Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/cmd/zfs/zfs_iter.c
48288 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
23
/*
24
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25
* Copyright (c) 2012 Pawel Jakub Dawidek <[email protected]>.
26
* Copyright 2013 Nexenta Systems, Inc. All rights reserved.
27
* Copyright (c) 2013 by Delphix. All rights reserved.
28
*/
29
30
#include <libintl.h>
31
#include <libuutil.h>
32
#include <stddef.h>
33
#include <stdio.h>
34
#include <stdlib.h>
35
#include <string.h>
36
37
#include <libzfs.h>
38
39
#include "zfs_util.h"
40
#include "zfs_iter.h"
41
42
/*
43
* This is a private interface used to gather up all the datasets specified on
44
* the command line so that we can iterate over them in order.
45
*
46
* First, we iterate over all filesystems, gathering them together into an
47
* AVL tree. We report errors for any explicitly specified datasets
48
* that we couldn't open.
49
*
50
* When finished, we have an AVL tree of ZFS handles. We go through and execute
51
* the provided callback for each one, passing whatever data the user supplied.
52
*/
53
54
typedef struct zfs_node {
55
zfs_handle_t *zn_handle;
56
uu_avl_node_t zn_avlnode;
57
} zfs_node_t;
58
59
typedef struct callback_data {
60
uu_avl_t *cb_avl;
61
int cb_flags;
62
zfs_type_t cb_types;
63
zfs_sort_column_t *cb_sortcol;
64
zprop_list_t **cb_proplist;
65
int cb_depth_limit;
66
int cb_depth;
67
uint8_t cb_props_table[ZFS_NUM_PROPS];
68
} callback_data_t;
69
70
uu_avl_pool_t *avl_pool;
71
72
/*
73
* Include snaps if they were requested or if this a zfs list where types
74
* were not specified and the "listsnapshots" property is set on this pool.
75
*/
76
static boolean_t
77
zfs_include_snapshots(zfs_handle_t *zhp, callback_data_t *cb)
78
{
79
zpool_handle_t *zph;
80
81
if ((cb->cb_flags & ZFS_ITER_PROP_LISTSNAPS) == 0)
82
return (cb->cb_types & ZFS_TYPE_SNAPSHOT);
83
84
zph = zfs_get_pool_handle(zhp);
85
return (zpool_get_prop_int(zph, ZPOOL_PROP_LISTSNAPS, NULL));
86
}
87
88
/*
89
* Called for each dataset. If the object is of an appropriate type,
90
* add it to the avl tree and recurse over any children as necessary.
91
*/
92
static int
93
zfs_callback(zfs_handle_t *zhp, void *data)
94
{
95
callback_data_t *cb = data;
96
boolean_t should_close = B_TRUE;
97
boolean_t include_snaps = zfs_include_snapshots(zhp, cb);
98
boolean_t include_bmarks = (cb->cb_types & ZFS_TYPE_BOOKMARK);
99
100
if ((zfs_get_type(zhp) & cb->cb_types) ||
101
((zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) && include_snaps)) {
102
uu_avl_index_t idx;
103
zfs_node_t *node = safe_malloc(sizeof (zfs_node_t));
104
105
node->zn_handle = zhp;
106
uu_avl_node_init(node, &node->zn_avlnode, avl_pool);
107
if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol,
108
&idx) == NULL) {
109
if (cb->cb_proplist) {
110
if ((*cb->cb_proplist) &&
111
!(*cb->cb_proplist)->pl_all)
112
zfs_prune_proplist(zhp,
113
cb->cb_props_table);
114
115
if (zfs_expand_proplist(zhp, cb->cb_proplist,
116
(cb->cb_flags & ZFS_ITER_RECVD_PROPS),
117
(cb->cb_flags & ZFS_ITER_LITERAL_PROPS))
118
!= 0) {
119
free(node);
120
return (-1);
121
}
122
}
123
uu_avl_insert(cb->cb_avl, node, idx);
124
should_close = B_FALSE;
125
} else {
126
free(node);
127
}
128
}
129
130
/*
131
* Recurse if necessary.
132
*/
133
if (cb->cb_flags & ZFS_ITER_RECURSE &&
134
((cb->cb_flags & ZFS_ITER_DEPTH_LIMIT) == 0 ||
135
cb->cb_depth < cb->cb_depth_limit)) {
136
cb->cb_depth++;
137
138
/*
139
* If we are not looking for filesystems, we don't need to
140
* recurse into filesystems when we are at our depth limit.
