Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/cmd/ztest.c
105585 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
/*
23
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24
* Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26
* Copyright (c) 2013 Steven Hartland. All rights reserved.
27
* Copyright (c) 2014 Integros [integros.com]
28
* Copyright 2017 Joyent, Inc.
29
* Copyright (c) 2017, Intel Corporation.
30
* Copyright (c) 2023, Klara, Inc.
31
*/
32
33
/*
34
* The objective of this program is to provide a DMU/ZAP/SPA stress test
35
* that runs entirely in userland, is easy to use, and easy to extend.
36
*
37
* The overall design of the ztest program is as follows:
38
*
39
* (1) For each major functional area (e.g. adding vdevs to a pool,
40
* creating and destroying datasets, reading and writing objects, etc)
41
* we have a simple routine to test that functionality. These
42
* individual routines do not have to do anything "stressful".
43
*
44
* (2) We turn these simple functionality tests into a stress test by
45
* running them all in parallel, with as many threads as desired,
46
* and spread across as many datasets, objects, and vdevs as desired.
47
*
48
* (3) While all this is happening, we inject faults into the pool to
49
* verify that self-healing data really works.
50
*
51
* (4) Every time we open a dataset, we change its checksum and compression
52
* functions. Thus even individual objects vary from block to block
53
* in which checksum they use and whether they're compressed.
54
*
55
* (5) To verify that we never lose on-disk consistency after a crash,
56
* we run the entire test in a child of the main process.
57
* At random times, the child self-immolates with a SIGKILL.
58
* This is the software equivalent of pulling the power cord.
59
* The parent then runs the test again, using the existing
60
* storage pool, as many times as desired. If backwards compatibility
61
* testing is enabled ztest will sometimes run the "older" version
62
* of ztest after a SIGKILL.
63
*
64
* (6) To verify that we don't have future leaks or temporal incursions,
65
* many of the functional tests record the transaction group number
66
* as part of their data. When reading old data, they verify that
67
* the transaction group number is less than the current, open txg.
68
* If you add a new test, please do this if applicable.
69
*
70
* (7) Threads are created with a reduced stack size, for sanity checking.
71
* Therefore, it's important not to allocate huge buffers on the stack.
72
*
73
* When run with no arguments, ztest runs for about five minutes and
74
* produces no output if successful. To get a little bit of information,
75
* specify -V. To get more information, specify -VV, and so on.
76
*
77
* To turn this into an overnight stress test, use -T to specify run time.
78
*
79
* You can ask more vdevs [-v], datasets [-d], or threads [-t]
80
* to increase the pool capacity, fanout, and overall stress level.
81
*
82
* Use the -k option to set the desired frequency of kills.
83
*
84
* When ztest invokes itself it passes all relevant information through a
85
* temporary file which is mmap-ed in the child process. This allows shared
86
* memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
87
* stored at offset 0 of this file and contains information on the size and
88
* number of shared structures in the file. The information stored in this file
89
* must remain backwards compatible with older versions of ztest so that
90
* ztest can invoke them during backwards compatibility testing (-B).
91
*/
92
93
#include <sys/zfs_context.h>
94
#include <sys/spa.h>
95
#include <sys/dmu.h>
96
#include <sys/txg.h>
97
#include <sys/dbuf.h>
98
#include <sys/zap.h>
99
#include <sys/dmu_objset.h>
100
#include <sys/poll.h>
101
#include <sys/stat.h>
102
#include <sys/time.h>
103
#include <sys/wait.h>
104
#include <sys/mman.h>
105
#include <sys/resource.h>
106
#include <sys/zio.h>
107
#include <sys/zil.h>
108
#include <sys/zil_impl.h>
109
#include <sys/vdev_draid.h>
110
#include <sys/vdev_impl.h>
111
#include <sys/vdev_file.h>
112
#include <sys/vdev_initialize.h>
113
#include <sys/vdev_raidz.h>
114
#include <sys/vdev_trim.h>
115
#include <sys/spa_impl.h>
116
#include <sys/metaslab_impl.h>
117
#include <sys/dsl_prop.h>
118
#include <sys/dsl_dataset.h>
119
#include <sys/dsl_destroy.h>
120
#include <sys/dsl_scan.h>
121
#include <sys/zio_checksum.h>
122
#include <sys/zfs_refcount.h>
123
#include <sys/zfeature.h>
124
#include <sys/dsl_userhold.h>
125
#include <sys/abd.h>
126
#include <sys/blake3.h>
127
#include <stdio.h>
128
#include <stdlib.h>
129
#include <unistd.h>
130
#include <getopt.h>
131
#include <signal.h>
132
#include <umem.h>
133
#include <ctype.h>
134
#include <math.h>
135
#include <sys/fs/zfs.h>
136
#include <zfs_fletcher.h>
137
#include <libnvpair.h>
138
#include <libzutil.h>
139
#include <sys/crypto/icp.h>
140
#include <sys/zfs_impl.h>
141
#include <sys/backtrace.h>
142
#include <libzpool.h>
143
#include <libspl.h>
144
145
static int ztest_fd_data = -1;
146
147
typedef struct ztest_shared_hdr {
148
uint64_t zh_hdr_size;
149
uint64_t zh_opts_size;
150
uint64_t zh_size;
151
uint64_t zh_stats_size;
152
uint64_t zh_stats_count;
153
uint64_t zh_ds_size;
154
uint64_t zh_ds_count;
155
uint64_t zh_scratch_state_size;
156
} ztest_shared_hdr_t;
157
158
static ztest_shared_hdr_t *ztest_shared_hdr;
159
160
enum ztest_class_state {
161
ZTEST_VDEV_CLASS_OFF,
162
ZTEST_VDEV_CLASS_ON,
163
ZTEST_VDEV_CLASS_RND
164
};
165
166
/* Dedicated RAIDZ Expansion test states */
167
typedef enum {
168
RAIDZ_EXPAND_NONE, /* Default is none, must opt-in */
169
RAIDZ_EXPAND_REQUESTED, /* The '-X' option was used */
170
RAIDZ_EXPAND_STARTED, /* Testing has commenced */
171
RAIDZ_EXPAND_KILLED, /* Reached the proccess kill */
172
RAIDZ_EXPAND_CHECKED, /* Pool scrub verification done */
173
} raidz_expand_test_state_t;
174
175
176
#define ZO_GVARS_MAX_ARGLEN ((size_t)64)
177
#define ZO_GVARS_MAX_COUNT ((size_t)10)
178
179
typedef struct ztest_shared_opts {
180
char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
181
char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
182
char zo_alt_ztest[MAXNAMELEN];
183
char zo_alt_libpath[MAXNAMELEN];
184
uint64_t zo_vdevs;
185
uint64_t zo_vdevtime;
186
size_t zo_vdev_size;
187
int zo_ashift;
188
int zo_mirrors;
189
int zo_raid_do_expand;
190
int zo_raid_children;
191
int zo_raid_parity;
192
char zo_raid_type[8];
193
int zo_draid_data;
194
int zo_draid_spares;
195
int zo_datasets;
196
int zo_threads;
197
uint64_t zo_passtime;
198
uint64_t zo_killrate;
199
int zo_verbose;
200
int zo_init;
201
uint64_t zo_time;
202
uint64_t zo_maxloops;
203
uint64_t zo_metaslab_force_ganging;
204
raidz_expand_test_state_t zo_raidz_expand_test;
205
int zo_mmp_test;
206
int zo_special_vdevs;
207
int zo_dump_dbgmsg;
208
int zo_gvars_count;
209
char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
210
} ztest_shared_opts_t;
211
212
/* Default values for command line options. */
213
#define DEFAULT_POOL "ztest"
214
#define DEFAULT_VDEV_DIR "/tmp"
215
#define DEFAULT_VDEV_COUNT 5
216
#define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
217
#define DEFAULT_VDEV_SIZE_STR "256M"
218
#define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
219
#define DEFAULT_MIRRORS 2
220
#define DEFAULT_RAID_CHILDREN 4
221
#define DEFAULT_RAID_PARITY 1
222
#define DEFAULT_DRAID_DATA 4
223
#define DEFAULT_DRAID_SPARES 1
224
#define DEFAULT_DATASETS_COUNT 7
225
#define DEFAULT_THREADS 23
226
#define DEFAULT_RUN_TIME 300 /* 300 seconds */
227
#define DEFAULT_RUN_TIME_STR "300 sec"
228
#define DEFAULT_PASS_TIME 60 /* 60 seconds */
229
#define DEFAULT_PASS_TIME_STR "60 sec"
230
#define DEFAULT_KILL_RATE 70 /* 70% kill rate */
231
#define DEFAULT_KILLRATE_STR "70%"
232
#define DEFAULT_INITS 1
233
#define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
234
#define DEFAULT_FORCE_GANGING (64 << 10)
235
#define DEFAULT_FORCE_GANGING_STR "64K"
236
237
/* Simplifying assumption: -1 is not a valid default. */
238
#define NO_DEFAULT -1
239
240
static const ztest_shared_opts_t ztest_opts_defaults = {
241
.zo_pool = DEFAULT_POOL,
242
.zo_dir = DEFAULT_VDEV_DIR,
243
.zo_alt_ztest = { '\0' },
244
.zo_alt_libpath = { '\0' },
245
.zo_vdevs = DEFAULT_VDEV_COUNT,
246
.zo_ashift = DEFAULT_ASHIFT,
247
.zo_mirrors = DEFAULT_MIRRORS,
248
.zo_raid_children = DEFAULT_RAID_CHILDREN,
249
.zo_raid_parity = DEFAULT_RAID_PARITY,
250
.zo_raid_type = VDEV_TYPE_RAIDZ,
251
.zo_vdev_size = DEFAULT_VDEV_SIZE,
252
.zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */
253
.zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
254
.zo_datasets = DEFAULT_DATASETS_COUNT,
255
.zo_threads = DEFAULT_THREADS,
256
.zo_passtime = DEFAULT_PASS_TIME,
257
.zo_killrate = DEFAULT_KILL_RATE,
258
.zo_verbose = 0,
259
.zo_mmp_test = 0,
260
.zo_init = DEFAULT_INITS,
261
.zo_time = DEFAULT_RUN_TIME,
262
.zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
263
.zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
264
.zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
265
.zo_gvars_count = 0,
266
.zo_raidz_expand_test = RAIDZ_EXPAND_NONE,
267
};
268
269
extern uint64_t metaslab_force_ganging;
270
extern uint64_t metaslab_df_alloc_threshold;
271
extern uint64_t zfs_deadman_synctime_ms;
272
extern uint_t metaslab_preload_limit;
273
extern int zfs_compressed_arc_enabled;
274
extern int zfs_abd_scatter_enabled;
275
extern uint_t dmu_object_alloc_chunk_shift;
276
extern boolean_t zfs_force_some_double_word_sm_entries;
277
extern unsigned long zfs_reconstruct_indirect_damage_fraction;
278
extern uint64_t raidz_expand_max_reflow_bytes;
279
extern uint_t raidz_expand_pause_point;
280
extern boolean_t ddt_prune_artificial_age;
281
extern boolean_t ddt_dump_prune_histogram;
282
283
284
static ztest_shared_opts_t *ztest_shared_opts;
285
static ztest_shared_opts_t ztest_opts;
286
static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
287
288
typedef struct ztest_shared_ds {
289
uint64_t zd_seq;
290
} ztest_shared_ds_t;
291
292
static ztest_shared_ds_t *ztest_shared_ds;
293
#define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
294
295
typedef struct ztest_scratch_state {
296
uint64_t zs_raidz_scratch_verify_pause;
297
} ztest_shared_scratch_state_t;
298
299
static ztest_shared_scratch_state_t *ztest_scratch_state;
300
301
#define BT_MAGIC 0x123456789abcdefULL
302
#define MAXFAULTS(zs) \
303
(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
304
305
enum ztest_io_type {
306
ZTEST_IO_WRITE_TAG,
307
ZTEST_IO_WRITE_PATTERN,
308
ZTEST_IO_WRITE_ZEROES,
309
ZTEST_IO_TRUNCATE,
310
ZTEST_IO_SETATTR,
311
ZTEST_IO_REWRITE,
312
ZTEST_IO_TYPES
313
};
314
315
typedef struct ztest_block_tag {
316
uint64_t bt_magic;
317
uint64_t bt_objset;
318
uint64_t bt_object;
319
uint64_t bt_dnodesize;
320
uint64_t bt_offset;
321
uint64_t bt_gen;
322
uint64_t bt_txg;
323
uint64_t bt_crtxg;
324
} ztest_block_tag_t;
325
326
typedef struct bufwad {
327
uint64_t bw_index;
328
uint64_t bw_txg;
329
uint64_t bw_data;
330
} bufwad_t;
331
332
/*
333
* It would be better to use a rangelock_t per object. Unfortunately
334
* the rangelock_t is not a drop-in replacement for rl_t, because we
335
* still need to map from object ID to rangelock_t.
336
*/
337
typedef enum {
338
ZTRL_READER,
339
ZTRL_WRITER,
340
ZTRL_APPEND
341
} rl_type_t;
342
343
typedef struct rll {
344
void *rll_writer;
345
int rll_readers;
346
kmutex_t rll_lock;
347
kcondvar_t rll_cv;
348
} rll_t;
349
350
typedef struct rl {
351
uint64_t rl_object;
352
uint64_t rl_offset;
353
uint64_t rl_size;
354
rll_t *rl_lock;
355
} rl_t;
356
357
#define ZTEST_RANGE_LOCKS 64
358
#define ZTEST_OBJECT_LOCKS 64
359
360
/*
361
* Object descriptor. Used as a template for object lookup/create/remove.
362
*/
363
typedef struct ztest_od {
364
uint64_t od_dir;
365
uint64_t od_object;
366
dmu_object_type_t od_type;
367
dmu_object_type_t od_crtype;
368
uint64_t od_blocksize;
369
uint64_t od_crblocksize;
370
uint64_t od_crdnodesize;
371
uint64_t od_gen;
372
uint64_t od_crgen;
373
char od_name[ZFS_MAX_DATASET_NAME_LEN];
374
} ztest_od_t;
375
376
/*
377
* Per-dataset state.
378
*/
379
typedef struct ztest_ds {
380
ztest_shared_ds_t *zd_shared;
381
objset_t *zd_os;
382
pthread_rwlock_t zd_zilog_lock;
383
zilog_t *zd_zilog;
384
ztest_od_t *zd_od; /* debugging aid */
385
char zd_name[ZFS_MAX_DATASET_NAME_LEN];
386
kmutex_t zd_dirobj_lock;
387
rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
388
rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
389
} ztest_ds_t;
390
391
/*
392
* Per-iteration state.
393
*/
394
typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
395
396
typedef struct ztest_info {
397
ztest_func_t *zi_func; /* test function */
398
uint64_t zi_iters; /* iterations per execution */
399
uint64_t *zi_interval; /* execute every <interval> seconds */
400
const char *zi_funcname; /* name of test function */
401
} ztest_info_t;
402
403
typedef struct ztest_shared_callstate {
404
uint64_t zc_count; /* per-pass count */
405
uint64_t zc_time; /* per-pass time */
406
uint64_t zc_next; /* next time to call this function */
407
} ztest_shared_callstate_t;
408
409
static ztest_shared_callstate_t *ztest_shared_callstate;
410
#define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
411
412
ztest_func_t ztest_dmu_read_write;
413
ztest_func_t ztest_dmu_write_parallel;
414
ztest_func_t ztest_dmu_object_alloc_free;
415
ztest_func_t ztest_dmu_object_next_chunk;
416
ztest_func_t ztest_dmu_commit_callbacks;
417
ztest_func_t ztest_zap;
418
ztest_func_t ztest_zap_parallel;
419
ztest_func_t ztest_zil_commit;
420
ztest_func_t ztest_zil_remount;
421
ztest_func_t ztest_dmu_read_write_zcopy;
422
ztest_func_t ztest_dmu_objset_create_destroy;
423
ztest_func_t ztest_dmu_prealloc;
424
ztest_func_t ztest_fzap;
425
ztest_func_t ztest_dmu_snapshot_create_destroy;
426
ztest_func_t ztest_dsl_prop_get_set;
427
ztest_func_t ztest_spa_prop_get_set;
428
ztest_func_t ztest_spa_create_destroy;
429
ztest_func_t ztest_fault_inject;
430
ztest_func_t ztest_dmu_snapshot_hold;
431
ztest_func_t ztest_mmp_enable_disable;
432
ztest_func_t ztest_scrub;
433
ztest_func_t ztest_dsl_dataset_promote_busy;
434
ztest_func_t ztest_vdev_attach_detach;
435
ztest_func_t ztest_vdev_raidz_attach;
436
ztest_func_t ztest_vdev_LUN_growth;
437
ztest_func_t ztest_vdev_add_remove;
438
ztest_func_t ztest_vdev_class_add;
439
ztest_func_t ztest_vdev_aux_add_remove;
440
ztest_func_t ztest_split_pool;
441
ztest_func_t ztest_reguid;
442
ztest_func_t ztest_spa_upgrade;
443
ztest_func_t ztest_device_removal;
444
ztest_func_t ztest_spa_checkpoint_create_discard;
445
ztest_func_t ztest_initialize;
446
ztest_func_t ztest_trim;
447
ztest_func_t ztest_blake3;
448
ztest_func_t ztest_fletcher;
449
ztest_func_t ztest_fletcher_incr;
450
ztest_func_t ztest_verify_dnode_bt;
451
ztest_func_t ztest_pool_prefetch_ddt;
452
ztest_func_t ztest_ddt_prune;
453
454
static uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
455
static uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
456
static uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
457
static uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
458
static uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
459
460
#define ZTI_INIT(func, iters, interval) \
461
{ .zi_func = (func), \
462
.zi_iters = (iters), \
463
.zi_interval = (interval), \
464
.zi_funcname = # func }
465
466
static ztest_info_t ztest_info[] = {
467
ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
468
ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
469
ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
470
ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
471
ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
472
ZTI_INIT(ztest_zap, 30, &zopt_always),
473
ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
474
ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes),
475
ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
476
ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
477
ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
478
ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
479
ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
480
ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
481
#if 0
482
ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
483
#endif
484
ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
485
ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
486
ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
487
ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
488
ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
489
ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
490
ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
491
ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
492
ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
493
ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
494
ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
495
ZTI_INIT(ztest_vdev_raidz_attach, 1, &zopt_sometimes),
496
ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
497
ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
498
ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
499
ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
500
ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
501
ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
502
ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
503
ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
504
ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
505
ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
506
ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
507
ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
508
ZTI_INIT(ztest_pool_prefetch_ddt, 1, &zopt_rarely),
509
ZTI_INIT(ztest_ddt_prune, 1, &zopt_rarely),
510
};
511
512
#define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
513
514
/*
515
* The following struct is used to hold a list of uncalled commit callbacks.
516
* The callbacks are ordered by txg number.
517
*/
518
typedef struct ztest_cb_list {
519
kmutex_t zcl_callbacks_lock;
520
list_t zcl_callbacks;
521
} ztest_cb_list_t;
522
523
/*
524
* Stuff we need to share writably between parent and child.
525
*/
526
typedef struct ztest_shared {
527
boolean_t zs_do_init;
528
hrtime_t zs_proc_start;
529
hrtime_t zs_proc_stop;
530
hrtime_t zs_thread_start;
531
hrtime_t zs_thread_stop;
532
hrtime_t zs_thread_kill;
533
uint64_t zs_enospc_count;
534
uint64_t zs_vdev_next_leaf;
535
uint64_t zs_vdev_aux;
536
uint64_t zs_alloc;
537
uint64_t zs_space;
538
uint64_t zs_splits;
539
uint64_t zs_mirrors;
540
uint64_t zs_metaslab_sz;
541
uint64_t zs_metaslab_df_alloc_threshold;
542
uint64_t zs_guid;
543
} ztest_shared_t;
544
545
#define ID_PARALLEL -1ULL
546
547
static char ztest_dev_template[] = "%s/%s.%llua";
548
static char ztest_aux_template[] = "%s/%s.%s.%llu";
549
static ztest_shared_t *ztest_shared;
550
551
static spa_t *ztest_spa = NULL;
552
static ztest_ds_t *ztest_ds;
553
554
static kmutex_t ztest_vdev_lock;
555
static boolean_t ztest_device_removal_active = B_FALSE;
556
static boolean_t ztest_pool_scrubbed = B_FALSE;
557
static kmutex_t ztest_checkpoint_lock;
558
559
/*
560
* The ztest_name_lock protects the pool and dataset namespace used by
561
* the individual tests. To modify the namespace, consumers must grab
562
* this lock as writer. Grabbing the lock as reader will ensure that the
563
* namespace does not change while the lock is held.
564
*/
565
static pthread_rwlock_t ztest_name_lock;
566
567
static boolean_t ztest_dump_core = B_TRUE;
568
static boolean_t ztest_exiting;
569
570
/* Global commit callback list */
571
static ztest_cb_list_t zcl;
572
/* Commit cb delay */
573
static uint64_t zc_min_txg_delay = UINT64_MAX;
574
static int zc_cb_counter = 0;
575
576
/*
577
* Minimum number of commit callbacks that need to be registered for us to check
578
* whether the minimum txg delay is acceptable.
579
*/
580
#define ZTEST_COMMIT_CB_MIN_REG 100
581
582
/*
583
* If a number of txgs equal to this threshold have been created after a commit
584
* callback has been registered but not called, then we assume there is an
585
* implementation bug.
586
*/
587
#define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
588
589
enum ztest_object {
590
ZTEST_META_DNODE = 0,
591
ZTEST_DIROBJ,
592
ZTEST_OBJECTS
593
};
594
595
static __attribute__((noreturn)) void usage(boolean_t requested);
596
static int ztest_scrub_impl(spa_t *spa);
597
598
/*
599
* These libumem hooks provide a reasonable set of defaults for the allocator's
600
* debugging facilities.
601
*/
602
const char *
603
_umem_debug_init(void)
604
{
605
return ("default,verbose"); /* $UMEM_DEBUG setting */
606
}
607
608
const char *
609
_umem_logging_init(void)
610
{
611
return ("fail,contents"); /* $UMEM_LOGGING setting */
612
}
613
614
static void
615
dump_debug_buffer(void)
616
{
617
ssize_t ret __attribute__((unused));
618
619
if (!ztest_opts.zo_dump_dbgmsg)
620
return;
621
622
/*
623
* We use write() instead of printf() so that this function
624
* is safe to call from a signal handler.
625
*/
626
ret = write(STDERR_FILENO, "\n", 1);
627
zfs_dbgmsg_print(STDERR_FILENO, "ztest");
628
}
629
630
static void sig_handler(int signo)
631
{
632
struct sigaction action;
633
634
libspl_backtrace(STDERR_FILENO);
635
dump_debug_buffer();
636
637
/*
638
* Restore default action and re-raise signal so SIGSEGV and
639
* SIGABRT can trigger a core dump.
