaded = B_TRUE;
3440
}
3441
3442
static void
3443
zdb_unload_key(void)
3444
{
3445
if (!key_loaded)
3446
return;
3447
3448
VERIFY0(spa_keystore_unload_wkey(encroot));
3449
key_loaded = B_FALSE;
3450
}
3451
3452
static avl_tree_t idx_tree;
3453
static avl_tree_t domain_tree;
3454
static boolean_t fuid_table_loaded;
3455
static objset_t *sa_os = NULL;
3456
static sa_attr_type_t *sa_attr_table = NULL;
3457
3458
static int
3459
open_objset(const char *path, const void *tag, objset_t **osp)
3460
{
3461
int err;
3462
uint64_t sa_attrs = 0;
3463
uint64_t version = 0;
3464
3465
VERIFY0P(sa_os);
3466
3467
/*
3468
* We can't own an objset if it's redacted. Therefore, we do this
3469
* dance: hold the objset, then acquire a long hold on its dataset, then
3470
* release the pool (which is held as part of holding the objset).
3471
*/
3472
3473
if (dump_opt['K']) {
3474
/* decryption requested, try to load keys */
3475
err = dmu_objset_hold(path, tag, osp);
3476
if (err != 0) {
3477
(void) fprintf(stderr, "failed to hold dataset "
3478
"'%s': %s\n",
3479
path, strerror(err));
3480
return (err);
3481
}
3482
dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3483
dsl_pool_rele(dmu_objset_pool(*osp), tag);
3484
3485
/* succeeds or dies */
3486
zdb_load_key(*osp);
3487
3488
/* release it all */
3489
dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3490
dsl_dataset_rele(dmu_objset_ds(*osp), tag);
3491
}
3492
3493
int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0;
3494
3495
err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp);
3496
if (err != 0) {
3497
(void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
3498
path, strerror(err));
3499
return (err);
3500
}
3501
dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3502
dsl_pool_rele(dmu_objset_pool(*osp), tag);
3503
3504
if (dmu_objset_type(*osp) == DMU_OST_ZFS &&
3505
(key_loaded || !(*osp)->os_encrypted)) {
3506
(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
3507
8, 1, &version);
3508
if (version >= ZPL_VERSION_SA) {
3509
(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
3510
8, 1, &sa_attrs);
3511
}
3512
err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
3513
&sa_attr_table);
3514
if (err != 0) {
3515
(void) fprintf(stderr, "sa_setup failed: %s\n",
3516
strerror(err));
3517
dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3518
dsl_dataset_rele_flags(dmu_objset_ds(*osp),
3519
ds_hold_flags, tag);
3520
*osp = NULL;
3521
}
3522
}
3523
sa_os = *osp;
3524
3525
return (err);
3526
}
3527
3528
static void
3529
close_objset(objset_t *os, const void *tag)
3530
{
3531
VERIFY3P(os, ==, sa_os);
3532
if (os->os_sa != NULL)
3533
sa_tear_down(os);
3534
dsl_dataset_long_rele(dmu_objset_ds(os), tag);
3535
dsl_dataset_rele_flags(dmu_objset_ds(os),
3536
key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag);
3537
sa_attr_table = NULL;
3538
sa_os = NULL;
3539
3540
zdb_unload_key();
3541
}
3542
3543
static void
3544
fuid_table_destroy(void)
3545
{
3546
if (fuid_table_loaded) {
3547
zfs_fuid_table_destroy(&idx_tree, &domain_tree);
3548
fuid_table_loaded = B_FALSE;
3549
}
3550
}
3551
3552
/*
3553
* Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on
3554
* a live pool are normally cleaned up during ddt_sync(). We can't do that (and
3555
* wouldn't want to anyway), but if we don't clean up the presence of stuff on
3556
* ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves.
3557
*
3558
* Note that this is not a particularly efficient way to do this, but
3559
* ddt_remove() is the only public method that can do the work we need, and it
3560
* requires the right locks and etc to do the job. This is only ever called
3561
* during zdb shutdown so efficiency is not especially important.
3562
*/
3563
static void
3564
zdb_ddt_cleanup(spa_t *spa)
3565
{
3566
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
3567
ddt_t *ddt = spa->spa_ddt[c];
3568
if (!ddt)
3569
continue;
3570
3571
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3572
ddt_enter(ddt);
3573
ddt_entry_t *dde = avl_first(&ddt->ddt_tree), *next;
3574
while (dde) {
3575
next = AVL_NEXT(&ddt->ddt_tree, dde);
3576
dde->dde_io = NULL;
3577
ddt_remove(ddt, dde);
3578
dde = next;
3579
}
3580
ddt_exit(ddt);
3581
spa_config_exit(spa, SCL_CONFIG, FTAG);
3582
}
3583
}
3584
3585
static void
3586
zdb_exit(int reason)
3587
{
3588
if (spa != NULL)
3589
zdb_ddt_cleanup(spa);
3590
3591
if (os != NULL) {
3592
close_objset(os, FTAG);
3593
} else if (spa != NULL) {
3594
spa_close(spa, FTAG);
3595
}
3596
3597
fuid_table_destroy();
3598
3599
if (kernel_init_done)
3600
kernel_fini();
3601
3602
exit(reason);
3603
}
3604
3605
/*
3606
* print uid or gid information.
3607
* For normal POSIX id just the id is printed in decimal format.
3608
* For CIFS files with FUID the fuid is printed in hex followed by
3609
* the domain-rid string.
3610
*/
3611
static void
3612
print_idstr(uint64_t id, const char *id_type)
3613
{
3614
if (FUID_INDEX(id)) {
3615
const char *domain =
3616
zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
3617
(void) printf("\t%s %llx [%s-%d]\n", id_type,
3618
(u_longlong_t)id, domain, (int)FUID_RID(id));
3619
} else {
3620
(void) printf("\t%s %llu\n", id_type, (u_longlong_t)id);
3621
}
3622
3623
}
3624
3625
static void
3626
dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
3627
{
3628
uint32_t uid_idx, gid_idx;
3629
3630
uid_idx = FUID_INDEX(uid);
3631
gid_idx = FUID_INDEX(gid);
3632
3633
/* Load domain table, if not already loaded */
3634
if (!fuid_table_loaded && (uid_idx || gid_idx)) {
3635
uint64_t fuid_obj;
3636
3637
/* first find the fuid object. It lives in the master node */
3638
VERIFY0(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
3639
8, 1, &fuid_obj));
3640
zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
3641
(void) zfs_fuid_table_load(os, fuid_obj,
3642
&idx_tree, &domain_tree);
3643
fuid_table_loaded = B_TRUE;
3644
}
3645
3646
print_idstr(uid, "uid");
3647
print_idstr(gid, "gid");
3648
}
3649
3650
static void
3651
dump_znode_sa_xattr(sa_handle_t *hdl)
3652
{
3653
nvlist_t *sa_xattr;
3654
nvpair_t *elem = NULL;
3655
int sa_xattr_size = 0;
3656
int sa_xattr_entries = 0;
3657
int error;
3658
char *sa_xattr_packed;
3659
3660
error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
3661
if (error || sa_xattr_size == 0)
3662
return;
3663
3664
sa_xattr_packed = malloc(sa_xattr_size);
3665
if (sa_xattr_packed == NULL)
3666
return;
3667
3668
error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
3669
sa_xattr_packed, sa_xattr_size);
3670
if (error) {
3671
free(sa_xattr_packed);
3672
return;
3673
}
3674
3675
error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
3676
if (error) {
3677
free(sa_xattr_packed);
3678
return;
3679
}
3680
3681
while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
3682
sa_xattr_entries++;
3683
3684
(void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3685
sa_xattr_size, sa_xattr_entries);
3686
while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
3687
boolean_t can_print = !dump_opt['P'];
3688
uchar_t *value;
3689
uint_t cnt, idx;
3690
3691
(void) printf("\t\t%s = ", nvpair_name(elem));
3692
nvpair_value_byte_array(elem, &value, &cnt);
3693
3694
for (idx = 0; idx < cnt; ++idx) {
3695
if (!isprint(value[idx])) {
3696
can_print = B_FALSE;
3697
break;
3698
}
3699
}
3700
3701
for (idx = 0; idx < cnt; ++idx) {
3702
if (can_print)
3703
(void) putchar(value[idx]);
3704
else
3705
(void) printf("\\%3.3o", value[idx]);
3706
}
3707
(void) putchar('\n');
3708
}
3709
3710
nvlist_free(sa_xattr);
3711
free(sa_xattr_packed);
3712
}
3713
3714
static void
3715
dump_znode_symlink(sa_handle_t *hdl)
3716
{
3717
int sa_symlink_size = 0;
3718
char linktarget[MAXPATHLEN];
3719
int error;
3720
3721
error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
3722
if (error || sa_symlink_size == 0) {
3723
return;
3724
}
3725
if (sa_symlink_size >= sizeof (linktarget)) {
3726
(void) printf("symlink size %d is too large\n",
3727
sa_symlink_size);
3728
return;
3729
}
3730
linktarget[sa_symlink_size] = '\0';
3731
if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
3732
&linktarget, sa_symlink_size) == 0)
3733
(void) printf("\ttarget %s\n", linktarget);
3734
}
3735
3736
static void
3737
dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
3738
{
3739
(void) data, (void) size;
3740
char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */
3741
sa_handle_t *hdl;
3742
uint64_t xattr, rdev, gen;
3743
uint64_t uid, gid, mode, fsize, parent, links;
3744
uint64_t pflags;
3745
uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
3746
time_t z_crtime, z_atime, z_mtime, z_ctime;
3747
sa_bulk_attr_t bulk[12];
3748
int idx = 0;
3749
int error;
3750
3751
VERIFY3P(os, ==, sa_os);
3752
if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
3753
(void) printf("Failed to get handle for SA znode\n");
3754
return;
3755
}
3756
3757
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
3758
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
3759
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
3760
&links, 8);
3761
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
3762
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
3763
&mode, 8);
3764
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
3765
NULL, &parent, 8);
3766
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
3767
&fsize, 8);
3768
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
3769
acctm, 16);
3770
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
3771
modtm, 16);
3772
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
3773
crtm, 16);
3774
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
3775
chgtm, 16);
3776
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
3777
&pflags, 8);
3778
3779
if (sa_bulk_lookup(hdl, bulk, idx)) {
3780
(void) sa_handle_destroy(hdl);
3781
return;
3782
}
3783
3784
z_crtime = (time_t)crtm[0];
3785
z_atime = (time_t)acctm[0];
3786
z_mtime = (time_t)modtm[0];
3787
z_ctime = (time_t)chgtm[0];
3788
3789
if (dump_opt['d'] > 4) {
3790
error = zfs_obj_to_path(os, object, path, sizeof (path));
3791
if (error == ESTALE) {
3792
(void) snprintf(path, sizeof (path), "on delete queue");
3793
} else if (error != 0) {
3794
leaked_objects++;
3795
(void) snprintf(path, sizeof (path),
3796
"path not found, possibly leaked");
3797
}
3798
(void) printf("\tpath %s\n", path);
3799
}
3800
3801
if (S_ISLNK(mode))
3802
dump_znode_symlink(hdl);
3803
dump_uidgid(os, uid, gid);
3804
(void) printf("\tatime %s", ctime(&z_atime));
3805
(void) printf("\tmtime %s", ctime(&z_mtime));
3806
(void) printf("\tctime %s", ctime(&z_ctime));
3807
(void) printf("\tcrtime %s", ctime(&z_crtime));
3808
(void) printf("\tgen %llu\n", (u_longlong_t)gen);
3809
(void) printf("\tmode %llo\n", (u_longlong_t)mode);
3810
(void) printf("\tsize %llu\n", (u_longlong_t)fsize);
3811
(void) printf("\tparent %llu\n", (u_longlong_t)parent);
3812
(void) printf("\tlinks %llu\n", (u_longlong_t)links);
3813
(void) printf("\tpflags %llx\n", (u_longlong_t)pflags);
3814
if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
3815
uint64_t projid;
3816
3817
if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
3818
sizeof (uint64_t)) == 0)
3819
(void) printf("\tprojid %llu\n", (u_longlong_t)projid);
3820
}
3821
if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
3822
sizeof (uint64_t)) == 0)
3823
(void) printf("\txattr %llu\n", (u_longlong_t)xattr);
3824
if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
3825
sizeof (uint64_t)) == 0)
3826
(void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev);
3827
dump_znode_sa_xattr(hdl);
3828
sa_handle_destroy(hdl);
3829
}
3830
3831
static void
3832
dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
3833
{
3834
(void) os, (void) object, (void) data, (void) size;
3835
}
3836
3837
static void
3838
dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
3839
{
3840
(void) os, (void) object, (void) data, (void) size;
3841
}
3842
3843
static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
3844
dump_none, /* unallocated */
3845
dump_zap, /* object directory */
3846
dump_uint64, /* object array */
3847
dump_none, /* packed nvlist */
3848
dump_packed_nvlist, /* packed nvlist size */
3849
dump_none, /* bpobj */
3850
dump_bpobj, /* bpobj header */
3851
dump_none, /* SPA space map header */
3852
dump_none, /* SPA space map */
3853
dump_none, /* ZIL intent log */
3854
dump_dnode, /* DMU dnode */
3855
dump_dmu_objset, /* DMU objset */
3856
dump_dsl_dir, /* DSL directory */
3857
dump_zap, /* DSL directory child map */
3858
dump_zap, /* DSL dataset snap map */
3859
dump_zap, /* DSL props */
3860
dump_dsl_dataset, /* DSL dataset */
3861
dump_znode, /* ZFS znode */
3862
dump_acl, /* ZFS V0 ACL */
3863
dump_uint8, /* ZFS plain file */
3864
dump_zpldir, /* ZFS directory */
3865
dump_zap, /* ZFS master node */
3866
dump_zap, /* ZFS delete queue */
3867
dump_uint8, /* zvol object */
3868
dump_zap, /* zvol prop */
3869
dump_uint8, /* other uint8[] */
3870
dump_uint64, /* other uint64[] */
3871
dump_zap, /* other ZAP */
3872
dump_zap, /* persistent error log */
3873
dump_uint8, /* SPA history */
3874
dump_history_offsets, /* SPA history offsets */
3875
dump_zap, /* Pool properties */
3876
dump_zap, /* DSL permissions */
3877
dump_acl, /* ZFS ACL */
3878
dump_uint8, /* ZFS SYSACL */
3879
dump_none, /* FUID nvlist */
3880
dump_packed_nvlist, /* FUID nvlist size */
3881
dump_zap, /* DSL dataset next clones */
3882
dump_zap, /* DSL scrub queue */
3883
dump_zap, /* ZFS user/group/project used */
3884
dump_zap, /* ZFS user/group/project quota */
3885
dump_zap, /* snapshot refcount tags */
3886
dump_ddt_zap, /* DDT ZAP object */
3887
dump_zap, /* DDT statistics */
3888
dump_znode, /* SA object */
3889
dump_zap, /* SA Master Node */
3890
dump_sa_attrs, /* SA attribute registration */
3891
dump_sa_layouts, /* SA attribute layouts */
3892
dump_zap, /* DSL scrub translations */
3893
dump_none, /* fake dedup BP */
3894
dump_zap, /* deadlist */
3895
dump_none, /* deadlist hdr */
3896
dump_zap, /* dsl clones */
3897
dump_bpobj_subobjs, /* bpobj subobjs */
3898
dump_unknown, /* Unknown type, must be last */
3899
};
3900
3901
static boolean_t
3902
match_object_type(dmu_object_type_t obj_type, uint64_t flags)
3903
{
3904
boolean_t match = B_TRUE;
3905
3906
switch (obj_type) {
3907
case DMU_OT_DIRECTORY_CONTENTS:
3908
if (!(flags & ZOR_FLAG_DIRECTORY))
3909
match = B_FALSE;
3910
break;
3911
case DMU_OT_PLAIN_FILE_CONTENTS:
3912
if (!(flags & ZOR_FLAG_PLAIN_FILE))
3913
match = B_FALSE;
3914
break;
3915
case DMU_OT_SPACE_MAP:
3916
if (!(flags & ZOR_FLAG_SPACE_MAP))
3917
match = B_FALSE;
3918
break;
3919
default:
3920
if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
3921
if (!(flags & ZOR_FLAG_ZAP))
3922
match = B_FALSE;
3923
break;
3924
}
3925
3926
/*
3927
* If all bits except some of the supported flags are
3928
* set, the user combined the all-types flag (A) with
3929
* a negated flag to exclude some types (e.g. A-f to
3930
* show all object types except plain files).
3931
*/
3932
if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
3933
match = B_FALSE;
3934
3935
break;
3936
}
3937
3938
return (match);
3939
}
3940
3941
static void
3942
dump_object(objset_t *os, uint64_t object, int verbosity,
3943
boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
3944
{
3945
dmu_buf_t *db = NULL;
3946
dmu_object_info_t doi;
3947
dnode_t *dn;
3948
boolean_t dnode_held = B_FALSE;
3949
void *bonus = NULL;
3950
size_t bsize = 0;
3951
char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
3952
char bonus_size[32];
3953
char aux[50];
3954
int error;
3955
3956
/* make sure nicenum has enough space */
3957
_Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
3958
_Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
3959
_Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
3960
_Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
3961
_Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
3962
"bonus_size truncated");
3963
3964
if (*print_header) {
3965
(void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
3966
"Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3967
"lsize", "%full", "type");
3968
*print_header = 0;
3969
}
3970
3971
if (object == 0) {
3972
dn = DMU_META_DNODE(os);
3973
dmu_object_info_from_dnode(dn, &doi);
3974
} else {
3975
/*
3976
* Encrypted datasets will have sensitive bonus buffers
3977
* encrypted. Therefore we cannot hold the bonus buffer and
3978
* must hold the dnode itself instead.
3979
*/
3980
error = dmu_object_info(os, object, &doi);
3981
if (error)
3982
fatal("dmu_object_info() failed, errno %u", error);
3983
3984
if (!key_loaded && os->os_encrypted &&
3985
DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
3986
error = dnode_hold(os, object, FTAG, &dn);
3987
if (error)
3988
fatal("dnode_hold() failed, errno %u", error);
3989
dnode_held = B_TRUE;
3990
} else {
3991
error = dmu_bonus_hold(os, object, FTAG, &db);
3992
if (error)
3993
fatal("dmu_bonus_hold(%llu) failed, errno %u",
3994
object, error);
3995
bonus = db->db_data;
3996
bsize = db->db_size;
3997
dn = DB_DNODE((dmu_buf_impl_t *)db);
3998
}
3999
}
4000
4001
/*
4002
* Default to showing all object types if no flags were specified.
4003
*/
4004
if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
4005
!match_object_type(doi.doi_type, flags))
4006
goto out;
4007
4008
if (dnode_slots_used)
4009
*dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
4010
4011
zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
4012
zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
4013
zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
4014
zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
4015
zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
4016
zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
4017
(void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 *
4018
doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ?
4019
DNODES_PER_BLOCK : 1) / doi.doi_max_offset);
4020
4021
aux[0] = '\0';
4022
4023
if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
4024
(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
4025
" (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
4026
}
4027
4028
if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
4029
ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
4030
const char *compname = NULL;
4031
if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
4032
ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
4033
&compname) == 0) {
4034
(void) snprintf(aux + strlen(aux),
4035
sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
4036
compname);
4037
} else {
4038
(void) snprintf(aux + strlen(aux),
4039
sizeof (aux) - strlen(aux),
4040
" (Z=inherit=%s-unknown)",
4041
ZDB_COMPRESS_NAME(os->os_compress));
4042
}
4043
} else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
4044
(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
4045
" (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
4046
} else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
4047
(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
4048
" (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
4049
}
4050
4051
(void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n",
4052
(u_longlong_t)object, doi.doi_indirection, iblk, dblk,
4053
asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
4054
4055
if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
4056
(void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n",
4057
"", "", "", "", "", "", bonus_size, "bonus",
4058
zdb_ot_name(doi.doi_bonus_type));
4059
}
4060
4061
if (verbosity >= 4) {
4062
(void) printf("\tdnode flags: %s%s%s%s\n",
4063
(dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
4064
"USED_BYTES " : "",
4065
(dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
4066
"USERUSED_ACCOUNTED " : "",
4067
(dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
4068
"USEROBJUSED_ACCOUNTED " : "",
4069
(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
4070
"SPILL_BLKPTR" : "");
4071
(void) printf("\tdnode maxblkid: %llu\n",
4072
(longlong_t)dn->dn_phys->dn_maxblkid);
4073
4074
if (!dnode_held) {
4075
object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
4076
object, bonus, bsize);
4077
} else {
4078
(void) printf("\t\t(bonus encrypted)\n");
4079
}
4080
4081
if (key_loaded ||
4082
(!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) {
4083
object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
4084
NULL, 0);
4085
} else {
4086
(void) printf("\t\t(object encrypted)\n");
4087
}
4088
4089
*print_header = B_TRUE;
4090
}
4091
4092
if (verbosity >= 5) {
4093
if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
4094
char blkbuf[BP_SPRINTF_LEN];
4095
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
4096
DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
4097
(void) printf("\nSpill block: %s\n", blkbuf);
4098
}
4099
dump_indirect(dn);
4100
}
4101
4102
if (verbosity >= 5) {
4103
/*
4104
* Report the list of segments that comprise the object.
4105
*/
4106
uint64_t start = 0;
4107
uint64_t end;
4108
uint64_t blkfill = 1;
4109
int minlvl = 1;
4110
4111
if (dn->dn_type == DMU_OT_DNODE) {
4112
minlvl = 0;
4113
blkfill = DNODES_PER_BLOCK;
4114
}
4115
4116
for (;;) {
4117
char segsize[32];
4118
/* make sure nicenum has enough space */
4119
_Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
4120
"segsize truncated");
4121
error = dnode_next_offset(dn,
4122
0, &start, minlvl, blkfill, 0);
4123
if (error)
4124
break;
4125
end = start;
4126
error = dnode_next_offset(dn,
4127
DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
4128
zdb_nicenum(end - start, segsize, sizeof (segsize));
4129
(void) printf("\t\tsegment [%016llx, %016llx)"
4130
" size %5s\n", (u_longlong_t)start,
4131
(u_longlong_t)end, segsize);
4132
if (error)
4133
break;
4134
start = end;
4135
}
4136
}
4137
4138
out:
4139
if (db != NULL)
4140
dmu_buf_rele(db, FTAG);
4141
if (dnode_held)
4142
dnode_rele(dn, FTAG);
4143
}
4144
4145
static void
4146
count_dir_mos_objects(dsl_dir_t *dd)
4147
{
4148
mos_obj_refd(dd->dd_object);
4149
mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
4150
mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
4151
mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
4152
mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
4153
4154
/*
4155
* The dd_crypto_obj can be referenced by multiple dsl_dir's.
4156
* Ignore the references after the first one.
4157
*/
4158
mos_obj_refd_multiple(dd->dd_crypto_obj);
4159
}
4160
4161
static void
4162
count_ds_mos_objects(dsl_dataset_t *ds)
4163
{
4164
mos_obj_refd(ds->ds_object);
4165
mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
4166
mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
4167
mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
4168
mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
4169
mos_obj_refd(ds->ds_bookmarks_obj);
4170
4171
if (!dsl_dataset_is_snapshot(ds)) {
4172
count_dir_mos_objects(ds->ds_dir);
4173
}
4174
}
4175
4176
static const char *const objset_types[DMU_OST_NUMTYPES] = {
4177
"NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
4178
4179
/*
4180
* Parse a string denoting a range of object IDs of the form
4181
* <start>[:<end>[:flags]], and store the results in zor.
4182
* Return 0 on success. On error, return 1 and update the msg
4183
* pointer to point to a descriptive error message.