141
*/
142
if ((cb->cb_depth < cb->cb_depth_limit ||
143
(cb->cb_flags & ZFS_ITER_DEPTH_LIMIT) == 0 ||
144
(cb->cb_types &
145
(ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME))) &&
146
zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) {
147
(void) zfs_iter_filesystems_v2(zhp, cb->cb_flags,
148
zfs_callback, data);
149
}
150
151
if (((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT |
152
ZFS_TYPE_BOOKMARK)) == 0) && include_snaps) {
153
(void) zfs_iter_snapshots_v2(zhp, cb->cb_flags,
154
zfs_callback, data, 0, 0);
155
}
156
157
if (((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT |
158
ZFS_TYPE_BOOKMARK)) == 0) && include_bmarks) {
159
(void) zfs_iter_bookmarks_v2(zhp, cb->cb_flags,
160
zfs_callback, data);
161
}
162
163
cb->cb_depth--;
164
}
165
166
if (should_close)
167
zfs_close(zhp);
168
169
return (0);
170
}
171
172
int
173
zfs_add_sort_column(zfs_sort_column_t **sc, const char *name,
174
boolean_t reverse)
175
{
176
zfs_sort_column_t *col;
177
zfs_prop_t prop;
178
179
if ((prop = zfs_name_to_prop(name)) == ZPROP_USERPROP &&
180
!zfs_prop_user(name))
181
return (-1);
182
183
col = safe_malloc(sizeof (zfs_sort_column_t));
184
185
col->sc_prop = prop;
186
col->sc_reverse = reverse;
187
if (prop == ZPROP_USERPROP) {
188
col->sc_user_prop = safe_malloc(strlen(name) + 1);
189
(void) strcpy(col->sc_user_prop, name);
190
}
191
192
if (*sc == NULL) {
193
col->sc_last = col;
194
*sc = col;
195
} else {
196
(*sc)->sc_last->sc_next = col;
197
(*sc)->sc_last = col;
198
}
199
200
return (0);
201
}
202
203
void
204
zfs_free_sort_columns(zfs_sort_column_t *sc)
205
{
206
zfs_sort_column_t *col;
207
208
while (sc != NULL) {
209
col = sc->sc_next;
210
free(sc->sc_user_prop);
211
free(sc);
212
sc = col;
213
}
214
}
215
216
/*
217
* Return true if all of the properties to be sorted are populated by
218
* dsl_dataset_fast_stat(). Note that sc == NULL (no sort) means we
219
* don't need any extra properties, so returns true.
220
*/
221
boolean_t
222
zfs_sort_only_by_fast(const zfs_sort_column_t *sc)
223
{
224
while (sc != NULL) {
225
switch (sc->sc_prop) {
226
case ZFS_PROP_NAME:
227
case ZFS_PROP_GUID:
228
case ZFS_PROP_CREATETXG:
229
case ZFS_PROP_NUMCLONES:
230
case ZFS_PROP_INCONSISTENT:
231
case ZFS_PROP_REDACTED:
232
case ZFS_PROP_ORIGIN:
233
break;
234
default:
235
return (B_FALSE);
236
}
237
sc = sc->sc_next;
238
}
239
240
return (B_TRUE);
241
}
242
243
boolean_t
244
zfs_list_only_by_fast(const zprop_list_t *p)
245
{
246
if (p == NULL) {
247
/* NULL means 'all' so we can't use simple mode */
248
return (B_FALSE);
249
}
250
251
while (p != NULL) {
252
switch (p->pl_prop) {
253
case ZFS_PROP_NAME:
254
case ZFS_PROP_GUID:
255
case ZFS_PROP_CREATETXG:
256
case ZFS_PROP_NUMCLONES:
257
case ZFS_PROP_INCONSISTENT:
258
case ZFS_PROP_REDACTED:
259
case ZFS_PROP_ORIGIN:
260
break;
261
default:
262
return (B_FALSE);
263
}
264
p = p->pl_next;
265
}
266
267
return (B_TRUE);
268
}
269
270
static int
271
zfs_compare(const void *larg, const void *rarg)
272
{
273
zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
274
zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
275
const char *lname = zfs_get_name(l);
276
const char *rname = zfs_get_name(r);
277
char *lat, *rat;
278
uint64_t lcreate, rcreate;
279
int ret;
280
281
lat = (char *)strchr(lname, '@');
282
rat = (char *)strchr(rname, '@');
283
284
if (lat != NULL)
285
*lat = '\0';
286
if (rat != NULL)
287
*rat = '\0';
288
289
ret = strcmp(lname, rname);
290
if (ret == 0 && (lat != NULL || rat != NULL)) {
291
/*
292
* If we're comparing a dataset to one of its snapshots, we
293
* always make the full dataset first.