640
*/
641
action.sa_handler = SIG_DFL;
642
sigemptyset(&action.sa_mask);
643
action.sa_flags = 0;
644
(void) sigaction(signo, &action, NULL);
645
raise(signo);
646
}
647
648
#define FATAL_MSG_SZ 1024
649
650
static const char *fatal_msg;
651
652
static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
653
fatal(int do_perror, const char *message, ...)
654
{
655
va_list args;
656
int save_errno = errno;
657
char *buf;
658
659
(void) fflush(stdout);
660
buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
661
if (buf == NULL)
662
goto out;
663
664
va_start(args, message);
665
(void) sprintf(buf, "ztest: ");
666
/* LINTED */
667
(void) vsprintf(buf + strlen(buf), message, args);
668
va_end(args);
669
if (do_perror) {
670
(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
671
": %s", strerror(save_errno));
672
}
673
(void) fprintf(stderr, "%s\n", buf);
674
fatal_msg = buf; /* to ease debugging */
675
676
out:
677
if (ztest_dump_core)
678
abort();
679
else
680
dump_debug_buffer();
681
682
exit(3);
683
}
684
685
static int
686
str2shift(const char *buf)
687
{
688
const char *ends = "BKMGTPEZ";
689
int i, len;
690
691
if (buf[0] == '\0')
692
return (0);
693
694
len = strlen(ends);
695
for (i = 0; i < len; i++) {
696
if (toupper(buf[0]) == ends[i])
697
break;
698
}
699
if (i == len) {
700
(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
701
buf);
702
usage(B_FALSE);
703
}
704
if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
705
return (10*i);
706
}
707
(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
708
usage(B_FALSE);
709
}
710
711
static uint64_t
712
nicenumtoull(const char *buf)
713
{
714
char *end;
715
uint64_t val;
716
717
val = strtoull(buf, &end, 0);
718
if (end == buf) {
719
(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
720
usage(B_FALSE);
721
} else if (end[0] == '.') {
722
double fval = strtod(buf, &end);
723
fval *= pow(2, str2shift(end));
724
/*
725
* UINT64_MAX is not exactly representable as a double.
726
* The closest representation is UINT64_MAX + 1, so we
727
* use a >= comparison instead of > for the bounds check.
728
*/
729
if (fval >= (double)UINT64_MAX) {
730
(void) fprintf(stderr, "ztest: value too large: %s\n",
731
buf);
732
usage(B_FALSE);
733
}
734
val = (uint64_t)fval;
735
} else {
736
int shift = str2shift(end);
737
if (shift >= 64 || (val << shift) >> shift != val) {
738
(void) fprintf(stderr, "ztest: value too large: %s\n",
739
buf);
740
usage(B_FALSE);
741
}
742
val <<= shift;
743
}
744
return (val);
745
}
746
747
typedef struct ztest_option {
748
const char short_opt;
749
const char *long_opt;
750
const char *long_opt_param;
751
const char *comment;
752
unsigned int default_int;
753
const char *default_str;
754
} ztest_option_t;
755
756
/*
757
* The following option_table is used for generating the usage info as well as
758
* the long and short option information for calling getopt_long().
759
*/
760
static ztest_option_t option_table[] = {
761
{ 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
762
NULL},
763
{ 's', "vdev-size", "INTEGER", "Size of each vdev",
764
NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
765
{ 'a', "alignment-shift", "INTEGER",
766
"Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
767
{ 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
768
DEFAULT_MIRRORS, NULL},
769
{ 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
770
DEFAULT_RAID_CHILDREN, NULL},
771
{ 'R', "raid-parity", "INTEGER", "Raid parity",
772
DEFAULT_RAID_PARITY, NULL},
773
{ 'K', "raid-kind", "raidz|eraidz|draid|random", "Raid kind",
774
NO_DEFAULT, "random"},
775
{ 'D', "draid-data", "INTEGER", "Number of draid data drives",
776
DEFAULT_DRAID_DATA, NULL},
777
{ 'S', "draid-spares", "INTEGER", "Number of draid spares",
778
DEFAULT_DRAID_SPARES, NULL},
779
{ 'd', "datasets", "INTEGER", "Number of datasets",
780
DEFAULT_DATASETS_COUNT, NULL},
781
{ 't', "threads", "INTEGER", "Number of ztest threads",
782
DEFAULT_THREADS, NULL},
783
{ 'g', "gang-block-threshold", "INTEGER",
784
"Metaslab gang block threshold",
785
NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
786
{ 'i', "init-count", "INTEGER", "Number of times to initialize pool",
787
DEFAULT_INITS, NULL},
788
{ 'k', "kill-percentage", "INTEGER", "Kill percentage",
789
NO_DEFAULT, DEFAULT_KILLRATE_STR},
790
{ 'p', "pool-name", "STRING", "Pool name",
791
NO_DEFAULT, DEFAULT_POOL},
792
{ 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
793
NO_DEFAULT, DEFAULT_VDEV_DIR},
794
{ 'M', "multi-host", NULL,
795
"Multi-host; simulate pool imported on remote host",
796
NO_DEFAULT, NULL},
797
{ 'E', "use-existing-pool", NULL,
798
"Use existing pool instead of creating new one", NO_DEFAULT, NULL},
799
{ 'T', "run-time", "INTEGER", "Total run time",
800
NO_DEFAULT, DEFAULT_RUN_TIME_STR},
801
{ 'P', "pass-time", "INTEGER", "Time per pass",
802
NO_DEFAULT, DEFAULT_PASS_TIME_STR},
803
{ 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
804
DEFAULT_MAX_LOOPS, NULL},
805
{ 'B', "alt-ztest", "PATH", "Alternate ztest path",
806
NO_DEFAULT, NULL},
807
{ 'C', "vdev-class-state", "on|off|random", "vdev class state",
808
NO_DEFAULT, "random"},
809
{ 'X', "raidz-expansion", NULL,
810
"Perform a dedicated raidz expansion test",
811
NO_DEFAULT, NULL},
812
{ 'o', "option", "\"NAME=VALUE\"",
813
"Set the named tunable to the given value",
814
NO_DEFAULT, NULL},
815
{ 'G', "dump-debug-msg", NULL,
816
"Dump zfs_dbgmsg buffer before exiting due to an error",
817
NO_DEFAULT, NULL},
818
{ 'V', "verbose", NULL,
819
"Verbose (use multiple times for ever more verbosity)",
820
NO_DEFAULT, NULL},
821
{ 'h', "help", NULL, "Show this help",
822
NO_DEFAULT, NULL},
823
{0, 0, 0, 0, 0, 0}
824
};
825
826
static struct option *long_opts = NULL;
827
static char *short_opts = NULL;
828
829
static void
830
init_options(void)
831
{
832
ASSERT0P(long_opts);
833
ASSERT0P(short_opts);
834
835
int count = sizeof (option_table) / sizeof (option_table[0]);
836
long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
837
838
short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
839
int short_opt_index = 0;
840
841
for (int i = 0; i < count; i++) {
842
long_opts[i].val = option_table[i].short_opt;
843
long_opts[i].name = option_table[i].long_opt;
844
long_opts[i].has_arg = option_table[i].long_opt_param != NULL
845
? required_argument : no_argument;
846
long_opts[i].flag = NULL;
847
short_opts[short_opt_index++] = option_table[i].short_opt;
848
if (option_table[i].long_opt_param != NULL) {
849
short_opts[short_opt_index++] = ':';
850
}
851
}
852
}
853
854
static void
855
fini_options(void)
856
{
857
int count = sizeof (option_table) / sizeof (option_table[0]);
858
859
umem_free(long_opts, sizeof (struct option) * count);
860
umem_free(short_opts, sizeof (char) * 2 * count);
861
862
long_opts = NULL;
863
short_opts = NULL;
864
}
865
866
static __attribute__((noreturn)) void
867
usage(boolean_t requested)
868
{
869
char option[80];
870
FILE *fp = requested ? stdout : stderr;
871
872
(void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
873
for (int i = 0; option_table[i].short_opt != 0; i++) {
874
if (option_table[i].long_opt_param != NULL) {
875
(void) sprintf(option, " -%c --%s=%s",
876
option_table[i].short_opt,
877
option_table[i].long_opt,
878
option_table[i].long_opt_param);
879
} else {
880
(void) sprintf(option, " -%c --%s",
881
option_table[i].short_opt,
882
option_table[i].long_opt);
883
}
884
(void) fprintf(fp, " %-43s%s", option,
885
option_table[i].comment);
886
887
if (option_table[i].long_opt_param != NULL) {
888
if (option_table[i].default_str != NULL) {
889
(void) fprintf(fp, " (default: %s)",
890
option_table[i].default_str);
891
} else if (option_table[i].default_int != NO_DEFAULT) {
892
(void) fprintf(fp, " (default: %u)",
893
option_table[i].default_int);
894
}
895
}
896
(void) fprintf(fp, "\n");
897
}
898
exit(requested ? 0 : 1);
899
}
900
901
static uint64_t
902
ztest_random(uint64_t range)
903
{
904
uint64_t r;
905
906
if (range == 0)
907
return (0);
908
909
random_get_pseudo_bytes((uint8_t *)&r, sizeof (r));
910
911
return (r % range);
912
}
913
914
static void
915
ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
916
{
917
char name[32];
918
char *value;
919
int state;
920
921
(void) strlcpy(name, input, sizeof (name));
922
923
value = strchr(name, '=');
924
if (value == NULL) {
925
(void) fprintf(stderr, "missing value in property=value "
926
"'-C' argument (%s)\n", input);
927
usage(B_FALSE);
928
}
929
*(value) = '\0';
930
value++;
931
932
if (strcmp(value, "on") == 0) {
933
state = ZTEST_VDEV_CLASS_ON;
934
} else if (strcmp(value, "off") == 0) {
935
state = ZTEST_VDEV_CLASS_OFF;
936
} else if (strcmp(value, "random") == 0) {
937
state = ZTEST_VDEV_CLASS_RND;
938
} else {
939
(void) fprintf(stderr, "invalid property value '%s'\n", value);
940
usage(B_FALSE);
941
}
942
943
if (strcmp(name, "special") == 0) {
944
zo->zo_special_vdevs = state;
945
} else {
946
(void) fprintf(stderr, "invalid property name '%s'\n", name);
947
usage(B_FALSE);
948
}
949
if (zo->zo_verbose >= 3)
950
(void) printf("%s vdev state is '%s'\n", name, value);
951
}
952
953
static void
954
process_options(int argc, char **argv)
955
{
956
char *path;
957
ztest_shared_opts_t *zo = &ztest_opts;
958
959
int opt;
960
uint64_t value;
961
const char *raid_kind = "random";
962
963
memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
964
965
init_options();
966
967
while ((opt = getopt_long(argc, argv, short_opts, long_opts,
968
NULL)) != EOF) {
969
value = 0;
970
switch (opt) {
971
case 'v':
972
case 's':
973
case 'a':
974
case 'm':
975
case 'r':
976
case 'R':
977
case 'D':
978
case 'S':
979
case 'd':
980
case 't':
981
case 'g':
982
case 'i':
983
case 'k':
984
case 'T':
985
case 'P':
986
case 'F':
987
value = nicenumtoull(optarg);
988
}
989
switch (opt) {
990
case 'v':
991
zo->zo_vdevs = value;
992
break;
993
case 's':
994
zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
995
break;
996
case 'a':
997
zo->zo_ashift = value;
998
break;
999
case 'm':
1000
zo->zo_mirrors = value;
1001
break;
1002
case 'r':
1003
zo->zo_raid_children = MAX(1, value);
1004
break;
1005
case 'R':
1006
zo->zo_raid_parity = MIN(MAX(value, 1), 3);
1007
break;
1008
case 'K':
1009
raid_kind = optarg;
1010
break;
1011
case 'D':
1012
zo->zo_draid_data = MAX(1, value);
1013
break;
1014
case 'S':
1015
zo->zo_draid_spares = MAX(1, value);
1016
break;
1017
case 'd':
1018
zo->zo_datasets = MAX(1, value);
1019
break;
1020
case 't':
1021
zo->zo_threads = MAX(1, value);
1022
break;
1023
case 'g':
1024
zo->zo_metaslab_force_ganging =
1025
MAX(SPA_MINBLOCKSIZE << 1, value);
1026
break;
1027
case 'i':
1028
zo->zo_init = value;
1029
break;
1030
case 'k':
1031
zo->zo_killrate = value;
1032
break;
1033
case 'p':
1034
(void) strlcpy(zo->zo_pool, optarg,
1035
sizeof (zo->zo_pool));
1036
break;
1037
case 'f':
1038
path = realpath(optarg, NULL);
1039
if (path == NULL) {
1040
(void) fprintf(stderr, "error: %s: %s\n",
1041
optarg, strerror(errno));
1042
usage(B_FALSE);
1043
} else {
1044
(void) strlcpy(zo->zo_dir, path,
1045
sizeof (zo->zo_dir));
1046
free(path);
1047
}
1048
break;
1049
case 'M':
1050
zo->zo_mmp_test = 1;
1051
break;
1052
case 'V':
1053
zo->zo_verbose++;
1054
break;
1055
case 'X':
1056
zo->zo_raidz_expand_test = RAIDZ_EXPAND_REQUESTED;
1057
break;
1058
case 'E':
1059
zo->zo_init = 0;
1060
break;
1061
case 'T':
1062
zo->zo_time = value;
1063
break;
1064
case 'P':
1065
zo->zo_passtime = MAX(1, value);
1066
break;
1067
case 'F':
1068
zo->zo_maxloops = MAX(1, value);
1069
break;
1070
case 'B':
1071
(void) strlcpy(zo->zo_alt_ztest, optarg,
1072
sizeof (zo->zo_alt_ztest));
1073
break;
1074
case 'C':
1075
ztest_parse_name_value(optarg, zo);
1076
break;
1077
case 'o':
1078
if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1079
(void) fprintf(stderr,
1080
"max global var count (%zu) exceeded\n",
1081
ZO_GVARS_MAX_COUNT);
1082
usage(B_FALSE);
1083
}
1084
char *v = zo->zo_gvars[zo->zo_gvars_count];
1085
if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1086
ZO_GVARS_MAX_ARGLEN) {
1087
(void) fprintf(stderr,
1088
"global var option '%s' is too long\n",
1089
optarg);
1090
usage(B_FALSE);
1091
}
1092
zo->zo_gvars_count++;
1093
break;
1094
case 'G':
1095
zo->zo_dump_dbgmsg = 1;
1096
break;
1097
case 'h':
1098
usage(B_TRUE);
1099
break;
1100
case '?':
1101
default:
1102
usage(B_FALSE);
1103
break;
1104
}
1105
}
1106
1107
fini_options();
1108
1109
/* Force compatible options for raidz expansion run */
1110
if (zo->zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED) {
1111
zo->zo_mmp_test = 0;
1112
zo->zo_mirrors = 0;
1113
zo->zo_vdevs = 1;
1114
zo->zo_vdev_size = DEFAULT_VDEV_SIZE * 2;
1115
zo->zo_raid_do_expand = B_FALSE;
1116
raid_kind = "raidz";
1117
}
1118
1119
if (strcmp(raid_kind, "random") == 0) {
1120
switch (ztest_random(3)) {
1121
case 0:
1122
raid_kind = "raidz";
1123
break;
1124
case 1:
1125
raid_kind = "eraidz";
1126
break;
1127
case 2:
1128
raid_kind = "draid";
1129
break;
1130
}
1131
1132
if (ztest_opts.zo_verbose >= 3)
1133
(void) printf("choosing RAID type '%s'\n", raid_kind);
1134
}
1135
1136
if (strcmp(raid_kind, "draid") == 0) {
1137
uint64_t min_devsize;
1138
1139
/* With fewer disk use 256M, otherwise 128M is OK */
1140
min_devsize = (ztest_opts.zo_raid_children < 16) ?
1141
(256ULL << 20) : (128ULL << 20);
1142
1143
/* No top-level mirrors with dRAID for now */
1144
zo->zo_mirrors = 0;
1145
1146
/* Use more appropriate defaults for dRAID */
1147
if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1148
zo->zo_vdevs = 1;
1149
if (zo->zo_raid_children ==
1150
ztest_opts_defaults.zo_raid_children)
1151
zo->zo_raid_children = 16;
1152
if (zo->zo_ashift < 12)
1153
zo->zo_ashift = 12;
1154
if (zo->zo_vdev_size < min_devsize)
1155
zo->zo_vdev_size = min_devsize;
1156
1157
if (zo->zo_draid_data + zo->zo_raid_parity >
1158
zo->zo_raid_children - zo->zo_draid_spares) {
1159
(void) fprintf(stderr, "error: too few draid "
1160
"children (%d) for stripe width (%d)\n",
1161
zo->zo_raid_children,
1162
zo->zo_draid_data + zo->zo_raid_parity);
1163
usage(B_FALSE);
1164
}
1165
1166
(void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1167
sizeof (zo->zo_raid_type));
1168
1169
} else if (strcmp(raid_kind, "eraidz") == 0) {
1170
/* using eraidz (expandable raidz) */
1171
zo->zo_raid_do_expand = B_TRUE;
1172
1173
/* tests expect top-level to be raidz */
1174
zo->zo_mirrors = 0;
1175
zo->zo_vdevs = 1;
1176
1177
/* Make sure parity is less than data columns */
1178
zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1179
zo->zo_raid_children - 1);
1180
1181
} else /* using raidz */ {
1182
ASSERT0(strcmp(raid_kind, "raidz"));
1183
1184
zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1185
zo->zo_raid_children - 1);
1186
}
1187
1188
zo->zo_vdevtime =
1189
(zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1190
UINT64_MAX >> 2);
1191
1192
if (*zo->zo_alt_ztest) {
1193
const char *invalid_what = "ztest";
1194
char *val = zo->zo_alt_ztest;
1195
if (0 != access(val, X_OK) ||
1196
(strrchr(val, '/') == NULL && (errno == EINVAL)))
1197
goto invalid;
1198
1199
int dirlen = strrchr(val, '/') - val;
1200
strlcpy(zo->zo_alt_libpath, val,
1201
MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
1202
invalid_what = "library path", val = zo->zo_alt_libpath;
1203
if (strrchr(val, '/') == NULL && (errno == EINVAL))
1204
goto invalid;
1205
*strrchr(val, '/') = '\0';
1206
strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
1207
1208
if (0 != access(zo->zo_alt_libpath, X_OK))
1209
goto invalid;
1210
return;
1211
1212
invalid:
1213
ztest_dump_core = B_FALSE;
1214
fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
1215
}
1216
}
1217
1218
static void
1219
ztest_kill(ztest_shared_t *zs)
1220
{
1221
zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1222
zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1223
1224
/*
1225
* Before we kill ourselves, make sure that the config is updated.
1226
* See comment above spa_write_cachefile().
1227
*/
1228
if (raidz_expand_pause_point != RAIDZ_EXPAND_PAUSE_NONE) {
1229
if (spa_namespace_tryenter(FTAG)) {
1230
spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE,
1231
B_FALSE);
1232
spa_namespace_exit(FTAG);
1233
1234
ztest_scratch_state->zs_raidz_scratch_verify_pause =
1235
raidz_expand_pause_point;
1236
} else {
1237
/*
1238
* Do not verify scratch object in case if
1239
* spa_namespace_lock cannot be acquired,
1240
* it can cause deadlock in spa_config_update().
1241
*/
1242
raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
1243
1244
return;
1245
}
1246
} else {
1247
spa_namespace_enter(FTAG);
1248
spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
1249
spa_namespace_exit(FTAG);
1250
}
1251
1252
(void) raise(SIGKILL);
1253
}
1254
1255
static void
1256
ztest_record_enospc(const char *s)
1257
{
1258
(void) s;
1259
ztest_shared->zs_enospc_count++;
1260
}
1261
1262
static uint64_t
1263
ztest_get_ashift(void)
1264
{
1265
if (ztest_opts.zo_ashift == 0)
1266
return (SPA_MINBLOCKSHIFT + ztest_random(5));
1267
return (ztest_opts.zo_ashift);
1268
}
1269
1270
static boolean_t
1271
ztest_is_draid_spare(const char *name)
1272
{
1273
uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1274
1275
if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1276
&parity, &vdev_id, &spare_id) == 3) {
1277
return (B_TRUE);
1278
}
1279
1280
return (B_FALSE);
1281
}
1282
1283
static nvlist_t *
1284
make_vdev_file(const char *path, const char *aux, const char *pool,
1285
size_t size, uint64_t ashift)
1286
{
1287
char *pathbuf = NULL;
1288
uint64_t vdev;
1289
nvlist_t *file;
1290
boolean_t draid_spare = B_FALSE;
1291
1292
1293
if (ashift == 0)
1294
ashift = ztest_get_ashift();
1295
1296
if (path == NULL) {
1297
pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1298
path = pathbuf;
1299
1300
if (aux != NULL) {
1301
vdev = ztest_shared->zs_vdev_aux;
1302
(void) snprintf(pathbuf, MAXPATHLEN,
1303
ztest_aux_template, ztest_opts.zo_dir,
1304
pool == NULL ? ztest_opts.zo_pool : pool,
1305
aux, vdev);
1306
} else {
1307
vdev = ztest_shared->zs_vdev_next_leaf++;
1308
(void) snprintf(pathbuf, MAXPATHLEN,
1309
ztest_dev_template, ztest_opts.zo_dir,
1310
pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1311
}
1312
} else {
1313
draid_spare = ztest_is_draid_spare(path);
1314
}
1315
1316
if (size != 0 && !draid_spare) {
1317
int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1318
if (fd == -1)
1319
fatal(B_TRUE, "can't open %s", path);
1320
if (ftruncate(fd, size) != 0)
1321
fatal(B_TRUE, "can't ftruncate %s", path);
1322
(void) close(fd);
1323
}
1324
1325
file = fnvlist_alloc();
1326
fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1327
draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1328
fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1329
fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1330
umem_free(pathbuf, MAXPATHLEN);
1331
1332
return (file);
1333
}
1334
1335
static nvlist_t *
1336
make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
1337
uint64_t ashift, int r)
1338
{
1339
nvlist_t *raid, **child;
1340
int c;
1341
1342
if (r < 2)
1343
return (make_vdev_file(path, aux, pool, size, ashift));
1344
child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1345
1346
for (c = 0; c < r; c++)
1347
child[c] = make_vdev_file(path, aux, pool, size, ashift);
1348
1349
raid = fnvlist_alloc();
1350
fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1351
ztest_opts.zo_raid_type);
1352
fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1353
ztest_opts.zo_raid_parity);
1354
fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1355
(const nvlist_t **)child, r);
1356
1357
if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1358
uint64_t ndata = ztest_opts.zo_draid_data;
1359
uint64_t nparity = ztest_opts.zo_raid_parity;
1360
uint64_t nspares = ztest_opts.zo_draid_spares;
1361
uint64_t children = ztest_opts.zo_raid_children;
1362
uint64_t ngroups = 1;
1363
1364
/*
1365
* Calculate the minimum number of groups required to fill a
1366
* slice. This is the LCM of the stripe width (data + parity)
1367
* and the number of data drives (children - spares).