4184
*/
4185
static int
4186
parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
4187
{
4188
uint64_t flags = 0;
4189
char *p, *s, *dup, *flagstr, *tmp = NULL;
4190
size_t len;
4191
int i;
4192
int rc = 0;
4193
4194
if (strchr(range, ':') == NULL) {
4195
zor->zor_obj_start = strtoull(range, &p, 0);
4196
if (*p != '\0') {
4197
*msg = "Invalid characters in object ID";
4198
rc = 1;
4199
}
4200
zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4201
zor->zor_obj_end = zor->zor_obj_start;
4202
return (rc);
4203
}
4204
4205
if (strchr(range, ':') == range) {
4206
*msg = "Invalid leading colon";
4207
rc = 1;
4208
return (rc);
4209
}
4210
4211
len = strlen(range);
4212
if (range[len - 1] == ':') {
4213
*msg = "Invalid trailing colon";
4214
rc = 1;
4215
return (rc);
4216
}
4217
4218
dup = strdup(range);
4219
s = strtok_r(dup, ":", &tmp);
4220
zor->zor_obj_start = strtoull(s, &p, 0);
4221
4222
if (*p != '\0') {
4223
*msg = "Invalid characters in start object ID";
4224
rc = 1;
4225
goto out;
4226
}
4227
4228
s = strtok_r(NULL, ":", &tmp);
4229
zor->zor_obj_end = strtoull(s, &p, 0);
4230
4231
if (*p != '\0') {
4232
*msg = "Invalid characters in end object ID";
4233
rc = 1;
4234
goto out;
4235
}
4236
4237
if (zor->zor_obj_start > zor->zor_obj_end) {
4238
*msg = "Start object ID may not exceed end object ID";
4239
rc = 1;
4240
goto out;
4241
}
4242
4243
s = strtok_r(NULL, ":", &tmp);
4244
if (s == NULL) {
4245
zor->zor_flags = ZOR_FLAG_ALL_TYPES;
4246
goto out;
4247
} else if (strtok_r(NULL, ":", &tmp) != NULL) {
4248
*msg = "Invalid colon-delimited field after flags";
4249
rc = 1;
4250
goto out;
4251
}
4252
4253
flagstr = s;
4254
for (i = 0; flagstr[i]; i++) {
4255
int bit;
4256
boolean_t negation = (flagstr[i] == '-');
4257
4258
if (negation) {
4259
i++;
4260
if (flagstr[i] == '\0') {
4261
*msg = "Invalid trailing negation operator";
4262
rc = 1;
4263
goto out;
4264
}
4265
}
4266
bit = flagbits[(uchar_t)flagstr[i]];
4267
if (bit == 0) {
4268
*msg = "Invalid flag";
4269
rc = 1;
4270
goto out;
4271
}
4272
if (negation)
4273
flags &= ~bit;
4274
else
4275
flags |= bit;
4276
}
4277
zor->zor_flags = flags;
4278
4279
zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4280
zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
4281
4282
out:
4283
free(dup);
4284
return (rc);
4285
}
4286
4287
static void
4288
dump_objset(objset_t *os)
4289
{
4290
dmu_objset_stats_t dds = { 0 };
4291
uint64_t object, object_count;
4292
uint64_t refdbytes, usedobjs, scratch;
4293
char numbuf[32];
4294
char blkbuf[BP_SPRINTF_LEN + 20];
4295
char osname[ZFS_MAX_DATASET_NAME_LEN];
4296
const char *type = "UNKNOWN";
4297
int verbosity = dump_opt['d'];
4298
boolean_t print_header;
4299
unsigned i;
4300
int error;
4301
uint64_t total_slots_used = 0;
4302
uint64_t max_slot_used = 0;
4303
uint64_t dnode_slots;
4304
uint64_t obj_start;
4305
uint64_t obj_end;
4306
uint64_t flags;
4307
4308
/* make sure nicenum has enough space */
4309
_Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
4310
4311
dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
4312
dmu_objset_fast_stat(os, &dds);
4313
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
4314
4315
print_header = B_TRUE;
4316
4317
if (dds.dds_type < DMU_OST_NUMTYPES)
4318
type = objset_types[dds.dds_type];
4319
4320
if (dds.dds_type == DMU_OST_META) {
4321
dds.dds_creation_txg = TXG_INITIAL;
4322
usedobjs = BP_GET_FILL(os->os_rootbp);
4323
refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
4324
dd_used_bytes;
4325
} else {
4326
dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
4327
}
4328
4329
ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
4330
4331
zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
4332
4333
if (verbosity >= 4) {
4334
(void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
4335
(void) snprintf_blkptr(blkbuf + strlen(blkbuf),
4336
sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
4337
} else {
4338
blkbuf[0] = '\0';
4339
}
4340
4341
dmu_objset_name(os, osname);
4342
4343
(void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
4344
"%s, %llu objects%s%s\n",
4345
osname, type, (u_longlong_t)dmu_objset_id(os),
4346
(u_longlong_t)dds.dds_creation_txg,
4347
numbuf, (u_longlong_t)usedobjs, blkbuf,
4348
(dds.dds_inconsistent) ? " (inconsistent)" : "");
4349
4350
for (i = 0; i < zopt_object_args; i++) {
4351
obj_start = zopt_object_ranges[i].zor_obj_start;
4352
obj_end = zopt_object_ranges[i].zor_obj_end;
4353
flags = zopt_object_ranges[i].zor_flags;
4354
4355
object = obj_start;
4356
if (object == 0 || obj_start == obj_end)
4357
dump_object(os, object, verbosity, &print_header, NULL,
4358
flags);
4359
else
4360
object--;
4361
4362
while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
4363
object <= obj_end) {
4364
dump_object(os, object, verbosity, &print_header, NULL,
4365
flags);
4366
}
4367
}
4368
4369
if (zopt_object_args > 0) {
4370
(void) printf("\n");
4371
return;
4372
}
4373
4374
if (dump_opt['i'] != 0 || verbosity >= 2)
4375
dump_intent_log(dmu_objset_zil(os));
4376
4377
if (dmu_objset_ds(os) != NULL) {
4378
dsl_dataset_t *ds = dmu_objset_ds(os);
4379
dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
4380
if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4381
!dmu_objset_is_snapshot(os)) {
4382
dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
4383
if (verify_dd_livelist(os) != 0)
4384
fatal("livelist is incorrect");
4385
}
4386
4387
if (dsl_dataset_remap_deadlist_exists(ds)) {
4388
(void) printf("ds_remap_deadlist:\n");
4389
dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
4390
}
4391
count_ds_mos_objects(ds);
4392
}
4393
4394
if (dmu_objset_ds(os) != NULL)
4395
dump_bookmarks(os, verbosity);
4396
4397
if (verbosity < 2)
4398
return;
4399
4400
if (BP_IS_HOLE(os->os_rootbp))
4401
return;
4402
4403
dump_object(os, 0, verbosity, &print_header, NULL, 0);
4404
object_count = 0;
4405
if (DMU_USERUSED_DNODE(os) != NULL &&
4406
DMU_USERUSED_DNODE(os)->dn_type != 0) {
4407
dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
4408
NULL, 0);
4409
dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
4410
NULL, 0);
4411
}
4412
4413
if (DMU_PROJECTUSED_DNODE(os) != NULL &&
4414
DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
4415
dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
4416
&print_header, NULL, 0);
4417
4418
object = 0;
4419
while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
4420
dump_object(os, object, verbosity, &print_header, &dnode_slots,
4421
0);
4422
object_count++;
4423
total_slots_used += dnode_slots;
4424
max_slot_used = object + dnode_slots - 1;
4425
}
4426
4427
(void) printf("\n");
4428
4429
(void) printf(" Dnode slots:\n");
4430
(void) printf("\tTotal used: %10llu\n",
4431
(u_longlong_t)total_slots_used);
4432
(void) printf("\tMax used: %10llu\n",
4433
(u_longlong_t)max_slot_used);
4434
(void) printf("\tPercent empty: %10lf\n",
4435
(double)(max_slot_used - total_slots_used)*100 /
4436
(double)max_slot_used);
4437
(void) printf("\n");
4438
4439
if (error != ESRCH) {
4440
(void) fprintf(stderr, "dmu_object_next() = %d\n", error);
4441
abort();
4442
}
4443
4444
ASSERT3U(object_count, ==, usedobjs);
4445
4446
if (leaked_objects != 0) {
4447
(void) printf("%d potentially leaked objects detected\n",
4448
leaked_objects);
4449
leaked_objects = 0;
4450
}
4451
}
4452
4453
static void
4454
dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
4455
{
4456
time_t timestamp = ub->ub_timestamp;
4457
4458
(void) printf("%s", header ? header : "");
4459
(void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
4460
(void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
4461
(void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
4462
(void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
4463
(void) printf("\ttimestamp = %llu UTC = %s",
4464
(u_longlong_t)ub->ub_timestamp, ctime(&timestamp));
4465
4466
char blkbuf[BP_SPRINTF_LEN];
4467
snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4468
(void) printf("\tbp = %s\n", blkbuf);
4469
4470
(void) printf("\tmmp_magic = %016llx\n",
4471
(u_longlong_t)ub->ub_mmp_magic);
4472
if (MMP_VALID(ub)) {
4473
(void) printf("\tmmp_delay = %0llu\n",
4474
(u_longlong_t)ub->ub_mmp_delay);
4475
if (MMP_SEQ_VALID(ub))
4476
(void) printf("\tmmp_seq = %u\n",
4477
(unsigned int) MMP_SEQ(ub));
4478
if (MMP_FAIL_INT_VALID(ub))
4479
(void) printf("\tmmp_fail = %u\n",
4480
(unsigned int) MMP_FAIL_INT(ub));
4481
if (MMP_INTERVAL_VALID(ub))
4482
(void) printf("\tmmp_write = %u\n",
4483
(unsigned int) MMP_INTERVAL(ub));
4484
/* After MMP_* to make summarize_uberblock_mmp cleaner */
4485
(void) printf("\tmmp_valid = %x\n",
4486
(unsigned int) ub->ub_mmp_config & 0xFF);
4487
}
4488
4489
if (dump_opt['u'] >= 4) {
4490
char blkbuf[BP_SPRINTF_LEN];
4491
snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4492
(void) printf("\trootbp = %s\n", blkbuf);
4493
}
4494
(void) printf("\tcheckpoint_txg = %llu\n",
4495
(u_longlong_t)ub->ub_checkpoint_txg);
4496
4497
(void) printf("\traidz_reflow state=%u off=%llu\n",
4498
(int)RRSS_GET_STATE(ub),
4499
(u_longlong_t)RRSS_GET_OFFSET(ub));
4500
4501
(void) printf("%s", footer ? footer : "");
4502
}
4503
4504
static void
4505
dump_config(spa_t *spa)
4506
{
4507
dmu_buf_t *db;
4508
size_t nvsize = 0;
4509
int error = 0;
4510
4511
4512
error = dmu_bonus_hold(spa->spa_meta_objset,
4513
spa->spa_config_object, FTAG, &db);
4514
4515
if (error == 0) {
4516
nvsize = *(uint64_t *)db->db_data;
4517
dmu_buf_rele(db, FTAG);
4518
4519
(void) printf("\nMOS Configuration:\n");
4520
dump_packed_nvlist(spa->spa_meta_objset,
4521
spa->spa_config_object, (void *)&nvsize, 1);
4522
} else {
4523
(void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
4524
(u_longlong_t)spa->spa_config_object, error);
4525
}
4526
}
4527
4528
static void
4529
dump_cachefile(const char *cachefile)
4530
{
4531
int fd;
4532
struct stat64 statbuf;
4533
char *buf;
4534
nvlist_t *config;
4535
4536
if ((fd = open64(cachefile, O_RDONLY)) < 0) {
4537
(void) printf("cannot open '%s': %s\n", cachefile,
4538
strerror(errno));
4539
zdb_exit(1);
4540
}
4541
4542
if (fstat64(fd, &statbuf) != 0) {
4543
(void) printf("failed to stat '%s': %s\n", cachefile,
4544
strerror(errno));
4545
zdb_exit(1);
4546
}
4547
4548
if ((buf = malloc(statbuf.st_size)) == NULL) {
4549
(void) fprintf(stderr, "failed to allocate %llu bytes\n",
4550
(u_longlong_t)statbuf.st_size);
4551
zdb_exit(1);
4552
}
4553
4554
if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
4555
(void) fprintf(stderr, "failed to read %llu bytes\n",
4556
(u_longlong_t)statbuf.st_size);
4557
zdb_exit(1);
4558
}
4559
4560
(void) close(fd);
4561
4562
if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
4563
(void) fprintf(stderr, "failed to unpack nvlist\n");
4564
zdb_exit(1);
4565
}
4566
4567
free(buf);
4568
4569
dump_nvlist(config, 0);
4570
4571
nvlist_free(config);
4572
}
4573
4574
/*
4575
* ZFS label nvlist stats
4576
*/
4577
typedef struct zdb_nvl_stats {
4578
int zns_list_count;
4579
int zns_leaf_count;
4580
size_t zns_leaf_largest;
4581
size_t zns_leaf_total;
4582
nvlist_t *zns_string;
4583
nvlist_t *zns_uint64;
4584
nvlist_t *zns_boolean;
4585
} zdb_nvl_stats_t;
4586
4587
static void
4588
collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
4589
{
4590
nvlist_t *list, **array;
4591
nvpair_t *nvp = NULL;
4592
const char *name;
4593
uint_t i, items;
4594
4595
stats->zns_list_count++;
4596
4597
while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4598
name = nvpair_name(nvp);
4599
4600
switch (nvpair_type(nvp)) {
4601
case DATA_TYPE_STRING:
4602
fnvlist_add_string(stats->zns_string, name,
4603
fnvpair_value_string(nvp));
4604
break;
4605
case DATA_TYPE_UINT64:
4606
fnvlist_add_uint64(stats->zns_uint64, name,
4607
fnvpair_value_uint64(nvp));
4608
break;
4609
case DATA_TYPE_BOOLEAN:
4610
fnvlist_add_boolean(stats->zns_boolean, name);
4611
break;
4612
case DATA_TYPE_NVLIST:
4613
if (nvpair_value_nvlist(nvp, &list) == 0)
4614
collect_nvlist_stats(list, stats);
4615
break;
4616
case DATA_TYPE_NVLIST_ARRAY:
4617
if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
4618
break;
4619
4620
for (i = 0; i < items; i++) {
4621
collect_nvlist_stats(array[i], stats);
4622
4623
/* collect stats on leaf vdev */
4624
if (strcmp(name, "children") == 0) {
4625
size_t size;
4626
4627
(void) nvlist_size(array[i], &size,
4628
NV_ENCODE_XDR);
4629
stats->zns_leaf_total += size;
4630
if (size > stats->zns_leaf_largest)
4631
stats->zns_leaf_largest = size;
4632
stats->zns_leaf_count++;
4633
}
4634
}
4635
break;
4636
default:
4637
(void) printf("skip type %d!\n", (int)nvpair_type(nvp));
4638
}
4639
}
4640
}
4641
4642
static void
4643
dump_nvlist_stats(nvlist_t *nvl, size_t cap)
4644
{
4645
zdb_nvl_stats_t stats = { 0 };
4646
size_t size, sum = 0, total;
4647
size_t noise;
4648
4649
/* requires nvlist with non-unique names for stat collection */
4650
VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
4651
VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
4652
VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
4653
VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
4654
4655
(void) printf("\n\nZFS Label NVList Config Stats:\n");
4656
4657
VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
4658
(void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4659
(int)total, (int)(cap - total), 100.0 * total / cap);
4660
4661
collect_nvlist_stats(nvl, &stats);
4662
4663
VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
4664
size -= noise;
4665
sum += size;
4666
(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4667
(int)fnvlist_num_pairs(stats.zns_uint64),
4668
(int)size, 100.0 * size / total);
4669
4670
VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
4671
size -= noise;
4672
sum += size;
4673
(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4674
(int)fnvlist_num_pairs(stats.zns_string),
4675
(int)size, 100.0 * size / total);
4676
4677
VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
4678
size -= noise;
4679
sum += size;
4680
(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4681
(int)fnvlist_num_pairs(stats.zns_boolean),
4682
(int)size, 100.0 * size / total);
4683
4684
size = total - sum; /* treat remainder as nvlist overhead */
4685
(void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4686
stats.zns_list_count, (int)size, 100.0 * size / total);
4687
4688
if (stats.zns_leaf_count > 0) {
4689
size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
4690
4691
(void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4692
stats.zns_leaf_count, (int)average);
4693
(void) printf("%24d bytes largest\n",
4694
(int)stats.zns_leaf_largest);
4695
4696
if (dump_opt['l'] >= 3 && average > 0)
4697
(void) printf(" space for %d additional leaf vdevs\n",
4698
(int)((cap - total) / average));
4699
}
4700
(void) printf("\n");
4701
4702
nvlist_free(stats.zns_string);
4703
nvlist_free(stats.zns_uint64);
4704
nvlist_free(stats.zns_boolean);
4705
}
4706
4707
typedef struct cksum_record {
4708
zio_cksum_t cksum;
4709
boolean_t labels[VDEV_LABELS];
4710
avl_node_t link;
4711
} cksum_record_t;
4712
4713
static int
4714
cksum_record_compare(const void *x1, const void *x2)
4715
{
4716
const cksum_record_t *l = (cksum_record_t *)x1;
4717
const cksum_record_t *r = (cksum_record_t *)x2;
4718
int arraysize = ARRAY_SIZE(l->cksum.zc_word);
4719
int difference = 0;
4720
4721
for (int i = 0; i < arraysize; i++) {
4722
difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
4723
if (difference)
4724
break;
4725
}
4726
4727
return (difference);
4728
}
4729
4730
static cksum_record_t *
4731
cksum_record_alloc(zio_cksum_t *cksum, int l)
4732
{
4733
cksum_record_t *rec;
4734
4735
rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
4736
rec->cksum = *cksum;
4737
rec->labels[l] = B_TRUE;
4738
4739
return (rec);
4740
}
4741
4742
static cksum_record_t *
4743
cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
4744
{
4745
cksum_record_t lookup = { .cksum = *cksum };
4746
avl_index_t where;
4747
4748
return (avl_find(tree, &lookup, &where));
4749
}
4750
4751
static cksum_record_t *
4752
cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
4753
{
4754
cksum_record_t *rec;
4755
4756
rec = cksum_record_lookup(tree, cksum);
4757
if (rec) {
4758
rec->labels[l] = B_TRUE;
4759
} else {
4760
rec = cksum_record_alloc(cksum, l);
4761
avl_add(tree, rec);
4762
}
4763
4764
return (rec);
4765
}
4766
4767
static int
4768
first_label(cksum_record_t *rec)
4769
{
4770
for (int i = 0; i < VDEV_LABELS; i++)
4771
if (rec->labels[i])
4772
return (i);
4773
4774
return (-1);
4775
}
4776
4777
static void
4778
print_label_numbers(const char *prefix, const cksum_record_t *rec)
4779
{
4780
fputs(prefix, stdout);
4781
for (int i = 0; i < VDEV_LABELS; i++)
4782
if (rec->labels[i] == B_TRUE)
4783
printf("%d ", i);
4784
putchar('\n');
4785
}
4786
4787
#define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4788
4789
typedef struct zdb_label {
4790
vdev_label_t label;
4791
uint64_t label_offset;
4792
nvlist_t *config_nv;
4793
cksum_record_t *config;
4794
cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
4795
boolean_t header_printed;
4796
boolean_t read_failed;
4797
boolean_t cksum_valid;
4798
} zdb_label_t;
4799
4800
static void
4801
print_label_header(zdb_label_t *label, int l)
4802
{
4803
4804
if (dump_opt['q'])
4805
return;
4806
4807
if (label->header_printed == B_TRUE)
4808
return;
4809
4810
(void) printf("------------------------------------\n");
4811
(void) printf("LABEL %d %s\n", l,
4812
label->cksum_valid ? "" : "(Bad label cksum)");
4813
(void) printf("------------------------------------\n");
4814
4815
label->header_printed = B_TRUE;
4816
}
4817
4818
static void
4819
print_l2arc_header(void)
4820
{
4821
(void) printf("------------------------------------\n");
4822
(void) printf("L2ARC device header\n");
4823
(void) printf("------------------------------------\n");
4824
}
4825
4826
static void
4827
print_l2arc_log_blocks(void)
4828
{
4829
(void) printf("------------------------------------\n");
4830
(void) printf("L2ARC device log blocks\n");
4831
(void) printf("------------------------------------\n");
4832
}
4833
4834
static void
4835
dump_l2arc_log_entries(uint64_t log_entries,
4836
l2arc_log_ent_phys_t *le, uint64_t i)
4837
{
4838
for (int j = 0; j < log_entries; j++) {
4839
dva_t dva = le[j].le_dva;
4840
(void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4841
"vdev: %llu, offset: %llu\n",
4842
(u_longlong_t)i, j + 1,
4843
(u_longlong_t)DVA_GET_ASIZE(&dva),
4844
(u_longlong_t)DVA_GET_VDEV(&dva),
4845
(u_longlong_t)DVA_GET_OFFSET(&dva));
4846
(void) printf("|\t\t\t\tbirth: %llu\n",
4847
(u_longlong_t)le[j].le_birth);
4848
(void) printf("|\t\t\t\tlsize: %llu\n",
4849
(u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
4850
(void) printf("|\t\t\t\tpsize: %llu\n",
4851
(u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
4852
(void) printf("|\t\t\t\tcompr: %llu\n",
4853
(u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
4854
(void) printf("|\t\t\t\tcomplevel: %llu\n",
4855
(u_longlong_t)(&le[j])->le_complevel);
4856
(void) printf("|\t\t\t\ttype: %llu\n",
4857
(u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
4858
(void) printf("|\t\t\t\tprotected: %llu\n",
4859
(u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
4860
(void) printf("|\t\t\t\tprefetch: %llu\n",
4861
(u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
4862
(void) printf("|\t\t\t\taddress: %llu\n",
4863
(u_longlong_t)le[j].le_daddr);
4864
(void) printf("|\t\t\t\tARC state: %llu\n",
4865
(u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
4866
(void) printf("|\n");
4867
}
4868
(void) printf("\n");
4869
}
4870
4871
static void
4872
dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps)
4873
{
4874
(void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr);
4875
(void) printf("|\t\tpayload_asize: %llu\n",
4876
(u_longlong_t)lbps->lbp_payload_asize);
4877
(void) printf("|\t\tpayload_start: %llu\n",
4878
(u_longlong_t)lbps->lbp_payload_start);
4879
(void) printf("|\t\tlsize: %llu\n",
4880
(u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop));
4881
(void) printf("|\t\tasize: %llu\n",
4882
(u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop));
4883
(void) printf("|\t\tcompralgo: %llu\n",
4884
(u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop));
4885
(void) printf("|\t\tcksumalgo: %llu\n",
4886
(u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop));
4887
(void) printf("|\n\n");
4888
}
4889
4890
static void
4891
dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr,
4892
l2arc_dev_hdr_phys_t *rebuild)
4893
{
4894
l2arc_log_blk_phys_t this_lb;
4895
uint64_t asize;
4896
l2arc_log_blkptr_t lbps[2];
4897
zio_cksum_t cksum;
4898
int failed = 0;
4899
l2arc_dev_t dev;
4900
4901
if (!dump_opt['q'])
4902
print_l2arc_log_blocks();
4903
memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
4904
4905
dev.l2ad_evict = l2dhdr->dh_evict;
4906
dev.l2ad_start = l2dhdr->dh_start;
4907
dev.l2ad_end = l2dhdr->dh_end;
4908
4909
if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) {
4910
/* no log blocks to read */
4911
if (!dump_opt['q']) {
4912
(void) printf("No log blocks to read\n");
4913
(void) printf("\n");
4914
}
4915
return;
4916
} else {
4917
dev.l2ad_hand = lbps[0].lbp_daddr +
4918
L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4919
}
4920
4921
dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
4922
4923
for (;;) {
4924
if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
4925
break;
4926
4927
/* L2BLK_GET_PSIZE returns aligned size for log blocks */
4928
asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4929
if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
4930
if (!dump_opt['q']) {
4931
(void) printf("Error while reading next log "
4932
"block\n\n");
4933
}
4934
break;
4935
}
4936
4937
fletcher_4_native_varsize(&this_lb, asize, &cksum);
4938
if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
4939
failed++;
4940
if (!dump_opt['q']) {
4941
(void) printf("Invalid cksum\n");
4942
dump_l2arc_log_blkptr(&lbps[0]);
4943
}
4944
break;
4945
}
4946
4947
switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
4948
case ZIO_COMPRESS_OFF:
4949
break;
4950
default: {
4951
abd_t *abd = abd_alloc_linear(asize, B_TRUE);
4952
abd_copy_from_buf_off(abd, &this_lb, 0, asize);
4953
abd_t dabd;
4954
abd_get_from_buf_struct(&dabd, &this_lb,
4955
sizeof (this_lb));
4956
int err = zio_decompress_data(L2BLK_GET_COMPRESS(
4957
(&lbps[0])->lbp_prop), abd, &dabd,
4958
asize, sizeof (this_lb), NULL);
4959
abd_free(&dabd);
4960
abd_free(abd);
4961
if (err != 0) {
4962
(void) printf("L2ARC block decompression "
4963
"failed\n");
4964
goto out;
4965
}
4966
break;
4967
}
4968
}
4969
4970
if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
4971
byteswap_uint64_array(&this_lb, sizeof (this_lb));
4972
if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
4973
if (!dump_opt['q'])
4974
(void) printf("Invalid log block magic\n\n");
4975
break;
4976
}
4977
4978
rebuild->dh_lb_count++;
4979
rebuild->dh_lb_asize += asize;
4980
if (dump_opt['l'] > 1 && !dump_opt['q']) {
4981
(void) printf("lb[%4llu]\tmagic: %llu\n",
4982
(u_longlong_t)rebuild->dh_lb_count,
4983
(u_longlong_t)this_lb.lb_magic);
4984
dump_l2arc_log_blkptr(&lbps[0]);
4985
}
4986
4987
if (dump_opt['l'] > 2 && !dump_opt['q'])
4988
dump_l2arc_log_entries(l2dhdr->dh_log_entries,
4989
this_lb.lb_entries,
4990
rebuild->dh_lb_count);
4991
4992
if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
4993
lbps[0].lbp_payload_start, dev.l2ad_evict) &&
4994
!dev.l2ad_first)
4995
break;
4996
4997
lbps[0] = lbps[1];
4998
lbps[1] = this_lb.lb_prev_lbp;
4999
}
5000
out:
5001
if (!dump_opt['q']) {
5002
(void) printf("log_blk_count:\t %llu with valid cksum\n",
5003
(u_longlong_t)rebuild->dh_lb_count);
5004
(void) printf("\t\t %d with invalid cksum\n", failed);
5005
(void) printf("log_blk_asize:\t %llu\n\n",
5006
(u_longlong_t)rebuild->dh_lb_asize);
5007
}
5008
}
5009
5010
static int
5011
dump_l2arc_header(int fd)
5012
{
5013
l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
5014
int error = B_FALSE;
5015
5016
if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
5017
VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
5018
error = B_TRUE;
5019
} else {
5020
if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
5021
byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
5022
5023
if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
5024
error = B_TRUE;
5025
}
5026
5027
if (error) {
5028
(void) printf("L2ARC device header not found\n\n");
5029
/* Do not return an error here for backward compatibility */
5030
return (0);
5031
} else if (!dump_opt['q']) {
5032
print_l2arc_header();
5033
5034
(void) printf(" magic: %llu\n",
5035
(u_longlong_t)l2dhdr.dh_magic);
5036
(void) printf(" version: %llu\n",
5037
(u_longlong_t)l2dhdr.dh_version);
5038
(void) printf(" pool_guid: %llu\n",
5039
(u_longlong_t)l2dhdr.dh_spa_guid);
5040
(void) printf(" flags: %llu\n",
5041
(u_longlong_t)l2dhdr.dh_flags);
5042
(void) printf(" start_lbps[0]: %llu\n",
5043
(u_longlong_t)
5044
l2dhdr.dh_start_lbps[0].lbp_daddr);
5045
(void) printf(" start_lbps[1]: %llu\n",
5046
(u_longlong_t)
5047
l2dhdr.dh_start_lbps[1].lbp_daddr);
5048
(void) printf(" log_blk_ent: %llu\n",
5049
(u_longlong_t)l2dhdr.dh_log_entries);
5050
(void) printf(" start: %llu\n",
5051
(u_longlong_t)l2dhdr.dh_start);
5052
(void) printf(" end: %llu\n",
5053
(u_longlong_t)l2dhdr.dh_end);
5054
(void) printf(" evict: %llu\n",
5055
(u_longlong_t)l2dhdr.dh_evict);
5056
(void) printf(" lb_asize_refcount: %llu\n",
5057
(u_longlong_t)l2dhdr.dh_lb_asize);
5058
(void) printf(" lb_count_refcount: %llu\n",
5059
(u_longlong_t)l2dhdr.dh_lb_count);
5060
(void) printf(" trim_action_time: %llu\n",
5061
(u_longlong_t)l2dhdr.dh_trim_action_time);
5062
(void) printf(" trim_state: %llu\n\n",
5063
(u_longlong_t)l2dhdr.dh_trim_state);
5064
}
5065
5066
dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild);
5067
/*
5068
* The total aligned size of log blocks and the number of log blocks
5069
* reported in the header of the device may be less than what zdb
5070
* reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
5071
* This happens because dump_l2arc_log_blocks() lacks the memory
5072
* pressure valve that l2arc_rebuild() has. Thus, if we are on a system
5073
* with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
5074
* and dh_lb_count will be lower to begin with than what exists on the
5075
* device. This is normal and zdb should not exit with an error. The
5076
* opposite case should never happen though, the values reported in the
5077
* header should never be higher than what dump_l2arc_log_blocks() and
5078
* l2arc_rebuild() report. If this happens there is a leak in the
5079
* accounting of log blocks.
5080
*/
5081
if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
5082
l2dhdr.dh_lb_count > rebuild.dh_lb_count)
5083
return (1);
5084
5085
return (0);
5086
}
5087
5088
static void
5089
dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
5090
{
5091
if (dump_opt['q'])
5092
return;
5093
5094
if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
5095
return;
5096
5097
print_label_header(label, l);
5098
dump_nvlist(label->config_nv, 4);
5099
print_label_numbers(" labels = ", label->config);
5100
5101
if (dump_opt['l'] >= 2)
5102
dump_nvlist_stats(label->config_nv, buflen);
5103
}
5104
5105
#define ZDB_MAX_UB_HEADER_SIZE 32
5106
5107
static void
5108
dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
5109
{
5110
5111
vdev_t vd;
5112
char header[ZDB_MAX_UB_HEADER_SIZE];
5113
5114
vd.vdev_ashift = ashift;
5115
vd.vdev_top = &vd;
5116
5117
for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
5118
uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5119
uberblock_t *ub = (void *)((char *)&label->label + uoff);
5120
cksum_record_t *rec = label->uberblocks[i];
5121
5122
if (rec == NULL) {
5123
if (dump_opt['u'] >= 2) {
5124
print_label_header(label, label_num);
5125
(void) printf(" Uberblock[%d] invalid\n", i);
5126
}
5127
continue;
5128
}
5129
5130
if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
5131
continue;
5132
5133
if ((dump_opt['u'] < 4) &&
5134
(ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
5135
(i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
5136
continue;
5137
5138
print_label_header(label, label_num);
5139
(void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
5140
" Uberblock[%d]\n", i);
5141
dump_uberblock(ub, header, "");
5142
print_label_numbers(" labels = ", rec);
5143
}
5144
}
5145
5146
static char curpath[PATH_MAX];
5147
5148
/*
5149
* Iterate through the path components, recursively passing
5150
* current one's obj and remaining path until we find the obj
5151
* for the last one.