294
*/
295
if (lat == NULL) {
296
ret = -1;
297
} else if (rat == NULL) {
298
ret = 1;
299
} else {
300
/*
301
* If we have two snapshots from the same dataset, then
302
* we want to sort them according to creation time. We
303
* use the hidden CREATETXG property to get an absolute
304
* ordering of snapshots.
305
*/
306
lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG);
307
rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG);
308
309
/*
310
* Both lcreate and rcreate being 0 means we don't have
311
* properties and we should compare full name.
312
*/
313
if (lcreate == 0 && rcreate == 0)
314
ret = strcmp(lat + 1, rat + 1);
315
else if (lcreate < rcreate)
316
ret = -1;
317
else if (lcreate > rcreate)
318
ret = 1;
319
}
320
}
321
322
if (lat != NULL)
323
*lat = '@';
324
if (rat != NULL)
325
*rat = '@';
326
327
return (ret);
328
}
329
330
/*
331
* Sort datasets by specified columns.
332
*
333
* o Numeric types sort in ascending order.
334
* o String types sort in alphabetical order.
335
* o Types inappropriate for a row sort that row to the literal
336
* bottom, regardless of the specified ordering.
337
*
338
* If no sort columns are specified, or two datasets compare equally
339
* across all specified columns, they are sorted alphabetically by name
340
* with snapshots grouped under their parents.
341
*/
342
static int
343
zfs_sort(const void *larg, const void *rarg, void *data)
344
{
345
zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
346
zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
347
zfs_sort_column_t *sc = (zfs_sort_column_t *)data;
348
zfs_sort_column_t *psc;
349
350
for (psc = sc; psc != NULL; psc = psc->sc_next) {
351
char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN];
352
const char *lstr, *rstr;
353
uint64_t lnum = 0, rnum = 0;
354
boolean_t lvalid, rvalid;
355
int ret = 0;
356
357
/*
358
* We group the checks below the generic code. If 'lstr' and
359
* 'rstr' are non-NULL, then we do a string based comparison.
360
* Otherwise, we compare 'lnum' and 'rnum'.
361
*/
362
lstr = rstr = NULL;
363
if (psc->sc_prop == ZPROP_USERPROP) {
364
nvlist_t *luser, *ruser;
365
nvlist_t *lval, *rval;
366
367
luser = zfs_get_user_props(l);
368
ruser = zfs_get_user_props(r);
369
370
lvalid = (nvlist_lookup_nvlist(luser,
371
psc->sc_user_prop, &lval) == 0);
372
rvalid = (nvlist_lookup_nvlist(ruser,
373
psc->sc_user_prop, &rval) == 0);
374
375
if (lvalid)
376
verify(nvlist_lookup_string(lval,
377
ZPROP_VALUE, &lstr) == 0);
378
if (rvalid)
379
verify(nvlist_lookup_string(rval,
380
ZPROP_VALUE, &rstr) == 0);
381
} else if (psc->sc_prop == ZFS_PROP_NAME) {
382
lvalid = rvalid = B_TRUE;
383
384
(void) strlcpy(lbuf, zfs_get_name(l), sizeof (lbuf));
385
(void) strlcpy(rbuf, zfs_get_name(r), sizeof (rbuf));
386
387
lstr = lbuf;
388
rstr = rbuf;
389
} else if (zfs_prop_is_string(psc->sc_prop)) {
390
lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf,
391
sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0);
392
rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf,
393
sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0);
394
395
lstr = lbuf;
396
rstr = rbuf;
397
} else {
398
lvalid = zfs_prop_valid_for_type(psc->sc_prop,
399
zfs_get_type(l), B_FALSE);
400
rvalid = zfs_prop_valid_for_type(psc->sc_prop,
401
zfs_get_type(r), B_FALSE);
402
403
if (lvalid)
404
lnum = zfs_prop_get_int(l, psc->sc_prop);
405
if (rvalid)
406
rnum = zfs_prop_get_int(r, psc->sc_prop);
407
}
408
409
if (!lvalid && !rvalid)
410
continue;
411
else if (!lvalid)
412
return (1);
413
else if (!rvalid)
414
return (-1);
415
416
if (lstr)
417
ret = strcmp(lstr, rstr);
418
else if (lnum < rnum)
419
ret = -1;
420
else if (lnum > rnum)
421
ret = 1;
422
423
if (ret != 0) {
424
if (psc->sc_reverse == B_TRUE)
425
ret = (ret < 0) ? 1 : -1;
426
return (ret);
427
}
428
}
429
430
return (zfs_compare(larg, rarg));
431
}
432
433
int
434
zfs_for_each(int argc, char **argv, int flags, zfs_type_t types,
435
zfs_sort_column_t *sortcol, zprop_list_t **proplist, int limit,
436
zfs_iter_f callback, void *data)
437
{
438
callback_data_t cb = {0};
439
int ret = 0;
440
zfs_node_t *node;
441
uu_avl_walk_t *walk;
442
443
avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t),
444
offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT);
445
446
if (avl_pool == NULL)
447
nomem();
448
449
cb.cb_sortcol = sortcol;
450
cb.cb_flags = flags;
451
cb.cb_proplist = proplist;
452
cb.cb_types = types;
453
cb.cb_depth_limit = limit;
454
/*
455
* If cb_proplist is provided then in the zfs_handles created we
456
* retain only those properties listed in cb_proplist and sortcol.