1368
*/
1369
while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1370
ngroups++;
1371
1372
/* Store the basic dRAID configuration. */
1373
fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1374
fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1375
fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1376
}
1377
1378
for (c = 0; c < r; c++)
1379
fnvlist_free(child[c]);
1380
1381
umem_free(child, r * sizeof (nvlist_t *));
1382
1383
return (raid);
1384
}
1385
1386
static nvlist_t *
1387
make_vdev_mirror(const char *path, const char *aux, const char *pool,
1388
size_t size, uint64_t ashift, int r, int m)
1389
{
1390
nvlist_t *mirror, **child;
1391
int c;
1392
1393
if (m < 1)
1394
return (make_vdev_raid(path, aux, pool, size, ashift, r));
1395
1396
child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1397
1398
for (c = 0; c < m; c++)
1399
child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1400
1401
mirror = fnvlist_alloc();
1402
fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1403
fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1404
(const nvlist_t **)child, m);
1405
1406
for (c = 0; c < m; c++)
1407
fnvlist_free(child[c]);
1408
1409
umem_free(child, m * sizeof (nvlist_t *));
1410
1411
return (mirror);
1412
}
1413
1414
static nvlist_t *
1415
make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
1416
uint64_t ashift, const char *class, int r, int m, int t)
1417
{
1418
nvlist_t *root, **child;
1419
int c;
1420
boolean_t log;
1421
1422
ASSERT3S(t, >, 0);
1423
1424
log = (class != NULL && strcmp(class, "log") == 0);
1425
1426
child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1427
1428
for (c = 0; c < t; c++) {
1429
child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1430
r, m);
1431
fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1432
1433
if (class != NULL && class[0] != '\0') {
1434
ASSERT(m > 1 || log); /* expecting a mirror */
1435
fnvlist_add_string(child[c],
1436
ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1437
}
1438
}
1439
1440
root = fnvlist_alloc();
1441
fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1442
fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1443
(const nvlist_t **)child, t);
1444
1445
for (c = 0; c < t; c++)
1446
fnvlist_free(child[c]);
1447
1448
umem_free(child, t * sizeof (nvlist_t *));
1449
1450
return (root);
1451
}
1452
1453
/*
1454
* Find a random spa version. Returns back a random spa version in the
1455
* range [initial_version, SPA_VERSION_FEATURES].
1456
*/
1457
static uint64_t
1458
ztest_random_spa_version(uint64_t initial_version)
1459
{
1460
uint64_t version = initial_version;
1461
1462
if (version <= SPA_VERSION_BEFORE_FEATURES) {
1463
version = version +
1464
ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1465
}
1466
1467
if (version > SPA_VERSION_BEFORE_FEATURES)
1468
version = SPA_VERSION_FEATURES;
1469
1470
ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1471
return (version);
1472
}
1473
1474
static int
1475
ztest_random_blocksize(void)
1476
{
1477
ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1478
1479
/*
1480
* Choose a block size >= the ashift.
1481
* If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1482
*/
1483
int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1484
if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1485
maxbs = 20;
1486
uint64_t block_shift =
1487
ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1488
return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1489
}
1490
1491
static int
1492
ztest_random_dnodesize(void)
1493
{
1494
int slots;
1495
int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1496
1497
if (max_slots == DNODE_MIN_SLOTS)
1498
return (DNODE_MIN_SIZE);
1499
1500
/*
1501
* Weight the random distribution more heavily toward smaller
1502
* dnode sizes since that is more likely to reflect real-world
1503
* usage.
1504
*/
1505
ASSERT3U(max_slots, >, 4);
1506
switch (ztest_random(10)) {
1507
case 0:
1508
slots = 5 + ztest_random(max_slots - 4);
1509
break;
1510
case 1 ... 4:
1511
slots = 2 + ztest_random(3);
1512
break;
1513
default:
1514
slots = 1;
1515
break;
1516
}
1517
1518
return (slots << DNODE_SHIFT);
1519
}
1520
1521
static int
1522
ztest_random_ibshift(void)
1523
{
1524
return (DN_MIN_INDBLKSHIFT +
1525
ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1526
}
1527
1528
static uint64_t
1529
ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1530
{
1531
uint64_t top;
1532
vdev_t *rvd = spa->spa_root_vdev;
1533
vdev_t *tvd;
1534
1535
ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1536
1537
do {
1538
top = ztest_random(rvd->vdev_children);
1539
tvd = rvd->vdev_child[top];
1540
} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1541
tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1542
1543
return (top);
1544
}
1545
1546
static uint64_t
1547
ztest_random_dsl_prop(zfs_prop_t prop)
1548
{
1549
uint64_t value;
1550
1551
do {
1552
value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1553
} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1554
1555
return (value);
1556
}
1557
1558
static int
1559
ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1560
boolean_t inherit)
1561
{
1562
const char *propname = zfs_prop_to_name(prop);
1563
const char *valname;
1564
char *setpoint;
1565
uint64_t curval;
1566
int error;
1567
1568
error = dsl_prop_set_int(osname, propname,
1569
(inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1570
1571
if (error == ENOSPC) {
1572
ztest_record_enospc(FTAG);
1573
return (error);
1574
}
1575
ASSERT0(error);
1576
1577
setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1578
VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1579
1580
if (ztest_opts.zo_verbose >= 6) {
1581
int err;
1582
1583
err = zfs_prop_index_to_string(prop, curval, &valname);
1584
if (err)
1585
(void) printf("%s %s = %llu at '%s'\n", osname,
1586
propname, (unsigned long long)curval, setpoint);
1587
else
1588
(void) printf("%s %s = %s at '%s'\n",
1589
osname, propname, valname, setpoint);
1590
}
1591
umem_free(setpoint, MAXPATHLEN);
1592
1593
return (error);
1594
}
1595
1596
static int
1597
ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1598
{
1599
spa_t *spa = ztest_spa;
1600
nvlist_t *props = NULL;
1601
int error;
1602
1603
props = fnvlist_alloc();
1604
fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1605
1606
error = spa_prop_set(spa, props);
1607
1608
fnvlist_free(props);
1609
1610
if (error == ENOSPC) {
1611
ztest_record_enospc(FTAG);
1612
return (error);
1613
}
1614
ASSERT0(error);
1615
1616
return (error);
1617
}
1618
1619
static int
1620
ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1621
boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
1622
{
1623
int err;
1624
char *cp = NULL;
1625
char ddname[ZFS_MAX_DATASET_NAME_LEN];
1626
1627
strlcpy(ddname, name, sizeof (ddname));
1628
cp = strchr(ddname, '@');
1629
if (cp != NULL)
1630
*cp = '\0';
1631
1632
err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1633
while (decrypt && err == EACCES) {
1634
dsl_crypto_params_t *dcp;
1635
nvlist_t *crypto_args = fnvlist_alloc();
1636
1637
fnvlist_add_uint8_array(crypto_args, "wkeydata",
1638
(uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1639
VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1640
crypto_args, &dcp));
1641
err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1642
/*
1643
* Note: if there was an error loading, the wkey was not
1644
* consumed, and needs to be freed.
1645
*/
1646
dsl_crypto_params_free(dcp, (err != 0));
1647
fnvlist_free(crypto_args);
1648
1649
if (err == EINVAL) {
1650
/*
1651
* We couldn't load a key for this dataset so try
1652
* the parent. This loop will eventually hit the
1653
* encryption root since ztest only makes clones
1654
* as children of their origin datasets.
1655
*/
1656
cp = strrchr(ddname, '/');
1657
if (cp == NULL)
1658
return (err);
1659
1660
*cp = '\0';
1661
err = EACCES;
1662
continue;
1663
} else if (err != 0) {
1664
break;
1665
}
1666
1667
err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1668
break;
1669
}
1670
1671
return (err);
1672
}
1673
1674
static void
1675
ztest_rll_init(rll_t *rll)
1676
{
1677
rll->rll_writer = NULL;
1678
rll->rll_readers = 0;
1679
mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1680
cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1681
}
1682
1683
static void
1684
ztest_rll_destroy(rll_t *rll)
1685
{
1686
ASSERT0P(rll->rll_writer);
1687
ASSERT0(rll->rll_readers);
1688
mutex_destroy(&rll->rll_lock);
1689
cv_destroy(&rll->rll_cv);
1690
}
1691
1692
static void
1693
ztest_rll_lock(rll_t *rll, rl_type_t type)
1694
{
1695
mutex_enter(&rll->rll_lock);
1696
1697
if (type == ZTRL_READER) {
1698
while (rll->rll_writer != NULL)
1699
(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1700
rll->rll_readers++;
1701
} else {
1702
while (rll->rll_writer != NULL || rll->rll_readers)
1703
(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1704
rll->rll_writer = curthread;
1705
}
1706
1707
mutex_exit(&rll->rll_lock);
1708
}
1709
1710
static void
1711
ztest_rll_unlock(rll_t *rll)
1712
{
1713
mutex_enter(&rll->rll_lock);
1714
1715
if (rll->rll_writer) {
1716
ASSERT0(rll->rll_readers);
1717
rll->rll_writer = NULL;
1718
} else {
1719
ASSERT3S(rll->rll_readers, >, 0);
1720
ASSERT0P(rll->rll_writer);
1721
rll->rll_readers--;
1722
}
1723
1724
if (rll->rll_writer == NULL && rll->rll_readers == 0)
1725
cv_broadcast(&rll->rll_cv);
1726
1727
mutex_exit(&rll->rll_lock);
1728
}
1729
1730
static void
1731
ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1732
{
1733
rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1734
1735
ztest_rll_lock(rll, type);
1736
}
1737
1738
static void
1739
ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1740
{
1741
rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1742
1743
ztest_rll_unlock(rll);
1744
}
1745
1746
static rl_t *
1747
ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1748
uint64_t size, rl_type_t type)
1749
{
1750
uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1751
rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1752
rl_t *rl;
1753
1754
rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1755
rl->rl_object = object;
1756
rl->rl_offset = offset;
1757
rl->rl_size = size;
1758
rl->rl_lock = rll;
1759
1760
ztest_rll_lock(rll, type);
1761
1762
return (rl);
1763
}
1764
1765
static void
1766
ztest_range_unlock(rl_t *rl)
1767
{
1768
rll_t *rll = rl->rl_lock;
1769
1770
ztest_rll_unlock(rll);
1771
1772
umem_free(rl, sizeof (*rl));
1773
}
1774
1775
static void
1776
ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1777
{
1778
zd->zd_os = os;
1779
zd->zd_zilog = dmu_objset_zil(os);
1780
zd->zd_shared = szd;
1781
dmu_objset_name(os, zd->zd_name);
1782
int l;
1783
1784
if (zd->zd_shared != NULL)
1785
zd->zd_shared->zd_seq = 0;
1786
1787
VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1788
mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1789
1790
for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1791
ztest_rll_init(&zd->zd_object_lock[l]);
1792
1793
for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1794
ztest_rll_init(&zd->zd_range_lock[l]);
1795
}
1796
1797
static void
1798
ztest_zd_fini(ztest_ds_t *zd)
1799
{
1800
int l;
1801
1802
mutex_destroy(&zd->zd_dirobj_lock);
1803
(void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1804
1805
for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1806
ztest_rll_destroy(&zd->zd_object_lock[l]);
1807
1808
for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1809
ztest_rll_destroy(&zd->zd_range_lock[l]);
1810
}
1811
1812
#define DMU_TX_MIGHTWAIT \
1813
(ztest_random(10) == 0 ? DMU_TX_NOWAIT : DMU_TX_WAIT)
1814
1815
static uint64_t
1816
ztest_tx_assign(dmu_tx_t *tx, dmu_tx_flag_t txg_how, const char *tag)
1817
{
1818
uint64_t txg;
1819
int error;
1820
1821
/*
1822
* Attempt to assign tx to some transaction group.
1823
*/
1824
error = dmu_tx_assign(tx, txg_how);
1825
if (error) {
1826
if (error == ERESTART) {
1827
ASSERT3U(txg_how, ==, DMU_TX_NOWAIT);
1828
dmu_tx_wait(tx);
1829
} else if (error == ENOSPC) {
1830
ztest_record_enospc(tag);
1831
} else {
1832
ASSERT(error == EDQUOT || error == EIO);
1833
}
1834
dmu_tx_abort(tx);
1835
return (0);
1836
}
1837
txg = dmu_tx_get_txg(tx);
1838
ASSERT3U(txg, !=, 0);
1839
return (txg);
1840
}
1841
1842
static void
1843
ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1844
uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1845
uint64_t crtxg)
1846
{
1847
bt->bt_magic = BT_MAGIC;
1848
bt->bt_objset = dmu_objset_id(os);
1849
bt->bt_object = object;
1850
bt->bt_dnodesize = dnodesize;
1851
bt->bt_offset = offset;
1852
bt->bt_gen = gen;
1853
bt->bt_txg = txg;
1854
bt->bt_crtxg = crtxg;
1855
}
1856
1857
static void
1858
ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1859
uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1860
uint64_t crtxg)
1861
{
1862
ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1863
ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1864
ASSERT3U(bt->bt_object, ==, object);
1865
ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1866
ASSERT3U(bt->bt_offset, ==, offset);
1867
ASSERT3U(bt->bt_gen, <=, gen);
1868
ASSERT3U(bt->bt_txg, <=, txg);
1869
ASSERT3U(bt->bt_crtxg, ==, crtxg);
1870
}
1871
1872
static ztest_block_tag_t *
1873
ztest_bt_bonus(dmu_buf_t *db)
1874
{
1875
dmu_object_info_t doi;
1876
ztest_block_tag_t *bt;
1877
1878
dmu_object_info_from_db(db, &doi);
1879
ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1880
ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1881
bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1882
1883
return (bt);
1884
}
1885
1886
/*
1887
* Generate a token to fill up unused bonus buffer space. Try to make
1888
* it unique to the object, generation, and offset to verify that data
1889
* is not getting overwritten by data from other dnodes.
1890
*/
1891
#define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1892
(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1893
1894
/*
1895
* Fill up the unused bonus buffer region before the block tag with a
1896
* verifiable pattern. Filling the whole bonus area with non-zero data
1897
* helps ensure that all dnode traversal code properly skips the
1898
* interior regions of large dnodes.
1899
*/
1900
static void
1901
ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1902
objset_t *os, uint64_t gen)
1903
{
1904
uint64_t *bonusp;
1905
1906
ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1907
1908
for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1909
uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1910
gen, bonusp - (uint64_t *)db->db_data);
1911
*bonusp = token;
1912
}
1913
}
1914
1915
/*
1916
* Verify that the unused area of a bonus buffer is filled with the
1917
* expected tokens.
1918
*/
1919
static void
1920
ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1921
objset_t *os, uint64_t gen)
1922
{
1923
uint64_t *bonusp;
1924
1925
for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1926
uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1927
gen, bonusp - (uint64_t *)db->db_data);
1928
VERIFY3U(*bonusp, ==, token);
1929
}
1930
}
1931
1932
/*
1933
* ZIL logging ops
1934
*/
1935
1936
#define lrz_type lr_mode
1937
#define lrz_blocksize lr_uid
1938
#define lrz_ibshift lr_gid
1939
#define lrz_bonustype lr_rdev
1940
#define lrz_dnodesize lr_crtime[1]
1941
1942
static void
1943
ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1944
{
1945
char *name = (char *)&lr->lr_data[0]; /* name follows lr */
1946
size_t namesize = strlen(name) + 1;
1947
itx_t *itx;
1948
1949
if (zil_replaying(zd->zd_zilog, tx))
1950
return;
1951
1952
itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1953
memcpy(&itx->itx_lr + 1, &lr->lr_create.lr_common + 1,
1954
sizeof (*lr) + namesize - sizeof (lr_t));
1955
1956
zil_itx_assign(zd->zd_zilog, itx, tx);
1957
}
1958
1959
static void
1960
ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1961
{
1962
char *name = (char *)&lr->lr_data[0]; /* name follows lr */
1963
size_t namesize = strlen(name) + 1;
1964
itx_t *itx;
1965
1966
if (zil_replaying(zd->zd_zilog, tx))
1967
return;
1968
1969
itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1970
memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1971
sizeof (*lr) + namesize - sizeof (lr_t));
1972
1973
itx->itx_oid = object;
1974
zil_itx_assign(zd->zd_zilog, itx, tx);
1975
}
1976
1977
static void
1978
ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1979
{
1980
itx_t *itx;
1981
itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1982
1983
if (zil_replaying(zd->zd_zilog, tx))
1984
return;
1985
1986
if (lr->lr_length > zil_max_log_data(zd->zd_zilog, sizeof (lr_write_t)))
1987
write_state = WR_INDIRECT;
1988
1989
itx = zil_itx_create(TX_WRITE,
1990
sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1991
1992
if (write_state == WR_COPIED &&
1993
dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1994
((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH |
1995
DMU_KEEP_CACHING) != 0) {
1996
zil_itx_destroy(itx, 0);
1997
itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1998
write_state = WR_NEED_COPY;
1999
}
2000
itx->itx_private = zd;
2001
itx->itx_wr_state = write_state;
2002
itx->itx_sync = (ztest_random(8) == 0);
2003
2004
memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2005
sizeof (*lr) - sizeof (lr_t));
2006
2007
zil_itx_assign(zd->zd_zilog, itx, tx);
2008
}
2009
2010
static void
2011
ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
2012
{
2013
itx_t *itx;
2014
2015
if (zil_replaying(zd->zd_zilog, tx))
2016
return;
2017
2018
itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
2019
memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2020
sizeof (*lr) - sizeof (lr_t));
2021
2022
itx->itx_sync = B_FALSE;
2023
zil_itx_assign(zd->zd_zilog, itx, tx);
2024
}
2025
2026
static void
2027
ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
2028
{
2029
itx_t *itx;
2030
2031
if (zil_replaying(zd->zd_zilog, tx))
2032
return;
2033
2034
itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
2035
memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2036
sizeof (*lr) - sizeof (lr_t));
2037
2038
itx->itx_sync = B_FALSE;
2039
zil_itx_assign(zd->zd_zilog, itx, tx);
2040
}
2041
2042
/*
2043
* ZIL replay ops
2044
*/
2045
static int
2046
ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
2047
{
2048
ztest_ds_t *zd = arg1;
2049
lr_create_t *lrc = arg2;
2050
_lr_create_t *lr = &lrc->lr_create;
2051
char *name = (char *)&lrc->lr_data[0]; /* name follows lr */
2052
objset_t *os = zd->zd_os;
2053
ztest_block_tag_t *bbt;
2054
dmu_buf_t *db;
2055
dmu_tx_t *tx;
2056
uint64_t txg;
2057
int error = 0;
2058
int bonuslen;
2059
2060
if (byteswap)
2061
byteswap_uint64_array(lr, sizeof (*lr));
2062
2063
ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2064
ASSERT3S(name[0], !=, '\0');
2065
2066
tx = dmu_tx_create(os);
2067
2068
dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
2069
2070
if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2071
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
2072
} else {
2073
dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2074
}
2075
2076
txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2077
if (txg == 0)
2078
return (ENOSPC);
2079
2080
ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
2081
bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2082
2083
if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2084
if (lr->lr_foid == 0) {
2085
lr->lr_foid = zap_create_dnsize(os,
2086
lr->lrz_type, lr->lrz_bonustype,
2087
bonuslen, lr->lrz_dnodesize, tx);
2088
} else {
2089
error = zap_create_claim_dnsize(os, lr->lr_foid,
2090
lr->lrz_type, lr->lrz_bonustype,
2091
bonuslen, lr->lrz_dnodesize, tx);
2092
}
2093
} else {
2094
if (lr->lr_foid == 0) {
2095
lr->lr_foid = dmu_object_alloc_dnsize(os,
2096
lr->lrz_type, 0, lr->lrz_bonustype,
2097
bonuslen, lr->lrz_dnodesize, tx);
2098
} else {
2099
error = dmu_object_claim_dnsize(os, lr->lr_foid,
2100
lr->lrz_type, 0, lr->lrz_bonustype,
2101
bonuslen, lr->lrz_dnodesize, tx);
2102
}
2103
}
2104
2105
if (error) {
2106
ASSERT3U(error, ==, EEXIST);
2107
ASSERT(zd->zd_zilog->zl_replay);
2108
dmu_tx_commit(tx);
2109
return (error);
2110
}
2111
2112
ASSERT3U(lr->lr_foid, !=, 0);
2113
2114
if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2115
VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2116
lr->lrz_blocksize, lr->lrz_ibshift, tx));
2117
2118
VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2119
bbt = ztest_bt_bonus(db);
2120
dmu_buf_will_dirty(db, tx);
2121
ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2122
lr->lr_gen, txg, txg);
2123
ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2124
dmu_buf_rele(db, FTAG);
2125
2126
VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2127
&lr->lr_foid, tx));
2128
2129
(void) ztest_log_create(zd, tx, lrc);
2130
2131
dmu_tx_commit(tx);
2132
2133
return (0);
2134
}
2135
2136
static int
2137
ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2138
{
2139
ztest_ds_t *zd = arg1;
2140
lr_remove_t *lr = arg2;
2141
char *name = (char *)&lr->lr_data[0]; /* name follows lr */
2142
objset_t *os = zd->zd_os;
2143
dmu_object_info_t doi;
2144
dmu_tx_t *tx;
2145
uint64_t object, txg;
2146
2147
if (byteswap)
2148
byteswap_uint64_array(lr, sizeof (*lr));
2149
2150
ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2151
ASSERT3S(name[0], !=, '\0');
2152
2153
VERIFY0(
2154
zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2155
ASSERT3U(object, !=, 0);
2156
2157
ztest_object_lock(zd, object, ZTRL_WRITER);
2158
2159
VERIFY0(dmu_object_info(os, object, &doi));
2160
2161
tx = dmu_tx_create(os);
2162
2163
dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2164
dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2165
2166
txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2167
if (txg == 0) {
2168
ztest_object_unlock(zd, object);
2169
return (ENOSPC);
2170
}
2171
2172
if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2173
VERIFY0(zap_destroy(os, object, tx));
2174
} else {
2175
VERIFY0(dmu_object_free(os, object, tx));
2176
}
2177
2178
VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2179
2180
(void) ztest_log_remove(zd, tx, lr, object);
2181
2182
dmu_tx_commit(tx);
2183
2184
ztest_object_unlock(zd, object);
2185
2186
return (0);
2187
}
2188
2189
static int
2190
ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2191
{
2192
ztest_ds_t *zd = arg1;
2193
lr_write_t *lr = arg2;
2194
objset_t *os = zd->zd_os;
2195
uint8_t *data = &lr->lr_data[0]; /* data follows lr */
2196
uint64_t offset, length;
2197
ztest_block_tag_t *bt = (ztest_block_tag_t *)data;
2198
ztest_block_tag_t *bbt;
2199
uint64_t gen, txg, lrtxg, crtxg;
2200
dmu_object_info_t doi;
2201
dmu_tx_t *tx;
2202
dmu_buf_t *db;
2203
arc_buf_t *abuf = NULL;
2204
rl_t *rl;
2205
2206
if (byteswap)
2207
byteswap_uint64_array(lr, sizeof (*lr));
2208
2209
offset = lr->lr_offset;
2210
length = lr->lr_length;
2211
2212
/* If it's a dmu_sync() block, write the whole block */
2213
if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2214
uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2215
if (length < blocksize) {
2216
offset -= offset % blocksize;
2217
length = blocksize;
2218
}
2219
}
2220
2221
if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2222
byteswap_uint64_array(bt, sizeof (*bt));
2223
2224
if (bt->bt_magic != BT_MAGIC)
2225
bt = NULL;
2226
2227
ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2228
rl = ztest_range_lock(zd, lr->lr_foid, offset, length, ZTRL_WRITER);
2229
2230
VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2231
2232
dmu_object_info_from_db(db, &doi);
2233
2234
bbt = ztest_bt_bonus(db);
2235
ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2236
gen = bbt->bt_gen;
2237
crtxg = bbt->bt_crtxg;
2238
lrtxg = lr->lr_common.lrc_txg;
2239
2240
tx = dmu_tx_create(os);
2241
2242
dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2243
2244
if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2245
P2PHASE(offset, length) == 0)
2246
abuf = dmu_request_arcbuf(db, length);
2247
2248
txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2249
if (txg == 0) {
2250
if (abuf != NULL)
2251
dmu_return_arcbuf(abuf);
2252
dmu_buf_rele(db, FTAG);
2253
ztest_range_unlock(rl);
2254
ztest_object_unlock(zd, lr->lr_foid);
2255
return (ENOSPC);
2256
}
2257
2258
if (bt != NULL) {
2259
/*
2260
* Usually, verify the old data before writing new data --
2261
* but not always, because we also want to verify correct
2262
* behavior when the data was not recently read into cache.