5152
*/
5153
static int
5154
dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
5155
{
5156
int err;
5157
boolean_t header = B_TRUE;
5158
uint64_t child_obj;
5159
char *s;
5160
dmu_buf_t *db;
5161
dmu_object_info_t doi;
5162
5163
if ((s = strchr(name, '/')) != NULL)
5164
*s = '\0';
5165
err = zap_lookup(os, obj, name, 8, 1, &child_obj);
5166
5167
(void) strlcat(curpath, name, sizeof (curpath));
5168
5169
if (err != 0) {
5170
(void) fprintf(stderr, "failed to lookup %s: %s\n",
5171
curpath, strerror(err));
5172
return (err);
5173
}
5174
5175
child_obj = ZFS_DIRENT_OBJ(child_obj);
5176
err = sa_buf_hold(os, child_obj, FTAG, &db);
5177
if (err != 0) {
5178
(void) fprintf(stderr,
5179
"failed to get SA dbuf for obj %llu: %s\n",
5180
(u_longlong_t)child_obj, strerror(err));
5181
return (EINVAL);
5182
}
5183
dmu_object_info_from_db(db, &doi);
5184
sa_buf_rele(db, FTAG);
5185
5186
if (doi.doi_bonus_type != DMU_OT_SA &&
5187
doi.doi_bonus_type != DMU_OT_ZNODE) {
5188
(void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
5189
doi.doi_bonus_type, (u_longlong_t)child_obj);
5190
return (EINVAL);
5191
}
5192
5193
if (dump_opt['v'] > 6) {
5194
(void) printf("obj=%llu %s type=%d bonustype=%d\n",
5195
(u_longlong_t)child_obj, curpath, doi.doi_type,
5196
doi.doi_bonus_type);
5197
}
5198
5199
(void) strlcat(curpath, "/", sizeof (curpath));
5200
5201
switch (doi.doi_type) {
5202
case DMU_OT_DIRECTORY_CONTENTS:
5203
if (s != NULL && *(s + 1) != '\0')
5204
return (dump_path_impl(os, child_obj, s + 1, retobj));
5205
zfs_fallthrough;
5206
case DMU_OT_PLAIN_FILE_CONTENTS:
5207
if (retobj != NULL) {
5208
*retobj = child_obj;
5209
} else {
5210
dump_object(os, child_obj, dump_opt['v'], &header,
5211
NULL, 0);
5212
}
5213
return (0);
5214
default:
5215
(void) fprintf(stderr, "object %llu has non-file/directory "
5216
"type %d\n", (u_longlong_t)obj, doi.doi_type);
5217
break;
5218
}
5219
5220
return (EINVAL);
5221
}
5222
5223
/*
5224
* Dump the blocks for the object specified by path inside the dataset.
5225
*/
5226
static int
5227
dump_path(char *ds, char *path, uint64_t *retobj)
5228
{
5229
int err;
5230
objset_t *os;
5231
uint64_t root_obj;
5232
5233
err = open_objset(ds, FTAG, &os);
5234
if (err != 0)
5235
return (err);
5236
5237
err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
5238
if (err != 0) {
5239
(void) fprintf(stderr, "can't lookup root znode: %s\n",
5240
strerror(err));
5241
close_objset(os, FTAG);
5242
return (EINVAL);
5243
}
5244
5245
(void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
5246
5247
err = dump_path_impl(os, root_obj, path, retobj);
5248
5249
close_objset(os, FTAG);
5250
return (err);
5251
}
5252
5253
static int
5254
dump_backup_bytes(objset_t *os, void *buf, int len, void *arg)
5255
{
5256
const char *p = (const char *)buf;
5257
ssize_t nwritten;
5258
5259
(void) os;
5260
(void) arg;
5261
5262
/* Write the data out, handling short writes and signals. */
5263
while ((nwritten = write(STDOUT_FILENO, p, len)) < len) {
5264
if (nwritten < 0) {
5265
if (errno == EINTR)
5266
continue;
5267
return (errno);
5268
}
5269
p += nwritten;
5270
len -= nwritten;
5271
}
5272
5273
return (0);
5274
}
5275
5276
static void
5277
dump_backup(const char *pool, uint64_t objset_id, const char *flagstr)
5278
{
5279
boolean_t embed = B_FALSE;
5280
boolean_t large_block = B_FALSE;
5281
boolean_t compress = B_FALSE;
5282
boolean_t raw = B_FALSE;
5283
5284
const char *c;
5285
for (c = flagstr; c != NULL && *c != '\0'; c++) {
5286
switch (*c) {
5287
case 'e':
5288
embed = B_TRUE;
5289
break;
5290
case 'L':
5291
large_block = B_TRUE;
5292
break;
5293
case 'c':
5294
compress = B_TRUE;
5295
break;
5296
case 'w':
5297
raw = B_TRUE;
5298
break;
5299
default:
5300
fprintf(stderr, "dump_backup: invalid flag "
5301
"'%c'\n", *c);
5302
return;
5303
}
5304
}
5305
5306
if (isatty(STDOUT_FILENO)) {
5307
fprintf(stderr, "dump_backup: stream cannot be written "
5308
"to a terminal\n");
5309
return;
5310
}
5311
5312
offset_t off = 0;
5313
dmu_send_outparams_t out = {
5314
.dso_outfunc = dump_backup_bytes,
5315
.dso_dryrun = B_FALSE,
5316
};
5317
5318
int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed,
5319
large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO,
5320
&off, &out);
5321
if (err != 0) {
5322
fprintf(stderr, "dump_backup: dmu_send_obj: %s\n",
5323
strerror(err));
5324
return;
5325
}
5326
}
5327
5328
static int
5329
zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
5330
{
5331
int err = 0;
5332
uint64_t size, readsize, oursize, offset;
5333
ssize_t writesize;
5334
sa_handle_t *hdl;
5335
5336
(void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
5337
destfile);
5338
5339
VERIFY3P(os, ==, sa_os);
5340
if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
5341
(void) printf("Failed to get handle for SA znode\n");
5342
return (err);
5343
}
5344
if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
5345
(void) sa_handle_destroy(hdl);
5346
return (err);
5347
}
5348
(void) sa_handle_destroy(hdl);
5349
5350
(void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
5351
size);
5352
if (size == 0) {
5353
return (EINVAL);
5354
}
5355
5356
int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
5357
if (fd == -1)
5358
return (errno);
5359
/*
5360
* We cap the size at 1 mebibyte here to prevent
5361
* allocation failures and nigh-infinite printing if the
5362
* object is extremely large.
5363
*/
5364
oursize = MIN(size, 1 << 20);
5365
offset = 0;
5366
char *buf = kmem_alloc(oursize, KM_NOSLEEP);
5367
if (buf == NULL) {
5368
(void) close(fd);
5369
return (ENOMEM);
5370
}
5371
5372
while (offset < size) {
5373
readsize = MIN(size - offset, 1 << 20);
5374
err = dmu_read(os, srcobj, offset, readsize, buf, 0);
5375
if (err != 0) {
5376
(void) printf("got error %u from dmu_read\n", err);
5377
kmem_free(buf, oursize);
5378
(void) close(fd);
5379
return (err);
5380
}
5381
if (dump_opt['v'] > 3) {
5382
(void) printf("Read offset=%" PRIu64 " size=%" PRIu64
5383
" error=%d\n", offset, readsize, err);
5384
}
5385
5386
writesize = write(fd, buf, readsize);
5387
if (writesize < 0) {
5388
err = errno;
5389
break;
5390
} else if (writesize != readsize) {
5391
/* Incomplete write */
5392
(void) fprintf(stderr, "Short write, only wrote %llu of"
5393
" %" PRIu64 " bytes, exiting...\n",
5394
(u_longlong_t)writesize, readsize);
5395
break;
5396
}
5397
5398
offset += readsize;
5399
}
5400
5401
(void) close(fd);
5402
5403
if (buf != NULL)
5404
kmem_free(buf, oursize);
5405
5406
return (err);
5407
}
5408
5409
static boolean_t
5410
label_cksum_valid(vdev_label_t *label, uint64_t offset)
5411
{
5412
zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
5413
zio_cksum_t expected_cksum;
5414
zio_cksum_t actual_cksum;
5415
zio_cksum_t verifier;
5416
zio_eck_t *eck;
5417
int byteswap;
5418
5419
void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
5420
eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
5421
5422
offset += offsetof(vdev_label_t, vl_vdev_phys);
5423
ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
5424
5425
byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
5426
if (byteswap)
5427
byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
5428
5429
expected_cksum = eck->zec_cksum;
5430
eck->zec_cksum = verifier;
5431
5432
abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
5433
ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
5434
abd_free(abd);
5435
5436
if (byteswap)
5437
byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
5438
5439
if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
5440
return (B_TRUE);
5441
5442
return (B_FALSE);
5443
}
5444
5445
static int
5446
dump_label(const char *dev)
5447
{
5448
char path[MAXPATHLEN];
5449
zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
5450
uint64_t psize, ashift, l2cache;
5451
struct stat64 statbuf;
5452
boolean_t config_found = B_FALSE;
5453
boolean_t error = B_FALSE;
5454
boolean_t read_l2arc_header = B_FALSE;
5455
avl_tree_t config_tree;
5456
avl_tree_t uberblock_tree;
5457
void *node, *cookie;
5458
int fd;
5459
5460
/*
5461
* Check if we were given absolute path and use it as is.
5462
* Otherwise if the provided vdev name doesn't point to a file,
5463
* try prepending expected disk paths and partition numbers.
5464
*/
5465
(void) strlcpy(path, dev, sizeof (path));
5466
if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
5467
int error;
5468
5469
error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
5470
if (error == 0 && zfs_dev_is_whole_disk(path)) {
5471
if (zfs_append_partition(path, MAXPATHLEN) == -1)
5472
error = ENOENT;
5473
}
5474
5475
if (error || (stat64(path, &statbuf) != 0)) {
5476
(void) printf("failed to find device %s, try "
5477
"specifying absolute path instead\n", dev);
5478
return (1);
5479
}
5480
}
5481
5482
if ((fd = open64(path, O_RDONLY)) < 0) {
5483
(void) printf("cannot open '%s': %s\n", path, strerror(errno));
5484
zdb_exit(1);
5485
}
5486
5487
if (fstat64_blk(fd, &statbuf) != 0) {
5488
(void) printf("failed to stat '%s': %s\n", path,
5489
strerror(errno));
5490
(void) close(fd);
5491
zdb_exit(1);
5492
}
5493
5494
if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
5495
(void) printf("failed to invalidate cache '%s' : %s\n", path,
5496
strerror(errno));
5497
5498
avl_create(&config_tree, cksum_record_compare,
5499
sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5500
avl_create(&uberblock_tree, cksum_record_compare,
5501
sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5502
5503
psize = statbuf.st_size;
5504
psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t);
5505
ashift = SPA_MINBLOCKSHIFT;
5506
5507
/*
5508
* 1. Read the label from disk
5509
* 2. Verify label cksum
5510
* 3. Unpack the configuration and insert in config tree.
5511
* 4. Traverse all uberblocks and insert in uberblock tree.
5512
*/
5513
for (int l = 0; l < VDEV_LABELS; l++) {
5514
zdb_label_t *label = &labels[l];
5515
char *buf = label->label.vl_vdev_phys.vp_nvlist;
5516
size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5517
nvlist_t *config;
5518
cksum_record_t *rec;
5519
zio_cksum_t cksum;
5520
vdev_t vd;
5521
5522
label->label_offset = vdev_label_offset(psize, l, 0);
5523
5524
if (pread64(fd, &label->label, sizeof (label->label),
5525
label->label_offset) != sizeof (label->label)) {
5526
if (!dump_opt['q'])
5527
(void) printf("failed to read label %d\n", l);
5528
label->read_failed = B_TRUE;
5529
error = B_TRUE;
5530
continue;
5531
}
5532
5533
label->read_failed = B_FALSE;
5534
label->cksum_valid = label_cksum_valid(&label->label,
5535
label->label_offset);
5536
5537
if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
5538
nvlist_t *vdev_tree = NULL;
5539
size_t size;
5540
5541
if ((nvlist_lookup_nvlist(config,
5542
ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
5543
(nvlist_lookup_uint64(vdev_tree,
5544
ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
5545
ashift = SPA_MINBLOCKSHIFT;
5546
5547
if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
5548
size = buflen;
5549
5550
/* If the device is a cache device read the header. */
5551
if (!read_l2arc_header) {
5552
if (nvlist_lookup_uint64(config,
5553
ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
5554
l2cache == POOL_STATE_L2CACHE) {
5555
read_l2arc_header = B_TRUE;
5556
}
5557
}
5558
5559
fletcher_4_native_varsize(buf, size, &cksum);
5560
rec = cksum_record_insert(&config_tree, &cksum, l);
5561
5562
label->config = rec;
5563
label->config_nv = config;
5564
config_found = B_TRUE;
5565
} else {
5566
error = B_TRUE;
5567
}
5568
5569
vd.vdev_ashift = ashift;
5570
vd.vdev_top = &vd;
5571
5572
for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
5573
uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5574
uberblock_t *ub = (void *)((char *)label + uoff);
5575
5576
if (uberblock_verify(ub))
5577
continue;
5578
5579
fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
5580
rec = cksum_record_insert(&uberblock_tree, &cksum, l);
5581
5582
label->uberblocks[i] = rec;
5583
}
5584
}
5585
5586
/*
5587
* Dump the label and uberblocks.
5588
*/
5589
for (int l = 0; l < VDEV_LABELS; l++) {
5590
zdb_label_t *label = &labels[l];
5591
size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5592
5593
if (label->read_failed == B_TRUE)
5594
continue;
5595
5596
if (label->config_nv) {
5597
dump_config_from_label(label, buflen, l);
5598
} else {
5599
if (!dump_opt['q'])
5600
(void) printf("failed to unpack label %d\n", l);
5601
}
5602
5603
if (dump_opt['u'])
5604
dump_label_uberblocks(label, ashift, l);
5605
5606
nvlist_free(label->config_nv);
5607
}
5608
5609
/*
5610
* Dump the L2ARC header, if existent.
5611
*/
5612
if (read_l2arc_header)
5613
error |= dump_l2arc_header(fd);
5614
5615
cookie = NULL;
5616
while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
5617
umem_free(node, sizeof (cksum_record_t));
5618
5619
cookie = NULL;
5620
while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
5621
umem_free(node, sizeof (cksum_record_t));
5622
5623
avl_destroy(&config_tree);
5624
avl_destroy(&uberblock_tree);
5625
5626
(void) close(fd);
5627
5628
return (config_found == B_FALSE ? 2 :
5629
(error == B_TRUE ? 1 : 0));
5630
}
5631
5632
static uint64_t dataset_feature_count[SPA_FEATURES];
5633
static uint64_t global_feature_count[SPA_FEATURES];
5634
static uint64_t remap_deadlist_count = 0;
5635
5636
static int
5637
dump_one_objset(const char *dsname, void *arg)
5638
{
5639
(void) arg;
5640
int error;
5641
objset_t *os;
5642
spa_feature_t f;
5643
5644
error = open_objset(dsname, FTAG, &os);
5645
if (error != 0)
5646
return (0);
5647
5648
for (f = 0; f < SPA_FEATURES; f++) {
5649
if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
5650
continue;
5651
ASSERT(spa_feature_table[f].fi_flags &
5652
ZFEATURE_FLAG_PER_DATASET);
5653
dataset_feature_count[f]++;
5654
}
5655
5656
if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
5657
remap_deadlist_count++;
5658
}
5659
5660
for (dsl_bookmark_node_t *dbn =
5661
avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
5662
dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
5663
mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
5664
if (dbn->dbn_phys.zbm_redaction_obj != 0) {
5665
global_feature_count[
5666
SPA_FEATURE_REDACTION_BOOKMARKS]++;
5667
objset_t *mos = os->os_spa->spa_meta_objset;
5668
dnode_t *rl;
5669
VERIFY0(dnode_hold(mos,
5670
dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl));
5671
if (rl->dn_have_spill) {
5672
global_feature_count[
5673
SPA_FEATURE_REDACTION_LIST_SPILL]++;
5674
}
5675
}
5676
if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
5677
global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
5678
}
5679
5680
if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
5681
!dmu_objset_is_snapshot(os)) {
5682
global_feature_count[SPA_FEATURE_LIVELIST]++;
5683
}
5684
5685
dump_objset(os);
5686
close_objset(os, FTAG);
5687
fuid_table_destroy();
5688
return (0);
5689
}
5690
5691
/*
5692
* Block statistics.
5693
*/
5694
#define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5695
typedef struct zdb_blkstats {
5696
uint64_t zb_asize;
5697
uint64_t zb_lsize;
5698
uint64_t zb_psize;
5699
uint64_t zb_count;
5700
uint64_t zb_gangs;
5701
uint64_t zb_ditto_samevdev;
5702
uint64_t zb_ditto_same_ms;
5703
uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
5704
} zdb_blkstats_t;
5705
5706
/*
5707
* Extended object types to report deferred frees and dedup auto-ditto blocks.
5708
*/
5709
#define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
5710
#define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1)
5711
#define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2)
5712
#define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3)
5713
5714
static const char *zdb_ot_extname[] = {
5715
"deferred free",
5716
"dedup ditto",
5717
"other",
5718
"Total",
5719
};
5720
5721
#define ZB_TOTAL DN_MAX_LEVELS
5722
#define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1)
5723
5724
typedef struct zdb_brt_entry {
5725
dva_t zbre_dva;
5726
uint64_t zbre_refcount;
5727
avl_node_t zbre_node;
5728
} zdb_brt_entry_t;
5729
5730
typedef struct zdb_cb {
5731
zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
5732
uint64_t zcb_removing_size;
5733
uint64_t zcb_checkpoint_size;
5734
uint64_t zcb_dedup_asize;
5735
uint64_t zcb_dedup_blocks;
5736
uint64_t zcb_clone_asize;
5737
uint64_t zcb_clone_blocks;
5738
uint64_t zcb_psize_count[SPA_MAX_FOR_16M];
5739
uint64_t zcb_lsize_count[SPA_MAX_FOR_16M];
5740
uint64_t zcb_asize_count[SPA_MAX_FOR_16M];
5741
uint64_t zcb_psize_len[SPA_MAX_FOR_16M];
5742
uint64_t zcb_lsize_len[SPA_MAX_FOR_16M];
5743
uint64_t zcb_asize_len[SPA_MAX_FOR_16M];
5744
uint64_t zcb_psize_total;
5745
uint64_t zcb_lsize_total;
5746
uint64_t zcb_asize_total;
5747
uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
5748
uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
5749
[BPE_PAYLOAD_SIZE + 1];
5750
uint64_t zcb_start;
5751
hrtime_t zcb_lastprint;
5752
uint64_t zcb_totalasize;
5753
uint64_t zcb_errors[256];
5754
int zcb_readfails;
5755
int zcb_haderrors;
5756
spa_t *zcb_spa;
5757
uint32_t **zcb_vd_obsolete_counts;
5758
avl_tree_t zcb_brt;
5759
boolean_t zcb_brt_is_active;
5760
} zdb_cb_t;
5761
5762
/* test if two DVA offsets from same vdev are within the same metaslab */
5763
static boolean_t
5764
same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
5765
{
5766
vdev_t *vd = vdev_lookup_top(spa, vdev);
5767
uint64_t ms_shift = vd->vdev_ms_shift;
5768
5769
return ((off1 >> ms_shift) == (off2 >> ms_shift));
5770
}
5771
5772
/*
5773
* Used to simplify reporting of the histogram data.
5774
*/
5775
typedef struct one_histo {
5776
const char *name;
5777
uint64_t *count;
5778
uint64_t *len;
5779
uint64_t cumulative;
5780
} one_histo_t;
5781
5782
/*
5783
* The number of separate histograms processed for psize, lsize and asize.
5784
*/
5785
#define NUM_HISTO 3
5786
5787
/*
5788
* This routine will create a fixed column size output of three different
5789
* histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5790
* the count, length and cumulative length of the psize, lsize and
5791
* asize blocks.
5792
*
5793
* All three types of blocks are listed on a single line
5794
*
5795
* By default the table is printed in nicenumber format (e.g. 123K) but
5796
* if the '-P' parameter is specified then the full raw number (parseable)
5797
* is printed out.
5798
*/
5799
static void
5800
dump_size_histograms(zdb_cb_t *zcb)
5801
{
5802
/*
5803
* A temporary buffer that allows us to convert a number into
5804
* a string using zdb_nicenumber to allow either raw or human
5805
* readable numbers to be output.
5806
*/
5807
char numbuf[32];
5808
5809
/*
5810
* Define titles which are used in the headers of the tables
5811
* printed by this routine.
5812
*/
5813
const char blocksize_title1[] = "block";
5814
const char blocksize_title2[] = "size";
5815
const char count_title[] = "Count";
5816
const char length_title[] = "Size";
5817
const char cumulative_title[] = "Cum.";
5818
5819
/*
5820
* Setup the histogram arrays (psize, lsize, and asize).
5821
*/
5822
one_histo_t parm_histo[NUM_HISTO];
5823
5824
parm_histo[0].name = "psize";
5825
parm_histo[0].count = zcb->zcb_psize_count;
5826
parm_histo[0].len = zcb->zcb_psize_len;
5827
parm_histo[0].cumulative = 0;
5828
5829
parm_histo[1].name = "lsize";
5830
parm_histo[1].count = zcb->zcb_lsize_count;
5831
parm_histo[1].len = zcb->zcb_lsize_len;
5832
parm_histo[1].cumulative = 0;
5833
5834
parm_histo[2].name = "asize";
5835
parm_histo[2].count = zcb->zcb_asize_count;
5836
parm_histo[2].len = zcb->zcb_asize_len;
5837
parm_histo[2].cumulative = 0;
5838
5839
5840
(void) printf("\nBlock Size Histogram\n");
5841
switch (block_bin_mode) {
5842
case BIN_PSIZE:
5843
printf("(note: all categories are binned by %s)\n", "psize");
5844
break;
5845
case BIN_LSIZE:
5846
printf("(note: all categories are binned by %s)\n", "lsize");
5847
break;
5848
case BIN_ASIZE:
5849
printf("(note: all categories are binned by %s)\n", "asize");
5850
break;
5851
default:
5852
printf("(note: all categories are binned separately)\n");
5853
break;
5854
}
5855
if (block_classes != 0) {
5856
char buf[256] = "";
5857
if (block_classes & CLASS_NORMAL)
5858
strlcat(buf, "\"normal\", ", sizeof (buf));
5859
if (block_classes & CLASS_SPECIAL)
5860
strlcat(buf, "\"special\", ", sizeof (buf));
5861
if (block_classes & CLASS_DEDUP)
5862
strlcat(buf, "\"dedup\", ", sizeof (buf));
5863
if (block_classes & CLASS_OTHER)
5864
strlcat(buf, "\"other\", ", sizeof (buf));
5865
buf[strlen(buf)-2] = '\0';
5866
printf("(note: only blocks in these classes are counted: %s)\n",
5867
buf);
5868
}
5869
/*
5870
* Print the first line titles
5871
*/
5872
if (dump_opt['P'])
5873
(void) printf("\n%s\t", blocksize_title1);
5874
else
5875
(void) printf("\n%7s ", blocksize_title1);
5876
5877
for (int j = 0; j < NUM_HISTO; j++) {
5878
if (dump_opt['P']) {
5879
if (j < NUM_HISTO - 1) {
5880
(void) printf("%s\t\t\t", parm_histo[j].name);
5881
} else {
5882
/* Don't print trailing spaces */
5883
(void) printf(" %s", parm_histo[j].name);
5884
}
5885
} else {
5886
if (j < NUM_HISTO - 1) {
5887
/* Left aligned strings in the output */
5888
(void) printf("%-7s ",
5889
parm_histo[j].name);
5890
} else {
5891
/* Don't print trailing spaces */
5892
(void) printf("%s", parm_histo[j].name);
5893
}
5894
}
5895
}
5896
(void) printf("\n");
5897
5898
/*
5899
* Print the second line titles
5900
*/
5901
if (dump_opt['P']) {
5902
(void) printf("%s\t", blocksize_title2);
5903
} else {
5904
(void) printf("%7s ", blocksize_title2);
5905
}
5906
5907
for (int i = 0; i < NUM_HISTO; i++) {
5908
if (dump_opt['P']) {
5909
(void) printf("%s\t%s\t%s\t",
5910
count_title, length_title, cumulative_title);
5911
} else {
5912
(void) printf("%7s%7s%7s",
5913
count_title, length_title, cumulative_title);
5914
}
5915
}
5916
(void) printf("\n");
5917
5918
/*
5919
* Print the rows
5920
*/
5921
for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
5922
5923
/*
5924
* Print the first column showing the blocksize
5925
*/
5926
zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
5927
5928
if (dump_opt['P']) {
5929
printf("%s", numbuf);
5930
} else {
5931
printf("%7s:", numbuf);
5932
}
5933
5934
/*
5935
* Print the remaining set of 3 columns per size:
5936
* for psize, lsize and asize
5937
*/
5938
for (int j = 0; j < NUM_HISTO; j++) {
5939
parm_histo[j].cumulative += parm_histo[j].len[i];
5940
5941
zdb_nicenum(parm_histo[j].count[i],
5942
numbuf, sizeof (numbuf));
5943
if (dump_opt['P'])
5944
(void) printf("\t%s", numbuf);
5945
else
5946
(void) printf("%7s", numbuf);
5947
5948
zdb_nicenum(parm_histo[j].len[i],
5949
numbuf, sizeof (numbuf));
5950
if (dump_opt['P'])
5951
(void) printf("\t%s", numbuf);
5952
else
5953
(void) printf("%7s", numbuf);
5954
5955
zdb_nicenum(parm_histo[j].cumulative,
5956
numbuf, sizeof (numbuf));
5957
if (dump_opt['P'])
5958
(void) printf("\t%s", numbuf);
5959
else
5960
(void) printf("%7s", numbuf);
5961
}
5962
(void) printf("\n");
5963
}
5964
}
5965
5966
static void
5967
zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
5968
dmu_object_type_t type)
5969
{
5970
int i;
5971
5972
ASSERT(type < ZDB_OT_TOTAL);
5973
5974
if (zilog && zil_bp_tree_add(zilog, bp) != 0)
5975
return;
5976
5977
/*
5978
* This flag controls if we will issue a claim for the block while
5979
* counting it, to ensure that all blocks are referenced in space maps.
5980
* We don't issue claims if we're not doing leak tracking, because it's
5981
* expensive if the user isn't interested. We also don't claim the
5982
* second or later occurences of cloned or dedup'd blocks, because we
5983
* already claimed them the first time.
5984
*/
5985
boolean_t do_claim = !dump_opt['L'];
5986
5987
spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
5988
5989
blkptr_t tempbp;
5990
if (BP_GET_DEDUP(bp)) {
5991
/*
5992
* Dedup'd blocks are special. We need to count them, so we can
5993
* later uncount them when reporting leaked space, and we must
5994
* only claim them once.
5995
*
5996
* We use the existing dedup system to track what we've seen.
5997
* The first time we see a block, we do a ddt_lookup() to see
5998
* if it exists in the DDT. If we're doing leak tracking, we
5999
* claim the block at this time.
6000
*
6001
* Each time we see a block, we reduce the refcount in the
6002
* entry by one, and add to the size and count of dedup'd
6003
* blocks to report at the end.
6004
*/
6005
6006
ddt_t *ddt = ddt_select(zcb->zcb_spa, bp);
6007
6008
ddt_enter(ddt);
6009
6010
/*
6011
* Find the block. This will create the entry in memory, but
6012
* we'll know if that happened by its refcount.
6013
*/
6014
ddt_entry_t *dde = ddt_lookup(ddt, bp, B_TRUE);
6015
6016
/*
6017
* ddt_lookup() can return NULL if this block didn't exist
6018
* in the DDT and creating it would take the DDT over its
6019
* quota. Since we got the block from disk, it must exist in
6020
* the DDT, so this can't happen. However, when unique entries
6021
* are pruned, the dedup bit can be set with no corresponding
6022
* entry in the DDT.
6023
*/
6024
if (dde == NULL) {
6025
ddt_exit(ddt);
6026
goto skipped;
6027
}
6028
6029
/* Get the phys for this variant */
6030
ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
6031
6032
/*
6033
* This entry may have multiple sets of DVAs. We must claim
6034
* each set the first time we see them in a real block on disk,
6035
* or count them on subsequent occurences. We don't have a
6036
* convenient way to track the first time we see each variant,
6037
* so we repurpose dde_io as a set of "seen" flag bits. We can
6038
* do this safely in zdb because it never writes, so it will
6039
* never have a writing zio for this block in that pointer.
6040
*/
6041
boolean_t seen = !!(((uintptr_t)dde->dde_io) & (1 << v));
6042
if (!seen)
6043
dde->dde_io =
6044
(void *)(((uintptr_t)dde->dde_io) | (1 << v));
6045
6046
/* Consume a reference for this block. */
6047
if (ddt_phys_total_refcnt(ddt, dde->dde_phys) > 0)
6048
ddt_phys_decref(dde->dde_phys, v);
6049
6050
/*
6051
* If this entry has a single flat phys, it may have been
6052
* extended with additional DVAs at some time in its life.