457
* The rest are pruned. So, the caller should make sure that no other
458
* properties other than those listed in cb_proplist/sortcol are
459
* accessed.
460
*
461
* If cb_proplist is NULL then we retain all the properties. We
462
* always retain the zoned property, which some other properties
463
* need (userquota & friends), and the createtxg property, which
464
* we need to sort snapshots.
465
*/
466
if (cb.cb_proplist && *cb.cb_proplist) {
467
zprop_list_t *p = *cb.cb_proplist;
468
469
while (p) {
470
if (p->pl_prop >= ZFS_PROP_TYPE &&
471
p->pl_prop < ZFS_NUM_PROPS) {
472
cb.cb_props_table[p->pl_prop] = B_TRUE;
473
}
474
p = p->pl_next;
475
}
476
477
while (sortcol) {
478
if (sortcol->sc_prop >= ZFS_PROP_TYPE &&
479
sortcol->sc_prop < ZFS_NUM_PROPS) {
480
cb.cb_props_table[sortcol->sc_prop] = B_TRUE;
481
}
482
sortcol = sortcol->sc_next;
483
}
484
485
cb.cb_props_table[ZFS_PROP_ZONED] = B_TRUE;
486
cb.cb_props_table[ZFS_PROP_CREATETXG] = B_TRUE;
487
} else {
488
(void) memset(cb.cb_props_table, B_TRUE,
489
sizeof (cb.cb_props_table));
490
}
491
492
if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL)
493
nomem();
494
495
if (argc == 0) {
496
/*
497
* If given no arguments, iterate over all datasets.
498
*/
499
cb.cb_flags |= ZFS_ITER_RECURSE;
500
ret = zfs_iter_root(g_zfs, zfs_callback, &cb);
501
} else {
502
zfs_handle_t *zhp = NULL;
503
zfs_type_t argtype = types;
504
505
/*
506
* If we're recursive, then we always allow filesystems as
507
* arguments. If we also are interested in snapshots or
508
* bookmarks, then we can take volumes as well.
509
*/
510
if (flags & ZFS_ITER_RECURSE) {
511
argtype |= ZFS_TYPE_FILESYSTEM;
512
if (types & (ZFS_TYPE_SNAPSHOT | ZFS_TYPE_BOOKMARK))
513
argtype |= ZFS_TYPE_VOLUME;
514
}
515
516
for (int i = 0; i < argc; i++) {
517
if (flags & ZFS_ITER_ARGS_CAN_BE_PATHS) {
518
zhp = zfs_path_to_zhandle(g_zfs, argv[i],
519
argtype);
520
} else {
521
zhp = zfs_open(g_zfs, argv[i], argtype);
522
}
523
if (zhp != NULL)
524
ret |= zfs_callback(zhp, &cb);
525
else
526
ret = 1;
527
}
528
}
529
530
/*
531
* At this point we've got our AVL tree full of zfs handles, so iterate
532
* over each one and execute the real user callback.
533
*/
534
for (node = uu_avl_first(cb.cb_avl); node != NULL;
535
node = uu_avl_next(cb.cb_avl, node))
536
ret |= callback(node->zn_handle, data);
537
538
/*
539
* Finally, clean up the AVL tree.
540
*/
541
if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL)
542
nomem();
543
544
while ((node = uu_avl_walk_next(walk)) != NULL) {
545
uu_avl_remove(cb.cb_avl, node);
546
zfs_close(node->zn_handle);
547
free(node);
548
}
549
550
uu_avl_walk_end(walk);
551
uu_avl_destroy(cb.cb_avl);
552
uu_avl_pool_destroy(avl_pool);
553
554
return (ret);
555
}
556
557