2263
*/
2264
ASSERT(doi.doi_data_block_size);
2265
ASSERT0(offset % doi.doi_data_block_size);
2266
if (ztest_random(4) != 0) {
2267
dmu_flags_t flags = ztest_random(2) ?
2268
DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2269
2270
/*
2271
* We will randomly set when to do O_DIRECT on a read.
2272
*/
2273
if (ztest_random(4) == 0)
2274
flags |= DMU_DIRECTIO;
2275
2276
ztest_block_tag_t rbt;
2277
2278
VERIFY0(dmu_read(os, lr->lr_foid, offset,
2279
sizeof (rbt), &rbt, flags));
2280
if (rbt.bt_magic == BT_MAGIC) {
2281
ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2282
offset, gen, txg, crtxg);
2283
}
2284
}
2285
2286
/*
2287
* Writes can appear to be newer than the bonus buffer because
2288
* the ztest_get_data() callback does a dmu_read() of the
2289
* open-context data, which may be different than the data
2290
* as it was when the write was generated.
2291
*/
2292
if (zd->zd_zilog->zl_replay) {
2293
ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2294
MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2295
bt->bt_crtxg);
2296
}
2297
2298
/*
2299
* Set the bt's gen/txg to the bonus buffer's gen/txg
2300
* so that all of the usual ASSERTs will work.
2301
*/
2302
ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2303
crtxg);
2304
}
2305
2306
if (abuf == NULL) {
2307
dmu_write(os, lr->lr_foid, offset, length, data, tx,
2308
DMU_READ_PREFETCH);
2309
} else {
2310
memcpy(abuf->b_data, data, length);
2311
VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx, 0));
2312
}
2313
2314
(void) ztest_log_write(zd, tx, lr);
2315
2316
dmu_buf_rele(db, FTAG);
2317
2318
dmu_tx_commit(tx);
2319
2320
ztest_range_unlock(rl);
2321
ztest_object_unlock(zd, lr->lr_foid);
2322
2323
return (0);
2324
}
2325
2326
static int
2327
ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2328
{
2329
ztest_ds_t *zd = arg1;
2330
lr_truncate_t *lr = arg2;
2331
objset_t *os = zd->zd_os;
2332
dmu_tx_t *tx;
2333
uint64_t txg;
2334
rl_t *rl;
2335
2336
if (byteswap)
2337
byteswap_uint64_array(lr, sizeof (*lr));
2338
2339
ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2340
rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2341
ZTRL_WRITER);
2342
2343
tx = dmu_tx_create(os);
2344
2345
dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2346
2347
txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2348
if (txg == 0) {
2349
ztest_range_unlock(rl);
2350
ztest_object_unlock(zd, lr->lr_foid);
2351
return (ENOSPC);
2352
}
2353
2354
VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2355
lr->lr_length, tx));
2356
2357
(void) ztest_log_truncate(zd, tx, lr);
2358
2359
dmu_tx_commit(tx);
2360
2361
ztest_range_unlock(rl);
2362
ztest_object_unlock(zd, lr->lr_foid);
2363
2364
return (0);
2365
}
2366
2367
static int
2368
ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2369
{
2370
ztest_ds_t *zd = arg1;
2371
lr_setattr_t *lr = arg2;
2372
objset_t *os = zd->zd_os;
2373
dmu_tx_t *tx;
2374
dmu_buf_t *db;
2375
ztest_block_tag_t *bbt;
2376
uint64_t txg, lrtxg, crtxg, dnodesize;
2377
2378
if (byteswap)
2379
byteswap_uint64_array(lr, sizeof (*lr));
2380
2381
ztest_object_lock(zd, lr->lr_foid, ZTRL_WRITER);
2382
2383
VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2384
2385
tx = dmu_tx_create(os);
2386
dmu_tx_hold_bonus(tx, lr->lr_foid);
2387
2388
txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2389
if (txg == 0) {
2390
dmu_buf_rele(db, FTAG);
2391
ztest_object_unlock(zd, lr->lr_foid);
2392
return (ENOSPC);
2393
}
2394
2395
bbt = ztest_bt_bonus(db);
2396
ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2397
crtxg = bbt->bt_crtxg;
2398
lrtxg = lr->lr_common.lrc_txg;
2399
dnodesize = bbt->bt_dnodesize;
2400
2401
if (zd->zd_zilog->zl_replay) {
2402
ASSERT3U(lr->lr_size, !=, 0);
2403
ASSERT3U(lr->lr_mode, !=, 0);
2404
ASSERT3U(lrtxg, !=, 0);
2405
} else {
2406
/*
2407
* Randomly change the size and increment the generation.
2408
*/
2409
lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2410
sizeof (*bbt);
2411
lr->lr_mode = bbt->bt_gen + 1;
2412
ASSERT0(lrtxg);
2413
}
2414
2415
/*
2416
* Verify that the current bonus buffer is not newer than our txg.
2417
*/
2418
ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2419
MAX(txg, lrtxg), crtxg);
2420
2421
dmu_buf_will_dirty(db, tx);
2422
2423
ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2424
ASSERT3U(lr->lr_size, <=, db->db_size);
2425
VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2426
bbt = ztest_bt_bonus(db);
2427
2428
ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2429
txg, crtxg);
2430
ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2431
dmu_buf_rele(db, FTAG);
2432
2433
(void) ztest_log_setattr(zd, tx, lr);
2434
2435
dmu_tx_commit(tx);
2436
2437
ztest_object_unlock(zd, lr->lr_foid);
2438
2439
return (0);
2440
}
2441
2442
static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2443
NULL, /* 0 no such transaction type */
2444
ztest_replay_create, /* TX_CREATE */
2445
NULL, /* TX_MKDIR */
2446
NULL, /* TX_MKXATTR */
2447
NULL, /* TX_SYMLINK */
2448
ztest_replay_remove, /* TX_REMOVE */
2449
NULL, /* TX_RMDIR */
2450
NULL, /* TX_LINK */
2451
NULL, /* TX_RENAME */
2452
ztest_replay_write, /* TX_WRITE */
2453
ztest_replay_truncate, /* TX_TRUNCATE */
2454
ztest_replay_setattr, /* TX_SETATTR */
2455
NULL, /* TX_ACL */
2456
NULL, /* TX_CREATE_ACL */
2457
NULL, /* TX_CREATE_ATTR */
2458
NULL, /* TX_CREATE_ACL_ATTR */
2459
NULL, /* TX_MKDIR_ACL */
2460
NULL, /* TX_MKDIR_ATTR */
2461
NULL, /* TX_MKDIR_ACL_ATTR */
2462
NULL, /* TX_WRITE2 */
2463
NULL, /* TX_SETSAXATTR */
2464
NULL, /* TX_RENAME_EXCHANGE */
2465
NULL, /* TX_RENAME_WHITEOUT */
2466
};
2467
2468
/*
2469
* ZIL get_data callbacks
2470
*/
2471
2472
static void
2473
ztest_get_done(zgd_t *zgd, int error)
2474
{
2475
(void) error;
2476
ztest_ds_t *zd = zgd->zgd_private;
2477
uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2478
2479
if (zgd->zgd_db)
2480
dmu_buf_rele(zgd->zgd_db, zgd);
2481
2482
ztest_range_unlock((rl_t *)zgd->zgd_lr);
2483
ztest_object_unlock(zd, object);
2484
2485
umem_free(zgd, sizeof (*zgd));
2486
}
2487
2488
static int
2489
ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2490
struct lwb *lwb, zio_t *zio)
2491
{
2492
(void) arg2;
2493
ztest_ds_t *zd = arg;
2494
objset_t *os = zd->zd_os;
2495
uint64_t object = lr->lr_foid;
2496
uint64_t offset = lr->lr_offset;
2497
uint64_t size = lr->lr_length;
2498
uint64_t txg = lr->lr_common.lrc_txg;
2499
uint64_t crtxg;
2500
dmu_object_info_t doi;
2501
dmu_buf_t *db;
2502
zgd_t *zgd;
2503
int error;
2504
2505
ASSERT3P(lwb, !=, NULL);
2506
ASSERT3U(size, !=, 0);
2507
2508
ztest_object_lock(zd, object, ZTRL_READER);
2509
error = dmu_bonus_hold(os, object, FTAG, &db);
2510
if (error) {
2511
ztest_object_unlock(zd, object);
2512
return (error);
2513
}
2514
2515
crtxg = ztest_bt_bonus(db)->bt_crtxg;
2516
2517
if (crtxg == 0 || crtxg > txg) {
2518
dmu_buf_rele(db, FTAG);
2519
ztest_object_unlock(zd, object);
2520
return (ENOENT);
2521
}
2522
2523
dmu_object_info_from_db(db, &doi);
2524
dmu_buf_rele(db, FTAG);
2525
db = NULL;
2526
2527
zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2528
zgd->zgd_lwb = lwb;
2529
zgd->zgd_private = zd;
2530
2531
if (buf != NULL) { /* immediate write */
2532
zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2533
object, offset, size, ZTRL_READER);
2534
2535
error = dmu_read(os, object, offset, size, buf,
2536
DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING);
2537
ASSERT0(error);
2538
} else {
2539
ASSERT3P(zio, !=, NULL);
2540
size = doi.doi_data_block_size;
2541
if (ISP2(size)) {
2542
offset = P2ALIGN_TYPED(offset, size, uint64_t);
2543
} else {
2544
ASSERT3U(offset, <, size);
2545
offset = 0;
2546
}
2547
2548
zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2549
object, offset, size, ZTRL_READER);
2550
2551
error = dmu_buf_hold_noread(os, object, offset, zgd, &db);
2552
if (error == 0) {
2553
blkptr_t *bp = &lr->lr_blkptr;
2554
2555
zgd->zgd_db = db;
2556
zgd->zgd_bp = bp;
2557
2558
ASSERT3U(db->db_offset, ==, offset);
2559
ASSERT3U(db->db_size, ==, size);
2560
2561
error = dmu_sync(zio, lr->lr_common.lrc_txg,
2562
ztest_get_done, zgd);
2563
2564
if (error == 0)
2565
return (0);
2566
}
2567
}
2568
2569
ztest_get_done(zgd, error);
2570
2571
return (error);
2572
}
2573
2574
static void *
2575
ztest_lr_alloc(size_t lrsize, char *name)
2576
{
2577
char *lr;
2578
size_t namesize = name ? strlen(name) + 1 : 0;
2579
2580
lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2581
2582
if (name)
2583
memcpy(lr + lrsize, name, namesize);
2584
2585
return (lr);
2586
}
2587
2588
static void
2589
ztest_lr_free(void *lr, size_t lrsize, char *name)
2590
{
2591
size_t namesize = name ? strlen(name) + 1 : 0;
2592
2593
umem_free(lr, lrsize + namesize);
2594
}
2595
2596
/*
2597
* Lookup a bunch of objects. Returns the number of objects not found.
2598
*/
2599
static int
2600
ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2601
{
2602
int missing = 0;
2603
int error;
2604
int i;
2605
2606
ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2607
2608
for (i = 0; i < count; i++, od++) {
2609
od->od_object = 0;
2610
error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2611
sizeof (uint64_t), 1, &od->od_object);
2612
if (error) {
2613
ASSERT3S(error, ==, ENOENT);
2614
ASSERT0(od->od_object);
2615
missing++;
2616
} else {
2617
dmu_buf_t *db;
2618
ztest_block_tag_t *bbt;
2619
dmu_object_info_t doi;
2620
2621
ASSERT3U(od->od_object, !=, 0);
2622
ASSERT0(missing); /* there should be no gaps */
2623
2624
ztest_object_lock(zd, od->od_object, ZTRL_READER);
2625
VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2626
FTAG, &db));
2627
dmu_object_info_from_db(db, &doi);
2628
bbt = ztest_bt_bonus(db);
2629
ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2630
od->od_type = doi.doi_type;
2631
od->od_blocksize = doi.doi_data_block_size;
2632
od->od_gen = bbt->bt_gen;
2633
dmu_buf_rele(db, FTAG);
2634
ztest_object_unlock(zd, od->od_object);
2635
}
2636
}
2637
2638
return (missing);
2639
}
2640
2641
static int
2642
ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2643
{
2644
int missing = 0;
2645
int i;
2646
2647
ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2648
2649
for (i = 0; i < count; i++, od++) {
2650
if (missing) {
2651
od->od_object = 0;
2652
missing++;
2653
continue;
2654
}
2655
2656
lr_create_t *lrc = ztest_lr_alloc(sizeof (*lrc), od->od_name);
2657
_lr_create_t *lr = &lrc->lr_create;
2658
2659
lr->lr_doid = od->od_dir;
2660
lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2661
lr->lrz_type = od->od_crtype;
2662
lr->lrz_blocksize = od->od_crblocksize;
2663
lr->lrz_ibshift = ztest_random_ibshift();
2664
lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2665
lr->lrz_dnodesize = od->od_crdnodesize;
2666
lr->lr_gen = od->od_crgen;
2667
lr->lr_crtime[0] = time(NULL);
2668
2669
if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2670
ASSERT0(missing);
2671
od->od_object = 0;
2672
missing++;
2673
} else {
2674
od->od_object = lr->lr_foid;
2675
od->od_type = od->od_crtype;
2676
od->od_blocksize = od->od_crblocksize;
2677
od->od_gen = od->od_crgen;
2678
ASSERT3U(od->od_object, !=, 0);
2679
}
2680
2681
ztest_lr_free(lr, sizeof (*lr), od->od_name);
2682
}
2683
2684
return (missing);
2685
}
2686
2687
static int
2688
ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2689
{
2690
int missing = 0;
2691
int error;
2692
int i;
2693
2694
ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2695
2696
od += count - 1;
2697
2698
for (i = count - 1; i >= 0; i--, od--) {
2699
if (missing) {
2700
missing++;
2701
continue;
2702
}
2703
2704
/*
2705
* No object was found.
2706
*/
2707
if (od->od_object == 0)
2708
continue;
2709
2710
lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2711
2712
lr->lr_doid = od->od_dir;
2713
2714
if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2715
ASSERT3U(error, ==, ENOSPC);
2716
missing++;
2717
} else {
2718
od->od_object = 0;
2719
}
2720
ztest_lr_free(lr, sizeof (*lr), od->od_name);
2721
}
2722
2723
return (missing);
2724
}
2725
2726
static int
2727
ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2728
const void *data)
2729
{
2730
lr_write_t *lr;
2731
int error;
2732
2733
lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2734
2735
lr->lr_foid = object;
2736
lr->lr_offset = offset;
2737
lr->lr_length = size;
2738
lr->lr_blkoff = 0;
2739
BP_ZERO(&lr->lr_blkptr);
2740
2741
memcpy(&lr->lr_data[0], data, size);
2742
2743
error = ztest_replay_write(zd, lr, B_FALSE);
2744
2745
ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2746
2747
return (error);
2748
}
2749
2750
static int
2751
ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2752
{
2753
lr_truncate_t *lr;
2754
int error;
2755
2756
lr = ztest_lr_alloc(sizeof (*lr), NULL);
2757
2758
lr->lr_foid = object;
2759
lr->lr_offset = offset;
2760
lr->lr_length = size;
2761
2762
error = ztest_replay_truncate(zd, lr, B_FALSE);
2763
2764
ztest_lr_free(lr, sizeof (*lr), NULL);
2765
2766
return (error);
2767
}
2768
2769
static int
2770
ztest_setattr(ztest_ds_t *zd, uint64_t object)
2771
{
2772
lr_setattr_t *lr;
2773
int error;
2774
2775
lr = ztest_lr_alloc(sizeof (*lr), NULL);
2776
2777
lr->lr_foid = object;
2778
lr->lr_size = 0;
2779
lr->lr_mode = 0;
2780
2781
error = ztest_replay_setattr(zd, lr, B_FALSE);
2782
2783
ztest_lr_free(lr, sizeof (*lr), NULL);
2784
2785
return (error);
2786
}
2787
2788
static void
2789
ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2790
{
2791
objset_t *os = zd->zd_os;
2792
dmu_tx_t *tx;
2793
uint64_t txg;
2794
rl_t *rl;
2795
2796
txg_wait_synced(dmu_objset_pool(os), 0);
2797
2798
ztest_object_lock(zd, object, ZTRL_READER);
2799
rl = ztest_range_lock(zd, object, offset, size, ZTRL_WRITER);
2800
2801
tx = dmu_tx_create(os);
2802
2803
dmu_tx_hold_write(tx, object, offset, size);
2804
2805
txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2806
2807
if (txg != 0) {
2808
dmu_prealloc(os, object, offset, size, tx);
2809
dmu_tx_commit(tx);
2810
txg_wait_synced(dmu_objset_pool(os), txg);
2811
} else {
2812
(void) dmu_free_long_range(os, object, offset, size);
2813
}
2814
2815
ztest_range_unlock(rl);
2816
ztest_object_unlock(zd, object);
2817
}
2818
2819
static void
2820
ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2821
{
2822
int err;
2823
ztest_block_tag_t wbt;
2824
dmu_object_info_t doi;
2825
enum ztest_io_type io_type;
2826
uint64_t blocksize;
2827
void *data;
2828
dmu_flags_t dmu_read_flags = DMU_READ_NO_PREFETCH;
2829
2830
/*
2831
* We will randomly set when to do O_DIRECT on a read.
2832
*/
2833
if (ztest_random(4) == 0)
2834
dmu_read_flags |= DMU_DIRECTIO;
2835
2836
VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2837
blocksize = doi.doi_data_block_size;
2838
data = umem_alloc(blocksize, UMEM_NOFAIL);
2839
2840
/*
2841
* Pick an i/o type at random, biased toward writing block tags.
2842
*/
2843
io_type = ztest_random(ZTEST_IO_TYPES);
2844
if (ztest_random(2) == 0)
2845
io_type = ZTEST_IO_WRITE_TAG;
2846
2847
(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2848
2849
switch (io_type) {
2850
2851
case ZTEST_IO_WRITE_TAG:
2852
ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2853
offset, 0, 0, 0);
2854
(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2855
break;
2856
2857
case ZTEST_IO_WRITE_PATTERN:
2858
(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2859
if (ztest_random(2) == 0) {
2860
/*
2861
* Induce fletcher2 collisions to ensure that
2862
* zio_ddt_collision() detects and resolves them
2863
* when using fletcher2-verify for deduplication.
2864
*/
2865
((uint64_t *)data)[0] ^= 1ULL << 63;
2866
((uint64_t *)data)[4] ^= 1ULL << 63;
2867
}
2868
(void) ztest_write(zd, object, offset, blocksize, data);
2869
break;
2870
2871
case ZTEST_IO_WRITE_ZEROES:
2872
memset(data, 0, blocksize);
2873
(void) ztest_write(zd, object, offset, blocksize, data);
2874
break;
2875
2876
case ZTEST_IO_TRUNCATE:
2877
(void) ztest_truncate(zd, object, offset, blocksize);
2878
break;
2879
2880
case ZTEST_IO_SETATTR:
2881
(void) ztest_setattr(zd, object);
2882
break;
2883
default:
2884
break;
2885
2886
case ZTEST_IO_REWRITE:
2887
(void) pthread_rwlock_rdlock(&ztest_name_lock);
2888
err = ztest_dsl_prop_set_uint64(zd->zd_name,
2889
ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2890
B_FALSE);
2891
ASSERT(err == 0 || err == ENOSPC);
2892
err = ztest_dsl_prop_set_uint64(zd->zd_name,
2893
ZFS_PROP_COMPRESSION,
2894
ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2895
B_FALSE);
2896
ASSERT(err == 0 || err == ENOSPC);
2897
(void) pthread_rwlock_unlock(&ztest_name_lock);
2898
2899
VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2900
dmu_read_flags));
2901
2902
(void) ztest_write(zd, object, offset, blocksize, data);
2903
break;
2904
}
2905
2906
(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2907
2908
umem_free(data, blocksize);
2909
}
2910
2911
/*
2912
* Initialize an object description template.
2913
*/
2914
static void
2915
ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
2916
dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2917
uint64_t gen)
2918
{
2919
od->od_dir = ZTEST_DIROBJ;
2920
od->od_object = 0;
2921
2922
od->od_crtype = type;
2923
od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2924
od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2925
od->od_crgen = gen;
2926
2927
od->od_type = DMU_OT_NONE;
2928
od->od_blocksize = 0;
2929
od->od_gen = 0;
2930
2931
(void) snprintf(od->od_name, sizeof (od->od_name),
2932
"%s(%"PRId64")[%"PRIu64"]",
2933
tag, id, index);
2934
}
2935
2936
/*
2937
* Lookup or create the objects for a test using the od template.