6053
* This block might be from before it was fully extended, and
6054
* so have fewer DVAs.
6055
*
6056
* If this is the first time we've seen this block, and we
6057
* claimed it as-is, then we would miss the claim on some
6058
* number of DVAs, which would then be seen as leaked.
6059
*
6060
* In all cases, if we've had fewer DVAs, then the asize would
6061
* be too small, and would lead to the pool apparently using
6062
* more space than allocated.
6063
*
6064
* To handle this, we copy the canonical set of DVAs from the
6065
* entry back to the block pointer before we claim it.
6066
*/
6067
if (v == DDT_PHYS_FLAT) {
6068
ASSERT3U(BP_GET_PHYSICAL_BIRTH(bp), ==,
6069
ddt_phys_birth(dde->dde_phys, v));
6070
tempbp = *bp;
6071
ddt_bp_fill(dde->dde_phys, v, &tempbp,
6072
BP_GET_PHYSICAL_BIRTH(bp));
6073
bp = &tempbp;
6074
}
6075
6076
if (seen) {
6077
/*
6078
* The second or later time we see this block,
6079
* it's a duplicate and we count it.
6080
*/
6081
zcb->zcb_dedup_asize += BP_GET_ASIZE(bp);
6082
zcb->zcb_dedup_blocks++;
6083
6084
/* Already claimed, don't do it again. */
6085
do_claim = B_FALSE;
6086
}
6087
6088
ddt_exit(ddt);
6089
} else if (zcb->zcb_brt_is_active &&
6090
brt_maybe_exists(zcb->zcb_spa, bp)) {
6091
/*
6092
* Cloned blocks are special. We need to count them, so we can
6093
* later uncount them when reporting leaked space, and we must
6094
* only claim them once.
6095
*
6096
* To do this, we keep our own in-memory BRT. For each block
6097
* we haven't seen before, we look it up in the real BRT and
6098
* if its there, we note it and its refcount then proceed as
6099
* normal. If we see the block again, we count it as a clone
6100
* and then give it no further consideration.
6101
*/
6102
zdb_brt_entry_t zbre_search, *zbre;
6103
avl_index_t where;
6104
6105
zbre_search.zbre_dva = bp->blk_dva[0];
6106
zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where);
6107
if (zbre == NULL) {
6108
/* Not seen before; track it */
6109
uint64_t refcnt =
6110
brt_entry_get_refcount(zcb->zcb_spa, bp);
6111
if (refcnt > 0) {
6112
zbre = umem_zalloc(sizeof (zdb_brt_entry_t),
6113
UMEM_NOFAIL);
6114
zbre->zbre_dva = bp->blk_dva[0];
6115
zbre->zbre_refcount = refcnt;
6116
avl_insert(&zcb->zcb_brt, zbre, where);
6117
}
6118
} else {
6119
/*
6120
* Second or later occurrence, count it and take a
6121
* refcount.
6122
*/
6123
zcb->zcb_clone_asize += BP_GET_ASIZE(bp);
6124
zcb->zcb_clone_blocks++;
6125
6126
zbre->zbre_refcount--;
6127
if (zbre->zbre_refcount == 0) {
6128
avl_remove(&zcb->zcb_brt, zbre);
6129
umem_free(zbre, sizeof (zdb_brt_entry_t));
6130
}
6131
6132
/* Already claimed, don't do it again. */
6133
do_claim = B_FALSE;
6134
}
6135
}
6136
6137
skipped:
6138
for (i = 0; i < 4; i++) {
6139
int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
6140
int t = (i & 1) ? type : ZDB_OT_TOTAL;
6141
int equal;
6142
zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
6143
6144
zb->zb_asize += BP_GET_ASIZE(bp);
6145
zb->zb_lsize += BP_GET_LSIZE(bp);
6146
zb->zb_psize += BP_GET_PSIZE(bp);
6147
zb->zb_count++;
6148
6149
/*
6150
* The histogram is only big enough to record blocks up to
6151
* SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
6152
* "other", bucket.
6153
*/
6154
unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
6155
idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
6156
zb->zb_psize_histogram[idx]++;
6157
6158
zb->zb_gangs += BP_COUNT_GANG(bp);
6159
6160
switch (BP_GET_NDVAS(bp)) {
6161
case 2:
6162
if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6163
DVA_GET_VDEV(&bp->blk_dva[1])) {
6164
zb->zb_ditto_samevdev++;
6165
6166
if (same_metaslab(zcb->zcb_spa,
6167
DVA_GET_VDEV(&bp->blk_dva[0]),
6168
DVA_GET_OFFSET(&bp->blk_dva[0]),
6169
DVA_GET_OFFSET(&bp->blk_dva[1])))
6170
zb->zb_ditto_same_ms++;
6171
}
6172
break;
6173
case 3:
6174
equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6175
DVA_GET_VDEV(&bp->blk_dva[1])) +
6176
(DVA_GET_VDEV(&bp->blk_dva[0]) ==
6177
DVA_GET_VDEV(&bp->blk_dva[2])) +
6178
(DVA_GET_VDEV(&bp->blk_dva[1]) ==
6179
DVA_GET_VDEV(&bp->blk_dva[2]));
6180
if (equal != 0) {
6181
zb->zb_ditto_samevdev++;
6182
6183
if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6184
DVA_GET_VDEV(&bp->blk_dva[1]) &&
6185
same_metaslab(zcb->zcb_spa,
6186
DVA_GET_VDEV(&bp->blk_dva[0]),
6187
DVA_GET_OFFSET(&bp->blk_dva[0]),
6188
DVA_GET_OFFSET(&bp->blk_dva[1])))
6189
zb->zb_ditto_same_ms++;
6190
else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6191
DVA_GET_VDEV(&bp->blk_dva[2]) &&
6192
same_metaslab(zcb->zcb_spa,
6193
DVA_GET_VDEV(&bp->blk_dva[0]),
6194
DVA_GET_OFFSET(&bp->blk_dva[0]),
6195
DVA_GET_OFFSET(&bp->blk_dva[2])))
6196
zb->zb_ditto_same_ms++;
6197
else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
6198
DVA_GET_VDEV(&bp->blk_dva[2]) &&
6199
same_metaslab(zcb->zcb_spa,
6200
DVA_GET_VDEV(&bp->blk_dva[1]),
6201
DVA_GET_OFFSET(&bp->blk_dva[1]),
6202
DVA_GET_OFFSET(&bp->blk_dva[2])))
6203
zb->zb_ditto_same_ms++;
6204
}
6205
break;
6206
}
6207
}
6208
6209
spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
6210
6211
if (BP_IS_EMBEDDED(bp)) {
6212
zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
6213
zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
6214
[BPE_GET_PSIZE(bp)]++;
6215
return;
6216
}
6217
6218
if (block_classes != 0) {
6219
spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
6220
6221
uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[0]);
6222
uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[0]);
6223
vdev_t *vd = vdev_lookup_top(zcb->zcb_spa, vdev);
6224
ASSERT(vd != NULL);
6225
metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6226
ASSERT(ms != NULL);
6227
metaslab_group_t *mg = ms->ms_group;
6228
ASSERT(mg != NULL);
6229
metaslab_class_t *mc = mg->mg_class;
6230
ASSERT(mc != NULL);
6231
6232
spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
6233
6234
int class;
6235
if (mc == spa_normal_class(zcb->zcb_spa)) {
6236
class = CLASS_NORMAL;
6237
} else if (mc == spa_special_class(zcb->zcb_spa)) {
6238
class = CLASS_SPECIAL;
6239
} else if (mc == spa_dedup_class(zcb->zcb_spa)) {
6240
class = CLASS_DEDUP;
6241
} else {
6242
class = CLASS_OTHER;
6243
}
6244
6245
if (!(block_classes & class)) {
6246
goto hist_skipped;
6247
}
6248
}
6249
6250
/*
6251
* The binning histogram bins by powers of two up to
6252
* SPA_MAXBLOCKSIZE rather than creating bins for
6253
* every possible blocksize found in the pool.
6254
*/
6255
int bin;
6256
6257
/*
6258
* Binning strategy: each bin includes blocks up to and including
6259
* the given size (excluding blocks that fit into the previous bin).
6260
* This way, the "4K" bin includes blocks within the (2K; 4K] range.
6261
*/
6262
#define BIN(size) (highbit64((size) - 1))
6263
6264
switch (block_bin_mode) {
6265
case BIN_PSIZE: bin = BIN(BP_GET_PSIZE(bp)); break;
6266
case BIN_LSIZE: bin = BIN(BP_GET_LSIZE(bp)); break;
6267
case BIN_ASIZE: bin = BIN(BP_GET_ASIZE(bp)); break;
6268
case BIN_AUTO: break;
6269
default: PANIC("bad block_bin_mode"); abort();
6270
}
6271
6272
if (block_bin_mode == BIN_AUTO)
6273
bin = BIN(BP_GET_PSIZE(bp));
6274
6275
zcb->zcb_psize_count[bin]++;
6276
zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
6277
zcb->zcb_psize_total += BP_GET_PSIZE(bp);
6278
6279
if (block_bin_mode == BIN_AUTO)
6280
bin = BIN(BP_GET_LSIZE(bp));
6281
6282
zcb->zcb_lsize_count[bin]++;
6283
zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
6284
zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
6285
6286
if (block_bin_mode == BIN_AUTO)
6287
bin = BIN(BP_GET_ASIZE(bp));
6288
6289
zcb->zcb_asize_count[bin]++;
6290
zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
6291
zcb->zcb_asize_total += BP_GET_ASIZE(bp);
6292
6293
#undef BIN
6294
6295
hist_skipped:
6296
if (!do_claim)
6297
return;
6298
6299
VERIFY0(zio_wait(zio_claim(NULL, zcb->zcb_spa,
6300
spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL,
6301
ZIO_FLAG_CANFAIL)));
6302
}
6303
6304
static void
6305
zdb_blkptr_done(zio_t *zio)
6306
{
6307
spa_t *spa = zio->io_spa;
6308
blkptr_t *bp = zio->io_bp;
6309
int ioerr = zio->io_error;
6310
zdb_cb_t *zcb = zio->io_private;
6311
zbookmark_phys_t *zb = &zio->io_bookmark;
6312
6313
mutex_enter(&spa->spa_scrub_lock);
6314
spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
6315
cv_broadcast(&spa->spa_scrub_io_cv);
6316
6317
if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
6318
char blkbuf[BP_SPRINTF_LEN];
6319
6320
zcb->zcb_haderrors = 1;
6321
zcb->zcb_errors[ioerr]++;
6322
6323
if (dump_opt['b'] >= 2)
6324
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6325
else
6326
blkbuf[0] = '\0';
6327
6328
(void) printf("zdb_blkptr_cb: "
6329
"Got error %d reading "
6330
"<%llu, %llu, %lld, %llx> %s -- skipping\n",
6331
ioerr,
6332
(u_longlong_t)zb->zb_objset,
6333
(u_longlong_t)zb->zb_object,
6334
(u_longlong_t)zb->zb_level,
6335
(u_longlong_t)zb->zb_blkid,
6336
blkbuf);
6337
}
6338
mutex_exit(&spa->spa_scrub_lock);
6339
6340
abd_free(zio->io_abd);
6341
}
6342
6343
static int
6344
zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
6345
const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
6346
{
6347
zdb_cb_t *zcb = arg;
6348
dmu_object_type_t type;
6349
boolean_t is_metadata;
6350
6351
if (zb->zb_level == ZB_DNODE_LEVEL)
6352
return (0);
6353
6354
if (dump_opt['b'] >= 5 && BP_GET_BIRTH(bp) > 0) {
6355
char blkbuf[BP_SPRINTF_LEN];
6356
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6357
(void) printf("objset %llu object %llu "
6358
"level %lld offset 0x%llx %s\n",
6359
(u_longlong_t)zb->zb_objset,
6360
(u_longlong_t)zb->zb_object,
6361
(longlong_t)zb->zb_level,
6362
(u_longlong_t)blkid2offset(dnp, bp, zb),
6363
blkbuf);
6364
}
6365
6366
if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
6367
return (0);
6368
6369
type = BP_GET_TYPE(bp);
6370
6371
zdb_count_block(zcb, zilog, bp,
6372
(type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
6373
6374
is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
6375
6376
if (!BP_IS_EMBEDDED(bp) &&
6377
(dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
6378
size_t size = BP_GET_PSIZE(bp);
6379
abd_t *abd = abd_alloc(size, B_FALSE);
6380
int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
6381
6382
/* If it's an intent log block, failure is expected. */
6383
if (zb->zb_level == ZB_ZIL_LEVEL)
6384
flags |= ZIO_FLAG_SPECULATIVE;
6385
6386
mutex_enter(&spa->spa_scrub_lock);
6387
while (spa->spa_load_verify_bytes > max_inflight_bytes)
6388
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
6389
spa->spa_load_verify_bytes += size;
6390
mutex_exit(&spa->spa_scrub_lock);
6391
6392
zio_nowait(zio_read(NULL, spa, bp, abd, size,
6393
zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
6394
}
6395
6396
zcb->zcb_readfails = 0;
6397
6398
/* only call gethrtime() every 100 blocks */
6399
static int iters;
6400
if (++iters > 100)
6401
iters = 0;
6402
else
6403
return (0);
6404
6405
if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
6406
uint64_t now = gethrtime();
6407
char buf[10];
6408
uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
6409
uint64_t kb_per_sec =
6410
1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
6411
uint64_t sec_remaining =
6412
(zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
6413
6414
/* make sure nicenum has enough space */
6415
_Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
6416
6417
zfs_nicebytes(bytes, buf, sizeof (buf));
6418
(void) fprintf(stderr,
6419
"\r%5s completed (%4"PRIu64"MB/s) "
6420
"estimated time remaining: "
6421
"%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ",
6422
buf, kb_per_sec / 1024,
6423
sec_remaining / 60 / 60,
6424
sec_remaining / 60 % 60,
6425
sec_remaining % 60);
6426
6427
zcb->zcb_lastprint = now;
6428
}
6429
6430
return (0);
6431
}
6432
6433
static void
6434
zdb_leak(void *arg, uint64_t start, uint64_t size)
6435
{
6436
vdev_t *vd = arg;
6437
6438
(void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
6439
(u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
6440
}
6441
6442
static metaslab_ops_t zdb_metaslab_ops = {
6443
NULL /* alloc */
6444
};
6445
6446
static int
6447
load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
6448
uint64_t txg, void *arg)
6449
{
6450
spa_vdev_removal_t *svr = arg;
6451
6452
uint64_t offset = sme->sme_offset;
6453
uint64_t size = sme->sme_run;
6454
6455
/* skip vdevs we don't care about */
6456
if (sme->sme_vdev != svr->svr_vdev_id)
6457
return (0);
6458
6459
vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
6460
metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6461
ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6462
6463
if (txg < metaslab_unflushed_txg(ms))
6464
return (0);
6465
6466
if (sme->sme_type == SM_ALLOC)
6467
zfs_range_tree_add(svr->svr_allocd_segs, offset, size);
6468
else
6469
zfs_range_tree_remove(svr->svr_allocd_segs, offset, size);
6470
6471
return (0);
6472
}
6473
6474
static void
6475
claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
6476
uint64_t size, void *arg)
6477
{
6478
(void) inner_offset, (void) arg;
6479
6480
/*
6481
* This callback was called through a remap from
6482
* a device being removed. Therefore, the vdev that
6483
* this callback is applied to is a concrete
6484
* vdev.
6485
*/
6486
ASSERT(vdev_is_concrete(vd));
6487
6488
VERIFY0(metaslab_claim_impl(vd, offset, size,
6489
spa_min_claim_txg(vd->vdev_spa)));
6490
}
6491
6492
static void
6493
claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
6494
{
6495
vdev_t *vd = arg;
6496
6497
vdev_indirect_ops.vdev_op_remap(vd, offset, size,
6498
claim_segment_impl_cb, NULL);
6499
}
6500
6501
/*
6502
* After accounting for all allocated blocks that are directly referenced,
6503
* we might have missed a reference to a block from a partially complete
6504
* (and thus unused) indirect mapping object. We perform a secondary pass
6505
* through the metaslabs we have already mapped and claim the destination
6506
* blocks.
6507
*/
6508
static void
6509
zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
6510
{
6511
if (dump_opt['L'])
6512
return;
6513
6514
if (spa->spa_vdev_removal == NULL)
6515
return;
6516
6517
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6518
6519
spa_vdev_removal_t *svr = spa->spa_vdev_removal;
6520
vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
6521
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6522
6523
ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
6524
6525
zfs_range_tree_t *allocs = zfs_range_tree_create_flags(
6526
NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
6527
0, "zdb_claim_removing:allocs");
6528
for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
6529
metaslab_t *msp = vd->vdev_ms[msi];
6530
6531
ASSERT0(zfs_range_tree_space(allocs));
6532
if (msp->ms_sm != NULL)
6533
VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
6534
zfs_range_tree_vacate(allocs, zfs_range_tree_add,
6535
svr->svr_allocd_segs);
6536
}
6537
zfs_range_tree_destroy(allocs);
6538
6539
iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
6540
6541
/*
6542
* Clear everything past what has been synced,
6543
* because we have not allocated mappings for
6544
* it yet.
6545
*/
6546
zfs_range_tree_clear(svr->svr_allocd_segs,
6547
vdev_indirect_mapping_max_offset(vim),
6548
vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
6549
6550
zcb->zcb_removing_size += zfs_range_tree_space(svr->svr_allocd_segs);
6551
zfs_range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
6552
6553
spa_config_exit(spa, SCL_CONFIG, FTAG);
6554
}
6555
6556
static int
6557
increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6558
dmu_tx_t *tx)
6559
{
6560
(void) tx;
6561
zdb_cb_t *zcb = arg;
6562
spa_t *spa = zcb->zcb_spa;
6563
vdev_t *vd;
6564
const dva_t *dva = &bp->blk_dva[0];
6565
6566
ASSERT(!bp_freed);
6567
ASSERT(!dump_opt['L']);
6568
ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
6569
6570
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6571
vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
6572
ASSERT3P(vd, !=, NULL);
6573
spa_config_exit(spa, SCL_VDEV, FTAG);
6574
6575
ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
6576
ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
6577
6578
vdev_indirect_mapping_increment_obsolete_count(
6579
vd->vdev_indirect_mapping,
6580
DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
6581
zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6582
6583
return (0);
6584
}
6585
6586
static uint32_t *
6587
zdb_load_obsolete_counts(vdev_t *vd)
6588
{
6589
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6590
spa_t *spa = vd->vdev_spa;
6591
spa_condensing_indirect_phys_t *scip =
6592
&spa->spa_condensing_indirect_phys;
6593
uint64_t obsolete_sm_object;
6594
uint32_t *counts;
6595
6596
VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
6597
EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
6598
counts = vdev_indirect_mapping_load_obsolete_counts(vim);
6599
if (vd->vdev_obsolete_sm != NULL) {
6600
vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6601
vd->vdev_obsolete_sm);
6602
}
6603
if (scip->scip_vdev == vd->vdev_id &&
6604
scip->scip_prev_obsolete_sm_object != 0) {
6605
space_map_t *prev_obsolete_sm = NULL;
6606
VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
6607
scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
6608
vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6609
prev_obsolete_sm);
6610
space_map_close(prev_obsolete_sm);
6611
}
6612
return (counts);
6613
}
6614
6615
typedef struct checkpoint_sm_exclude_entry_arg {
6616
vdev_t *cseea_vd;
6617
uint64_t cseea_checkpoint_size;
6618
} checkpoint_sm_exclude_entry_arg_t;
6619
6620
static int
6621
checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
6622
{
6623
checkpoint_sm_exclude_entry_arg_t *cseea = arg;
6624
vdev_t *vd = cseea->cseea_vd;
6625
metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
6626
uint64_t end = sme->sme_offset + sme->sme_run;
6627
6628
ASSERT(sme->sme_type == SM_FREE);
6629
6630
/*
6631
* Since the vdev_checkpoint_sm exists in the vdev level
6632
* and the ms_sm space maps exist in the metaslab level,
6633
* an entry in the checkpoint space map could theoretically
6634
* cross the boundaries of the metaslab that it belongs.
6635
*
6636
* In reality, because of the way that we populate and
6637
* manipulate the checkpoint's space maps currently,
6638
* there shouldn't be any entries that cross metaslabs.
6639
* Hence the assertion below.
6640
*
6641
* That said, there is no fundamental requirement that
6642
* the checkpoint's space map entries should not cross
6643
* metaslab boundaries. So if needed we could add code
6644
* that handles metaslab-crossing segments in the future.
6645
*/
6646
VERIFY3U(sme->sme_offset, >=, ms->ms_start);
6647
VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
6648
6649
/*
6650
* By removing the entry from the allocated segments we
6651
* also verify that the entry is there to begin with.
6652
*/
6653
mutex_enter(&ms->ms_lock);
6654
zfs_range_tree_remove(ms->ms_allocatable, sme->sme_offset,
6655
sme->sme_run);
6656
mutex_exit(&ms->ms_lock);
6657
6658
cseea->cseea_checkpoint_size += sme->sme_run;
6659
return (0);
6660
}
6661
6662
static void
6663
zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
6664
{
6665
spa_t *spa = vd->vdev_spa;
6666
space_map_t *checkpoint_sm = NULL;
6667
uint64_t checkpoint_sm_obj;
6668
6669
/*
6670
* If there is no vdev_top_zap, we are in a pool whose
6671
* version predates the pool checkpoint feature.
6672
*/
6673
if (vd->vdev_top_zap == 0)
6674
return;
6675
6676
/*
6677
* If there is no reference of the vdev_checkpoint_sm in
6678
* the vdev_top_zap, then one of the following scenarios
6679
* is true:
6680
*
6681
* 1] There is no checkpoint
6682
* 2] There is a checkpoint, but no checkpointed blocks
6683
* have been freed yet
6684
* 3] The current vdev is indirect
6685
*
6686
* In these cases we return immediately.
6687
*/
6688
if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
6689
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
6690
return;
6691
6692
VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
6693
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
6694
&checkpoint_sm_obj));
6695
6696
checkpoint_sm_exclude_entry_arg_t cseea;
6697
cseea.cseea_vd = vd;
6698
cseea.cseea_checkpoint_size = 0;
6699
6700
VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
6701
checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
6702
6703
VERIFY0(space_map_iterate(checkpoint_sm,
6704
space_map_length(checkpoint_sm),
6705
checkpoint_sm_exclude_entry_cb, &cseea));
6706
space_map_close(checkpoint_sm);
6707
6708
zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
6709
}
6710
6711
static void
6712
zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
6713
{
6714
ASSERT(!dump_opt['L']);
6715
6716
vdev_t *rvd = spa->spa_root_vdev;
6717
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6718
ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
6719
zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
6720
}
6721
}
6722
6723
static int
6724
count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
6725
uint64_t txg, void *arg)
6726
{
6727
int64_t *ualloc_space = arg;
6728
6729
uint64_t offset = sme->sme_offset;
6730
uint64_t vdev_id = sme->sme_vdev;
6731
6732
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6733
if (!vdev_is_concrete(vd))
6734
return (0);
6735
6736
metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6737
ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6738
6739
if (txg < metaslab_unflushed_txg(ms))
6740
return (0);
6741
6742
if (sme->sme_type == SM_ALLOC)
6743
*ualloc_space += sme->sme_run;
6744
else
6745
*ualloc_space -= sme->sme_run;
6746
6747
return (0);
6748
}
6749
6750
static int64_t
6751
get_unflushed_alloc_space(spa_t *spa)
6752
{
6753
if (dump_opt['L'])
6754
return (0);
6755
6756
int64_t ualloc_space = 0;
6757
iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
6758
&ualloc_space);
6759
return (ualloc_space);
6760
}
6761
6762
static int
6763
load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
6764
{
6765
maptype_t *uic_maptype = arg;
6766
6767
uint64_t offset = sme->sme_offset;
6768
uint64_t size = sme->sme_run;
6769
uint64_t vdev_id = sme->sme_vdev;
6770
6771
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6772
6773
/* skip indirect vdevs */
6774
if (!vdev_is_concrete(vd))
6775
return (0);
6776
6777
metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6778
6779
ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6780
ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
6781
6782
if (txg < metaslab_unflushed_txg(ms))
6783
return (0);
6784
6785
if (*uic_maptype == sme->sme_type)
6786
zfs_range_tree_add(ms->ms_allocatable, offset, size);
6787
else
6788
zfs_range_tree_remove(ms->ms_allocatable, offset, size);
6789
6790
return (0);
6791
}
6792
6793
static void
6794
load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
6795
{
6796
iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
6797
}
6798
6799
static void
6800
load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
6801
{
6802
vdev_t *rvd = spa->spa_root_vdev;
6803
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
6804
vdev_t *vd = rvd->vdev_child[i];
6805
6806
ASSERT3U(i, ==, vd->vdev_id);
6807
6808
if (vd->vdev_ops == &vdev_indirect_ops)
6809
continue;
6810
6811
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6812
metaslab_t *msp = vd->vdev_ms[m];
6813
6814
(void) fprintf(stderr,
6815
"\rloading concrete vdev %llu, "
6816
"metaslab %llu of %llu ...",
6817
(longlong_t)vd->vdev_id,
6818
(longlong_t)msp->ms_id,
6819
(longlong_t)vd->vdev_ms_count);
6820
6821
mutex_enter(&msp->ms_lock);
6822
zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6823
6824
/*
6825
* We don't want to spend the CPU manipulating the
6826
* size-ordered tree, so clear the range_tree ops.
6827
*/
6828
msp->ms_allocatable->rt_ops = NULL;
6829
6830
if (msp->ms_sm != NULL) {
6831
VERIFY0(space_map_load(msp->ms_sm,
6832
msp->ms_allocatable, maptype));
6833
}
6834
if (!msp->ms_loaded)
6835
msp->ms_loaded = B_TRUE;
6836
mutex_exit(&msp->ms_lock);
6837
}
6838
}
6839
6840
load_unflushed_to_ms_allocatables(spa, maptype);
6841
}
6842
6843
/*
6844
* vm_idxp is an in-out parameter which (for indirect vdevs) is the
6845
* index in vim_entries that has the first entry in this metaslab.
6846
* On return, it will be set to the first entry after this metaslab.
6847
*/
6848
static void
6849
load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
6850
uint64_t *vim_idxp)
6851
{
6852
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6853
6854
mutex_enter(&msp->ms_lock);
6855
zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6856
6857
/*
6858
* We don't want to spend the CPU manipulating the
6859
* size-ordered tree, so clear the range_tree ops.
6860
*/
6861
msp->ms_allocatable->rt_ops = NULL;
6862
6863
for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
6864
(*vim_idxp)++) {
6865
vdev_indirect_mapping_entry_phys_t *vimep =
6866
&vim->vim_entries[*vim_idxp];
6867
uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6868
uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
6869
ASSERT3U(ent_offset, >=, msp->ms_start);
6870
if (ent_offset >= msp->ms_start + msp->ms_size)
6871
break;
6872
6873
/*
6874
* Mappings do not cross metaslab boundaries,
6875
* because we create them by walking the metaslabs.
6876
*/
6877
ASSERT3U(ent_offset + ent_len, <=,
6878
msp->ms_start + msp->ms_size);
6879
zfs_range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
6880
}
6881
6882
if (!msp->ms_loaded)
6883
msp->ms_loaded = B_TRUE;
6884
mutex_exit(&msp->ms_lock);
6885
}
6886
6887
static void
6888
zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
6889
{
6890
ASSERT(!dump_opt['L']);
6891
6892
vdev_t *rvd = spa->spa_root_vdev;
6893
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6894
vdev_t *vd = rvd->vdev_child[c];
6895
6896
ASSERT3U(c, ==, vd->vdev_id);
6897
6898
if (vd->vdev_ops != &vdev_indirect_ops)
6899
continue;
6900
6901
/*
6902
* Note: we don't check for mapping leaks on
6903
* removing vdevs because their ms_allocatable's
6904
* are used to look for leaks in allocated space.
6905
*/
6906
zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
6907
6908
/*
6909
* Normally, indirect vdevs don't have any
6910
* metaslabs. We want to set them up for
6911
* zio_claim().
6912
*/
6913
vdev_metaslab_group_create(vd);
6914
VERIFY0(vdev_metaslab_init(vd, 0));
6915
6916
vdev_indirect_mapping_t *vim __maybe_unused =
6917
vd->vdev_indirect_mapping;
6918
uint64_t vim_idx = 0;
6919
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6920
6921
(void) fprintf(stderr,
6922
"\rloading indirect vdev %llu, "
6923
"metaslab %llu of %llu ...",
6924
(longlong_t)vd->vdev_id,
6925
(longlong_t)vd->vdev_ms[m]->ms_id,
6926
(longlong_t)vd->vdev_ms_count);
6927
6928
load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
6929
&vim_idx);
6930
}
6931
ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
6932
}
6933
}
6934
6935
static void
6936
zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
6937
{
6938
zcb->zcb_spa = spa;
6939
6940
if (dump_opt['L'])
6941
return;
6942
6943
dsl_pool_t *dp = spa->spa_dsl_pool;
6944
vdev_t *rvd = spa->spa_root_vdev;
6945
6946
/*
6947
* We are going to be changing the meaning of the metaslab's
6948
* ms_allocatable. Ensure that the allocator doesn't try to
6949
* use the tree.
6950
*/
6951
spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
6952
spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
6953
spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6954
spa->spa_special_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6955
6956
zcb->zcb_vd_obsolete_counts =
6957
umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
6958
UMEM_NOFAIL);
6959
6960
/*
6961
* For leak detection, we overload the ms_allocatable trees
6962
* to contain allocated segments instead of free segments.
6963
* As a result, we can't use the normal metaslab_load/unload
6964
* interfaces.
6965
*/
6966
zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
6967
load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
6968
6969
/*
6970
* On load_concrete_ms_allocatable_trees() we loaded all the
6971
* allocated entries from the ms_sm to the ms_allocatable for
6972
* each metaslab. If the pool has a checkpoint or is in the
6973
* middle of discarding a checkpoint, some of these blocks
6974
* may have been freed but their ms_sm may not have been
6975
* updated because they are referenced by the checkpoint. In
6976
* order to avoid false-positives during leak-detection, we
6977
* go through the vdev's checkpoint space map and exclude all
6978
* its entries from their relevant ms_allocatable.
6979
*
6980
* We also aggregate the space held by the checkpoint and add
6981
* it to zcb_checkpoint_size.
6982
*
6983
* Note that at this point we are also verifying that all the
6984
* entries on the checkpoint_sm are marked as allocated in
6985
* the ms_sm of their relevant metaslab.
6986
* [see comment in checkpoint_sm_exclude_entry_cb()]
6987
*/
6988
zdb_leak_init_exclude_checkpoint(spa, zcb);
6989
ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
6990
6991
/* for cleaner progress output */
6992
(void) fprintf(stderr, "\n");
6993
6994
if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
6995
ASSERT(spa_feature_is_enabled(spa,
6996
SPA_FEATURE_DEVICE_REMOVAL));
6997
(void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
6998
increment_indirect_mapping_cb, zcb, NULL);
6999
}
7000
}
7001
7002
static boolean_t
7003
zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
7004
{
7005
boolean_t leaks = B_FALSE;
7006
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7007
uint64_t total_leaked = 0;
7008
boolean_t are_precise = B_FALSE;
7009
7010
ASSERT(vim != NULL);
7011
7012
for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
7013
vdev_indirect_mapping_entry_phys_t *vimep =
7014
&vim->vim_entries[i];
7015
uint64_t obsolete_bytes = 0;
7016
uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
7017
metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
7018
7019
/*
7020
* This is not very efficient but it's easy to
7021
* verify correctness.
7022
*/
7023
for (uint64_t inner_offset = 0;
7024
inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
7025
inner_offset += 1ULL << vd->vdev_ashift) {
7026
if (zfs_range_tree_contains(msp->ms_allocatable,
7027
offset + inner_offset, 1ULL << vd->vdev_ashift)) {
7028
obsolete_bytes += 1ULL << vd->vdev_ashift;
7029
}
7030
}
7031
7032
int64_t bytes_leaked = obsolete_bytes -
7033
zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
7034
ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
7035
zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
7036
7037
VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
7038
if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
7039
(void) printf("obsolete indirect mapping count "
7040
"mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
7041
(u_longlong_t)vd->vdev_id,
7042
(u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
7043
(u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
7044
(u_longlong_t)bytes_leaked);
7045
}
7046
total_leaked += ABS(bytes_leaked);
7047
}
7048
7049
VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
7050
if (!are_precise && total_leaked > 0) {
7051
int pct_leaked = total_leaked * 100 /
7052
vdev_indirect_mapping_bytes_mapped(vim);
7053
(void) printf("cannot verify obsolete indirect mapping "
7054
"counts of vdev %llu because precise feature was not "
7055
"enabled when it was removed: %d%% (%llx bytes) of mapping"
7056
"unreferenced\n",
7057
(u_longlong_t)vd->vdev_id, pct_leaked,
7058
(u_longlong_t)total_leaked);
7059
} else if (total_leaked > 0) {
7060
(void) printf("obsolete indirect mapping count mismatch "
7061
"for vdev %llu -- %llx total bytes mismatched\n",
7062
(u_longlong_t)vd->vdev_id,
7063
(u_longlong_t)total_leaked);
7064
leaks |= B_TRUE;
7065
}
7066
7067
vdev_indirect_mapping_free_obsolete_counts(vim,
7068
zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
7069
zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
7070
7071
return (leaks);
7072
}
7073
7074
static boolean_t
7075
zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
7076
{
7077
if (dump_opt['L'])
7078
return (B_FALSE);
7079
7080
boolean_t leaks = B_FALSE;
7081
vdev_t *rvd = spa->spa_root_vdev;
7082
for (unsigned c = 0; c < rvd->vdev_children; c++) {
7083
vdev_t *vd = rvd->vdev_child[c];
7084
7085
if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
7086
leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
7087
}
7088
7089
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
7090
metaslab_t *msp = vd->vdev_ms[m];
7091
ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
7092
spa_embedded_log_class(spa) ||
7093
msp->ms_group->mg_class ==
7094
spa_special_embedded_log_class(spa)) ?
7095
vd->vdev_log_mg : vd->vdev_mg);
7096
7097
/*
7098
* ms_allocatable has been overloaded
7099
* to contain allocated segments. Now that
7100
* we finished traversing all blocks, any
7101
* block that remains in the ms_allocatable
7102
* represents an allocated block that we
7103
* did not claim during the traversal.
7104
* Claimed blocks would have been removed
7105
* from the ms_allocatable. For indirect
7106
* vdevs, space remaining in the tree
7107
* represents parts of the mapping that are
7108
* not referenced, which is not a bug.
7109
*/
7110
if (vd->vdev_ops == &vdev_indirect_ops) {
7111
zfs_range_tree_vacate(msp->ms_allocatable,
7112
NULL, NULL);
7113
} else {
7114
zfs_range_tree_vacate(msp->ms_allocatable,
7115
zdb_leak, vd);
7116
}
7117
if (msp->ms_loaded) {
7118
msp->ms_loaded = B_FALSE;
7119
}
7120
}
7121
}
7122
7123
umem_free(zcb->zcb_vd_obsolete_counts,
7124
rvd->vdev_children * sizeof (uint32_t *));
7125
zcb->zcb_vd_obsolete_counts = NULL;
7126
7127
return (leaks);
7128
}
7129
7130
static int
7131
count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7132
{
7133
(void) tx;
7134
zdb_cb_t *zcb = arg;
7135
7136
if (dump_opt['b'] >= 5) {
7137
char blkbuf[BP_SPRINTF_LEN];
7138
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
7139
(void) printf("[%s] %s\n",
7140
"deferred free", blkbuf);
7141
}
7142
zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
7143
return (0);
7144
}
7145
7146
/*
7147
* Iterate over livelists which have been destroyed by the user but
7148
* are still present in the MOS, waiting to be freed
7149
*/
7150
static void
7151
iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
7152
{
7153
objset_t *mos = spa->spa_meta_objset;
7154
uint64_t zap_obj;
7155
int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
7156
DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
7157
if (err == ENOENT)
7158
return;
7159
ASSERT0(err);
7160
7161
zap_cursor_t zc;
7162
zap_attribute_t *attrp = zap_attribute_alloc();
7163
dsl_deadlist_t ll;
7164
/* NULL out os prior to dsl_deadlist_open in case it's garbage */
7165
ll.dl_os = NULL;
7166
for (zap_cursor_init(&zc, mos, zap_obj);
7167
zap_cursor_retrieve(&zc, attrp) == 0;
7168
(void) zap_cursor_advance(&zc)) {
7169
VERIFY0(dsl_deadlist_open(&ll, mos, attrp->za_first_integer));
7170
func(&ll, arg);
7171
dsl_deadlist_close(&ll);
7172
}
7173
zap_cursor_fini(&zc);
7174
zap_attribute_free(attrp);
7175
}
7176
7177
static int
7178
bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
7179
dmu_tx_t *tx)
7180
{
7181
ASSERT(!bp_freed);
7182
return (count_block_cb(arg, bp, tx));
7183
}
7184
7185
static int
7186
livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
7187
{
7188
zdb_cb_t *zbc = args;
7189
bplist_t blks;
7190
bplist_create(&blks);
7191
/* determine which blocks have been alloc'd but not freed */
7192
VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
7193
/* count those blocks */
7194
(void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
7195
bplist_destroy(&blks);
7196
return (0);
7197
}
7198
7199
static void
7200
livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
7201
{
7202
dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
7203
}
7204
7205
/*
7206
* Count the blocks in the livelists that have been destroyed by the user
7207
* but haven't yet been freed.
7208
*/
7209
static void
7210
deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
7211
{
7212
iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
7213
}
7214
7215
static void
7216
dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
7217
{
7218
ASSERT0P(arg);
7219
global_feature_count[SPA_FEATURE_LIVELIST]++;
7220
dump_blkptr_list(ll, "Deleted Livelist");
7221
dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
7222
}
7223
7224
/*
7225
* Print out, register object references to, and increment feature counts for
7226
* livelists that have been destroyed by the user but haven't yet been freed.
7227
*/
7228
static void
7229
deleted_livelists_dump_mos(spa_t *spa)
7230
{
7231
uint64_t zap_obj;
7232
objset_t *mos = spa->spa_meta_objset;
7233
int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
7234
DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
7235
if (err == ENOENT)
7236
return;
7237
mos_obj_refd(zap_obj);
7238
iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
7239
}
7240
7241
static int
7242
zdb_brt_entry_compare(const void *zcn1, const void *zcn2)
7243
{
7244
const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva;
7245
const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva;
7246
int cmp;
7247
7248
cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
7249
if (cmp == 0)
7250
cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2));
7251
7252
return (cmp);
7253
}
7254
7255
static int
7256
dump_block_stats(spa_t *spa)
7257
{
7258
zdb_cb_t *zcb;
7259
zdb_blkstats_t *zb, *tzb;
7260
uint64_t norm_alloc, norm_space, total_alloc, total_found;
7261
int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7262
TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
7263
boolean_t leaks = B_FALSE;
7264
int e, c, err;
7265
bp_embedded_type_t i;
7266
7267
ddt_prefetch_all(spa);
7268
7269
zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
7270
7271
if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
7272
avl_create(&zcb->zcb_brt, zdb_brt_entry_compare,
7273
sizeof (zdb_brt_entry_t),
7274
offsetof(zdb_brt_entry_t, zbre_node));
7275
zcb->zcb_brt_is_active = B_TRUE;
7276
}
7277
7278
(void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
7279
(dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
7280
(dump_opt['c'] == 1) ? "metadata " : "",
7281
dump_opt['c'] ? "checksums " : "",
7282
(dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
7283
!dump_opt['L'] ? "nothing leaked " : "");
7284
7285
/*
7286
* When leak detection is enabled we load all space maps as SM_ALLOC
7287
* maps, then traverse the pool claiming each block we discover. If
7288
* the pool is perfectly consistent, the segment trees will be empty
7289
* when we're done. Anything left over is a leak; any block we can't
7290
* claim (because it's not part of any space map) is a double
7291
* allocation, reference to a freed block, or an unclaimed log block.
7292
*
7293
* When leak detection is disabled (-L option) we still traverse the
7294
* pool claiming each block we discover, but we skip opening any space
7295
* maps.
7296
*/
7297
zdb_leak_init(spa, zcb);
7298
7299
/*
7300
* If there's a deferred-free bplist, process that first.
7301
*/
7302
(void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
7303
bpobj_count_block_cb, zcb, NULL);
7304
7305
if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
7306
(void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
7307
bpobj_count_block_cb, zcb, NULL);
7308
}
7309
7310
zdb_claim_removing(spa, zcb);
7311
7312
if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
7313
VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
7314
spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
7315
zcb, NULL));
7316
}
7317
7318
deleted_livelists_count_blocks(spa, zcb);
7319
7320
if (dump_opt['c'] > 1)
7321
flags |= TRAVERSE_PREFETCH_DATA;
7322
7323
zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
7324
zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
7325
zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
7326
zcb->zcb_totalasize +=
7327
metaslab_class_get_alloc(spa_embedded_log_class(spa));
7328
zcb->zcb_totalasize +=
7329
metaslab_class_get_alloc(spa_special_embedded_log_class(spa));
7330
zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
7331
err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
7332
7333
/*
7334
* If we've traversed the data blocks then we need to wait for those
7335
* I/Os to complete. We leverage "The Godfather" zio to wait on
7336
* all async I/Os to complete.
7337
*/
7338
if (dump_opt['c']) {
7339
for (c = 0; c < max_ncpus; c++) {
7340
(void) zio_wait(spa->spa_async_zio_root[c]);
7341
spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
7342
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
7343
ZIO_FLAG_GODFATHER);
7344
}
7345
}
7346
ASSERT0(spa->spa_load_verify_bytes);
7347
7348
/*
7349
* Done after zio_wait() since zcb_haderrors is modified in
7350
* zdb_blkptr_done()
7351
*/
7352
zcb->zcb_haderrors |= err;
7353
7354
if (zcb->zcb_haderrors) {
7355
(void) printf("\nError counts:\n\n");
7356
(void) printf("\t%5s %s\n", "errno", "count");
7357
for (e = 0; e < 256; e++) {
7358
if (zcb->zcb_errors[e] != 0) {
7359
(void) printf("\t%5d %llu\n",
7360
e, (u_longlong_t)zcb->zcb_errors[e]);
7361
}
7362
}
7363
}
7364
7365
/*
7366
* Report any leaked segments.
7367
*/
7368
leaks |= zdb_leak_fini(spa, zcb);
7369
7370
tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
7371
7372
norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7373
norm_space = metaslab_class_get_space(spa_normal_class(spa));
7374
7375
total_alloc = norm_alloc +
7376
metaslab_class_get_alloc(spa_log_class(spa)) +
7377
metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
7378
metaslab_class_get_alloc(spa_special_embedded_log_class(spa)) +
7379
metaslab_class_get_alloc(spa_special_class(spa)) +
7380
metaslab_class_get_alloc(spa_dedup_class(spa)) +
7381
get_unflushed_alloc_space(spa);
7382
total_found =
7383
tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize +
7384
zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
7385
7386
if (total_found == total_alloc && !dump_opt['L']) {
7387
(void) printf("\n\tNo leaks (block sum matches space"
7388
" maps exactly)\n");
7389
} else if (!dump_opt['L']) {
7390
(void) printf("block traversal size %llu != alloc %llu "
7391
"(%s %lld)\n",
7392
(u_longlong_t)total_found,
7393
(u_longlong_t)total_alloc,
7394
(dump_opt['L']) ? "unreachable" : "leaked",
7395
(longlong_t)(total_alloc - total_found));
7396
}
7397
7398
if (tzb->zb_count == 0) {
7399
umem_free(zcb, sizeof (zdb_cb_t));
7400
return (2);
7401
}
7402
7403
(void) printf("\n");
7404
(void) printf("\t%-16s %14llu\n", "bp count:",
7405
(u_longlong_t)tzb->zb_count);
7406
(void) printf("\t%-16s %14llu\n", "ganged count:",
7407
(longlong_t)tzb->zb_gangs);
7408
(void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:",
7409
(u_longlong_t)tzb->zb_lsize,
7410
(u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
7411
(void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7412
"bp physical:", (u_longlong_t)tzb->zb_psize,
7413
(u_longlong_t)(tzb->zb_psize / tzb->zb_count),
7414
(double)tzb->zb_lsize / tzb->zb_psize);
7415
(void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7416
"bp allocated:", (u_longlong_t)tzb->zb_asize,
7417
(u_longlong_t)(tzb->zb_asize / tzb->zb_count),
7418
(double)tzb->zb_lsize / tzb->zb_asize);
7419
(void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n",
7420
"bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
7421
(u_longlong_t)zcb->zcb_dedup_blocks,
7422
(double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
7423
(void) printf("\t%-16s %14llu count: %6llu\n",
7424
"bp cloned:", (u_longlong_t)zcb->zcb_clone_asize,
7425
(u_longlong_t)zcb->zcb_clone_blocks);
7426
(void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:",
7427
(u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
7428
7429
if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7430
uint64_t alloc = metaslab_class_get_alloc(
7431
spa_special_class(spa));
7432
uint64_t space = metaslab_class_get_space(
7433
spa_special_class(spa));
7434
7435
(void) printf("\t%-16s %14llu used: %5.2f%%\n",
7436
"Special class", (u_longlong_t)alloc,
7437
100.0 * alloc / space);
7438
}
7439
7440
if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7441
uint64_t alloc = metaslab_class_get_alloc(
7442
spa_dedup_class(spa));
7443
uint64_t space = metaslab_class_get_space(
7444
spa_dedup_class(spa));
7445
7446
(void) printf("\t%-16s %14llu used: %5.2f%%\n",
7447
"Dedup class", (u_longlong_t)alloc,
7448
100.0 * alloc / space);
7449
}
7450
7451
if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7452
uint64_t alloc = metaslab_class_get_alloc(
7453
spa_embedded_log_class(spa));
7454
uint64_t space = metaslab_class_get_space(
7455
spa_embedded_log_class(spa));
7456
7457
(void) printf("\t%-16s %14llu used: %5.2f%%\n",
7458
"Embedded log class", (u_longlong_t)alloc,
7459
100.0 * alloc / space);
7460
}
7461
7462
if (spa_special_embedded_log_class(spa)->mc_allocator[0].mca_rotor
7463
!= NULL) {
7464
uint64_t alloc = metaslab_class_get_alloc(
7465
spa_special_embedded_log_class(spa));
7466
uint64_t space = metaslab_class_get_space(
7467
spa_special_embedded_log_class(spa));
7468
7469
(void) printf("\t%-16s %14llu used: %5.2f%%\n",
7470
"Special embedded log", (u_longlong_t)alloc,
7471
100.0 * alloc / space);
7472
}
7473
7474
for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
7475
if (zcb->zcb_embedded_blocks[i] == 0)
7476
continue;
7477
(void) printf("\n");
7478
(void) printf("\tadditional, non-pointer bps of type %u: "
7479
"%10llu\n",
7480
i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
7481
7482
if (dump_opt['b'] >= 3) {
7483
(void) printf("\t number of (compressed) bytes: "
7484
"number of bps\n");
7485
dump_histogram(zcb->zcb_embedded_histogram[i],
7486
sizeof (zcb->zcb_embedded_histogram[i]) /
7487
sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
7488
}
7489
}
7490
7491
if (tzb->zb_ditto_samevdev != 0) {
7492
(void) printf("\tDittoed blocks on same vdev: %llu\n",
7493
(longlong_t)tzb->zb_ditto_samevdev);
7494
}
7495
if (tzb->zb_ditto_same_ms != 0) {
7496
(void) printf("\tDittoed blocks in same metaslab: %llu\n",
7497
(longlong_t)tzb->zb_ditto_same_ms);
7498
}
7499
7500
for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
7501
vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
7502
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7503
7504
if (vim == NULL) {
7505
continue;
7506
}
7507
7508
char mem[32];
7509
zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
7510
mem, vdev_indirect_mapping_size(vim));
7511
7512
(void) printf("\tindirect vdev id %llu has %llu segments "
7513
"(%s in memory)\n",
7514
(longlong_t)vd->vdev_id,
7515
(longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
7516
}
7517
7518
if (dump_opt['b'] >= 2) {
7519
int l, t, level;
7520
char csize[32], lsize[32], psize[32], asize[32];
7521
char avg[32], gang[32];
7522
(void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
7523
"\t avg\t comp\t%%Total\tType\n");
7524
7525
zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t),
7526
UMEM_NOFAIL);
7527
7528
for (t = 0; t <= ZDB_OT_TOTAL; t++) {
7529
const char *typename;
7530
7531
/* make sure nicenum has enough space */
7532
_Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
7533
"csize truncated");
7534
_Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
7535
"lsize truncated");
7536
_Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
7537
"psize truncated");
7538
_Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
7539
"asize truncated");
7540
_Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
7541
"avg truncated");
7542
_Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
7543
"gang truncated");
7544
7545
if (t < DMU_OT_NUMTYPES)
7546
typename = dmu_ot[t].ot_name;
7547
else
7548
typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
7549
7550
if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
7551
(void) printf("%6s\t%5s\t%5s\t%5s"
7552
"\t%5s\t%5s\t%6s\t%s\n",
7553
"-",
7554
"-",
7555
"-",
7556
"-",
7557
"-",
7558
"-",
7559
"-",
7560
typename);
7561
continue;
7562
}
7563
7564
for (l = ZB_TOTAL - 1; l >= -1; l--) {
7565
level = (l == -1 ? ZB_TOTAL : l);
7566
zb = &zcb->zcb_type[level][t];
7567
7568
if (zb->zb_asize == 0)
7569
continue;
7570
7571
if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES &&
7572
(level > 0 || DMU_OT_IS_METADATA(t))) {
7573
mdstats->zb_count += zb->zb_count;
7574
mdstats->zb_lsize += zb->zb_lsize;
7575
mdstats->zb_psize += zb->zb_psize;
7576
mdstats->zb_asize += zb->zb_asize;
7577
mdstats->zb_gangs += zb->zb_gangs;
7578
}
7579
7580
if (dump_opt['b'] < 3 && level != ZB_TOTAL)
7581
continue;
7582
7583
if (level == 0 && zb->zb_asize ==
7584
zcb->zcb_type[ZB_TOTAL][t].zb_asize)
7585
continue;
7586
7587
zdb_nicenum(zb->zb_count, csize,
7588
sizeof (csize));
7589
zdb_nicenum(zb->zb_lsize, lsize,
7590
sizeof (lsize));
7591
zdb_nicenum(zb->zb_psize, psize,
7592
sizeof (psize));
7593
zdb_nicenum(zb->zb_asize, asize,
7594
sizeof (asize));
7595
zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
7596
sizeof (avg));
7597
zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
7598
7599
(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7600
"\t%5.2f\t%6.2f\t",
7601
csize, lsize, psize, asize, avg,
7602
(double)zb->zb_lsize / zb->zb_psize,
7603
100.0 * zb->zb_asize / tzb->zb_asize);
7604
7605
if (level == ZB_TOTAL)
7606
(void) printf("%s\n", typename);
7607
else
7608
(void) printf(" L%d %s\n",
7609
level, typename);
7610
7611
if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
7612
(void) printf("\t number of ganged "
7613
"blocks: %s\n", gang);
7614
}
7615
7616
if (dump_opt['b'] >= 4) {
7617
(void) printf("psize "
7618
"(in 512-byte sectors): "
7619
"number of blocks\n");
7620
dump_histogram(zb->zb_psize_histogram,
7621
PSIZE_HISTO_SIZE, 0);
7622
}
7623
}
7624
}
7625
zdb_nicenum(mdstats->zb_count, csize,
7626
sizeof (csize));
7627
zdb_nicenum(mdstats->zb_lsize, lsize,
7628
sizeof (lsize));
7629
zdb_nicenum(mdstats->zb_psize, psize,
7630
sizeof (psize));
7631
zdb_nicenum(mdstats->zb_asize, asize,
7632
sizeof (asize));
7633
zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg,
7634
sizeof (avg));
7635
zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang));
7636
7637
(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7638
"\t%5.2f\t%6.2f\t",
7639
csize, lsize, psize, asize, avg,
7640
(double)mdstats->zb_lsize / mdstats->zb_psize,
7641
100.0 * mdstats->zb_asize / tzb->zb_asize);
7642
(void) printf("%s\n", "Metadata Total");
7643
7644
/* Output a table summarizing block sizes in the pool */
7645
if (dump_opt['b'] >= 2) {
7646
dump_size_histograms(zcb);
7647
}
7648
7649
umem_free(mdstats, sizeof (zfs_blkstat_t));
7650
}
7651
7652
(void) printf("\n");
7653
7654
if (leaks) {
7655
umem_free(zcb, sizeof (zdb_cb_t));
7656
return (2);
7657
}
7658
7659
if (zcb->zcb_haderrors) {
7660
umem_free(zcb, sizeof (zdb_cb_t));
7661
return (3);
7662
}
7663
7664
umem_free(zcb, sizeof (zdb_cb_t));
7665
return (0);
7666
}
7667
7668
typedef struct zdb_ddt_entry {
7669
/* key must be first for ddt_key_compare */
7670
ddt_key_t zdde_key;
7671
uint64_t zdde_ref_blocks;
7672
uint64_t zdde_ref_lsize;
7673
uint64_t zdde_ref_psize;
7674
uint64_t zdde_ref_dsize;
7675
avl_node_t zdde_node;
7676
} zdb_ddt_entry_t;
7677
7678
static int
7679
zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
7680
const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
7681
{
7682
(void) zilog, (void) dnp;
7683
avl_tree_t *t = arg;
7684
avl_index_t where;
7685
zdb_ddt_entry_t *zdde, zdde_search;
7686
7687
if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
7688
BP_IS_EMBEDDED(bp))
7689
return (0);
7690
7691
if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
7692
(void) printf("traversing objset %llu, %llu objects, "
7693
"%lu blocks so far\n",
7694
(u_longlong_t)zb->zb_objset,
7695
(u_longlong_t)BP_GET_FILL(bp),
7696
avl_numnodes(t));
7697
}
7698
7699
if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
7700
BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
7701
return (0);
7702
7703
ddt_key_fill(&zdde_search.zdde_key, bp);
7704
7705
zdde = avl_find(t, &zdde_search, &where);
7706
7707
if (zdde == NULL) {
7708
zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
7709
zdde->zdde_key = zdde_search.zdde_key;
7710
avl_insert(t, zdde, where);
7711
}
7712
7713
zdde->zdde_ref_blocks += 1;
7714
zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
7715
zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
7716
zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
7717
7718
return (0);
7719
}
7720
7721
static void
7722
dump_simulated_ddt(spa_t *spa)
7723
{
7724
avl_tree_t t;
7725
void *cookie = NULL;
7726
zdb_ddt_entry_t *zdde;
7727
ddt_histogram_t ddh_total = {{{0}}};
7728
ddt_stat_t dds_total = {0};
7729
7730
avl_create(&t, ddt_key_compare,
7731
sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
7732
7733
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7734
7735
(void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7736
TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
7737
7738
spa_config_exit(spa, SCL_CONFIG, FTAG);
7739
7740
while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
7741
uint64_t refcnt = zdde->zdde_ref_blocks;
7742
ASSERT(refcnt != 0);
7743
7744
ddt_stat_t *dds = &ddh_total.ddh_stat[highbit64(refcnt) - 1];
7745
7746
dds->dds_blocks += zdde->zdde_ref_blocks / refcnt;
7747
dds->dds_lsize += zdde->zdde_ref_lsize / refcnt;
7748
dds->dds_psize += zdde->zdde_ref_psize / refcnt;
7749
dds->dds_dsize += zdde->zdde_ref_dsize / refcnt;
7750
7751
dds->dds_ref_blocks += zdde->zdde_ref_blocks;
7752
dds->dds_ref_lsize += zdde->zdde_ref_lsize;
7753
dds->dds_ref_psize += zdde->zdde_ref_psize;
7754
dds->dds_ref_dsize += zdde->zdde_ref_dsize;
7755
7756
umem_free(zdde, sizeof (*zdde));
7757
}
7758
7759
avl_destroy(&t);
7760
7761
ddt_histogram_total(&dds_total, &ddh_total);
7762
7763
(void) printf("Simulated DDT histogram:\n");
7764
7765
zpool_dump_ddt(&dds_total, &ddh_total);
7766
7767
dump_dedup_ratio(&dds_total);
7768
}
7769
7770
static int
7771
verify_device_removal_feature_counts(spa_t *spa)
7772
{
7773
uint64_t dr_feature_refcount = 0;
7774
uint64_t oc_feature_refcount = 0;
7775
uint64_t indirect_vdev_count = 0;
7776
uint64_t precise_vdev_count = 0;
7777
uint64_t obsolete_counts_object_count = 0;
7778
uint64_t obsolete_sm_count = 0;
7779
uint64_t obsolete_counts_count = 0;
7780
uint64_t scip_count = 0;
7781
uint64_t obsolete_bpobj_count = 0;
7782
int ret = 0;
7783
7784
spa_condensing_indirect_phys_t *scip =
7785
&spa->spa_condensing_indirect_phys;
7786
if (scip->scip_next_mapping_object != 0) {
7787
vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
7788
ASSERT(scip->scip_prev_obsolete_sm_object != 0);
7789
ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
7790
7791
(void) printf("Condensing indirect vdev %llu: new mapping "
7792
"object %llu, prev obsolete sm %llu\n",
7793
(u_longlong_t)scip->scip_vdev,
7794
(u_longlong_t)scip->scip_next_mapping_object,
7795
(u_longlong_t)scip->scip_prev_obsolete_sm_object);
7796
if (scip->scip_prev_obsolete_sm_object != 0) {
7797
space_map_t *prev_obsolete_sm = NULL;
7798
VERIFY0(space_map_open(&prev_obsolete_sm,
7799
spa->spa_meta_objset,
7800
scip->scip_prev_obsolete_sm_object,
7801
0, vd->vdev_asize, 0));
7802
dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
7803
(void) printf("\n");
7804
space_map_close(prev_obsolete_sm);
7805
}
7806
7807
scip_count += 2;
7808
}
7809
7810
for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
7811
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
7812
vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
7813
7814
if (vic->vic_mapping_object != 0) {
7815
ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
7816
vd->vdev_removing);
7817
indirect_vdev_count++;
7818
7819
if (vd->vdev_indirect_mapping->vim_havecounts) {
7820
obsolete_counts_count++;
7821
}
7822
}
7823
7824
boolean_t are_precise;
7825
VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
7826
if (are_precise) {
7827
ASSERT(vic->vic_mapping_object != 0);
7828
precise_vdev_count++;
7829
}
7830
7831
uint64_t obsolete_sm_object;
7832
VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
7833
if (obsolete_sm_object != 0) {
7834
ASSERT(vic->vic_mapping_object != 0);
7835
obsolete_sm_count++;
7836
}
7837
}
7838
7839
(void) feature_get_refcount(spa,
7840
&spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
7841
&dr_feature_refcount);
7842
(void) feature_get_refcount(spa,
7843
&spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
7844
&oc_feature_refcount);
7845
7846
if (dr_feature_refcount != indirect_vdev_count) {
7847
ret = 1;
7848
(void) printf("Number of indirect vdevs (%llu) " \
7849
"does not match feature count (%llu)\n",
7850
(u_longlong_t)indirect_vdev_count,
7851
(u_longlong_t)dr_feature_refcount);
7852
} else {
7853
(void) printf("Verified device_removal feature refcount " \
7854
"of %llu is correct\n",
7855
(u_longlong_t)dr_feature_refcount);
7856
}
7857
7858
if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
7859
DMU_POOL_OBSOLETE_BPOBJ) == 0) {
7860
obsolete_bpobj_count++;
7861
}
7862
7863
7864
obsolete_counts_object_count = precise_vdev_count;
7865
obsolete_counts_object_count += obsolete_sm_count;
7866
obsolete_counts_object_count += obsolete_counts_count;
7867
obsolete_counts_object_count += scip_count;
7868
obsolete_counts_object_count += obsolete_bpobj_count;
7869
obsolete_counts_object_count += remap_deadlist_count;
7870
7871
if (oc_feature_refcount != obsolete_counts_object_count) {
7872
ret = 1;
7873
(void) printf("Number of obsolete counts objects (%llu) " \
7874
"does not match feature count (%llu)\n",
7875
(u_longlong_t)obsolete_counts_object_count,
7876
(u_longlong_t)oc_feature_refcount);
7877
(void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
7878
"ob:%llu rd:%llu\n",
7879
(u_longlong_t)precise_vdev_count,
7880
(u_longlong_t)obsolete_sm_count,
7881
(u_longlong_t)obsolete_counts_count,
7882
(u_longlong_t)scip_count,
7883
(u_longlong_t)obsolete_bpobj_count,
7884
(u_longlong_t)remap_deadlist_count);
7885
} else {
7886
(void) printf("Verified indirect_refcount feature refcount " \
7887
"of %llu is correct\n",
7888
(u_longlong_t)oc_feature_refcount);
7889
}
7890
return (ret);
7891
}
7892
7893
static void
7894
zdb_set_skip_mmp(char *target)
7895
{
7896
spa_t *spa;
7897
7898
/*
7899
* Disable the activity check to allow examination of
7900
* active pools.