2938
* If the objects do not all exist, or if 'remove' is specified,
2939
* remove any existing objects and create new ones. Otherwise,
2940
* use the existing objects.
2941
*/
2942
static int
2943
ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2944
{
2945
int count = size / sizeof (*od);
2946
int rv = 0;
2947
2948
mutex_enter(&zd->zd_dirobj_lock);
2949
if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2950
(ztest_remove(zd, od, count) != 0 ||
2951
ztest_create(zd, od, count) != 0))
2952
rv = -1;
2953
zd->zd_od = od;
2954
mutex_exit(&zd->zd_dirobj_lock);
2955
2956
return (rv);
2957
}
2958
2959
void
2960
ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2961
{
2962
(void) id;
2963
zilog_t *zilog = zd->zd_zilog;
2964
2965
(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2966
2967
VERIFY0(zil_commit(zilog, ztest_random(ZTEST_OBJECTS)));
2968
2969
/*
2970
* Remember the committed values in zd, which is in parent/child
2971
* shared memory. If we die, the next iteration of ztest_run()
2972
* will verify that the log really does contain this record.
2973
*/
2974
mutex_enter(&zilog->zl_lock);
2975
ASSERT3P(zd->zd_shared, !=, NULL);
2976
ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2977
zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2978
mutex_exit(&zilog->zl_lock);
2979
2980
(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2981
}
2982
2983
/*
2984
* This function is designed to simulate the operations that occur during a
2985
* mount/unmount operation. We hold the dataset across these operations in an
2986
* attempt to expose any implicit assumptions about ZIL management.
2987
*/
2988
void
2989
ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2990
{
2991
(void) id;
2992
objset_t *os = zd->zd_os;
2993
2994
/*
2995
* We hold the ztest_vdev_lock so we don't cause problems with
2996
* other threads that wish to remove a log device, such as
2997
* ztest_device_removal().
2998
*/
2999
mutex_enter(&ztest_vdev_lock);
3000
3001
/*
3002
* We grab the zd_dirobj_lock to ensure that no other thread is
3003
* updating the zil (i.e. adding in-memory log records) and the
3004
* zd_zilog_lock to block any I/O.
3005
*/
3006
mutex_enter(&zd->zd_dirobj_lock);
3007
(void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
3008
3009
/* zfsvfs_teardown() */
3010
zil_close(zd->zd_zilog);
3011
3012
/* zfsvfs_setup() */
3013
VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
3014
zil_replay(os, zd, ztest_replay_vector);
3015
3016
(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
3017
mutex_exit(&zd->zd_dirobj_lock);
3018
mutex_exit(&ztest_vdev_lock);
3019
}
3020
3021
/*
3022
* Verify that we can't destroy an active pool, create an existing pool,
3023
* or create a pool with a bad vdev spec.
3024
*/
3025
void
3026
ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
3027
{
3028
(void) zd, (void) id;
3029
ztest_shared_opts_t *zo = &ztest_opts;
3030
spa_t *spa;
3031
nvlist_t *nvroot;
3032
3033
if (zo->zo_mmp_test)
3034
return;
3035
3036
/*
3037
* Attempt to create using a bad file.
3038
*/
3039
nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3040
VERIFY3U(ENOENT, ==,
3041
spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
3042
fnvlist_free(nvroot);
3043
3044
/*
3045
* Attempt to create using a bad mirror.
3046
*/
3047
nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
3048
VERIFY3U(ENOENT, ==,
3049
spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
3050
fnvlist_free(nvroot);
3051
3052
/*
3053
* Attempt to create an existing pool. It shouldn't matter
3054
* what's in the nvroot; we should fail with EEXIST.
3055
*/
3056
(void) pthread_rwlock_rdlock(&ztest_name_lock);
3057
nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3058
VERIFY3U(EEXIST, ==,
3059
spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
3060
fnvlist_free(nvroot);
3061
3062
/*
3063
* We open a reference to the spa and then we try to export it
3064
* expecting one of the following errors:
3065
*
3066
* EBUSY
3067
* Because of the reference we just opened.
3068
*
3069
* ZFS_ERR_EXPORT_IN_PROGRESS
3070
* For the case that there is another ztest thread doing
3071
* an export concurrently.
3072
*/
3073
VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
3074
int error = spa_destroy(zo->zo_pool);
3075
if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
3076
fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
3077
spa->spa_name, error);
3078
}
3079
spa_close(spa, FTAG);
3080
3081
(void) pthread_rwlock_unlock(&ztest_name_lock);
3082
}
3083
3084
/*
3085
* Start and then stop the MMP threads to ensure the startup and shutdown code
3086
* works properly. Actual protection and property-related code tested via ZTS.
3087
*/
3088
void
3089
ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
3090
{
3091
(void) zd, (void) id;
3092
ztest_shared_opts_t *zo = &ztest_opts;
3093
spa_t *spa = ztest_spa;
3094
3095
if (zo->zo_mmp_test)
3096
return;
3097
3098
/*
3099
* Since enabling MMP involves setting a property, it could not be done
3100
* while the pool is suspended.
3101
*/
3102
if (spa_suspended(spa))
3103
return;
3104
3105
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3106
mutex_enter(&spa->spa_props_lock);
3107
3108
zfs_multihost_fail_intervals = 0;
3109
3110
if (!spa_multihost(spa)) {
3111
spa->spa_multihost = B_TRUE;
3112
mmp_thread_start(spa);
3113
}
3114
3115
mutex_exit(&spa->spa_props_lock);
3116
spa_config_exit(spa, SCL_CONFIG, FTAG);
3117
3118
txg_wait_synced(spa_get_dsl(spa), 0);
3119
mmp_signal_all_threads();
3120
txg_wait_synced(spa_get_dsl(spa), 0);
3121
3122
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3123
mutex_enter(&spa->spa_props_lock);
3124
3125
if (spa_multihost(spa)) {
3126
mmp_thread_stop(spa);
3127
spa->spa_multihost = B_FALSE;
3128
}
3129
3130
mutex_exit(&spa->spa_props_lock);
3131
spa_config_exit(spa, SCL_CONFIG, FTAG);
3132
}
3133
3134
static int
3135
ztest_get_raidz_children(spa_t *spa)
3136
{
3137
(void) spa;
3138
vdev_t *raidvd;
3139
3140
ASSERT(MUTEX_HELD(&ztest_vdev_lock));
3141
3142
if (ztest_opts.zo_raid_do_expand) {
3143
raidvd = ztest_spa->spa_root_vdev->vdev_child[0];
3144
3145
ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
3146
3147
return (raidvd->vdev_children);
3148
}
3149
3150
return (ztest_opts.zo_raid_children);
3151
}
3152
3153
void
3154
ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3155
{
3156
(void) zd, (void) id;
3157
spa_t *spa;
3158
uint64_t initial_version = SPA_VERSION_INITIAL;
3159
uint64_t raidz_children, version, newversion;
3160
nvlist_t *nvroot, *props;
3161
char *name;
3162
3163
if (ztest_opts.zo_mmp_test)
3164
return;
3165
3166
/* dRAID added after feature flags, skip upgrade test. */
3167
if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3168
return;
3169
3170
mutex_enter(&ztest_vdev_lock);
3171
name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3172
3173
/*
3174
* Clean up from previous runs.
3175
*/
3176
(void) spa_destroy(name);
3177
3178
raidz_children = ztest_get_raidz_children(ztest_spa);
3179
3180
nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3181
NULL, raidz_children, ztest_opts.zo_mirrors, 1);
3182
3183
/*
3184
* If we're configuring a RAIDZ device then make sure that the
3185
* initial version is capable of supporting that feature.
3186
*/
3187
switch (ztest_opts.zo_raid_parity) {
3188
case 0:
3189
case 1:
3190
initial_version = SPA_VERSION_INITIAL;
3191
break;
3192
case 2:
3193
initial_version = SPA_VERSION_RAIDZ2;
3194
break;
3195
case 3:
3196
initial_version = SPA_VERSION_RAIDZ3;
3197
break;
3198
}
3199
3200
/*
3201
* Create a pool with a spa version that can be upgraded. Pick
3202
* a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3203
*/
3204
do {
3205
version = ztest_random_spa_version(initial_version);
3206
} while (version > SPA_VERSION_BEFORE_FEATURES);
3207
3208
props = fnvlist_alloc();
3209
fnvlist_add_uint64(props,
3210
zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3211
VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3212
fnvlist_free(nvroot);
3213
fnvlist_free(props);
3214
3215
VERIFY0(spa_open(name, &spa, FTAG));
3216
VERIFY3U(spa_version(spa), ==, version);
3217
newversion = ztest_random_spa_version(version + 1);
3218
3219
if (ztest_opts.zo_verbose >= 4) {
3220
(void) printf("upgrading spa version from "
3221
"%"PRIu64" to %"PRIu64"\n",
3222
version, newversion);
3223
}
3224
3225
spa_upgrade(spa, newversion);
3226
VERIFY3U(spa_version(spa), >, version);
3227
VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3228
zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3229
spa_close(spa, FTAG);
3230
3231
kmem_strfree(name);
3232
mutex_exit(&ztest_vdev_lock);
3233
}
3234
3235
static void
3236
ztest_spa_checkpoint(spa_t *spa)
3237
{
3238
ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3239
3240
int error = spa_checkpoint(spa->spa_name);
3241
3242
switch (error) {
3243
case 0:
3244
case ZFS_ERR_DEVRM_IN_PROGRESS:
3245
case ZFS_ERR_DISCARDING_CHECKPOINT:
3246
case ZFS_ERR_CHECKPOINT_EXISTS:
3247
case ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS:
3248
break;
3249
case ENOSPC:
3250
ztest_record_enospc(FTAG);
3251
break;
3252
default:
3253
fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3254
}
3255
}
3256
3257
static void
3258
ztest_spa_discard_checkpoint(spa_t *spa)
3259
{
3260
ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3261
3262
int error = spa_checkpoint_discard(spa->spa_name);
3263
3264
switch (error) {
3265
case 0:
3266
case ZFS_ERR_DISCARDING_CHECKPOINT:
3267
case ZFS_ERR_NO_CHECKPOINT:
3268
break;
3269
default:
3270
fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3271
spa->spa_name, error);
3272
}
3273
3274
}
3275
3276
void
3277
ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3278
{
3279
(void) zd, (void) id;
3280
spa_t *spa = ztest_spa;
3281
3282
mutex_enter(&ztest_checkpoint_lock);
3283
if (ztest_random(2) == 0) {
3284
ztest_spa_checkpoint(spa);
3285
} else {
3286
ztest_spa_discard_checkpoint(spa);
3287
}
3288
mutex_exit(&ztest_checkpoint_lock);
3289
}
3290
3291
3292
static vdev_t *
3293
vdev_lookup_by_path(vdev_t *vd, const char *path)
3294
{
3295
vdev_t *mvd;
3296
int c;
3297
3298
if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3299
return (vd);
3300
3301
for (c = 0; c < vd->vdev_children; c++)
3302
if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3303
NULL)
3304
return (mvd);
3305
3306
return (NULL);
3307
}
3308
3309
static int
3310
spa_num_top_vdevs(spa_t *spa)
3311
{
3312
vdev_t *rvd = spa->spa_root_vdev;
3313
ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3314
return (rvd->vdev_children);
3315
}
3316
3317
/*
3318
* Verify that vdev_add() works as expected.
3319
*/
3320
void
3321
ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3322
{
3323
(void) zd, (void) id;
3324
ztest_shared_t *zs = ztest_shared;
3325
spa_t *spa = ztest_spa;
3326
uint64_t leaves;
3327
uint64_t guid;
3328
uint64_t raidz_children;
3329
3330
nvlist_t *nvroot;
3331
int error;
3332
3333
if (ztest_opts.zo_mmp_test)
3334
return;
3335
3336
mutex_enter(&ztest_vdev_lock);
3337
raidz_children = ztest_get_raidz_children(spa);
3338
leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3339
3340
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3341
3342
ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3343
3344
/*
3345
* If we have slogs then remove them 1/4 of the time.
3346
*/
3347
if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3348
metaslab_group_t *mg;
3349
3350
/*
3351
* find the first real slog in log allocation class
3352
*/
3353
mg = spa_log_class(spa)->mc_allocator[0].mca_rotor;
3354
while (!mg->mg_vd->vdev_islog)
3355
mg = mg->mg_next;
3356
3357
guid = mg->mg_vd->vdev_guid;
3358
3359
spa_config_exit(spa, SCL_VDEV, FTAG);
3360
3361
/*
3362
* We have to grab the zs_name_lock as writer to
3363
* prevent a race between removing a slog (dmu_objset_find)
3364
* and destroying a dataset. Removing the slog will
3365
* grab a reference on the dataset which may cause
3366
* dsl_destroy_head() to fail with EBUSY thus
3367
* leaving the dataset in an inconsistent state.
3368
*/
3369
pthread_rwlock_wrlock(&ztest_name_lock);
3370
error = spa_vdev_remove(spa, guid, B_FALSE);
3371
pthread_rwlock_unlock(&ztest_name_lock);
3372
3373
switch (error) {
3374
case 0:
3375
case EEXIST: /* Generic zil_reset() error */
3376
case EBUSY: /* Replay required */
3377
case EACCES: /* Crypto key not loaded */
3378
case ZFS_ERR_CHECKPOINT_EXISTS:
3379
case ZFS_ERR_DISCARDING_CHECKPOINT:
3380
break;
3381
default:
3382
fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3383
}
3384
} else {
3385
spa_config_exit(spa, SCL_VDEV, FTAG);
3386
3387
/*
3388
* Make 1/4 of the devices be log devices
3389
*/
3390
nvroot = make_vdev_root(NULL, NULL, NULL,
3391
ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3392
"log" : NULL, raidz_children, zs->zs_mirrors,
3393
1);
3394
3395
error = spa_vdev_add(spa, nvroot, B_FALSE);
3396
fnvlist_free(nvroot);
3397
3398
switch (error) {
3399
case 0:
3400
break;
3401
case ENOSPC:
3402
ztest_record_enospc("spa_vdev_add");
3403
break;
3404
default:
3405
fatal(B_FALSE, "spa_vdev_add() = %d", error);
3406
}
3407
}
3408
3409
mutex_exit(&ztest_vdev_lock);
3410
}
3411
3412
void
3413
ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3414
{
3415
(void) zd, (void) id;
3416
ztest_shared_t *zs = ztest_shared;
3417
spa_t *spa = ztest_spa;
3418
uint64_t leaves;
3419
nvlist_t *nvroot;
3420
uint64_t raidz_children;
3421
const char *class = (ztest_random(2) == 0) ?
3422
VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3423
int error;
3424
3425
/*
3426
* By default add a special vdev 50% of the time
3427
*/
3428
if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3429
(ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3430
ztest_random(2) == 0)) {
3431
return;
3432
}
3433
3434
mutex_enter(&ztest_vdev_lock);
3435
3436
/* Only test with mirrors */
3437
if (zs->zs_mirrors < 2) {
3438
mutex_exit(&ztest_vdev_lock);
3439
return;
3440
}
3441
3442
/* requires feature@allocation_classes */
3443
if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3444
mutex_exit(&ztest_vdev_lock);
3445
return;
3446
}
3447
3448
raidz_children = ztest_get_raidz_children(spa);
3449
leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3450
3451
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3452
ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3453
spa_config_exit(spa, SCL_VDEV, FTAG);
3454
3455
nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3456
class, raidz_children, zs->zs_mirrors, 1);
3457
3458
error = spa_vdev_add(spa, nvroot, B_FALSE);
3459
fnvlist_free(nvroot);
3460
3461
if (error == ENOSPC)
3462
ztest_record_enospc("spa_vdev_add");
3463
else if (error != 0)
3464
fatal(B_FALSE, "spa_vdev_add() = %d", error);
3465
3466
/*
3467
* 50% of the time allow small blocks in the special class
3468
*/
3469
if (error == 0 &&
3470
spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3471
if (ztest_opts.zo_verbose >= 3)
3472
(void) printf("Enabling special VDEV small blocks\n");
3473
error = ztest_dsl_prop_set_uint64(zd->zd_name,
3474
ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3475
ASSERT(error == 0 || error == ENOSPC);
3476
}
3477
3478
mutex_exit(&ztest_vdev_lock);
3479
3480
if (ztest_opts.zo_verbose >= 3) {
3481
metaslab_class_t *mc;
3482
3483
if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3484
mc = spa_special_class(spa);
3485
else
3486
mc = spa_dedup_class(spa);
3487
(void) printf("Added a %s mirrored vdev (of %d)\n",
3488
class, (int)mc->mc_groups);
3489
}
3490
}
3491
3492
/*
3493
* Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3494
*/
3495
void
3496
ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3497
{
3498
(void) zd, (void) id;
3499
ztest_shared_t *zs = ztest_shared;
3500
spa_t *spa = ztest_spa;
3501
vdev_t *rvd = spa->spa_root_vdev;
3502
spa_aux_vdev_t *sav;
3503
const char *aux;
3504
char *path;
3505
uint64_t guid = 0;
3506
int error, ignore_err = 0;
3507
3508
if (ztest_opts.zo_mmp_test)
3509
return;
3510
3511
path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3512
3513
if (ztest_random(2) == 0) {
3514
sav = &spa->spa_spares;
3515
aux = ZPOOL_CONFIG_SPARES;
3516
} else {
3517
sav = &spa->spa_l2cache;
3518
aux = ZPOOL_CONFIG_L2CACHE;
3519
}
3520
3521
mutex_enter(&ztest_vdev_lock);
3522
3523
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3524
3525
if (sav->sav_count != 0 && ztest_random(4) == 0) {
3526
/*
3527
* Pick a random device to remove.
3528
*/
3529
vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3530
3531
/* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3532
if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3533
ignore_err = ENOTSUP;
3534
3535
guid = svd->vdev_guid;
3536
} else {
3537
/*
3538
* Find an unused device we can add.
3539
*/
3540
zs->zs_vdev_aux = 0;
3541
for (;;) {
3542
int c;
3543
(void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3544
ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3545
zs->zs_vdev_aux);
3546
for (c = 0; c < sav->sav_count; c++)
3547
if (strcmp(sav->sav_vdevs[c]->vdev_path,
3548
path) == 0)
3549
break;
3550
if (c == sav->sav_count &&
3551
vdev_lookup_by_path(rvd, path) == NULL)
3552
break;
3553
zs->zs_vdev_aux++;
3554
}
3555
}
3556
3557
spa_config_exit(spa, SCL_VDEV, FTAG);
3558
3559
if (guid == 0) {
3560
/*
3561
* Add a new device.
3562
*/
3563
nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3564
(ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3565
error = spa_vdev_add(spa, nvroot, B_FALSE);
3566
3567
switch (error) {
3568
case 0:
3569
break;
3570
default:
3571
fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3572
}
3573
fnvlist_free(nvroot);
3574
} else {
3575
/*
3576
* Remove an existing device. Sometimes, dirty its
3577
* vdev state first to make sure we handle removal
3578
* of devices that have pending state changes.
3579
*/
3580
if (ztest_random(2) == 0)
3581
(void) vdev_online(spa, guid, 0, NULL);
3582
3583
error = spa_vdev_remove(spa, guid, B_FALSE);
3584
3585
switch (error) {
3586
case 0:
3587
case EBUSY:
3588
case ZFS_ERR_CHECKPOINT_EXISTS:
3589
case ZFS_ERR_DISCARDING_CHECKPOINT:
3590
break;
3591
default:
3592
if (error != ignore_err)
3593
fatal(B_FALSE,
3594
"spa_vdev_remove(%"PRIu64") = %d",
3595
guid, error);
3596
}
3597
}
3598
3599
mutex_exit(&ztest_vdev_lock);
3600
3601
umem_free(path, MAXPATHLEN);
3602
}
3603
3604
/*
3605
* split a pool if it has mirror tlvdevs
3606
*/
3607
void
3608
ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3609
{
3610
(void) zd, (void) id;
3611
ztest_shared_t *zs = ztest_shared;
3612
spa_t *spa = ztest_spa;
3613
vdev_t *rvd = spa->spa_root_vdev;
3614
nvlist_t *tree, **child, *config, *split, **schild;
3615
uint_t c, children, schildren = 0, lastlogid = 0;
3616
int error = 0;
3617
3618
if (ztest_opts.zo_mmp_test)
3619
return;
3620
3621
mutex_enter(&ztest_vdev_lock);
3622
3623
/* ensure we have a usable config; mirrors of raidz aren't supported */
3624
if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3625
mutex_exit(&ztest_vdev_lock);
3626
return;
3627
}
3628
3629
/* clean up the old pool, if any */
3630
(void) spa_destroy("splitp");
3631
3632
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3633
3634
/* generate a config from the existing config */
3635
mutex_enter(&spa->spa_props_lock);
3636
tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3637
mutex_exit(&spa->spa_props_lock);
3638
3639
VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3640
&child, &children));
3641
3642
schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
3643
UMEM_NOFAIL);
3644
for (c = 0; c < children; c++) {
3645
vdev_t *tvd = rvd->vdev_child[c];
3646
nvlist_t **mchild;
3647
uint_t mchildren;
3648
3649
if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3650
schild[schildren] = fnvlist_alloc();
3651
fnvlist_add_string(schild[schildren],
3652
ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3653
fnvlist_add_uint64(schild[schildren],
3654
ZPOOL_CONFIG_IS_HOLE, 1);
3655
if (lastlogid == 0)
3656
lastlogid = schildren;
3657
++schildren;
3658
continue;
3659
}
3660
lastlogid = 0;
3661
VERIFY0(nvlist_lookup_nvlist_array(child[c],
3662
ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3663
schild[schildren++] = fnvlist_dup(mchild[0]);
3664
}
3665
3666
/* OK, create a config that can be used to split */
3667
split = fnvlist_alloc();
3668
fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3669
fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3670
(const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3671
3672
config = fnvlist_alloc();
3673
fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3674
3675
for (c = 0; c < schildren; c++)
3676
fnvlist_free(schild[c]);
3677
umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
3678
fnvlist_free(split);
3679
3680
spa_config_exit(spa, SCL_VDEV, FTAG);
3681
3682
(void) pthread_rwlock_wrlock(&ztest_name_lock);
3683
error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3684
(void) pthread_rwlock_unlock(&ztest_name_lock);
3685
3686
fnvlist_free(config);
3687
3688
if (error == 0) {
3689
(void) printf("successful split - results:\n");
3690
spa_namespace_enter(FTAG);
3691
show_pool_stats(spa);
3692
show_pool_stats(spa_lookup("splitp"));
3693
spa_namespace_exit(FTAG);
3694
++zs->zs_splits;
3695
--zs->zs_mirrors;
3696
}
3697
mutex_exit(&ztest_vdev_lock);
3698
}
3699
3700
/*
3701
* Verify that we can attach and detach devices.