7901
*/
7902
mutex_enter(&spa_namespace_lock);
7903
if ((spa = spa_lookup(target)) != NULL) {
7904
spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
7905
}
7906
mutex_exit(&spa_namespace_lock);
7907
}
7908
7909
#define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7910
/*
7911
* Import the checkpointed state of the pool specified by the target
7912
* parameter as readonly. The function also accepts a pool config
7913
* as an optional parameter, else it attempts to infer the config by
7914
* the name of the target pool.
7915
*
7916
* Note that the checkpointed state's pool name will be the name of
7917
* the original pool with the above suffix appended to it. In addition,
7918
* if the target is not a pool name (e.g. a path to a dataset) then
7919
* the new_path parameter is populated with the updated path to
7920
* reflect the fact that we are looking into the checkpointed state.
7921
*
7922
* The function returns a newly-allocated copy of the name of the
7923
* pool containing the checkpointed state. When this copy is no
7924
* longer needed it should be freed with free(3C). Same thing
7925
* applies to the new_path parameter if allocated.
7926
*/
7927
static char *
7928
import_checkpointed_state(char *target, nvlist_t *cfg, boolean_t target_is_spa,
7929
char **new_path)
7930
{
7931
int error = 0;
7932
char *poolname, *bogus_name = NULL;
7933
boolean_t freecfg = B_FALSE;
7934
7935
/* If the target is not a pool, the extract the pool name */
7936
char *path_start = strchr(target, '/');
7937
if (target_is_spa || path_start == NULL) {
7938
poolname = target;
7939
} else {
7940
size_t poolname_len = path_start - target;
7941
poolname = strndup(target, poolname_len);
7942
}
7943
7944
if (cfg == NULL) {
7945
zdb_set_skip_mmp(poolname);
7946
error = spa_get_stats(poolname, &cfg, NULL, 0);
7947
if (error != 0) {
7948
fatal("Tried to read config of pool \"%s\" but "
7949
"spa_get_stats() failed with error %d\n",
7950
poolname, error);
7951
}
7952
freecfg = B_TRUE;
7953
}
7954
7955
if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
7956
if (target != poolname)
7957
free(poolname);
7958
return (NULL);
7959
}
7960
fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
7961
7962
error = spa_import(bogus_name, cfg, NULL,
7963
ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
7964
ZFS_IMPORT_SKIP_MMP);
7965
if (freecfg)
7966
nvlist_free(cfg);
7967
if (error != 0) {
7968
fatal("Tried to import pool \"%s\" but spa_import() failed "
7969
"with error %d\n", bogus_name, error);
7970
}
7971
7972
if (new_path != NULL && !target_is_spa) {
7973
if (asprintf(new_path, "%s%s", bogus_name,
7974
path_start != NULL ? path_start : "") == -1) {
7975
free(bogus_name);
7976
if (!target_is_spa && path_start != NULL)
7977
free(poolname);
7978
return (NULL);
7979
}
7980
}
7981
7982
if (target != poolname)
7983
free(poolname);
7984
7985
return (bogus_name);
7986
}
7987
7988
typedef struct verify_checkpoint_sm_entry_cb_arg {
7989
vdev_t *vcsec_vd;
7990
7991
/* the following fields are only used for printing progress */
7992
uint64_t vcsec_entryid;
7993
uint64_t vcsec_num_entries;
7994
} verify_checkpoint_sm_entry_cb_arg_t;
7995
7996
#define ENTRIES_PER_PROGRESS_UPDATE 10000
7997
7998
static int
7999
verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
8000
{
8001
verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
8002
vdev_t *vd = vcsec->vcsec_vd;
8003
metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
8004
uint64_t end = sme->sme_offset + sme->sme_run;
8005
8006
ASSERT(sme->sme_type == SM_FREE);
8007
8008
if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
8009
(void) fprintf(stderr,
8010
"\rverifying vdev %llu, space map entry %llu of %llu ...",
8011
(longlong_t)vd->vdev_id,
8012
(longlong_t)vcsec->vcsec_entryid,
8013
(longlong_t)vcsec->vcsec_num_entries);
8014
}
8015
vcsec->vcsec_entryid++;
8016
8017
/*
8018
* See comment in checkpoint_sm_exclude_entry_cb()
8019
*/
8020
VERIFY3U(sme->sme_offset, >=, ms->ms_start);
8021
VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
8022
8023
/*
8024
* The entries in the vdev_checkpoint_sm should be marked as
8025
* allocated in the checkpointed state of the pool, therefore
8026
* their respective ms_allocateable trees should not contain them.
8027
*/
8028
mutex_enter(&ms->ms_lock);
8029
zfs_range_tree_verify_not_present(ms->ms_allocatable,
8030
sme->sme_offset, sme->sme_run);
8031
mutex_exit(&ms->ms_lock);
8032
8033
return (0);
8034
}
8035
8036
/*
8037
* Verify that all segments in the vdev_checkpoint_sm are allocated
8038
* according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
8039
* ms_allocatable).
8040
*
8041
* Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
8042
* each vdev in the current state of the pool to the metaslab space maps
8043
* (ms_sm) of the checkpointed state of the pool.
8044
*
8045
* Note that the function changes the state of the ms_allocatable
8046
* trees of the current spa_t. The entries of these ms_allocatable
8047
* trees are cleared out and then repopulated from with the free
8048
* entries of their respective ms_sm space maps.
8049
*/
8050
static void
8051
verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
8052
{
8053
vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
8054
vdev_t *current_rvd = current->spa_root_vdev;
8055
8056
load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
8057
8058
for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
8059
vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
8060
vdev_t *current_vd = current_rvd->vdev_child[c];
8061
8062
space_map_t *checkpoint_sm = NULL;
8063
uint64_t checkpoint_sm_obj;
8064
8065
if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
8066
/*
8067
* Since we don't allow device removal in a pool
8068
* that has a checkpoint, we expect that all removed
8069
* vdevs were removed from the pool before the
8070
* checkpoint.
8071
*/
8072
ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
8073
continue;
8074
}
8075
8076
/*
8077
* If the checkpoint space map doesn't exist, then nothing
8078
* here is checkpointed so there's nothing to verify.
8079
*/
8080
if (current_vd->vdev_top_zap == 0 ||
8081
zap_contains(spa_meta_objset(current),
8082
current_vd->vdev_top_zap,
8083
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
8084
continue;
8085
8086
VERIFY0(zap_lookup(spa_meta_objset(current),
8087
current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
8088
sizeof (uint64_t), 1, &checkpoint_sm_obj));
8089
8090
VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
8091
checkpoint_sm_obj, 0, current_vd->vdev_asize,
8092
current_vd->vdev_ashift));
8093
8094
verify_checkpoint_sm_entry_cb_arg_t vcsec;
8095
vcsec.vcsec_vd = ckpoint_vd;
8096
vcsec.vcsec_entryid = 0;
8097
vcsec.vcsec_num_entries =
8098
space_map_length(checkpoint_sm) / sizeof (uint64_t);
8099
VERIFY0(space_map_iterate(checkpoint_sm,
8100
space_map_length(checkpoint_sm),
8101
verify_checkpoint_sm_entry_cb, &vcsec));
8102
if (dump_opt['m'] > 3)
8103
dump_spacemap(current->spa_meta_objset, checkpoint_sm);
8104
space_map_close(checkpoint_sm);
8105
}
8106
8107
/*
8108
* If we've added vdevs since we took the checkpoint, ensure
8109
* that their checkpoint space maps are empty.
8110
*/
8111
if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
8112
for (uint64_t c = ckpoint_rvd->vdev_children;
8113
c < current_rvd->vdev_children; c++) {
8114
vdev_t *current_vd = current_rvd->vdev_child[c];
8115
VERIFY0P(current_vd->vdev_checkpoint_sm);
8116
}
8117
}
8118
8119
/* for cleaner progress output */
8120
(void) fprintf(stderr, "\n");
8121
}
8122
8123
/*
8124
* Verifies that all space that's allocated in the checkpoint is
8125
* still allocated in the current version, by checking that everything
8126
* in checkpoint's ms_allocatable (which is actually allocated, not
8127
* allocatable/free) is not present in current's ms_allocatable.
8128
*
8129
* Note that the function changes the state of the ms_allocatable
8130
* trees of both spas when called. The entries of all ms_allocatable
8131
* trees are cleared out and then repopulated from their respective
8132
* ms_sm space maps. In the checkpointed state we load the allocated
8133
* entries, and in the current state we load the free entries.
8134
*/
8135
static void
8136
verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
8137
{
8138
vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
8139
vdev_t *current_rvd = current->spa_root_vdev;
8140
8141
load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
8142
load_concrete_ms_allocatable_trees(current, SM_FREE);
8143
8144
for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
8145
vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
8146
vdev_t *current_vd = current_rvd->vdev_child[i];
8147
8148
if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
8149
/*
8150
* See comment in verify_checkpoint_vdev_spacemaps()
8151
*/
8152
ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
8153
continue;
8154
}
8155
8156
for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
8157
metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
8158
metaslab_t *current_msp = current_vd->vdev_ms[m];
8159
8160
(void) fprintf(stderr,
8161
"\rverifying vdev %llu of %llu, "
8162
"metaslab %llu of %llu ...",
8163
(longlong_t)current_vd->vdev_id,
8164
(longlong_t)current_rvd->vdev_children,
8165
(longlong_t)current_vd->vdev_ms[m]->ms_id,
8166
(longlong_t)current_vd->vdev_ms_count);
8167
8168
/*
8169
* We walk through the ms_allocatable trees that
8170
* are loaded with the allocated blocks from the
8171
* ms_sm spacemaps of the checkpoint. For each
8172
* one of these ranges we ensure that none of them
8173
* exists in the ms_allocatable trees of the
8174
* current state which are loaded with the ranges
8175
* that are currently free.
8176
*
8177
* This way we ensure that none of the blocks that
8178
* are part of the checkpoint were freed by mistake.
8179
*/
8180
zfs_range_tree_walk(ckpoint_msp->ms_allocatable,
8181
(zfs_range_tree_func_t *)
8182
zfs_range_tree_verify_not_present,
8183
current_msp->ms_allocatable);
8184
}
8185
}
8186
8187
/* for cleaner progress output */
8188
(void) fprintf(stderr, "\n");
8189
}
8190
8191
static void
8192
verify_checkpoint_blocks(spa_t *spa)
8193
{
8194
ASSERT(!dump_opt['L']);
8195
8196
spa_t *checkpoint_spa;
8197
char *checkpoint_pool;
8198
int error = 0;
8199
8200
/*
8201
* We import the checkpointed state of the pool (under a different
8202
* name) so we can do verification on it against the current state
8203
* of the pool.
8204
*/
8205
checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, B_TRUE,
8206
NULL);
8207
ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
8208
8209
error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
8210
if (error != 0) {
8211
fatal("Tried to open pool \"%s\" but spa_open() failed with "
8212
"error %d\n", checkpoint_pool, error);
8213
}
8214
8215
/*
8216
* Ensure that ranges in the checkpoint space maps of each vdev
8217
* are allocated according to the checkpointed state's metaslab
8218
* space maps.
8219
*/
8220
verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
8221
8222
/*
8223
* Ensure that allocated ranges in the checkpoint's metaslab
8224
* space maps remain allocated in the metaslab space maps of
8225
* the current state.
8226
*/
8227
verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
8228
8229
/*
8230
* Once we are done, we get rid of the checkpointed state.
8231
*/
8232
spa_close(checkpoint_spa, FTAG);
8233
free(checkpoint_pool);
8234
}
8235
8236
static void
8237
dump_leftover_checkpoint_blocks(spa_t *spa)
8238
{
8239
vdev_t *rvd = spa->spa_root_vdev;
8240
8241
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
8242
vdev_t *vd = rvd->vdev_child[i];
8243
8244
space_map_t *checkpoint_sm = NULL;
8245
uint64_t checkpoint_sm_obj;
8246
8247
if (vd->vdev_top_zap == 0)
8248
continue;
8249
8250
if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
8251
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
8252
continue;
8253
8254
VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
8255
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
8256
sizeof (uint64_t), 1, &checkpoint_sm_obj));
8257
8258
VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
8259
checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
8260
dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
8261
space_map_close(checkpoint_sm);
8262
}
8263
}
8264
8265
static int
8266
verify_checkpoint(spa_t *spa)
8267
{
8268
uberblock_t checkpoint;
8269
int error;
8270
8271
if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
8272
return (0);
8273
8274
error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8275
DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
8276
sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
8277
8278
if (error == ENOENT && !dump_opt['L']) {
8279
/*
8280
* If the feature is active but the uberblock is missing
8281
* then we must be in the middle of discarding the
8282
* checkpoint.
8283
*/
8284
(void) printf("\nPartially discarded checkpoint "
8285
"state found:\n");
8286
if (dump_opt['m'] > 3)
8287
dump_leftover_checkpoint_blocks(spa);
8288
return (0);
8289
} else if (error != 0) {
8290
(void) printf("lookup error %d when looking for "
8291
"checkpointed uberblock in MOS\n", error);
8292
return (error);
8293
}
8294
dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
8295
8296
if (checkpoint.ub_checkpoint_txg == 0) {
8297
(void) printf("\nub_checkpoint_txg not set in checkpointed "
8298
"uberblock\n");
8299
error = 3;
8300
}
8301
8302
if (error == 0 && !dump_opt['L'])
8303
verify_checkpoint_blocks(spa);
8304
8305
return (error);
8306
}
8307
8308
static void
8309
mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
8310
{
8311
(void) arg;
8312
for (uint64_t i = start; i < size; i++) {
8313
(void) printf("MOS object %llu referenced but not allocated\n",
8314
(u_longlong_t)i);
8315
}
8316
}
8317
8318
static void
8319
mos_obj_refd(uint64_t obj)
8320
{
8321
if (obj != 0 && mos_refd_objs != NULL)
8322
zfs_range_tree_add(mos_refd_objs, obj, 1);
8323
}
8324
8325
/*
8326
* Call on a MOS object that may already have been referenced.
8327
*/
8328
static void
8329
mos_obj_refd_multiple(uint64_t obj)
8330
{
8331
if (obj != 0 && mos_refd_objs != NULL &&
8332
!zfs_range_tree_contains(mos_refd_objs, obj, 1))
8333
zfs_range_tree_add(mos_refd_objs, obj, 1);
8334
}
8335
8336
static void
8337
mos_leak_vdev_top_zap(vdev_t *vd)
8338
{
8339
uint64_t ms_flush_data_obj;
8340
int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
8341
vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
8342
sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
8343
if (error == ENOENT)
8344
return;
8345
ASSERT0(error);
8346
8347
mos_obj_refd(ms_flush_data_obj);
8348
}
8349
8350
static void
8351
mos_leak_vdev(vdev_t *vd)
8352
{
8353
mos_obj_refd(vd->vdev_dtl_object);
8354
mos_obj_refd(vd->vdev_ms_array);
8355
mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
8356
mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
8357
mos_obj_refd(vd->vdev_leaf_zap);
8358
if (vd->vdev_checkpoint_sm != NULL)
8359
mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
8360
if (vd->vdev_indirect_mapping != NULL) {
8361
mos_obj_refd(vd->vdev_indirect_mapping->
8362
vim_phys->vimp_counts_object);
8363
}
8364
if (vd->vdev_obsolete_sm != NULL)
8365
mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
8366
8367
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
8368
metaslab_t *ms = vd->vdev_ms[m];
8369
mos_obj_refd(space_map_object(ms->ms_sm));
8370
}
8371
8372
if (vd->vdev_root_zap != 0)
8373
mos_obj_refd(vd->vdev_root_zap);
8374
8375
if (vd->vdev_top_zap != 0) {
8376
mos_obj_refd(vd->vdev_top_zap);
8377
mos_leak_vdev_top_zap(vd);
8378
}
8379
8380
for (uint64_t c = 0; c < vd->vdev_children; c++) {
8381
mos_leak_vdev(vd->vdev_child[c]);
8382
}
8383
}
8384
8385
static void
8386
mos_leak_log_spacemaps(spa_t *spa)
8387
{
8388
uint64_t spacemap_zap;
8389
int error = zap_lookup(spa_meta_objset(spa),
8390
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
8391
sizeof (spacemap_zap), 1, &spacemap_zap);
8392
if (error == ENOENT)
8393
return;
8394
ASSERT0(error);
8395
8396
mos_obj_refd(spacemap_zap);
8397
for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
8398
sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
8399
mos_obj_refd(sls->sls_sm_obj);
8400
}
8401
8402
static void
8403
errorlog_count_refd(objset_t *mos, uint64_t errlog)
8404
{
8405
zap_cursor_t zc;
8406
zap_attribute_t *za = zap_attribute_alloc();
8407
for (zap_cursor_init(&zc, mos, errlog);
8408
zap_cursor_retrieve(&zc, za) == 0;
8409
zap_cursor_advance(&zc)) {
8410
mos_obj_refd(za->za_first_integer);
8411
}
8412
zap_cursor_fini(&zc);
8413
zap_attribute_free(za);
8414
}
8415
8416
static int
8417
dump_mos_leaks(spa_t *spa)
8418
{
8419
int rv = 0;
8420
objset_t *mos = spa->spa_meta_objset;
8421
dsl_pool_t *dp = spa->spa_dsl_pool;
8422
8423
/* Visit and mark all referenced objects in the MOS */
8424
8425
mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
8426
mos_obj_refd(spa->spa_pool_props_object);
8427
mos_obj_refd(spa->spa_config_object);
8428
mos_obj_refd(spa->spa_ddt_stat_object);
8429
mos_obj_refd(spa->spa_feat_desc_obj);
8430
mos_obj_refd(spa->spa_feat_enabled_txg_obj);
8431
mos_obj_refd(spa->spa_feat_for_read_obj);
8432
mos_obj_refd(spa->spa_feat_for_write_obj);
8433
mos_obj_refd(spa->spa_history);
8434
mos_obj_refd(spa->spa_errlog_last);
8435
mos_obj_refd(spa->spa_errlog_scrub);
8436
8437
if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
8438
errorlog_count_refd(mos, spa->spa_errlog_last);
8439
errorlog_count_refd(mos, spa->spa_errlog_scrub);
8440
}
8441
8442
mos_obj_refd(spa->spa_all_vdev_zaps);
8443
mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
8444
mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
8445
mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
8446
bpobj_count_refd(&spa->spa_deferred_bpobj);
8447
mos_obj_refd(dp->dp_empty_bpobj);
8448
bpobj_count_refd(&dp->dp_obsolete_bpobj);
8449
bpobj_count_refd(&dp->dp_free_bpobj);
8450
mos_obj_refd(spa->spa_l2cache.sav_object);
8451
mos_obj_refd(spa->spa_spares.sav_object);
8452
8453
if (spa->spa_syncing_log_sm != NULL)
8454
mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
8455
mos_leak_log_spacemaps(spa);
8456
8457
mos_obj_refd(spa->spa_condensing_indirect_phys.
8458
scip_next_mapping_object);
8459
mos_obj_refd(spa->spa_condensing_indirect_phys.
8460
scip_prev_obsolete_sm_object);
8461
if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
8462
vdev_indirect_mapping_t *vim =
8463
vdev_indirect_mapping_open(mos,
8464
spa->spa_condensing_indirect_phys.scip_next_mapping_object);
8465
mos_obj_refd(vim->vim_phys->vimp_counts_object);
8466
vdev_indirect_mapping_close(vim);
8467
}
8468
deleted_livelists_dump_mos(spa);
8469
8470
if (dp->dp_origin_snap != NULL) {
8471
dsl_dataset_t *ds;
8472
8473
dsl_pool_config_enter(dp, FTAG);
8474
VERIFY0(dsl_dataset_hold_obj(dp,
8475
dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
8476
FTAG, &ds));
8477
count_ds_mos_objects(ds);
8478
dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
8479
dsl_dataset_rele(ds, FTAG);
8480
dsl_pool_config_exit(dp, FTAG);
8481
8482
count_ds_mos_objects(dp->dp_origin_snap);
8483
dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
8484
}
8485
count_dir_mos_objects(dp->dp_mos_dir);
8486
if (dp->dp_free_dir != NULL)
8487
count_dir_mos_objects(dp->dp_free_dir);
8488
if (dp->dp_leak_dir != NULL)
8489
count_dir_mos_objects(dp->dp_leak_dir);
8490
8491
mos_leak_vdev(spa->spa_root_vdev);
8492
8493
for (uint64_t c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
8494
ddt_t *ddt = spa->spa_ddt[c];
8495
if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED)
8496
continue;
8497
8498
/* DDT store objects */
8499
for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
8500
for (ddt_class_t class = 0; class < DDT_CLASSES;
8501
class++) {
8502
mos_obj_refd(ddt->ddt_object[type][class]);
8503
}
8504
}
8505
8506
/* FDT container */
8507
if (ddt->ddt_version == DDT_VERSION_FDT)
8508
mos_obj_refd(ddt->ddt_dir_object);
8509
8510
/* FDT log objects */
8511
if (ddt->ddt_flags & DDT_FLAG_LOG) {
8512
mos_obj_refd(ddt->ddt_log[0].ddl_object);
8513
mos_obj_refd(ddt->ddt_log[1].ddl_object);
8514
}
8515
}
8516
8517
for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
8518
brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
8519
if (brtvd->bv_initiated) {
8520
mos_obj_refd(brtvd->bv_mos_brtvdev);
8521
mos_obj_refd(brtvd->bv_mos_entries);
8522
}
8523
}
8524
8525
/*
8526
* Visit all allocated objects and make sure they are referenced.