3702
*/
3703
void
3704
ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3705
{
3706
(void) zd, (void) id;
3707
ztest_shared_t *zs = ztest_shared;
3708
spa_t *spa = ztest_spa;
3709
spa_aux_vdev_t *sav = &spa->spa_spares;
3710
vdev_t *rvd = spa->spa_root_vdev;
3711
vdev_t *oldvd, *newvd, *pvd;
3712
nvlist_t *root;
3713
uint64_t leaves;
3714
uint64_t leaf, top;
3715
uint64_t ashift = ztest_get_ashift();
3716
uint64_t oldguid, pguid;
3717
uint64_t oldsize, newsize;
3718
uint64_t raidz_children;
3719
char *oldpath, *newpath;
3720
int replacing;
3721
int oldvd_has_siblings = B_FALSE;
3722
int newvd_is_spare = B_FALSE;
3723
int newvd_is_dspare = B_FALSE;
3724
int oldvd_is_log;
3725
int oldvd_is_special;
3726
int error, expected_error;
3727
3728
if (ztest_opts.zo_mmp_test)
3729
return;
3730
3731
oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3732
newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3733
3734
mutex_enter(&ztest_vdev_lock);
3735
raidz_children = ztest_get_raidz_children(spa);
3736
leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
3737
3738
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3739
3740
/*
3741
* If a vdev is in the process of being removed, its removal may
3742
* finish while we are in progress, leading to an unexpected error
3743
* value. Don't bother trying to attach while we are in the middle
3744
* of removal.
3745
*/
3746
if (ztest_device_removal_active) {
3747
spa_config_exit(spa, SCL_ALL, FTAG);
3748
goto out;
3749
}
3750
3751
/*
3752
* RAIDZ leaf VDEV mirrors are not currently supported while a
3753
* RAIDZ expansion is in progress.
3754
*/
3755
if (ztest_opts.zo_raid_do_expand) {
3756
spa_config_exit(spa, SCL_ALL, FTAG);
3757
goto out;
3758
}
3759
3760
/*
3761
* Decide whether to do an attach or a replace.
3762
*/
3763
replacing = ztest_random(2);
3764
3765
/*
3766
* Pick a random top-level vdev.
3767
*/
3768
top = ztest_random_vdev_top(spa, B_TRUE);
3769
3770
/*
3771
* Pick a random leaf within it.
3772
*/
3773
leaf = ztest_random(leaves);
3774
3775
/*
3776
* Locate this vdev.
3777
*/
3778
oldvd = rvd->vdev_child[top];
3779
3780
/* pick a child from the mirror */
3781
if (zs->zs_mirrors >= 1) {
3782
ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3783
ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3784
oldvd = oldvd->vdev_child[leaf / raidz_children];
3785
}
3786
3787
/* pick a child out of the raidz group */
3788
if (ztest_opts.zo_raid_children > 1) {
3789
if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3790
ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3791
else
3792
ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3793
oldvd = oldvd->vdev_child[leaf % raidz_children];
3794
}
3795
3796
/*
3797
* If we're already doing an attach or replace, oldvd may be a
3798
* mirror vdev -- in which case, pick a random child.
3799
*/
3800
while (oldvd->vdev_children != 0) {
3801
oldvd_has_siblings = B_TRUE;
3802
ASSERT3U(oldvd->vdev_children, >=, 2);
3803
oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3804
}
3805
3806
oldguid = oldvd->vdev_guid;
3807
oldsize = vdev_get_min_asize(oldvd);
3808
oldvd_is_log = oldvd->vdev_top->vdev_islog;
3809
oldvd_is_special =
3810
oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL ||
3811
oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP;
3812
(void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
3813
pvd = oldvd->vdev_parent;
3814
pguid = pvd->vdev_guid;
3815
3816
/*
3817
* If oldvd has siblings, then half of the time, detach it. Prior
3818
* to the detach the pool is scrubbed in order to prevent creating
3819
* unrepairable blocks as a result of the data corruption injection.
3820
*/
3821
if (oldvd_has_siblings && ztest_random(2) == 0) {
3822
spa_config_exit(spa, SCL_ALL, FTAG);
3823
3824
error = ztest_scrub_impl(spa);
3825
if (error)
3826
goto out;
3827
3828
error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3829
if (error != 0 && error != ENODEV && error != EBUSY &&
3830
error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3831
error != ZFS_ERR_DISCARDING_CHECKPOINT)
3832
fatal(B_FALSE, "detach (%s) returned %d",
3833
oldpath, error);
3834
goto out;
3835
}
3836
3837
/*
3838
* For the new vdev, choose with equal probability between the two
3839
* standard paths (ending in either 'a' or 'b') or a random hot spare.
3840
*/
3841
if (sav->sav_count != 0 && ztest_random(3) == 0) {
3842
newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3843
newvd_is_spare = B_TRUE;
3844
3845
if (newvd->vdev_ops == &vdev_draid_spare_ops)
3846
newvd_is_dspare = B_TRUE;
3847
3848
(void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
3849
} else {
3850
(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3851
ztest_opts.zo_dir, ztest_opts.zo_pool,
3852
top * leaves + leaf);
3853
if (ztest_random(2) == 0)
3854
newpath[strlen(newpath) - 1] = 'b';
3855
newvd = vdev_lookup_by_path(rvd, newpath);
3856
}
3857
3858
if (newvd) {
3859
/*
3860
* Reopen to ensure the vdev's asize field isn't stale.
3861
*/
3862
vdev_reopen(newvd);
3863
newsize = vdev_get_min_asize(newvd);
3864
} else {
3865
/*
3866
* Make newsize a little bigger or smaller than oldsize.
3867
* If it's smaller, the attach should fail.
3868
* If it's larger, and we're doing a replace,
3869
* we should get dynamic LUN growth when we're done.
3870
*/
3871
newsize = 10 * oldsize / (9 + ztest_random(3));
3872
}
3873
3874
/*
3875
* If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3876
* unless it's a replace; in that case any non-replacing parent is OK.
3877
*
3878
* If newvd is already part of the pool, it should fail with EBUSY.
3879
*
3880
* If newvd is too small, it should fail with EOVERFLOW.
3881
*
3882
* If newvd is a distributed spare and it's being attached to a
3883
* dRAID which is not its parent it should fail with ENOTSUP.
3884
*/
3885
if (pvd->vdev_ops != &vdev_mirror_ops &&
3886
pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3887
pvd->vdev_ops == &vdev_replacing_ops ||
3888
pvd->vdev_ops == &vdev_spare_ops))
3889
expected_error = ENOTSUP;
3890
else if (newvd_is_spare &&
3891
(!replacing || oldvd_is_log || oldvd_is_special))
3892
expected_error = ENOTSUP;
3893
else if (newvd == oldvd)
3894
expected_error = replacing ? 0 : EBUSY;
3895
else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3896
expected_error = EBUSY;
3897
else if (!newvd_is_dspare && newsize < oldsize)
3898
expected_error = EOVERFLOW;
3899
else if (ashift > oldvd->vdev_top->vdev_ashift)
3900
expected_error = EDOM;
3901
else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3902
expected_error = ENOTSUP;
3903
else
3904
expected_error = 0;
3905
3906
spa_config_exit(spa, SCL_ALL, FTAG);
3907
3908
/*
3909
* Build the nvlist describing newpath.
3910
*/
3911
root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3912
ashift, NULL, 0, 0, 1);
3913
3914
/*
3915
* When supported select either a healing or sequential resilver.
3916
*/
3917
boolean_t rebuilding = B_FALSE;
3918
if (pvd->vdev_ops == &vdev_mirror_ops ||
3919
pvd->vdev_ops == &vdev_root_ops) {
3920
rebuilding = !!ztest_random(2);
3921
}
3922
3923
error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3924
3925
fnvlist_free(root);
3926
3927
/*
3928
* If our parent was the replacing vdev, but the replace completed,
3929
* then instead of failing with ENOTSUP we may either succeed,
3930
* fail with ENODEV, or fail with EOVERFLOW.
3931
*/
3932
if (expected_error == ENOTSUP &&
3933
(error == 0 || error == ENODEV || error == EOVERFLOW))
3934
expected_error = error;
3935
3936
/*
3937
* If someone grew the LUN, the replacement may be too small.
3938
*/
3939
if (error == EOVERFLOW || error == EBUSY)
3940
expected_error = error;
3941
3942
if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3943
error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3944
error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3945
error == ZFS_ERR_REBUILD_IN_PROGRESS)
3946
expected_error = error;
3947
3948
if (error != expected_error && expected_error != EBUSY) {
3949
fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3950
"returned %d, expected %d",
3951
oldpath, oldsize, newpath,
3952
newsize, replacing, error, expected_error);
3953
}
3954
out:
3955
mutex_exit(&ztest_vdev_lock);
3956
3957
umem_free(oldpath, MAXPATHLEN);
3958
umem_free(newpath, MAXPATHLEN);
3959
}
3960
3961
static void
3962
raidz_scratch_verify(void)
3963
{
3964
spa_t *spa;
3965
uint64_t write_size, logical_size, offset;
3966
raidz_reflow_scratch_state_t state;
3967
vdev_raidz_expand_t *vre;
3968
vdev_t *raidvd;
3969
3970
ASSERT(raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE);
3971
3972
if (ztest_scratch_state->zs_raidz_scratch_verify_pause == 0)
3973
return;
3974
3975
kernel_init(SPA_MODE_READ);
3976
3977
spa_namespace_enter(FTAG);
3978
spa = spa_lookup(ztest_opts.zo_pool);
3979
ASSERT(spa);
3980
spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
3981
spa_namespace_exit(FTAG);
3982
3983
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
3984
3985
ASSERT3U(RRSS_GET_OFFSET(&spa->spa_uberblock), !=, UINT64_MAX);
3986
3987
mutex_enter(&ztest_vdev_lock);
3988
3989
spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
3990
3991
vre = spa->spa_raidz_expand;
3992
if (vre == NULL)
3993
goto out;
3994
3995
raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
3996
offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
3997
state = RRSS_GET_STATE(&spa->spa_uberblock);
3998
write_size = P2ALIGN_TYPED(VDEV_BOOT_SIZE, 1 << raidvd->vdev_ashift,
3999
uint64_t);
4000
logical_size = write_size * raidvd->vdev_children;
4001
4002
switch (state) {
4003
/*
4004
* Initial state of reflow process. RAIDZ expansion was
4005
* requested by user, but scratch object was not created.
4006
*/
4007
case RRSS_SCRATCH_NOT_IN_USE:
4008
ASSERT0(offset);
4009
break;
4010
4011
/*
4012
* Scratch object was synced and stored in boot area.
4013
*/
4014
case RRSS_SCRATCH_VALID:
4015
4016
/*
4017
* Scratch object was synced back to raidz start offset,
4018
* raidz is ready for sector by sector reflow process.
4019
*/
4020
case RRSS_SCRATCH_INVALID_SYNCED:
4021
4022
/*
4023
* Scratch object was synced back to raidz start offset
4024
* on zpool importing, raidz is ready for sector by sector
4025
* reflow process.
4026
*/
4027
case RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT:
4028
ASSERT3U(offset, ==, logical_size);
4029
break;
4030
4031
/*
4032
* Sector by sector reflow process started.
4033
*/
4034
case RRSS_SCRATCH_INVALID_SYNCED_REFLOW:
4035
ASSERT3U(offset, >=, logical_size);
4036
break;
4037
}
4038
4039
out:
4040
spa_config_exit(spa, SCL_ALL, FTAG);
4041
4042
mutex_exit(&ztest_vdev_lock);
4043
4044
ztest_scratch_state->zs_raidz_scratch_verify_pause = 0;
4045
4046
spa_close(spa, FTAG);
4047
kernel_fini();
4048
}
4049
4050
static void
4051
ztest_scratch_thread(void *arg)
4052
{
4053
(void) arg;
4054
4055
/* wait up to 10 seconds */
4056
for (int t = 100; t > 0; t -= 1) {
4057
if (raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE)
4058
thread_exit();
4059
4060
(void) poll(NULL, 0, 100);
4061
}
4062
4063
/* killed when the scratch area progress reached a certain point */
4064
ztest_kill(ztest_shared);
4065
}
4066
4067
/*
4068
* Verify that we can attach raidz device.
4069
*/
4070
void
4071
ztest_vdev_raidz_attach(ztest_ds_t *zd, uint64_t id)
4072
{
4073
(void) zd, (void) id;
4074
ztest_shared_t *zs = ztest_shared;
4075
spa_t *spa = ztest_spa;
4076
uint64_t leaves, raidz_children, newsize, ashift = ztest_get_ashift();
4077
kthread_t *scratch_thread = NULL;
4078
vdev_t *newvd, *pvd;
4079
nvlist_t *root;
4080
char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4081
int error, expected_error = 0;
4082
4083
mutex_enter(&ztest_vdev_lock);
4084
4085
spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
4086
4087
/* Only allow attach when raid-kind = 'eraidz' */
4088
if (!ztest_opts.zo_raid_do_expand) {
4089
spa_config_exit(spa, SCL_ALL, FTAG);
4090
goto out;
4091
}
4092
4093
if (ztest_opts.zo_mmp_test) {
4094
spa_config_exit(spa, SCL_ALL, FTAG);
4095
goto out;
4096
}
4097
4098
if (ztest_device_removal_active) {
4099
spa_config_exit(spa, SCL_ALL, FTAG);
4100
goto out;
4101
}
4102
4103
pvd = vdev_lookup_top(spa, 0);
4104
4105
ASSERT(pvd->vdev_ops == &vdev_raidz_ops);
4106
4107
/*
4108
* Get size of a child of the raidz group,
4109
* make sure device is a bit bigger
4110
*/
4111
newvd = pvd->vdev_child[ztest_random(pvd->vdev_children)];
4112
newsize = 10 * vdev_get_min_asize(newvd) / (9 + ztest_random(2));
4113
4114
/*
4115
* Get next attached leaf id
4116
*/
4117
raidz_children = ztest_get_raidz_children(spa);
4118
leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
4119
zs->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
4120
4121
if (spa->spa_raidz_expand)
4122
expected_error = ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS;
4123
4124
spa_config_exit(spa, SCL_ALL, FTAG);
4125
4126
/*
4127
* Path to vdev to be attached
4128
*/
4129
(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
4130
ztest_opts.zo_dir, ztest_opts.zo_pool, zs->zs_vdev_next_leaf);
4131
4132
/*
4133
* Build the nvlist describing newpath.
4134
*/
4135
root = make_vdev_root(newpath, NULL, NULL, newsize, ashift, NULL,
4136
0, 0, 1);
4137
4138
/*
4139
* 50% of the time, set raidz_expand_pause_point to cause
4140
* raidz_reflow_scratch_sync() to pause at a certain point and
4141
* then kill the test after 10 seconds so raidz_scratch_verify()
4142
* can confirm consistency when the pool is imported.
4143
*/
4144
if (ztest_random(2) == 0 && expected_error == 0) {
4145
raidz_expand_pause_point =
4146
ztest_random(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2) + 1;
4147
scratch_thread = thread_create(NULL, 0, ztest_scratch_thread,
4148
ztest_shared, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
4149
}
4150
4151
error = spa_vdev_attach(spa, pvd->vdev_guid, root, B_FALSE, B_FALSE);
4152
4153
nvlist_free(root);
4154
4155
if (error == EOVERFLOW || error == ENXIO ||
4156
error == ZFS_ERR_CHECKPOINT_EXISTS ||
4157
error == ZFS_ERR_DISCARDING_CHECKPOINT)
4158
expected_error = error;
4159
4160
if (error != 0 && error != expected_error) {
4161
fatal(0, "raidz attach (%s %"PRIu64") returned %d, expected %d",
4162
newpath, newsize, error, expected_error);
4163
}
4164
4165
if (raidz_expand_pause_point) {
4166
if (error != 0) {
4167
/*
4168
* Do not verify scratch object in case of error
4169
* returned by vdev attaching.
4170
*/
4171
raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
4172
}
4173
4174
VERIFY0(thread_join(scratch_thread));
4175
}
4176
out:
4177
mutex_exit(&ztest_vdev_lock);
4178
4179
umem_free(newpath, MAXPATHLEN);
4180
}
4181
4182
void
4183
ztest_device_removal(ztest_ds_t *zd, uint64_t id)
4184
{
4185
(void) zd, (void) id;
4186
spa_t *spa = ztest_spa;
4187
vdev_t *vd;
4188
uint64_t guid;
4189
int error;
4190
4191
mutex_enter(&ztest_vdev_lock);
4192
4193
if (ztest_device_removal_active) {
4194
mutex_exit(&ztest_vdev_lock);
4195
return;
4196
}
4197
4198
/*
4199
* Remove a random top-level vdev and wait for removal to finish.
4200
*/
4201
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4202
vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
4203
guid = vd->vdev_guid;
4204
spa_config_exit(spa, SCL_VDEV, FTAG);
4205
4206
error = spa_vdev_remove(spa, guid, B_FALSE);
4207
if (error == 0) {
4208
ztest_device_removal_active = B_TRUE;
4209
mutex_exit(&ztest_vdev_lock);
4210
4211
/*
4212
* spa->spa_vdev_removal is created in a sync task that
4213
* is initiated via dsl_sync_task_nowait(). Since the
4214
* task may not run before spa_vdev_remove() returns, we
4215
* must wait at least 1 txg to ensure that the removal
4216
* struct has been created.
4217
*/
4218
txg_wait_synced(spa_get_dsl(spa), 0);
4219
4220
while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
4221
txg_wait_synced(spa_get_dsl(spa), 0);
4222
} else {
4223
mutex_exit(&ztest_vdev_lock);
4224
return;
4225
}
4226
4227
/*
4228
* The pool needs to be scrubbed after completing device removal.
4229
* Failure to do so may result in checksum errors due to the
4230
* strategy employed by ztest_fault_inject() when selecting which
4231
* offset are redundant and can be damaged.
4232
*/
4233
error = spa_scan(spa, POOL_SCAN_SCRUB);
4234
if (error == 0) {
4235
while (dsl_scan_scrubbing(spa_get_dsl(spa)))
4236
txg_wait_synced(spa_get_dsl(spa), 0);
4237
}
4238
4239
mutex_enter(&ztest_vdev_lock);
4240
ztest_device_removal_active = B_FALSE;
4241
mutex_exit(&ztest_vdev_lock);
4242
}
4243
4244
/*
4245
* Callback function which expands the physical size of the vdev.
4246
*/
4247
static vdev_t *
4248
grow_vdev(vdev_t *vd, void *arg)
4249
{
4250
spa_t *spa __maybe_unused = vd->vdev_spa;
4251
size_t *newsize = arg;
4252
size_t fsize;
4253
int fd;
4254
4255
ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4256
ASSERT(vd->vdev_ops->vdev_op_leaf);
4257
4258
if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
4259
return (vd);
4260
4261
fsize = lseek(fd, 0, SEEK_END);
4262
VERIFY0(ftruncate(fd, *newsize));
4263
4264
if (ztest_opts.zo_verbose >= 6) {
4265
(void) printf("%s grew from %lu to %lu bytes\n",
4266
vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
4267
}
4268
(void) close(fd);
4269
return (NULL);
4270
}
4271
4272
/*
4273
* Callback function which expands a given vdev by calling vdev_online().
4274
*/
4275
static vdev_t *
4276
online_vdev(vdev_t *vd, void *arg)
4277
{
4278
(void) arg;
4279
spa_t *spa = vd->vdev_spa;
4280
vdev_t *tvd = vd->vdev_top;
4281
uint64_t guid = vd->vdev_guid;
4282
uint64_t generation = spa->spa_config_generation + 1;
4283
vdev_state_t newstate = VDEV_STATE_UNKNOWN;
4284
int error;
4285
4286
ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4287
ASSERT(vd->vdev_ops->vdev_op_leaf);
4288
4289
/* Calling vdev_online will initialize the new metaslabs */
4290
spa_config_exit(spa, SCL_STATE, spa);
4291
error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
4292
spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4293
4294
/*
4295
* If vdev_online returned an error or the underlying vdev_open
4296
* failed then we abort the expand. The only way to know that
4297
* vdev_open fails is by checking the returned newstate.
4298
*/
4299
if (error || newstate != VDEV_STATE_HEALTHY) {
4300
if (ztest_opts.zo_verbose >= 5) {
4301
(void) printf("Unable to expand vdev, state %u, "
4302
"error %d\n", newstate, error);
4303
}
4304
return (vd);
4305
}
4306
ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
4307
4308
/*
4309
* Since we dropped the lock we need to ensure that we're
4310
* still talking to the original vdev. It's possible this
4311
* vdev may have been detached/replaced while we were
4312
* trying to online it.
4313
*/
4314
if (generation != spa->spa_config_generation) {
4315
if (ztest_opts.zo_verbose >= 5) {
4316
(void) printf("vdev configuration has changed, "
4317
"guid %"PRIu64", state %"PRIu64", "
4318
"expected gen %"PRIu64", got gen %"PRIu64"\n",
4319
guid,
4320
tvd->vdev_state,
4321
generation,
4322
spa->spa_config_generation);
4323
}
4324
return (vd);
4325
}
4326
return (NULL);
4327
}
4328
4329
/*
4330
* Traverse the vdev tree calling the supplied function.
4331
* We continue to walk the tree until we either have walked all
4332
* children or we receive a non-NULL return from the callback.
4333
* If a NULL callback is passed, then we just return back the first
4334
* leaf vdev we encounter.
4335
*/
4336
static vdev_t *
4337
vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
4338
{
4339
uint_t c;
4340
4341
if (vd->vdev_ops->vdev_op_leaf) {
4342
if (func == NULL)
4343
return (vd);
4344
else
4345
return (func(vd, arg));
4346
}
4347
4348
for (c = 0; c < vd->vdev_children; c++) {
4349
vdev_t *cvd = vd->vdev_child[c];
4350
if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
4351
return (cvd);
4352
}
4353
return (NULL);
4354
}
4355
4356
/*
4357
* Verify that dynamic LUN growth works as expected.