8527
*/
8528
uint64_t object = 0;
8529
while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
8530
if (zfs_range_tree_contains(mos_refd_objs, object, 1)) {
8531
zfs_range_tree_remove(mos_refd_objs, object, 1);
8532
} else {
8533
dmu_object_info_t doi;
8534
const char *name;
8535
VERIFY0(dmu_object_info(mos, object, &doi));
8536
if (doi.doi_type & DMU_OT_NEWTYPE) {
8537
dmu_object_byteswap_t bswap =
8538
DMU_OT_BYTESWAP(doi.doi_type);
8539
name = dmu_ot_byteswap[bswap].ob_name;
8540
} else {
8541
name = dmu_ot[doi.doi_type].ot_name;
8542
}
8543
8544
(void) printf("MOS object %llu (%s) leaked\n",
8545
(u_longlong_t)object, name);
8546
rv = 2;
8547
}
8548
}
8549
(void) zfs_range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
8550
if (!zfs_range_tree_is_empty(mos_refd_objs))
8551
rv = 2;
8552
zfs_range_tree_vacate(mos_refd_objs, NULL, NULL);
8553
zfs_range_tree_destroy(mos_refd_objs);
8554
return (rv);
8555
}
8556
8557
typedef struct log_sm_obsolete_stats_arg {
8558
uint64_t lsos_current_txg;
8559
8560
uint64_t lsos_total_entries;
8561
uint64_t lsos_valid_entries;
8562
8563
uint64_t lsos_sm_entries;
8564
uint64_t lsos_valid_sm_entries;
8565
} log_sm_obsolete_stats_arg_t;
8566
8567
static int
8568
log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
8569
uint64_t txg, void *arg)
8570
{
8571
log_sm_obsolete_stats_arg_t *lsos = arg;
8572
8573
uint64_t offset = sme->sme_offset;
8574
uint64_t vdev_id = sme->sme_vdev;
8575
8576
if (lsos->lsos_current_txg == 0) {
8577
/* this is the first log */
8578
lsos->lsos_current_txg = txg;
8579
} else if (lsos->lsos_current_txg < txg) {
8580
/* we just changed log - print stats and reset */
8581
(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8582
(u_longlong_t)lsos->lsos_valid_sm_entries,
8583
(u_longlong_t)lsos->lsos_sm_entries,
8584
(u_longlong_t)lsos->lsos_current_txg);
8585
lsos->lsos_valid_sm_entries = 0;
8586
lsos->lsos_sm_entries = 0;
8587
lsos->lsos_current_txg = txg;
8588
}
8589
ASSERT3U(lsos->lsos_current_txg, ==, txg);
8590
8591
lsos->lsos_sm_entries++;
8592
lsos->lsos_total_entries++;
8593
8594
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
8595
if (!vdev_is_concrete(vd))
8596
return (0);
8597
8598
metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
8599
ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
8600
8601
if (txg < metaslab_unflushed_txg(ms))
8602
return (0);
8603
lsos->lsos_valid_sm_entries++;
8604
lsos->lsos_valid_entries++;
8605
return (0);
8606
}
8607
8608
static void
8609
dump_log_spacemap_obsolete_stats(spa_t *spa)
8610
{
8611
if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
8612
return;
8613
8614
log_sm_obsolete_stats_arg_t lsos = {0};
8615
8616
(void) printf("Log Space Map Obsolete Entry Statistics:\n");
8617
8618
iterate_through_spacemap_logs(spa,
8619
log_spacemap_obsolete_stats_cb, &lsos);
8620
8621
/* print stats for latest log */
8622
(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8623
(u_longlong_t)lsos.lsos_valid_sm_entries,
8624
(u_longlong_t)lsos.lsos_sm_entries,
8625
(u_longlong_t)lsos.lsos_current_txg);
8626
8627
(void) printf("%-8llu valid entries out of %-8llu - total\n\n",
8628
(u_longlong_t)lsos.lsos_valid_entries,
8629
(u_longlong_t)lsos.lsos_total_entries);
8630
}
8631
8632
static void
8633
dump_zpool(spa_t *spa)
8634
{
8635
dsl_pool_t *dp = spa_get_dsl(spa);
8636
int rc = 0;
8637
8638
if (dump_opt['y']) {
8639
livelist_metaslab_validate(spa);
8640
}
8641
8642
if (dump_opt['S']) {
8643
dump_simulated_ddt(spa);
8644
return;
8645
}
8646
8647
if (!dump_opt['e'] && dump_opt['C'] > 1) {
8648
(void) printf("\nCached configuration:\n");
8649
dump_nvlist(spa->spa_config, 8);
8650
}
8651
8652
if (dump_opt['C'])
8653
dump_config(spa);
8654
8655
if (dump_opt['u'])
8656
dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
8657
8658
if (dump_opt['D'])
8659
dump_all_ddts(spa);
8660
8661
if (dump_opt['T'])
8662
dump_brt(spa);
8663
8664
if (dump_opt['d'] > 2 || dump_opt['m'])
8665
dump_metaslabs(spa);
8666
if (dump_opt['M'])
8667
dump_metaslab_groups(spa, dump_opt['M'] > 1);
8668
if (dump_opt['d'] > 2 || dump_opt['m']) {
8669
dump_log_spacemaps(spa);
8670
dump_log_spacemap_obsolete_stats(spa);
8671
}
8672
8673
if (dump_opt['d'] || dump_opt['i']) {
8674
spa_feature_t f;
8675
mos_refd_objs = zfs_range_tree_create_flags(
8676
NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
8677
0, "dump_zpool:mos_refd_objs");
8678
dump_objset(dp->dp_meta_objset);
8679
8680
if (dump_opt['d'] >= 3) {
8681
dsl_pool_t *dp = spa->spa_dsl_pool;
8682
dump_full_bpobj(&spa->spa_deferred_bpobj,
8683
"Deferred frees", 0);
8684
if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
8685
dump_full_bpobj(&dp->dp_free_bpobj,
8686
"Pool snapshot frees", 0);
8687
}
8688
if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
8689
ASSERT(spa_feature_is_enabled(spa,
8690
SPA_FEATURE_DEVICE_REMOVAL));
8691
dump_full_bpobj(&dp->dp_obsolete_bpobj,
8692
"Pool obsolete blocks", 0);
8693
}
8694
8695
if (spa_feature_is_active(spa,
8696
SPA_FEATURE_ASYNC_DESTROY)) {
8697
dump_bptree(spa->spa_meta_objset,
8698
dp->dp_bptree_obj,
8699
"Pool dataset frees");
8700
}
8701
dump_dtl(spa->spa_root_vdev, 0);
8702
}
8703
8704
for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
8705
global_feature_count[f] = UINT64_MAX;
8706
global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
8707
global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0;
8708
global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
8709
global_feature_count[SPA_FEATURE_LIVELIST] = 0;
8710
8711
(void) dmu_objset_find(spa_name(spa), dump_one_objset,
8712
NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
8713
8714
if (rc == 0 && !dump_opt['L'])
8715
rc = dump_mos_leaks(spa);
8716
8717
for (f = 0; f < SPA_FEATURES; f++) {
8718
uint64_t refcount;
8719
8720
uint64_t *arr;
8721
if (!(spa_feature_table[f].fi_flags &
8722
ZFEATURE_FLAG_PER_DATASET)) {
8723
if (global_feature_count[f] == UINT64_MAX)
8724
continue;
8725
if (!spa_feature_is_enabled(spa, f)) {
8726
ASSERT0(global_feature_count[f]);
8727
continue;
8728
}
8729
arr = global_feature_count;
8730
} else {
8731
if (!spa_feature_is_enabled(spa, f)) {
8732
ASSERT0(dataset_feature_count[f]);
8733
continue;
8734
}
8735
arr = dataset_feature_count;
8736
}
8737
if (feature_get_refcount(spa, &spa_feature_table[f],
8738
&refcount) == ENOTSUP)
8739
continue;
8740
if (arr[f] != refcount) {
8741
(void) printf("%s feature refcount mismatch: "
8742
"%lld consumers != %lld refcount\n",
8743
spa_feature_table[f].fi_uname,
8744
(longlong_t)arr[f], (longlong_t)refcount);
8745
rc = 2;
8746
} else {
8747
(void) printf("Verified %s feature refcount "
8748
"of %llu is correct\n",
8749
spa_feature_table[f].fi_uname,
8750
(longlong_t)refcount);
8751
}
8752
}
8753
8754
if (rc == 0)
8755
rc = verify_device_removal_feature_counts(spa);
8756
}
8757
8758
if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
8759
rc = dump_block_stats(spa);
8760
8761
if (rc == 0)
8762
rc = verify_spacemap_refcounts(spa);
8763
8764
if (dump_opt['s'])
8765
show_pool_stats(spa);
8766
8767
if (dump_opt['h'])
8768
dump_history(spa);
8769
8770
if (rc == 0)
8771
rc = verify_checkpoint(spa);
8772
8773
if (rc != 0) {
8774
dump_debug_buffer();
8775
zdb_exit(rc);
8776
}
8777
}
8778
8779
#define ZDB_FLAG_CHECKSUM 0x0001
8780
#define ZDB_FLAG_DECOMPRESS 0x0002
8781
#define ZDB_FLAG_BSWAP 0x0004
8782
#define ZDB_FLAG_GBH 0x0008
8783
#define ZDB_FLAG_INDIRECT 0x0010
8784
#define ZDB_FLAG_RAW 0x0020
8785
#define ZDB_FLAG_PRINT_BLKPTR 0x0040
8786
#define ZDB_FLAG_VERBOSE 0x0080
8787
8788
static int flagbits[256];
8789
static char flagbitstr[16];
8790
8791
static void
8792
zdb_print_blkptr(const blkptr_t *bp, int flags)
8793
{
8794
char blkbuf[BP_SPRINTF_LEN];
8795
8796
if (flags & ZDB_FLAG_BSWAP)
8797
byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
8798
8799
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
8800
(void) printf("%s\n", blkbuf);
8801
}
8802
8803
static void
8804
zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
8805
{
8806
int i;
8807
8808
for (i = 0; i < nbps; i++)
8809
zdb_print_blkptr(&bp[i], flags);
8810
}
8811
8812
static void
8813
zdb_dump_gbh(void *buf, uint64_t size, int flags)
8814
{
8815
zdb_dump_indirect((blkptr_t *)buf, gbh_nblkptrs(size), flags);
8816
}
8817
8818
static void
8819
zdb_dump_block_raw(void *buf, uint64_t size, int flags)
8820
{
8821
if (flags & ZDB_FLAG_BSWAP)
8822
byteswap_uint64_array(buf, size);
8823
VERIFY(write(fileno(stdout), buf, size) == size);
8824
}
8825
8826
static void
8827
zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
8828
{
8829
uint64_t *d = (uint64_t *)buf;
8830
unsigned nwords = size / sizeof (uint64_t);
8831
int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
8832
unsigned i, j;
8833
const char *hdr;
8834
char *c;
8835
8836
8837
if (do_bswap)
8838
hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
8839
else
8840
hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
8841
8842
(void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr);
8843
8844
#ifdef _ZFS_LITTLE_ENDIAN
8845
/* correct the endianness */
8846
do_bswap = !do_bswap;
8847
#endif
8848
for (i = 0; i < nwords; i += 2) {
8849
(void) printf("%06llx: %016llx %016llx ",
8850
(u_longlong_t)(i * sizeof (uint64_t)),
8851
(u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
8852
(u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
8853
8854
c = (char *)&d[i];
8855
for (j = 0; j < 2 * sizeof (uint64_t); j++)
8856
(void) printf("%c", isprint(c[j]) ? c[j] : '.');
8857
(void) printf("\n");
8858
}
8859
}
8860
8861
/*
8862
* There are two acceptable formats:
8863
* leaf_name - For example: c1t0d0 or /tmp/ztest.0a
8864
* child[.child]* - For example: 0.1.1
8865
*
8866
* The second form can be used to specify arbitrary vdevs anywhere
8867
* in the hierarchy. For example, in a pool with a mirror of
8868
* RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
8869
*/
8870
static vdev_t *
8871
zdb_vdev_lookup(vdev_t *vdev, const char *path)
8872
{
8873
char *s, *p, *q;
8874
unsigned i;
8875
8876
if (vdev == NULL)
8877
return (NULL);
8878
8879
/* First, assume the x.x.x.x format */
8880
i = strtoul(path, &s, 10);
8881
if (s == path || (s && *s != '.' && *s != '\0'))
8882
goto name;
8883
if (i >= vdev->vdev_children)
8884
return (NULL);
8885
8886
vdev = vdev->vdev_child[i];
8887
if (s && *s == '\0')
8888
return (vdev);
8889
return (zdb_vdev_lookup(vdev, s+1));
8890
8891
name:
8892
for (i = 0; i < vdev->vdev_children; i++) {
8893
vdev_t *vc = vdev->vdev_child[i];
8894
8895
if (vc->vdev_path == NULL) {
8896
vc = zdb_vdev_lookup(vc, path);
8897
if (vc == NULL)
8898
continue;
8899
else
8900
return (vc);
8901
}
8902
8903
p = strrchr(vc->vdev_path, '/');
8904
p = p ? p + 1 : vc->vdev_path;
8905
q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
8906
8907
if (strcmp(vc->vdev_path, path) == 0)
8908
return (vc);
8909
if (strcmp(p, path) == 0)
8910
return (vc);
8911
if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
8912
return (vc);
8913
}
8914
8915
return (NULL);
8916
}
8917
8918
static int
8919
name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
8920
{
8921
dsl_dataset_t *ds;
8922
8923
dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
8924
int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
8925
NULL, &ds);
8926
if (error != 0) {
8927
(void) fprintf(stderr, "failed to hold objset %llu: %s\n",
8928
(u_longlong_t)objset_id, strerror(error));
8929
dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8930
return (error);
8931
}
8932
dsl_dataset_name(ds, outstr);
8933
dsl_dataset_rele(ds, NULL);
8934
dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8935
return (0);
8936
}
8937
8938
static boolean_t
8939
zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
8940
{
8941
char *s0, *s1, *tmp = NULL;
8942
8943
if (sizes == NULL)
8944
return (B_FALSE);
8945
8946
s0 = strtok_r(sizes, "/", &tmp);
8947
if (s0 == NULL)
8948
return (B_FALSE);
8949
s1 = strtok_r(NULL, "/", &tmp);
8950
*lsize = strtoull(s0, NULL, 16);
8951
*psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
8952
return (*lsize >= *psize && *psize > 0);
8953
}
8954
8955
#define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg))
8956
8957
static boolean_t
8958
try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize,
8959
int flags, int cfunc, void *lbuf, void *lbuf2)
8960
{
8961
if (flags & ZDB_FLAG_VERBOSE) {
8962
(void) fprintf(stderr,
8963
"Trying %05llx -> %05llx (%s)\n",
8964
(u_longlong_t)psize,
8965
(u_longlong_t)lsize,
8966
zio_compress_table[cfunc].ci_name);
8967
}
8968
8969
/*
8970
* We set lbuf to all zeros and lbuf2 to all
8971
* ones, then decompress to both buffers and
8972
* compare their contents. This way we can
8973
* know if decompression filled exactly to
8974
* lsize or if it left some bytes unwritten.
8975
*/
8976
8977
memset(lbuf, 0x00, lsize);
8978
memset(lbuf2, 0xff, lsize);
8979
8980
abd_t labd, labd2;
8981
abd_get_from_buf_struct(&labd, lbuf, lsize);
8982
abd_get_from_buf_struct(&labd2, lbuf2, lsize);
8983
8984
boolean_t ret = B_FALSE;
8985
if (zio_decompress_data(cfunc, pabd,
8986
&labd, psize, lsize, NULL) == 0 &&
8987
zio_decompress_data(cfunc, pabd,
8988
&labd2, psize, lsize, NULL) == 0 &&
8989
memcmp(lbuf, lbuf2, lsize) == 0)
8990
ret = B_TRUE;
8991
8992
abd_free(&labd2);
8993
abd_free(&labd);
8994
8995
return (ret);
8996
}
8997
8998
static uint64_t
8999
zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
9000
uint64_t psize, int flags)
9001
{
9002
(void) buf;
9003
uint64_t orig_lsize = lsize;
9004
boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL));
9005
/*
9006
* We don't know how the data was compressed, so just try
9007
* every decompress function at every inflated blocksize.
9008
*/
9009
void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
9010
int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
9011
int *cfuncp = cfuncs;
9012
uint64_t maxlsize = SPA_MAXBLOCKSIZE;
9013
uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
9014
ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
9015
ZIO_COMPRESS_MASK(ZLE);
9016
*cfuncp++ = ZIO_COMPRESS_LZ4;
9017
*cfuncp++ = ZIO_COMPRESS_LZJB;
9018
mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
9019
/*
9020
* Every gzip level has the same decompressor, no need to
9021
* run it 9 times per bruteforce attempt.
9022
*/
9023
mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3);
9024
mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5);
9025
mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7);
9026
mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9);
9027
for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
9028
if (((1ULL << c) & mask) == 0)
9029
*cfuncp++ = c;
9030
9031
/*
9032
* On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
9033
* could take a while and we should let the user know
9034
* we are not stuck. On the other hand, printing progress
9035
* info gets old after a while. User can specify 'v' flag
9036
* to see the progression.
9037
*/
9038
if (lsize == psize)
9039
lsize += SPA_MINBLOCKSIZE;
9040
else
9041
maxlsize = lsize;
9042
9043
for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
9044
for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
9045
if (try_decompress_block(pabd, lsize, psize, flags,
9046
*cfuncp, lbuf, lbuf2)) {
9047
tryzle = B_FALSE;
9048
break;
9049
}
9050
}
9051
if (*cfuncp != 0)
9052
break;
9053
}
9054
if (tryzle) {
9055
for (lsize = orig_lsize; lsize <= maxlsize;
9056
lsize += SPA_MINBLOCKSIZE) {
9057
if (try_decompress_block(pabd, lsize, psize, flags,
9058
ZIO_COMPRESS_ZLE, lbuf, lbuf2)) {
9059
*cfuncp = ZIO_COMPRESS_ZLE;
9060
break;
9061
}
9062
}
9063
}
9064
umem_free(lbuf2, SPA_MAXBLOCKSIZE);
9065
9066
if (*cfuncp == ZIO_COMPRESS_ZLE) {
9067
printf("\nZLE decompression was selected. If you "
9068
"suspect the results are wrong,\ntry avoiding ZLE "
9069
"by setting and exporting ZDB_NO_ZLE=\"true\"\n");
9070
}
9071
9072
return (lsize > maxlsize ? -1 : lsize);
9073
}
9074
9075
/*
9076
* Read a block from a pool and print it out. The syntax of the
9077
* block descriptor is:
9078
*
9079
* pool:vdev_specifier:offset:[lsize/]psize[:flags]
9080
*
9081
* pool - The name of the pool you wish to read from
9082
* vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
9083
* offset - offset, in hex, in bytes
9084
* size - Amount of data to read, in hex, in bytes
9085
* flags - A string of characters specifying options
9086
* b: Decode a blkptr at given offset within block
9087
* c: Calculate and display checksums
9088
* d: Decompress data before dumping
9089
* e: Byteswap data before dumping
9090
* g: Display data as a gang block header
9091
* i: Display as an indirect block
9092
* r: Dump raw data to stdout
9093
* v: Verbose
9094
*
9095
*/
9096
static void
9097
zdb_read_block(char *thing, spa_t *spa)
9098
{
9099
blkptr_t blk, *bp = &blk;
9100
dva_t *dva = bp->blk_dva;
9101
int flags = 0;
9102
uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
9103
zio_t *zio;
9104
vdev_t *vd;
9105
abd_t *pabd;
9106
void *lbuf, *buf;
9107
char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
9108
const char *vdev, *errmsg = NULL;
9109
int i, len, error;
9110
boolean_t borrowed = B_FALSE, found = B_FALSE;
9111
9112
dup = strdup(thing);
9113
s = strtok_r(dup, ":", &tmp);
9114
vdev = s ?: "";
9115
s = strtok_r(NULL, ":", &tmp);
9116
offset = strtoull(s ? s : "", NULL, 16);
9117
sizes = strtok_r(NULL, ":", &tmp);
9118
s = strtok_r(NULL, ":", &tmp);
9119
flagstr = strdup(s ?: "");
9120
9121
if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
9122
errmsg = "invalid size(s)";
9123
if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
9124
errmsg = "size must be a multiple of sector size";
9125
if (!IS_P2ALIGNED(offset, DEV_BSIZE))
9126
errmsg = "offset must be a multiple of sector size";
9127
if (errmsg) {
9128
(void) printf("Invalid block specifier: %s - %s\n",
9129
thing, errmsg);
9130
goto done;
9131
}
9132
9133
tmp = NULL;
9134
for (s = strtok_r(flagstr, ":", &tmp);
9135
s != NULL;
9136
s = strtok_r(NULL, ":", &tmp)) {
9137
len = strlen(flagstr);
9138
for (i = 0; i < len; i++) {
9139
int bit = flagbits[(uchar_t)flagstr[i]];
9140
9141
if (bit == 0) {
9142
(void) printf("***Ignoring flag: %c\n",
9143
(uchar_t)flagstr[i]);
9144
continue;
9145
}
9146
found = B_TRUE;
9147
flags |= bit;
9148
9149
p = &flagstr[i + 1];
9150
if (*p != ':' && *p != '\0') {
9151
int j = 0, nextbit = flagbits[(uchar_t)*p];
9152
char *end, offstr[8] = { 0 };
9153
if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
9154
(nextbit == 0)) {
9155
/* look ahead to isolate the offset */
9156
while (nextbit == 0 &&
9157
strchr(flagbitstr, *p) == NULL) {
9158
offstr[j] = *p;
9159
j++;
9160
if (i + j > strlen(flagstr))
9161
break;
9162
p++;
9163
nextbit = flagbits[(uchar_t)*p];
9164
}
9165
blkptr_offset = strtoull(offstr, &end,
9166
16);
9167
i += j;
9168
} else if (nextbit == 0) {
9169
(void) printf("***Ignoring flag arg:"
9170
" '%c'\n", (uchar_t)*p);
9171
}
9172
}
9173
}
9174
}
9175
if (blkptr_offset % sizeof (blkptr_t)) {
9176
printf("Block pointer offset 0x%llx "
9177
"must be divisible by 0x%x\n",
9178
(longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
9179
goto done;
9180
}
9181
if (found == B_FALSE && strlen(flagstr) > 0) {
9182
printf("Invalid flag arg: '%s'\n", flagstr);
9183
goto done;
9184
}
9185
9186
vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
9187
if (vd == NULL) {
9188
(void) printf("***Invalid vdev: %s\n", vdev);
9189
goto done;
9190
} else {
9191
if (vd->vdev_path)
9192
(void) fprintf(stderr, "Found vdev: %s\n",
9193
vd->vdev_path);
9194
else
9195
(void) fprintf(stderr, "Found vdev type: %s\n",
9196
vd->vdev_ops->vdev_op_type);
9197
}
9198
9199
pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
9200
lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
9201
9202
BP_ZERO(bp);
9203
9204
DVA_SET_VDEV(&dva[0], vd->vdev_id);
9205
DVA_SET_OFFSET(&dva[0], offset);
9206
DVA_SET_GANG(&dva[0], 0);
9207
DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
9208
9209
BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
9210
9211
BP_SET_LSIZE(bp, lsize);
9212
BP_SET_PSIZE(bp, psize);
9213
BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
9214
BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
9215
BP_SET_TYPE(bp, DMU_OT_NONE);
9216
BP_SET_LEVEL(bp, 0);
9217
BP_SET_DEDUP(bp, 0);
9218
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
9219
9220
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9221
zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
9222
9223
if (vd == vd->vdev_top) {
9224
/*
9225
* Treat this as a normal block read.
9226
*/
9227
zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
9228
ZIO_PRIORITY_SYNC_READ,
9229
ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
9230
} else {
9231
/*
9232
* Treat this as a vdev child I/O.
9233
*/
9234
zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
9235
psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
9236
ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
9237
ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL,
9238
NULL, NULL));
9239
}
9240
9241
error = zio_wait(zio);
9242
spa_config_exit(spa, SCL_STATE, FTAG);
9243
9244
if (error) {
9245
(void) printf("Read of %s failed, error: %d\n", thing, error);
9246
goto out;
9247
}
9248
9249
uint64_t orig_lsize = lsize;
9250
buf = lbuf;
9251
if (flags & ZDB_FLAG_DECOMPRESS) {
9252
lsize = zdb_decompress_block(pabd, buf, lbuf,
9253
lsize, psize, flags);
9254
if (lsize == -1) {
9255
(void) printf("Decompress of %s failed\n", thing);
9256
goto out;
9257
}
9258
} else {
9259
buf = abd_borrow_buf_copy(pabd, lsize);
9260
borrowed = B_TRUE;
9261
}
9262
/*
9263
* Try to detect invalid block pointer. If invalid, try
9264
* decompressing.
9265
*/
9266
if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
9267
!(flags & ZDB_FLAG_DECOMPRESS)) {
9268
const blkptr_t *b = (const blkptr_t *)(void *)
9269
((uintptr_t)buf + (uintptr_t)blkptr_offset);
9270
if (zfs_blkptr_verify(spa, b,
9271
BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY)) {
9272
abd_return_buf_copy(pabd, buf, lsize);
9273
borrowed = B_FALSE;
9274
buf = lbuf;
9275
lsize = zdb_decompress_block(pabd, buf,
9276
lbuf, lsize, psize, flags);
9277
b = (const blkptr_t *)(void *)
9278
((uintptr_t)buf + (uintptr_t)blkptr_offset);
9279
if (lsize == -1 || zfs_blkptr_verify(spa, b,
9280
BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
9281
printf("invalid block pointer at this DVA\n");
9282
goto out;
9283
}
9284
}
9285
}
9286
9287
if (flags & ZDB_FLAG_PRINT_BLKPTR)
9288
zdb_print_blkptr((blkptr_t *)(void *)
9289
((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
9290
else if (flags & ZDB_FLAG_RAW)
9291
zdb_dump_block_raw(buf, lsize, flags);
9292
else if (flags & ZDB_FLAG_INDIRECT)
9293
zdb_dump_indirect((blkptr_t *)buf,
9294
orig_lsize / sizeof (blkptr_t), flags);
9295
else if (flags & ZDB_FLAG_GBH)
9296
zdb_dump_gbh(buf, lsize, flags);
9297
else
9298
zdb_dump_block(thing, buf, lsize, flags);
9299
9300
/*
9301
* If :c was specified, iterate through the checksum table to
9302
* calculate and display each checksum for our specified
9303
* DVA and length.
9304
*/
9305
if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
9306
!(flags & ZDB_FLAG_GBH)) {
9307
zio_t *czio;
9308
(void) printf("\n");
9309
for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
9310
ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
9311
9312
if ((zio_checksum_table[ck].ci_flags &
9313
ZCHECKSUM_FLAG_EMBEDDED) ||
9314
ck == ZIO_CHECKSUM_NOPARITY) {
9315
continue;
9316
}
9317
BP_SET_CHECKSUM(bp, ck);
9318
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9319
czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
9320
if (vd == vd->vdev_top) {
9321
zio_nowait(zio_read(czio, spa, bp, pabd, psize,
9322
NULL, NULL,
9323
ZIO_PRIORITY_SYNC_READ,
9324
ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
9325
ZIO_FLAG_DONT_RETRY, NULL));
9326
} else {
9327
zio_nowait(zio_vdev_child_io(czio, bp, vd,
9328
offset, pabd, psize, ZIO_TYPE_READ,
9329
ZIO_PRIORITY_SYNC_READ,
9330
ZIO_FLAG_DONT_PROPAGATE |
9331
ZIO_FLAG_DONT_RETRY |
9332
ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
9333
ZIO_FLAG_SPECULATIVE |
9334
ZIO_FLAG_OPTIONAL, NULL, NULL));
9335
}
9336
error = zio_wait(czio);
9337
if (error == 0 || error == ECKSUM) {
9338
zio_t *ck_zio = zio_null(NULL, spa, NULL,
9339
NULL, NULL, 0);
9340
ck_zio->io_offset =
9341
DVA_GET_OFFSET(&bp->blk_dva[0]);
9342
ck_zio->io_bp = bp;
9343
zio_checksum_compute(ck_zio, ck, pabd, psize);
9344
printf(
9345
"%12s\t"
9346
"cksum=%016llx:%016llx:%016llx:%016llx\n",
9347
zio_checksum_table[ck].ci_name,
9348
(u_longlong_t)bp->blk_cksum.zc_word[0],
9349
(u_longlong_t)bp->blk_cksum.zc_word[1],
9350
(u_longlong_t)bp->blk_cksum.zc_word[2],
9351
(u_longlong_t)bp->blk_cksum.zc_word[3]);
9352
zio_wait(ck_zio);
9353
} else {
9354
printf("error %d reading block\n", error);
9355
}
9356
spa_config_exit(spa, SCL_STATE, FTAG);
9357
}
9358
}
9359
9360
if (borrowed)
9361
abd_return_buf_copy(pabd, buf, lsize);
9362
9363
out:
9364
abd_free(pabd);
9365
umem_free(lbuf, SPA_MAXBLOCKSIZE);
9366
done:
9367
free(flagstr);
9368
free(dup);
9369
}
9370
9371
static void
9372
zdb_embedded_block(char *thing)
9373
{
9374
blkptr_t bp = {{{{0}}}};
9375
unsigned long long *words = (void *)&bp;
9376
char *buf;
9377
int err;
9378
9379
err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
9380
"%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
9381
words + 0, words + 1, words + 2, words + 3,
9382
words + 4, words + 5, words + 6, words + 7,
9383
words + 8, words + 9, words + 10, words + 11,
9384
words + 12, words + 13, words + 14, words + 15);
9385
if (err != 16) {
9386
(void) fprintf(stderr, "invalid input format\n");
9387
zdb_exit(1);
9388
}
9389
ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
9390
buf = malloc(SPA_MAXBLOCKSIZE);
9391
if (buf == NULL) {
9392
(void) fprintf(stderr, "out of memory\n");
9393
zdb_exit(1);
9394
}
9395
err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
9396
if (err != 0) {
9397
(void) fprintf(stderr, "decode failed: %u\n", err);
9398
zdb_exit(1);
9399
}
9400
zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
9401
free(buf);
9402
}
9403
9404
/* check for valid hex or decimal numeric string */
9405
static boolean_t
9406
zdb_numeric(char *str)
9407
{
9408
int i = 0, len;
9409
9410
len = strlen(str);
9411
if (len == 0)
9412
return (B_FALSE);
9413
if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
9414
i = 2;
9415
for (; i < len; i++) {
9416
if (!isxdigit(str[i]))
9417
return (B_FALSE);
9418
}
9419
return (B_TRUE);
9420
}
9421
9422
static int
9423
dummy_get_file_info(dmu_object_type_t bonustype, const void *data,
9424
zfs_file_info_t *zoi)
9425
{
9426
(void) data, (void) zoi;
9427
9428
if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
9429
return (ENOENT);
9430
9431
(void) fprintf(stderr, "dummy_get_file_info: not implemented");
9432
abort();
9433
}
9434
9435
int
9436
main(int argc, char **argv)
9437
{
9438
int c;
9439
int dump_all = 1;
9440
int verbose = 0;
9441
int error = 0;
9442
char **searchdirs = NULL;
9443
int nsearch = 0;
9444
char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
9445
nvlist_t *policy = NULL;
9446
uint64_t max_txg = UINT64_MAX;
9447
int64_t objset_id = -1;
9448
uint64_t object;
9449
int flags = ZFS_IMPORT_MISSING_LOG;
9450
int rewind = ZPOOL_NEVER_REWIND;
9451
char *spa_config_path_env, *objset_str;
9452
boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
9453
nvlist_t *cfg = NULL;
9454
struct sigaction action;
9455
boolean_t force_import = B_FALSE;
9456
boolean_t config_path_console = B_FALSE;
9457
char pbuf[MAXPATHLEN];
9458
9459
dprintf_setup(&argc, argv);
9460
9461
/*
9462
* Set up signal handlers, so if we crash due to bad on-disk data we
9463
* can get more info. Unlike ztest, we don't bail out if we can't set
9464
* up signal handlers, because zdb is very useful without them.