4358
*/
4359
void
4360
ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4361
{
4362
(void) zd, (void) id;
4363
spa_t *spa = ztest_spa;
4364
vdev_t *vd, *tvd;
4365
metaslab_class_t *mc;
4366
metaslab_group_t *mg;
4367
size_t psize, newsize;
4368
uint64_t top;
4369
uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4370
4371
mutex_enter(&ztest_checkpoint_lock);
4372
mutex_enter(&ztest_vdev_lock);
4373
spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4374
4375
/*
4376
* If there is a vdev removal in progress, it could complete while
4377
* we are running, in which case we would not be able to verify
4378
* that the metaslab_class space increased (because it decreases
4379
* when the device removal completes).
4380
*/
4381
if (ztest_device_removal_active) {
4382
spa_config_exit(spa, SCL_STATE, spa);
4383
mutex_exit(&ztest_vdev_lock);
4384
mutex_exit(&ztest_checkpoint_lock);
4385
return;
4386
}
4387
4388
/*
4389
* If we are under raidz expansion, the test can failed because the
4390
* metaslabs count will not increase immediately after the vdev is
4391
* expanded. It will happen only after raidz expansion completion.
4392
*/
4393
if (spa->spa_raidz_expand) {
4394
spa_config_exit(spa, SCL_STATE, spa);
4395
mutex_exit(&ztest_vdev_lock);
4396
mutex_exit(&ztest_checkpoint_lock);
4397
return;
4398
}
4399
4400
top = ztest_random_vdev_top(spa, B_TRUE);
4401
4402
tvd = spa->spa_root_vdev->vdev_child[top];
4403
mg = tvd->vdev_mg;
4404
mc = mg->mg_class;
4405
old_ms_count = tvd->vdev_ms_count;
4406
old_class_space = metaslab_class_get_space(mc);
4407
4408
/*
4409
* Determine the size of the first leaf vdev associated with
4410
* our top-level device.
4411
*/
4412
vd = vdev_walk_tree(tvd, NULL, NULL);
4413
ASSERT3P(vd, !=, NULL);
4414
ASSERT(vd->vdev_ops->vdev_op_leaf);
4415
4416
psize = vd->vdev_psize;
4417
4418
/*
4419
* We only try to expand the vdev if it's healthy, less than 4x its
4420
* original size, and it has a valid psize.
4421
*/
4422
if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4423
psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4424
spa_config_exit(spa, SCL_STATE, spa);
4425
mutex_exit(&ztest_vdev_lock);
4426
mutex_exit(&ztest_checkpoint_lock);
4427
return;
4428
}
4429
ASSERT3U(psize, >, 0);
4430
newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4431
ASSERT3U(newsize, >, psize);
4432
4433
if (ztest_opts.zo_verbose >= 6) {
4434
(void) printf("Expanding LUN %s from %lu to %lu\n",
4435
vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4436
}
4437
4438
/*
4439
* Growing the vdev is a two step process:
4440
* 1). expand the physical size (i.e. relabel)
4441
* 2). online the vdev to create the new metaslabs
4442
*/
4443
if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4444
vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4445
tvd->vdev_state != VDEV_STATE_HEALTHY) {
4446
if (ztest_opts.zo_verbose >= 5) {
4447
(void) printf("Could not expand LUN because "
4448
"the vdev configuration changed.\n");
4449
}
4450
spa_config_exit(spa, SCL_STATE, spa);
4451
mutex_exit(&ztest_vdev_lock);
4452
mutex_exit(&ztest_checkpoint_lock);
4453
return;
4454
}
4455
4456
spa_config_exit(spa, SCL_STATE, spa);
4457
4458
/*
4459
* Expanding the LUN will update the config asynchronously,
4460
* thus we must wait for the async thread to complete any
4461
* pending tasks before proceeding.
4462
*/
4463
for (;;) {
4464
boolean_t done;
4465
mutex_enter(&spa->spa_async_lock);
4466
done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4467
mutex_exit(&spa->spa_async_lock);
4468
if (done)
4469
break;
4470
txg_wait_synced(spa_get_dsl(spa), 0);
4471
(void) poll(NULL, 0, 100);
4472
}
4473
4474
spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4475
4476
tvd = spa->spa_root_vdev->vdev_child[top];
4477
new_ms_count = tvd->vdev_ms_count;
4478
new_class_space = metaslab_class_get_space(mc);
4479
4480
if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4481
if (ztest_opts.zo_verbose >= 5) {
4482
(void) printf("Could not verify LUN expansion due to "
4483
"intervening vdev offline or remove.\n");
4484
}
4485
spa_config_exit(spa, SCL_STATE, spa);
4486
mutex_exit(&ztest_vdev_lock);
4487
mutex_exit(&ztest_checkpoint_lock);
4488
return;
4489
}
4490
4491
/*
4492
* Make sure we were able to grow the vdev.
4493
*/
4494
if (new_ms_count <= old_ms_count) {
4495
fatal(B_FALSE,
4496
"LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4497
old_ms_count, new_ms_count);
4498
}
4499
4500
/*
4501
* Make sure we were able to grow the pool.
4502
*/
4503
if (new_class_space <= old_class_space) {
4504
fatal(B_FALSE,
4505
"LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4506
old_class_space, new_class_space);
4507
}
4508
4509
if (ztest_opts.zo_verbose >= 5) {
4510
char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4511
4512
nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4513
nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4514
(void) printf("%s grew from %s to %s\n",
4515
spa->spa_name, oldnumbuf, newnumbuf);
4516
}
4517
4518
spa_config_exit(spa, SCL_STATE, spa);
4519
mutex_exit(&ztest_vdev_lock);
4520
mutex_exit(&ztest_checkpoint_lock);
4521
}
4522
4523
/*
4524
* Verify that dmu_objset_{create,destroy,open,close} work as expected.
4525
*/
4526
static void
4527
ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4528
{
4529
(void) arg, (void) cr;
4530
4531
/*
4532
* Create the objects common to all ztest datasets.
4533
*/
4534
VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4535
DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4536
}
4537
4538
static int
4539
ztest_dataset_create(char *dsname)
4540
{
4541
int err;
4542
uint64_t rand;
4543
dsl_crypto_params_t *dcp = NULL;
4544
4545
/*
4546
* 50% of the time, we create encrypted datasets
4547
* using a random cipher suite and a hard-coded
4548
* wrapping key.
4549
*/
4550
rand = ztest_random(2);
4551
if (rand != 0) {
4552
nvlist_t *crypto_args = fnvlist_alloc();
4553
nvlist_t *props = fnvlist_alloc();
4554
4555
/* slight bias towards the default cipher suite */
4556
rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4557
if (rand < ZIO_CRYPT_AES_128_CCM)
4558
rand = ZIO_CRYPT_ON;
4559
4560
fnvlist_add_uint64(props,
4561
zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4562
fnvlist_add_uint8_array(crypto_args, "wkeydata",
4563
(uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4564
4565
/*
4566
* These parameters aren't really used by the kernel. They
4567
* are simply stored so that userspace knows how to load
4568
* the wrapping key.
4569
*/
4570
fnvlist_add_uint64(props,
4571
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4572
fnvlist_add_string(props,
4573
zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4574
fnvlist_add_uint64(props,
4575
zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4576
fnvlist_add_uint64(props,
4577
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4578
4579
VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4580
crypto_args, &dcp));
4581
4582
/*
4583
* Cycle through all available encryption implementations
4584
* to verify interoperability.
4585
*/
4586
VERIFY0(gcm_impl_set("cycle"));
4587
VERIFY0(aes_impl_set("cycle"));
4588
4589
fnvlist_free(crypto_args);
4590
fnvlist_free(props);
4591
}
4592
4593
err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4594
ztest_objset_create_cb, NULL);
4595
dsl_crypto_params_free(dcp, !!err);
4596
4597
rand = ztest_random(100);
4598
if (err || rand < 80)
4599
return (err);
4600
4601
if (ztest_opts.zo_verbose >= 5)
4602
(void) printf("Setting dataset %s to sync always\n", dsname);
4603
return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4604
ZFS_SYNC_ALWAYS, B_FALSE));
4605
}
4606
4607
static int
4608
ztest_objset_destroy_cb(const char *name, void *arg)
4609
{
4610
(void) arg;
4611
objset_t *os;
4612
dmu_object_info_t doi;
4613
int error;
4614
4615
/*
4616
* Verify that the dataset contains a directory object.
4617
*/
4618
VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4619
B_TRUE, FTAG, &os));
4620
error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4621
if (error != ENOENT) {
4622
/* We could have crashed in the middle of destroying it */
4623
ASSERT0(error);
4624
ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4625
ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4626
}
4627
dmu_objset_disown(os, B_TRUE, FTAG);
4628
4629
/*
4630
* Destroy the dataset.
4631
*/
4632
if (strchr(name, '@') != NULL) {
4633
error = dsl_destroy_snapshot(name, B_TRUE);
4634
if (error != ECHRNG) {
4635
/*
4636
* The program was executed, but encountered a runtime
4637
* error, such as insufficient slop, or a hold on the
4638
* dataset.
4639
*/
4640
ASSERT0(error);
4641
}
4642
} else {
4643
error = dsl_destroy_head(name);
4644
if (error == ENOSPC) {
4645
/* There could be checkpoint or insufficient slop */
4646
ztest_record_enospc(FTAG);
4647
} else if (error != EBUSY) {
4648
/* There could be a hold on this dataset */
4649
ASSERT0(error);
4650
}
4651
}
4652
return (0);
4653
}
4654
4655
static boolean_t
4656
ztest_snapshot_create(char *osname, uint64_t id)
4657
{
4658
char snapname[ZFS_MAX_DATASET_NAME_LEN];
4659
int error;
4660
4661
(void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4662
4663
error = dmu_objset_snapshot_one(osname, snapname);
4664
if (error == ENOSPC) {
4665
ztest_record_enospc(FTAG);
4666
return (B_FALSE);
4667
}
4668
if (error != 0 && error != EEXIST && error != ECHRNG) {
4669
fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4670
snapname, error);
4671
}
4672
return (B_TRUE);
4673
}
4674
4675
static boolean_t
4676
ztest_snapshot_destroy(char *osname, uint64_t id)
4677
{
4678
char snapname[ZFS_MAX_DATASET_NAME_LEN];
4679
int error;
4680
4681
(void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4682
osname, id);
4683
4684
error = dsl_destroy_snapshot(snapname, B_FALSE);
4685
if (error != 0 && error != ENOENT && error != ECHRNG)
4686
fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4687
snapname, error);
4688
return (B_TRUE);
4689
}
4690
4691
void
4692
ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4693
{
4694
(void) zd;
4695
ztest_ds_t *zdtmp;
4696
int iters;
4697
int error;
4698
objset_t *os, *os2;
4699
char name[ZFS_MAX_DATASET_NAME_LEN];
4700
zilog_t *zilog;
4701
int i;
4702
4703
zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4704
4705
(void) pthread_rwlock_rdlock(&ztest_name_lock);
4706
4707
(void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4708
ztest_opts.zo_pool, id);
4709
4710
/*
4711
* If this dataset exists from a previous run, process its replay log
4712
* half of the time. If we don't replay it, then dsl_destroy_head()
4713
* (invoked from ztest_objset_destroy_cb()) should just throw it away.
4714
*/
4715
if (ztest_random(2) == 0 &&
4716
ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4717
B_TRUE, FTAG, &os) == 0) {
4718
ztest_zd_init(zdtmp, NULL, os);
4719
zil_replay(os, zdtmp, ztest_replay_vector);
4720
ztest_zd_fini(zdtmp);
4721
dmu_objset_disown(os, B_TRUE, FTAG);
4722
}
4723
4724
/*
4725
* There may be an old instance of the dataset we're about to
4726
* create lying around from a previous run. If so, destroy it
4727
* and all of its snapshots.
4728
*/
4729
(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4730
DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4731
4732
/*
4733
* Verify that the destroyed dataset is no longer in the namespace.
4734
* It may still be present if the destroy above fails with ENOSPC.
4735
*/
4736
error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE,
4737
FTAG, &os);
4738
if (error == 0) {
4739
dmu_objset_disown(os, B_TRUE, FTAG);
4740
ztest_record_enospc(FTAG);
4741
goto out;
4742
}
4743
VERIFY3U(ENOENT, ==, error);
4744
4745
/*
4746
* Verify that we can create a new dataset.
4747
*/
4748
error = ztest_dataset_create(name);
4749
if (error) {
4750
if (error == ENOSPC) {
4751
ztest_record_enospc(FTAG);
4752
goto out;
4753
}
4754
fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4755
}
4756
4757
VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4758
FTAG, &os));
4759
4760
ztest_zd_init(zdtmp, NULL, os);
4761
4762
/*
4763
* Open the intent log for it.
4764
*/
4765
zilog = zil_open(os, ztest_get_data, NULL);
4766
4767
/*
4768
* Put some objects in there, do a little I/O to them,
4769
* and randomly take a couple of snapshots along the way.
4770
*/
4771
iters = ztest_random(5);
4772
for (i = 0; i < iters; i++) {
4773
ztest_dmu_object_alloc_free(zdtmp, id);
4774
if (ztest_random(iters) == 0)
4775
(void) ztest_snapshot_create(name, i);
4776
}
4777
4778
/*
4779
* Verify that we cannot create an existing dataset.
4780
*/
4781
VERIFY3U(EEXIST, ==,
4782
dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4783
4784
/*
4785
* Verify that we can hold an objset that is also owned.
4786
*/
4787
VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4788
dmu_objset_rele(os2, FTAG);
4789
4790
/*
4791
* Verify that we cannot own an objset that is already owned.
4792
*/
4793
VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4794
B_FALSE, B_TRUE, FTAG, &os2));
4795
4796
zil_close(zilog);
4797
dmu_objset_disown(os, B_TRUE, FTAG);
4798
ztest_zd_fini(zdtmp);
4799
out:
4800
(void) pthread_rwlock_unlock(&ztest_name_lock);
4801
4802
umem_free(zdtmp, sizeof (ztest_ds_t));
4803
}
4804
4805
/*
4806
* Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4807
*/
4808
void
4809
ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4810
{
4811
(void) pthread_rwlock_rdlock(&ztest_name_lock);
4812
(void) ztest_snapshot_destroy(zd->zd_name, id);
4813
(void) ztest_snapshot_create(zd->zd_name, id);
4814
(void) pthread_rwlock_unlock(&ztest_name_lock);
4815
}
4816
4817
/*
4818
* Cleanup non-standard snapshots and clones.
4819
*/
4820
static void
4821
ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4822
{
4823
char *snap1name;
4824
char *clone1name;
4825
char *snap2name;
4826
char *clone2name;
4827
char *snap3name;
4828
int error;
4829
4830
snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4831
clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4832
snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4833
clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4834
snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4835
4836
(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4837
osname, id);
4838
(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4839
osname, id);
4840
(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4841
clone1name, id);
4842
(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4843
osname, id);
4844
(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4845
clone1name, id);
4846
4847
error = dsl_destroy_head(clone2name);
4848
if (error && error != ENOENT)
4849
fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4850
error = dsl_destroy_snapshot(snap3name, B_FALSE);
4851
if (error && error != ENOENT)
4852
fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4853
snap3name, error);
4854
error = dsl_destroy_snapshot(snap2name, B_FALSE);
4855
if (error && error != ENOENT)
4856
fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4857
snap2name, error);
4858
error = dsl_destroy_head(clone1name);
4859
if (error && error != ENOENT)
4860
fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4861
error = dsl_destroy_snapshot(snap1name, B_FALSE);
4862
if (error && error != ENOENT)
4863
fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4864
snap1name, error);
4865
4866
umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4867
umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4868
umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4869
umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4870
umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4871
}
4872
4873
/*
4874
* Verify dsl_dataset_promote handles EBUSY
4875
*/
4876
void
4877
ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4878
{
4879
objset_t *os;
4880
char *snap1name;
4881
char *clone1name;
4882
char *snap2name;
4883
char *clone2name;
4884
char *snap3name;
4885
char *osname = zd->zd_name;
4886
int error;
4887
4888
snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4889
clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4890
snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4891
clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4892
snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4893
4894
(void) pthread_rwlock_rdlock(&ztest_name_lock);
4895
4896
ztest_dsl_dataset_cleanup(osname, id);
4897
4898
(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4899
osname, id);
4900
(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4901
osname, id);
4902
(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4903
clone1name, id);
4904
(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4905
osname, id);
4906
(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4907
clone1name, id);
4908
4909
error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4910
if (error && error != EEXIST) {
4911
if (error == ENOSPC) {
4912
ztest_record_enospc(FTAG);
4913
goto out;
4914
}
4915
fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4916
}
4917
4918
error = dsl_dataset_clone(clone1name, snap1name);
4919
if (error) {
4920
if (error == ENOSPC) {
4921
ztest_record_enospc(FTAG);
4922
goto out;
4923
}
4924
fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4925
}
4926
4927
error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4928
if (error && error != EEXIST) {
4929
if (error == ENOSPC) {
4930
ztest_record_enospc(FTAG);
4931
goto out;
4932
}
4933
fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4934
}
4935
4936
error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4937
if (error && error != EEXIST) {
4938
if (error == ENOSPC) {
4939
ztest_record_enospc(FTAG);
4940
goto out;
4941
}
4942
fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4943
}
4944
4945
error = dsl_dataset_clone(clone2name, snap3name);
4946
if (error) {
4947
if (error == ENOSPC) {
4948
ztest_record_enospc(FTAG);
4949
goto out;
4950
}
4951
fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4952
}
4953
4954
error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4955
FTAG, &os);
4956
if (error)
4957
fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4958
error = dsl_dataset_promote(clone2name, NULL);
4959
if (error == ENOSPC) {
4960
dmu_objset_disown(os, B_TRUE, FTAG);
4961
ztest_record_enospc(FTAG);
4962
goto out;
4963
}
4964
if (error != EBUSY)
4965
fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4966
clone2name, error);
4967
dmu_objset_disown(os, B_TRUE, FTAG);
4968
4969
out:
4970
ztest_dsl_dataset_cleanup(osname, id);
4971
4972
(void) pthread_rwlock_unlock(&ztest_name_lock);
4973
4974
umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4975
umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4976
umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4977
umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4978
umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4979
}
4980
4981
#undef OD_ARRAY_SIZE
4982
#define OD_ARRAY_SIZE 4
4983
4984
/*
4985
* Verify that dmu_object_{alloc,free} work as expected.
4986
*/
4987
void
4988
ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4989
{
4990
ztest_od_t *od;
4991
int batchsize;
4992
int size;
4993
int b;
4994
4995
size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4996
od = umem_alloc(size, UMEM_NOFAIL);
4997
batchsize = OD_ARRAY_SIZE;
4998
4999
for (b = 0; b < batchsize; b++)
5000
ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
5001
0, 0, 0);
5002
5003
/*
5004
* Destroy the previous batch of objects, create a new batch,
5005
* and do some I/O on the new objects.
5006
*/
5007
if (ztest_object_init(zd, od, size, B_TRUE) != 0) {
5008
zd->zd_od = NULL;
5009
umem_free(od, size);
5010
return;
5011
}
5012
5013
while (ztest_random(4 * batchsize) != 0)
5014
ztest_io(zd, od[ztest_random(batchsize)].od_object,
5015
ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5016
5017
umem_free(od, size);
5018
}
5019
5020
/*
5021
* Rewind the global allocator to verify object allocation backfilling.
5022
*/
5023
void
5024
ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
5025
{
5026
(void) id;
5027
objset_t *os = zd->zd_os;
5028
uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
5029
uint64_t object;
5030
5031
/*
5032
* Rewind the global allocator randomly back to a lower object number
5033
* to force backfilling and reclamation of recently freed dnodes.
5034
*/
5035
mutex_enter(&os->os_obj_lock);
5036
object = ztest_random(os->os_obj_next_chunk);
5037
os->os_obj_next_chunk = P2ALIGN_TYPED(object, dnodes_per_chunk,
5038
uint64_t);
5039
mutex_exit(&os->os_obj_lock);
5040
}
5041
5042
#undef OD_ARRAY_SIZE
5043
#define OD_ARRAY_SIZE 2
5044
5045
/*
5046
* Verify that dmu_{read,write} work as expected.
5047
*/
5048
void
5049
ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
5050
{
5051
int size;
5052
ztest_od_t *od;
5053
5054
objset_t *os = zd->zd_os;
5055
size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5056
od = umem_alloc(size, UMEM_NOFAIL);
5057
dmu_tx_t *tx;
5058
int freeit, error;
5059
uint64_t i, n, s, txg;
5060
bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
5061
uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5062
uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
5063
uint64_t regions = 997;
5064
uint64_t stride = 123456789ULL;
5065
uint64_t width = 40;
5066
int free_percent = 5;
5067
dmu_flags_t dmu_read_flags = DMU_READ_PREFETCH;
5068
5069
/*
5070
* We will randomly set when to do O_DIRECT on a read.
5071
*/
5072
if (ztest_random(4) == 0)
5073
dmu_read_flags |= DMU_DIRECTIO;
5074
5075
/*
5076
* This test uses two objects, packobj and bigobj, that are always
5077
* updated together (i.e. in the same tx) so that their contents are
5078
* in sync and can be compared. Their contents relate to each other
5079
* in a simple way: packobj is a dense array of 'bufwad' structures,
5080
* while bigobj is a sparse array of the same bufwads. Specifically,
5081
* for any index n, there are three bufwads that should be identical:
5082
*
5083
* packobj, at offset n * sizeof (bufwad_t)
5084
* bigobj, at the head of the nth chunk
5085
* bigobj, at the tail of the nth chunk
5086
*
5087
* The chunk size is arbitrary. It doesn't have to be a power of two,
5088
* and it doesn't have any relation to the object blocksize.
5089
* The only requirement is that it can hold at least two bufwads.
5090
*
5091
* Normally, we write the bufwad to each of these locations.
5092
* However, free_percent of the time we instead write zeroes to
5093
* packobj and perform a dmu_free_range() on bigobj. By comparing
5094
* bigobj to packobj, we can verify that the DMU is correctly
5095
* tracking which parts of an object are allocated and free,
5096
* and that the contents of the allocated blocks are correct.
5097
*/
5098
5099
/*
5100
* Read the directory info. If it's the first time, set things up.
5101
*/
5102
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
5103
ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5104
chunksize);
5105
5106
if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5107
umem_free(od, size);
5108
return;
5109
}
5110
5111
bigobj = od[0].od_object;
5112
packobj = od[1].od_object;
5113
chunksize = od[0].od_gen;
5114
ASSERT3U(chunksize, ==, od[1].od_gen);
5115
5116
/*
5117
* Prefetch a random chunk of the big object.
5118
* Our aim here is to get some async reads in flight
5119
* for blocks that we may free below; the DMU should
5120
* handle this race correctly.
5121
*/
5122
n = ztest_random(regions) * stride + ztest_random(width);
5123
s = 1 + ztest_random(2 * width - 1);
5124
dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
5125
ZIO_PRIORITY_SYNC_READ);
5126
5127
/*
5128
* Pick a random index and compute the offsets into packobj and bigobj.