9465
*/
9466
action.sa_handler = sig_handler;
9467
sigemptyset(&action.sa_mask);
9468
action.sa_flags = 0;
9469
if (sigaction(SIGSEGV, &action, NULL) < 0) {
9470
(void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n",
9471
strerror(errno));
9472
}
9473
if (sigaction(SIGABRT, &action, NULL) < 0) {
9474
(void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n",
9475
strerror(errno));
9476
}
9477
9478
/*
9479
* If there is an environment variable SPA_CONFIG_PATH it overrides
9480
* default spa_config_path setting. If -U flag is specified it will
9481
* override this environment variable settings once again.
9482
*/
9483
spa_config_path_env = getenv("SPA_CONFIG_PATH");
9484
if (spa_config_path_env != NULL)
9485
spa_config_path = spa_config_path_env;
9486
9487
/*
9488
* For performance reasons, we set this tunable down. We do so before
9489
* the arg parsing section so that the user can override this value if
9490
* they choose.
9491
*/
9492
zfs_btree_verify_intensity = 3;
9493
9494
struct option long_options[] = {
9495
{"ignore-assertions", no_argument, NULL, 'A'},
9496
{"block-stats", no_argument, NULL, 'b'},
9497
{"backup", no_argument, NULL, 'B'},
9498
{"checksum", no_argument, NULL, 'c'},
9499
{"config", no_argument, NULL, 'C'},
9500
{"datasets", no_argument, NULL, 'd'},
9501
{"dedup-stats", no_argument, NULL, 'D'},
9502
{"exported", no_argument, NULL, 'e'},
9503
{"embedded-block-pointer", no_argument, NULL, 'E'},
9504
{"automatic-rewind", no_argument, NULL, 'F'},
9505
{"dump-debug-msg", no_argument, NULL, 'G'},
9506
{"history", no_argument, NULL, 'h'},
9507
{"intent-logs", no_argument, NULL, 'i'},
9508
{"inflight", required_argument, NULL, 'I'},
9509
{"checkpointed-state", no_argument, NULL, 'k'},
9510
{"key", required_argument, NULL, 'K'},
9511
{"label", no_argument, NULL, 'l'},
9512
{"disable-leak-tracking", no_argument, NULL, 'L'},
9513
{"metaslabs", no_argument, NULL, 'm'},
9514
{"metaslab-groups", no_argument, NULL, 'M'},
9515
{"numeric", no_argument, NULL, 'N'},
9516
{"option", required_argument, NULL, 'o'},
9517
{"object-lookups", no_argument, NULL, 'O'},
9518
{"path", required_argument, NULL, 'p'},
9519
{"parseable", no_argument, NULL, 'P'},
9520
{"skip-label", no_argument, NULL, 'q'},
9521
{"copy-object", no_argument, NULL, 'r'},
9522
{"read-block", no_argument, NULL, 'R'},
9523
{"io-stats", no_argument, NULL, 's'},
9524
{"simulate-dedup", no_argument, NULL, 'S'},
9525
{"txg", required_argument, NULL, 't'},
9526
{"brt-stats", no_argument, NULL, 'T'},
9527
{"uberblock", no_argument, NULL, 'u'},
9528
{"cachefile", required_argument, NULL, 'U'},
9529
{"verbose", no_argument, NULL, 'v'},
9530
{"verbatim", no_argument, NULL, 'V'},
9531
{"dump-blocks", required_argument, NULL, 'x'},
9532
{"extreme-rewind", no_argument, NULL, 'X'},
9533
{"all-reconstruction", no_argument, NULL, 'Y'},
9534
{"livelist", no_argument, NULL, 'y'},
9535
{"zstd-headers", no_argument, NULL, 'Z'},
9536
{"allocated-map", no_argument, NULL,
9537
ARG_ALLOCATED},
9538
{"bin", required_argument, NULL,
9539
ARG_BLOCK_BIN_MODE},
9540
{"class", required_argument, NULL,
9541
ARG_BLOCK_CLASSES},
9542
{0, 0, 0, 0}
9543
};
9544
9545
while ((c = getopt_long(argc, argv,
9546
"AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ",
9547
long_options, NULL)) != -1) {
9548
switch (c) {
9549
case 'b':
9550
case 'B':
9551
case 'c':
9552
case 'C':
9553
case 'd':
9554
case 'D':
9555
case 'E':
9556
case 'G':
9557
case 'h':
9558
case 'i':
9559
case 'l':
9560
case 'm':
9561
case 'M':
9562
case 'N':
9563
case 'O':
9564
case 'r':
9565
case 'R':
9566
case 's':
9567
case 'S':
9568
case 'T':
9569
case 'u':
9570
case 'y':
9571
case 'Z':
9572
case ARG_ALLOCATED:
9573
dump_opt[c]++;
9574
dump_all = 0;
9575
break;
9576
case 'A':
9577
case 'e':
9578
case 'F':
9579
case 'k':
9580
case 'L':
9581
case 'P':
9582
case 'q':
9583
case 'X':
9584
dump_opt[c]++;
9585
break;
9586
case 'Y':
9587
zfs_reconstruct_indirect_combinations_max = INT_MAX;
9588
zfs_deadman_enabled = 0;
9589
break;
9590
/* NB: Sort single match options below. */
9591
case 'I':
9592
max_inflight_bytes = strtoull(optarg, NULL, 0);
9593
if (max_inflight_bytes == 0) {
9594
(void) fprintf(stderr, "maximum number "
9595
"of inflight bytes must be greater "
9596
"than 0\n");
9597
usage();
9598
}
9599
break;
9600
case 'K':
9601
dump_opt[c]++;
9602
key_material = strdup(optarg);
9603
/* redact key material in process table */
9604
while (*optarg != '\0') { *optarg++ = '*'; }
9605
break;
9606
case 'o':
9607
dump_opt[c]++;
9608
dump_all = 0;
9609
error = handle_tunable_option(optarg, B_FALSE);
9610
if (error != 0)
9611
zdb_exit(1);
9612
break;
9613
case 'p':
9614
if (searchdirs == NULL) {
9615
searchdirs = umem_alloc(sizeof (char *),
9616
UMEM_NOFAIL);
9617
} else {
9618
char **tmp = umem_alloc((nsearch + 1) *
9619
sizeof (char *), UMEM_NOFAIL);
9620
memcpy(tmp, searchdirs, nsearch *
9621
sizeof (char *));
9622
umem_free(searchdirs,
9623
nsearch * sizeof (char *));
9624
searchdirs = tmp;
9625
}
9626
searchdirs[nsearch++] = optarg;
9627
break;
9628
case 't':
9629
max_txg = strtoull(optarg, NULL, 0);
9630
if (max_txg < TXG_INITIAL) {
9631
(void) fprintf(stderr, "incorrect txg "
9632
"specified: %s\n", optarg);
9633
usage();
9634
}
9635
break;
9636
case 'U':
9637
config_path_console = B_TRUE;
9638
spa_config_path = optarg;
9639
if (spa_config_path[0] != '/') {
9640
(void) fprintf(stderr,
9641
"cachefile must be an absolute path "
9642
"(i.e. start with a slash)\n");
9643
usage();
9644
}
9645
break;
9646
case 'v':
9647
verbose++;
9648
break;
9649
case 'V':
9650
flags = ZFS_IMPORT_VERBATIM;
9651
break;
9652
case 'x':
9653
vn_dumpdir = optarg;
9654
break;
9655
case ARG_BLOCK_BIN_MODE:
9656
if (strcmp(optarg, "lsize") == 0) {
9657
block_bin_mode = BIN_LSIZE;
9658
} else if (strcmp(optarg, "psize") == 0) {
9659
block_bin_mode = BIN_PSIZE;
9660
} else if (strcmp(optarg, "asize") == 0) {
9661
block_bin_mode = BIN_ASIZE;
9662
} else {
9663
(void) fprintf(stderr,
9664
"--bin=\"%s\" must be one of \"lsize\", "
9665
"\"psize\" or \"asize\"\n", optarg);
9666
usage();
9667
}
9668
break;
9669
9670
case ARG_BLOCK_CLASSES: {
9671
char *buf = strdup(optarg), *tok = buf, *next,
9672
*save = NULL;
9673
9674
while ((next = strtok_r(tok, ",", &save)) != NULL) {
9675
tok = NULL;
9676
9677
if (strcmp(next, "normal") == 0) {
9678
block_classes |= CLASS_NORMAL;
9679
} else if (strcmp(next, "special") == 0) {
9680
block_classes |= CLASS_SPECIAL;
9681
} else if (strcmp(next, "dedup") == 0) {
9682
block_classes |= CLASS_DEDUP;
9683
} else if (strcmp(next, "other") == 0) {
9684
block_classes |= CLASS_OTHER;
9685
} else {
9686
(void) fprintf(stderr,
9687
"--class=\"%s\" must be a "
9688
"comma-separated list of either "
9689
"\"normal\", \"special\", "
9690
"\"asize\" or \"other\"; "
9691
"got \"%s\"\n",
9692
optarg, next);
9693
usage();
9694
}
9695
}
9696
9697
if (block_classes == 0) {
9698
(void) fprintf(stderr,
9699
"--class= must be a comma-separated "
9700
"list of either \"normal\", \"special\", "
9701
"\"asize\" or \"other\"; got empty\n");
9702
usage();
9703
}
9704
9705
free(buf);
9706
break;
9707
}
9708
default:
9709
usage();
9710
break;
9711
}
9712
}
9713
9714
if (!dump_opt['e'] && searchdirs != NULL) {
9715
(void) fprintf(stderr, "-p option requires use of -e\n");
9716
usage();
9717
}
9718
#if defined(_LP64)
9719
/*
9720
* ZDB does not typically re-read blocks; therefore limit the ARC
9721
* to 256 MB, which can be used entirely for metadata.
9722
*/
9723
zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT;
9724
zfs_arc_max = 256 * 1024 * 1024;
9725
#endif
9726
9727
/*
9728
* "zdb -c" uses checksum-verifying scrub i/os which are async reads.
9729
* "zdb -b" uses traversal prefetch which uses async reads.
9730
* For good performance, let several of them be active at once.
9731
*/
9732
zfs_vdev_async_read_max_active = 10;
9733
9734
/*
9735
* Disable reference tracking for better performance.
9736
*/
9737
reference_tracking_enable = B_FALSE;
9738
9739
/*
9740
* Do not fail spa_load when spa_load_verify fails. This is needed
9741
* to load non-idle pools.
9742
*/
9743
spa_load_verify_dryrun = B_TRUE;
9744
9745
/*
9746
* ZDB should have ability to read spacemaps.
9747
*/
9748
spa_mode_readable_spacemaps = B_TRUE;
9749
9750
libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
9751
zfs_recover = (dump_opt['A'] > 1);
9752
9753
if (dump_all)
9754
verbose = MAX(verbose, 1);
9755
9756
for (c = 0; c < 256; c++) {
9757
if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL)
9758
dump_opt[c] = 1;
9759
if (dump_opt[c])
9760
dump_opt[c] += verbose;
9761
}
9762
9763
argc -= optind;
9764
argv += optind;
9765
if (argc < 2 && dump_opt['R'])
9766
usage();
9767
9768
target = argv[0];
9769
9770
/*
9771
* Automate cachefile
9772
*/
9773
if (!spa_config_path_env && !config_path_console && target &&
9774
libzfs_core_init() == 0) {
9775
char *pname = strdup(target);
9776
const char *value;
9777
nvlist_t *pnvl = NULL;
9778
nvlist_t *vnvl = NULL;
9779
9780
if (strpbrk(pname, "/@") != NULL)
9781
*strpbrk(pname, "/@") = '\0';
9782
9783
if (pname && lzc_get_props(pname, &pnvl) == 0) {
9784
if (nvlist_lookup_nvlist(pnvl, "cachefile",
9785
&vnvl) == 0) {
9786
value = fnvlist_lookup_string(vnvl,
9787
ZPROP_VALUE);
9788
} else {
9789
value = "-";
9790
}
9791
strlcpy(pbuf, value, sizeof (pbuf));
9792
if (pbuf[0] != '\0') {
9793
if (pbuf[0] == '/') {
9794
if (access(pbuf, F_OK) == 0)
9795
spa_config_path = pbuf;
9796
else
9797
force_import = B_TRUE;
9798
} else if ((strcmp(pbuf, "-") == 0 &&
9799
access(ZPOOL_CACHE, F_OK) != 0) ||
9800
strcmp(pbuf, "none") == 0) {
9801
force_import = B_TRUE;
9802
}
9803
}
9804
nvlist_free(vnvl);
9805
}
9806
9807
free(pname);
9808
nvlist_free(pnvl);
9809
libzfs_core_fini();
9810
}
9811
9812
dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info);
9813
kernel_init(SPA_MODE_READ);
9814
kernel_init_done = B_TRUE;
9815
9816
if (dump_opt['E']) {
9817
if (argc != 1)
9818
usage();
9819
zdb_embedded_block(argv[0]);
9820
error = 0;
9821
goto fini;
9822
}
9823
9824
if (argc < 1) {
9825
if (!dump_opt['e'] && dump_opt['C']) {
9826
dump_cachefile(spa_config_path);
9827
error = 0;
9828
goto fini;
9829
}
9830
if (dump_opt['o'])
9831
/*
9832
* Avoid blasting tunable options off the top of the
9833
* screen.
9834
*/
9835
zdb_exit(1);
9836
usage();
9837
}
9838
9839
if (dump_opt['l']) {
9840
error = dump_label(argv[0]);
9841
goto fini;
9842
}
9843
9844
if (dump_opt['X'] || dump_opt['F'])
9845
rewind = ZPOOL_DO_REWIND |
9846
(dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
9847
9848
/* -N implies -d */
9849
if (dump_opt['N'] && dump_opt['d'] == 0)
9850
dump_opt['d'] = dump_opt['N'];
9851
9852
if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
9853
nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
9854
nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
9855
fatal("internal error: %s", strerror(ENOMEM));
9856
9857
error = 0;
9858
9859
if (strpbrk(target, "/@") != NULL) {
9860
size_t targetlen;
9861
9862
target_pool = strdup(target);
9863
*strpbrk(target_pool, "/@") = '\0';
9864
9865
target_is_spa = B_FALSE;
9866
targetlen = strlen(target);
9867
if (targetlen && target[targetlen - 1] == '/')
9868
target[targetlen - 1] = '\0';
9869
9870
/*
9871
* See if an objset ID was supplied (-d <pool>/<objset ID>).
9872
* To disambiguate tank/100, consider the 100 as objsetID
9873
* if -N was given, otherwise 100 is an objsetID iff
9874
* tank/100 as a named dataset fails on lookup.
9875
*/
9876
objset_str = strchr(target, '/');
9877
if (objset_str && strlen(objset_str) > 1 &&
9878
zdb_numeric(objset_str + 1)) {
9879
char *endptr;
9880
errno = 0;
9881
objset_str++;
9882
objset_id = strtoull(objset_str, &endptr, 0);
9883
/* dataset 0 is the same as opening the pool */
9884
if (errno == 0 && endptr != objset_str &&
9885
objset_id != 0) {
9886
if (dump_opt['N'])
9887
dataset_lookup = B_TRUE;
9888
}
9889
/* normal dataset name not an objset ID */
9890
if (endptr == objset_str) {
9891
objset_id = -1;
9892
}
9893
} else if (objset_str && !zdb_numeric(objset_str + 1) &&
9894
dump_opt['N']) {
9895
printf("Supply a numeric objset ID with -N\n");
9896
error = 2;
9897
goto fini;
9898
}
9899
} else {
9900
target_pool = target;
9901
}
9902
9903
if (dump_opt['e'] || force_import) {
9904
importargs_t args = { 0 };
9905
9906
/*
9907
* If path is not provided, search in /dev
9908
*/
9909
if (searchdirs == NULL) {
9910
searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL);
9911
searchdirs[nsearch++] = (char *)ZFS_DEVDIR;
9912
}
9913
9914
args.paths = nsearch;
9915
args.path = searchdirs;
9916
args.can_be_active = B_TRUE;
9917
9918
libpc_handle_t lpch = {
9919
.lpc_lib_handle = NULL,
9920
.lpc_ops = &libzpool_config_ops,
9921
.lpc_printerr = B_TRUE
9922
};
9923
error = zpool_find_config(&lpch, target_pool, &cfg, &args);
9924
9925
if (error == 0) {
9926
9927
if (nvlist_add_nvlist(cfg,
9928
ZPOOL_LOAD_POLICY, policy) != 0) {
9929
fatal("can't open '%s': %s",
9930
target, strerror(ENOMEM));
9931
}
9932
9933
if (dump_opt['C'] > 1) {
9934
(void) printf("\nConfiguration for import:\n");
9935
dump_nvlist(cfg, 8);
9936
}
9937
9938
/*
9939
* Disable the activity check to allow examination of
9940
* active pools.
9941
*/
9942
error = spa_import(target_pool, cfg, NULL,
9943
flags | ZFS_IMPORT_SKIP_MMP);
9944
}
9945
}
9946
9947
if (searchdirs != NULL) {
9948
umem_free(searchdirs, nsearch * sizeof (char *));
9949
searchdirs = NULL;
9950
}
9951
9952
/*
9953
* We need to make sure to process -O option or call
9954
* dump_path after the -e option has been processed,
9955
* which imports the pool to the namespace if it's
9956
* not in the cachefile.
9957
*/
9958
if (dump_opt['O']) {
9959
if (argc != 2)
9960
usage();
9961
dump_opt['v'] = verbose + 3;
9962
error = dump_path(argv[0], argv[1], NULL);
9963
goto fini;
9964
}
9965
9966
if (dump_opt['r']) {
9967
target_is_spa = B_FALSE;
9968
if (argc != 3)
9969
usage();
9970
dump_opt['v'] = verbose;
9971
error = dump_path(argv[0], argv[1], &object);
9972
if (error != 0)
9973
fatal("internal error: %s", strerror(error));
9974
}
9975
9976
/*
9977
* import_checkpointed_state makes the assumption that the
9978
* target pool that we pass it is already part of the spa
9979
* namespace. Because of that we need to make sure to call
9980
* it always after the -e option has been processed, which
9981
* imports the pool to the namespace if it's not in the
9982
* cachefile.
9983
*/
9984
char *checkpoint_pool = NULL;
9985
char *checkpoint_target = NULL;
9986
if (dump_opt['k']) {
9987
checkpoint_pool = import_checkpointed_state(target, cfg,
9988
target_is_spa, &checkpoint_target);
9989
9990
if (checkpoint_target != NULL)
9991
target = checkpoint_target;
9992
}
9993
9994
if (cfg != NULL) {
9995
nvlist_free(cfg);
9996
cfg = NULL;
9997
}
9998
9999
if (target_pool != target)
10000
free(target_pool);
10001
10002
if (error == 0) {
10003
if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
10004
ASSERT(checkpoint_pool != NULL);
10005
ASSERT0P(checkpoint_target);
10006
10007
error = spa_open(checkpoint_pool, &spa, FTAG);
10008
if (error != 0) {
10009
fatal("Tried to open pool \"%s\" but "
10010
"spa_open() failed with error %d\n",
10011
checkpoint_pool, error);
10012
}
10013
10014
} else if (target_is_spa || dump_opt['R'] || dump_opt['B'] ||
10015
objset_id == 0) {
10016
zdb_set_skip_mmp(target);
10017
error = spa_open_rewind(target, &spa, FTAG, policy,
10018
NULL);
10019
if (error) {
10020
/*
10021
* If we're missing the log device then
10022
* try opening the pool after clearing the
10023
* log state.
10024
*/
10025
mutex_enter(&spa_namespace_lock);
10026
if ((spa = spa_lookup(target)) != NULL &&
10027
spa->spa_log_state == SPA_LOG_MISSING) {
10028
spa->spa_log_state = SPA_LOG_CLEAR;
10029
error = 0;
10030
}
10031
mutex_exit(&spa_namespace_lock);
10032
10033
if (!error) {
10034
error = spa_open_rewind(target, &spa,
10035
FTAG, policy, NULL);
10036
}
10037
}
10038
} else if (strpbrk(target, "#") != NULL) {
10039
dsl_pool_t *dp;
10040
error = dsl_pool_hold(target, FTAG, &dp);
10041
if (error != 0) {
10042
fatal("can't dump '%s': %s", target,
10043
strerror(error));
10044
}
10045
error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
10046
dsl_pool_rele(dp, FTAG);
10047
if (error != 0) {
10048
fatal("can't dump '%s': %s", target,
10049
strerror(error));
10050
}
10051
goto fini;
10052
} else {
10053
target_pool = strdup(target);
10054
if (strpbrk(target, "/@") != NULL)
10055
*strpbrk(target_pool, "/@") = '\0';
10056
10057
zdb_set_skip_mmp(target);
10058
/*
10059
* If -N was supplied, the user has indicated that
10060
* zdb -d <pool>/<objsetID> is in effect. Otherwise
10061
* we first assume that the dataset string is the
10062
* dataset name. If dmu_objset_hold fails with the
10063
* dataset string, and we have an objset_id, retry the
10064
* lookup with the objsetID.
10065
*/
10066
boolean_t retry = B_TRUE;
10067
retry_lookup:
10068
if (dataset_lookup == B_TRUE) {
10069
/*
10070
* Use the supplied id to get the name
10071
* for open_objset.
10072
*/
10073
error = spa_open(target_pool, &spa, FTAG);
10074
if (error == 0) {
10075
error = name_from_objset_id(spa,
10076
objset_id, dsname);
10077
spa_close(spa, FTAG);
10078
if (error == 0)
10079
target = dsname;
10080
}
10081
}
10082
if (error == 0) {
10083
if (objset_id > 0 && retry) {
10084
int err = dmu_objset_hold(target, FTAG,
10085
&os);
10086
if (err) {
10087
dataset_lookup = B_TRUE;
10088
retry = B_FALSE;
10089
goto retry_lookup;
10090
} else {
10091
dmu_objset_rele(os, FTAG);
10092
}
10093
}
10094
error = open_objset(target, FTAG, &os);
10095
}
10096
if (error == 0)
10097
spa = dmu_objset_spa(os);
10098
free(target_pool);
10099
}
10100
}
10101
nvlist_free(policy);
10102
10103
if (error)
10104
fatal("can't open '%s': %s", target, strerror(error));
10105
10106
/*
10107
* Set the pool failure mode to panic in order to prevent the pool
10108
* from suspending. A suspended I/O will have no way to resume and
10109
* can prevent the zdb(8) command from terminating as expected.
10110
*/
10111
if (spa != NULL)
10112
spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
10113
10114
argv++;
10115
argc--;
10116
if (dump_opt['r']) {
10117
error = zdb_copy_object(os, object, argv[1]);
10118
} else if (!dump_opt['R']) {
10119
flagbits['d'] = ZOR_FLAG_DIRECTORY;
10120
flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
10121
flagbits['m'] = ZOR_FLAG_SPACE_MAP;
10122
flagbits['z'] = ZOR_FLAG_ZAP;
10123
flagbits['A'] = ZOR_FLAG_ALL_TYPES;
10124
10125
if (argc > 0 && dump_opt['d']) {
10126
zopt_object_args = argc;
10127
zopt_object_ranges = calloc(zopt_object_args,
10128
sizeof (zopt_object_range_t));
10129
for (unsigned i = 0; i < zopt_object_args; i++) {
10130
int err;
10131
const char *msg = NULL;
10132
10133
err = parse_object_range(argv[i],
10134
&zopt_object_ranges[i], &msg);
10135
if (err != 0)
10136
fatal("Bad object or range: '%s': %s\n",
10137
argv[i], msg ?: "");
10138
}
10139
} else if (argc > 0 && dump_opt['m']) {
10140
zopt_metaslab_args = argc;
10141
zopt_metaslab = calloc(zopt_metaslab_args,
10142
sizeof (uint64_t));
10143
for (unsigned i = 0; i < zopt_metaslab_args; i++) {
10144
errno = 0;
10145
zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
10146
if (zopt_metaslab[i] == 0 && errno != 0)
10147
fatal("bad number %s: %s", argv[i],
10148
strerror(errno));
10149
}
10150
}
10151
if (dump_opt['B']) {
10152
dump_backup(target, objset_id,
10153
argc > 0 ? argv[0] : NULL);
10154
} else if (os != NULL) {
10155
dump_objset(os);
10156
} else if (zopt_object_args > 0 && !dump_opt['m']) {
10157
dump_objset(spa->spa_meta_objset);
10158
} else {
10159
dump_zpool(spa);
10160
}
10161
} else {
10162
flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
10163
flagbits['c'] = ZDB_FLAG_CHECKSUM;
10164
flagbits['d'] = ZDB_FLAG_DECOMPRESS;
10165
flagbits['e'] = ZDB_FLAG_BSWAP;
10166
flagbits['g'] = ZDB_FLAG_GBH;
10167
flagbits['i'] = ZDB_FLAG_INDIRECT;
10168
flagbits['r'] = ZDB_FLAG_RAW;
10169
flagbits['v'] = ZDB_FLAG_VERBOSE;
10170
10171
for (int i = 0; i < argc; i++)
10172
zdb_read_block(argv[i], spa);
10173
}
10174
10175
if (dump_opt['k']) {
10176
free(checkpoint_pool);
10177
if (!target_is_spa)
10178
free(checkpoint_target);
10179
}
10180
10181
fini:
10182
if (spa != NULL)
10183
zdb_ddt_cleanup(spa);
10184
10185
if (os != NULL) {
10186
close_objset(os, FTAG);
10187
} else if (spa != NULL) {
10188
spa_close(spa, FTAG);
10189
}
10190
10191
fuid_table_destroy();
10192
10193
dump_debug_buffer();
10194
10195
if (kernel_init_done)
10196
kernel_fini();
10197
10198
if (corruption_found && error == 0)
10199
error = 3;
10200
10201
return (error);
10202
}
10203
10204