5129
*/
5130
n = ztest_random(regions) * stride + ztest_random(width);
5131
s = 1 + ztest_random(width - 1);
5132
5133
packoff = n * sizeof (bufwad_t);
5134
packsize = s * sizeof (bufwad_t);
5135
5136
bigoff = n * chunksize;
5137
bigsize = s * chunksize;
5138
5139
packbuf = umem_alloc(packsize, UMEM_NOFAIL);
5140
bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
5141
5142
/*
5143
* free_percent of the time, free a range of bigobj rather than
5144
* overwriting it.
5145
*/
5146
freeit = (ztest_random(100) < free_percent);
5147
5148
/*
5149
* Read the current contents of our objects.
5150
*/
5151
error = dmu_read(os, packobj, packoff, packsize, packbuf,
5152
dmu_read_flags);
5153
ASSERT0(error);
5154
error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
5155
dmu_read_flags);
5156
ASSERT0(error);
5157
5158
/*
5159
* Get a tx for the mods to both packobj and bigobj.
5160
*/
5161
tx = dmu_tx_create(os);
5162
5163
dmu_tx_hold_write(tx, packobj, packoff, packsize);
5164
5165
if (freeit)
5166
dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
5167
else
5168
dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5169
5170
/* This accounts for setting the checksum/compression. */
5171
dmu_tx_hold_bonus(tx, bigobj);
5172
5173
txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5174
if (txg == 0) {
5175
umem_free(packbuf, packsize);
5176
umem_free(bigbuf, bigsize);
5177
umem_free(od, size);
5178
return;
5179
}
5180
5181
enum zio_checksum cksum;
5182
do {
5183
cksum = (enum zio_checksum)
5184
ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
5185
} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
5186
dmu_object_set_checksum(os, bigobj, cksum, tx);
5187
5188
enum zio_compress comp;
5189
do {
5190
comp = (enum zio_compress)
5191
ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
5192
} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
5193
dmu_object_set_compress(os, bigobj, comp, tx);
5194
5195
/*
5196
* For each index from n to n + s, verify that the existing bufwad
5197
* in packobj matches the bufwads at the head and tail of the
5198
* corresponding chunk in bigobj. Then update all three bufwads
5199
* with the new values we want to write out.
5200
*/
5201
for (i = 0; i < s; i++) {
5202
/* LINTED */
5203
pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5204
/* LINTED */
5205
bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5206
/* LINTED */
5207
bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5208
5209
ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5210
ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5211
5212
if (pack->bw_txg > txg)
5213
fatal(B_FALSE,
5214
"future leak: got %"PRIx64", open txg is %"PRIx64"",
5215
pack->bw_txg, txg);
5216
5217
if (pack->bw_data != 0 && pack->bw_index != n + i)
5218
fatal(B_FALSE, "wrong index: "
5219
"got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5220
pack->bw_index, n, i);
5221
5222
if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5223
fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5224
pack, bigH);
5225
5226
if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5227
fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5228
pack, bigT);
5229
5230
if (freeit) {
5231
memset(pack, 0, sizeof (bufwad_t));
5232
} else {
5233
pack->bw_index = n + i;
5234
pack->bw_txg = txg;
5235
pack->bw_data = 1 + ztest_random(-2ULL);
5236
}
5237
*bigH = *pack;
5238
*bigT = *pack;
5239
}
5240
5241
/*
5242
* We've verified all the old bufwads, and made new ones.
5243
* Now write them out.
5244
*/
5245
dmu_write(os, packobj, packoff, packsize, packbuf, tx,
5246
DMU_READ_PREFETCH);
5247
5248
if (freeit) {
5249
if (ztest_opts.zo_verbose >= 7) {
5250
(void) printf("freeing offset %"PRIx64" size %"PRIx64""
5251
" txg %"PRIx64"\n",
5252
bigoff, bigsize, txg);
5253
}
5254
VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
5255
} else {
5256
if (ztest_opts.zo_verbose >= 7) {
5257
(void) printf("writing offset %"PRIx64" size %"PRIx64""
5258
" txg %"PRIx64"\n",
5259
bigoff, bigsize, txg);
5260
}
5261
dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx,
5262
DMU_READ_PREFETCH);
5263
}
5264
5265
dmu_tx_commit(tx);
5266
5267
/*
5268
* Sanity check the stuff we just wrote.
5269
*/
5270
{
5271
void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5272
void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5273
5274
VERIFY0(dmu_read(os, packobj, packoff,
5275
packsize, packcheck, dmu_read_flags));
5276
VERIFY0(dmu_read(os, bigobj, bigoff,
5277
bigsize, bigcheck, dmu_read_flags));
5278
5279
ASSERT0(memcmp(packbuf, packcheck, packsize));
5280
ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5281
5282
umem_free(packcheck, packsize);
5283
umem_free(bigcheck, bigsize);
5284
}
5285
5286
umem_free(packbuf, packsize);
5287
umem_free(bigbuf, bigsize);
5288
umem_free(od, size);
5289
}
5290
5291
static void
5292
compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
5293
uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
5294
{
5295
uint64_t i;
5296
bufwad_t *pack;
5297
bufwad_t *bigH;
5298
bufwad_t *bigT;
5299
5300
/*
5301
* For each index from n to n + s, verify that the existing bufwad
5302
* in packobj matches the bufwads at the head and tail of the
5303
* corresponding chunk in bigobj. Then update all three bufwads
5304
* with the new values we want to write out.
5305
*/
5306
for (i = 0; i < s; i++) {
5307
/* LINTED */
5308
pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5309
/* LINTED */
5310
bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5311
/* LINTED */
5312
bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5313
5314
ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5315
ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5316
5317
if (pack->bw_txg > txg)
5318
fatal(B_FALSE,
5319
"future leak: got %"PRIx64", open txg is %"PRIx64"",
5320
pack->bw_txg, txg);
5321
5322
if (pack->bw_data != 0 && pack->bw_index != n + i)
5323
fatal(B_FALSE, "wrong index: "
5324
"got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5325
pack->bw_index, n, i);
5326
5327
if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5328
fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5329
pack, bigH);
5330
5331
if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5332
fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5333
pack, bigT);
5334
5335
pack->bw_index = n + i;
5336
pack->bw_txg = txg;
5337
pack->bw_data = 1 + ztest_random(-2ULL);
5338
5339
*bigH = *pack;
5340
*bigT = *pack;
5341
}
5342
}
5343
5344
#undef OD_ARRAY_SIZE
5345
#define OD_ARRAY_SIZE 2
5346
5347
void
5348
ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
5349
{
5350
objset_t *os = zd->zd_os;
5351
ztest_od_t *od;
5352
dmu_tx_t *tx;
5353
uint64_t i;
5354
int error;
5355
int size;
5356
uint64_t n, s, txg;
5357
bufwad_t *packbuf, *bigbuf;
5358
uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5359
uint64_t blocksize = ztest_random_blocksize();
5360
uint64_t chunksize = blocksize;
5361
uint64_t regions = 997;
5362
uint64_t stride = 123456789ULL;
5363
uint64_t width = 9;
5364
dmu_buf_t *bonus_db;
5365
arc_buf_t **bigbuf_arcbufs;
5366
dmu_object_info_t doi;
5367
uint32_t dmu_read_flags = DMU_READ_PREFETCH;
5368
5369
/*
5370
* We will randomly set when to do O_DIRECT on a read.
5371
*/
5372
if (ztest_random(4) == 0)
5373
dmu_read_flags |= DMU_DIRECTIO;
5374
5375
size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5376
od = umem_alloc(size, UMEM_NOFAIL);
5377
5378
/*
5379
* This test uses two objects, packobj and bigobj, that are always
5380
* updated together (i.e. in the same tx) so that their contents are
5381
* in sync and can be compared. Their contents relate to each other
5382
* in a simple way: packobj is a dense array of 'bufwad' structures,
5383
* while bigobj is a sparse array of the same bufwads. Specifically,
5384
* for any index n, there are three bufwads that should be identical:
5385
*
5386
* packobj, at offset n * sizeof (bufwad_t)
5387
* bigobj, at the head of the nth chunk
5388
* bigobj, at the tail of the nth chunk
5389
*
5390
* The chunk size is set equal to bigobj block size so that
5391
* dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5392
*/
5393
5394
/*
5395
* Read the directory info. If it's the first time, set things up.
5396
*/
5397
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5398
ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5399
chunksize);
5400
5401
5402
if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5403
umem_free(od, size);
5404
return;
5405
}
5406
5407
bigobj = od[0].od_object;
5408
packobj = od[1].od_object;
5409
blocksize = od[0].od_blocksize;
5410
chunksize = blocksize;
5411
ASSERT3U(chunksize, ==, od[1].od_gen);
5412
5413
VERIFY0(dmu_object_info(os, bigobj, &doi));
5414
VERIFY(ISP2(doi.doi_data_block_size));
5415
VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5416
VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5417
5418
/*
5419
* Pick a random index and compute the offsets into packobj and bigobj.
5420
*/
5421
n = ztest_random(regions) * stride + ztest_random(width);
5422
s = 1 + ztest_random(width - 1);
5423
5424
packoff = n * sizeof (bufwad_t);
5425
packsize = s * sizeof (bufwad_t);
5426
5427
bigoff = n * chunksize;
5428
bigsize = s * chunksize;
5429
5430
packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5431
bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5432
5433
VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5434
5435
bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5436
5437
/*
5438
* Iteration 0 test zcopy for DB_UNCACHED dbufs.
5439
* Iteration 1 test zcopy to already referenced dbufs.
5440
* Iteration 2 test zcopy to dirty dbuf in the same txg.
5441
* Iteration 3 test zcopy to dbuf dirty in previous txg.
5442
* Iteration 4 test zcopy when dbuf is no longer dirty.
5443
* Iteration 5 test zcopy when it can't be done.
5444
* Iteration 6 one more zcopy write.
5445
*/
5446
for (i = 0; i < 7; i++) {
5447
uint64_t j;
5448
uint64_t off;
5449
5450
/*
5451
* In iteration 5 (i == 5) use arcbufs
5452
* that don't match bigobj blksz to test
5453
* dmu_assign_arcbuf_by_dbuf() when it can't directly
5454
* assign an arcbuf to a dbuf.
5455
*/
5456
for (j = 0; j < s; j++) {
5457
if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5458
bigbuf_arcbufs[j] =
5459
dmu_request_arcbuf(bonus_db, chunksize);
5460
} else {
5461
bigbuf_arcbufs[2 * j] =
5462
dmu_request_arcbuf(bonus_db, chunksize / 2);
5463
bigbuf_arcbufs[2 * j + 1] =
5464
dmu_request_arcbuf(bonus_db, chunksize / 2);
5465
}
5466
}
5467
5468
/*
5469
* Get a tx for the mods to both packobj and bigobj.
5470
*/
5471
tx = dmu_tx_create(os);
5472
5473
dmu_tx_hold_write(tx, packobj, packoff, packsize);
5474
dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5475
5476
txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5477
if (txg == 0) {
5478
umem_free(packbuf, packsize);
5479
umem_free(bigbuf, bigsize);
5480
for (j = 0; j < s; j++) {
5481
if (i != 5 ||
5482
chunksize < (SPA_MINBLOCKSIZE * 2)) {
5483
dmu_return_arcbuf(bigbuf_arcbufs[j]);
5484
} else {
5485
dmu_return_arcbuf(
5486
bigbuf_arcbufs[2 * j]);
5487
dmu_return_arcbuf(
5488
bigbuf_arcbufs[2 * j + 1]);
5489
}
5490
}
5491
umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5492
umem_free(od, size);
5493
dmu_buf_rele(bonus_db, FTAG);
5494
return;
5495
}
5496
5497
/*
5498
* 50% of the time don't read objects in the 1st iteration to
5499
* test dmu_assign_arcbuf_by_dbuf() for the case when there are
5500
* no existing dbufs for the specified offsets.
5501
*/
5502
if (i != 0 || ztest_random(2) != 0) {
5503
error = dmu_read(os, packobj, packoff,
5504
packsize, packbuf, dmu_read_flags);
5505
ASSERT0(error);
5506
error = dmu_read(os, bigobj, bigoff, bigsize,
5507
bigbuf, dmu_read_flags);
5508
ASSERT0(error);
5509
}
5510
compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5511
n, chunksize, txg);
5512
5513
/*
5514
* We've verified all the old bufwads, and made new ones.
5515
* Now write them out.
5516
*/
5517
dmu_write(os, packobj, packoff, packsize, packbuf, tx,
5518
DMU_READ_PREFETCH);
5519
if (ztest_opts.zo_verbose >= 7) {
5520
(void) printf("writing offset %"PRIx64" size %"PRIx64""
5521
" txg %"PRIx64"\n",
5522
bigoff, bigsize, txg);
5523
}
5524
for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5525
dmu_buf_t *dbt;
5526
if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5527
memcpy(bigbuf_arcbufs[j]->b_data,
5528
(caddr_t)bigbuf + (off - bigoff),
5529
chunksize);
5530
} else {
5531
memcpy(bigbuf_arcbufs[2 * j]->b_data,
5532
(caddr_t)bigbuf + (off - bigoff),
5533
chunksize / 2);
5534
memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5535
(caddr_t)bigbuf + (off - bigoff) +
5536
chunksize / 2,
5537
chunksize / 2);
5538
}
5539
5540
if (i == 1) {
5541
VERIFY0(dmu_buf_hold(os, bigobj, off,
5542
FTAG, &dbt, DMU_READ_NO_PREFETCH));
5543
}
5544
if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5545
VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5546
off, bigbuf_arcbufs[j], tx, 0));
5547
} else {
5548
VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5549
off, bigbuf_arcbufs[2 * j], tx, 0));
5550
VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5551
off + chunksize / 2,
5552
bigbuf_arcbufs[2 * j + 1], tx, 0));
5553
}
5554
if (i == 1) {
5555
dmu_buf_rele(dbt, FTAG);
5556
}
5557
}
5558
dmu_tx_commit(tx);
5559
5560
/*
5561
* Sanity check the stuff we just wrote.
5562
*/
5563
{
5564
void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5565
void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5566
5567
VERIFY0(dmu_read(os, packobj, packoff,
5568
packsize, packcheck, dmu_read_flags));
5569
VERIFY0(dmu_read(os, bigobj, bigoff,
5570
bigsize, bigcheck, dmu_read_flags));
5571
5572
ASSERT0(memcmp(packbuf, packcheck, packsize));
5573
ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5574
5575
umem_free(packcheck, packsize);
5576
umem_free(bigcheck, bigsize);
5577
}
5578
if (i == 2) {
5579
txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5580
} else if (i == 3) {
5581
txg_wait_synced(dmu_objset_pool(os), 0);
5582
}
5583
}
5584
5585
dmu_buf_rele(bonus_db, FTAG);
5586
umem_free(packbuf, packsize);
5587
umem_free(bigbuf, bigsize);
5588
umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5589
umem_free(od, size);
5590
}
5591
5592
void
5593
ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5594
{
5595
(void) id;
5596
ztest_od_t *od;
5597
5598
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5599
uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5600
(ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5601
5602
/*
5603
* Have multiple threads write to large offsets in an object
5604
* to verify that parallel writes to an object -- even to the
5605
* same blocks within the object -- doesn't cause any trouble.
5606
*/
5607
ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5608
5609
if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5610
return;
5611
5612
while (ztest_random(10) != 0)
5613
ztest_io(zd, od->od_object, offset);
5614
5615
umem_free(od, sizeof (ztest_od_t));
5616
}
5617
5618
void
5619
ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5620
{
5621
ztest_od_t *od;
5622
uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5623
(ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5624
uint64_t count = ztest_random(20) + 1;
5625
uint64_t blocksize = ztest_random_blocksize();
5626
void *data;
5627
5628
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5629
5630
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5631
5632
if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5633
!ztest_random(2)) != 0) {
5634
umem_free(od, sizeof (ztest_od_t));
5635
return;
5636
}
5637
5638
if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5639
umem_free(od, sizeof (ztest_od_t));
5640
return;
5641
}
5642
5643
ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5644
5645
data = umem_zalloc(blocksize, UMEM_NOFAIL);
5646
5647
while (ztest_random(count) != 0) {
5648
uint64_t randoff = offset + (ztest_random(count) * blocksize);
5649
if (ztest_write(zd, od->od_object, randoff, blocksize,
5650
data) != 0)
5651
break;
5652
while (ztest_random(4) != 0)
5653
ztest_io(zd, od->od_object, randoff);
5654
}
5655
5656
umem_free(data, blocksize);
5657
umem_free(od, sizeof (ztest_od_t));
5658
}
5659
5660
/*
5661
* Verify that zap_{create,destroy,add,remove,update} work as expected.
5662
*/
5663
#define ZTEST_ZAP_MIN_INTS 1
5664
#define ZTEST_ZAP_MAX_INTS 4
5665
#define ZTEST_ZAP_MAX_PROPS 1000
5666
5667
void
5668
ztest_zap(ztest_ds_t *zd, uint64_t id)
5669
{
5670
objset_t *os = zd->zd_os;
5671
ztest_od_t *od;
5672
uint64_t object;
5673
uint64_t txg, last_txg;
5674
uint64_t value[ZTEST_ZAP_MAX_INTS];
5675
uint64_t zl_ints, zl_intsize, prop;
5676
int i, ints;
5677
dmu_tx_t *tx;
5678
char propname[100], txgname[100];
5679
int error;
5680
const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5681
5682
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5683
ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5684
5685
if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5686
!ztest_random(2)) != 0)
5687
goto out;
5688
5689
object = od->od_object;
5690
5691
/*
5692
* Generate a known hash collision, and verify that
5693
* we can lookup and remove both entries.
5694
*/
5695
tx = dmu_tx_create(os);
5696
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5697
txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5698
if (txg == 0)
5699
goto out;
5700
for (i = 0; i < 2; i++) {
5701
value[i] = i;
5702
VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5703
1, &value[i], tx));
5704
}
5705
for (i = 0; i < 2; i++) {
5706
VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5707
sizeof (uint64_t), 1, &value[i], tx));
5708
VERIFY0(
5709
zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5710
ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5711
ASSERT3U(zl_ints, ==, 1);
5712
}
5713
for (i = 0; i < 2; i++) {
5714
VERIFY0(zap_remove(os, object, hc[i], tx));
5715
}
5716
dmu_tx_commit(tx);
5717
5718
/*
5719
* Generate a bunch of random entries.
5720
*/
5721
ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5722
5723
prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5724
(void) sprintf(propname, "prop_%"PRIu64"", prop);
5725
(void) sprintf(txgname, "txg_%"PRIu64"", prop);
5726
memset(value, 0, sizeof (value));
5727
last_txg = 0;
5728
5729
/*
5730
* If these zap entries already exist, validate their contents.
5731
*/
5732
error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5733
if (error == 0) {
5734
ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5735
ASSERT3U(zl_ints, ==, 1);
5736
5737
VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5738
zl_ints, &last_txg));
5739
5740
VERIFY0(zap_length(os, object, propname, &zl_intsize,
5741
&zl_ints));
5742
5743
ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5744
ASSERT3U(zl_ints, ==, ints);
5745
5746
VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5747
zl_ints, value));
5748
5749
for (i = 0; i < ints; i++) {
5750
ASSERT3U(value[i], ==, last_txg + object + i);
5751
}
5752
} else {
5753
ASSERT3U(error, ==, ENOENT);
5754
}
5755
5756
/*
5757
* Atomically update two entries in our zap object.
5758
* The first is named txg_%llu, and contains the txg
5759
* in which the property was last updated. The second
5760
* is named prop_%llu, and the nth element of its value
5761
* should be txg + object + n.
5762
*/
5763
tx = dmu_tx_create(os);
5764
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5765
txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5766
if (txg == 0)
5767
goto out;
5768
5769
if (last_txg > txg)
5770
fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5771
last_txg, txg);
5772
5773
for (i = 0; i < ints; i++)
5774
value[i] = txg + object + i;
5775
5776
VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5777
1, &txg, tx));
5778
VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5779
ints, value, tx));
5780
5781
dmu_tx_commit(tx);
5782
5783
/*
5784
* Remove a random pair of entries.
5785
*/
5786
prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5787
(void) sprintf(propname, "prop_%"PRIu64"", prop);
5788
(void) sprintf(txgname, "txg_%"PRIu64"", prop);
5789
5790
error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5791
5792
if (error == ENOENT)
5793
goto out;
5794
5795
ASSERT0(error);
5796
5797
tx = dmu_tx_create(os);
5798
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5799
txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5800
if (txg == 0)
5801
goto out;
5802
VERIFY0(zap_remove(os, object, txgname, tx));
5803
VERIFY0(zap_remove(os, object, propname, tx));
5804
dmu_tx_commit(tx);
5805
out:
5806
umem_free(od, sizeof (ztest_od_t));
5807
}
5808
5809
/*
5810
* Test case to test the upgrading of a microzap to fatzap.
5811
*/
5812
void
5813
ztest_fzap(ztest_ds_t *zd, uint64_t id)
5814
{
5815
objset_t *os = zd->zd_os;
5816
ztest_od_t *od;
5817
uint64_t object, txg, value;
5818
5819
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5820
ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5821
5822
if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5823
!ztest_random(2)) != 0)
5824
goto out;
5825
object = od->od_object;
5826
5827
/*
5828
* Add entries to this ZAP and make sure it spills over
5829
* and gets upgraded to a fatzap. Also, since we are adding
5830
* 2050 entries we should see ptrtbl growth and leaf-block split.
5831
*/
5832
for (value = 0; value < 2050; value++) {
5833
char name[ZFS_MAX_DATASET_NAME_LEN];
5834
dmu_tx_t *tx;
5835
int error;
5836
5837
(void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5838
id, value);
5839
5840
tx = dmu_tx_create(os);
5841
dmu_tx_hold_zap(tx, object, B_TRUE, name);
5842
txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5843
if (txg == 0)
5844
goto out;
5845
error = zap_add(os, object, name, sizeof (uint64_t), 1,
5846
&value, tx);
5847
ASSERT(error == 0 || error == EEXIST);
5848
dmu_tx_commit(tx);
5849
}
5850
out:
5851
umem_free(od, sizeof (ztest_od_t));
5852
}
5853
5854
void
5855
ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5856
{
5857
(void) id;
5858
objset_t *os = zd->zd_os;
5859
ztest_od_t *od;
5860
uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5861
dmu_tx_t *tx;
5862
int i, namelen, error;
5863
int micro = ztest_random(2);
5864
char name[20], string_value[20];
5865
void *data;
5866
5867
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5868
ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5869
5870
if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5871
umem_free(od, sizeof (ztest_od_t));
5872
return;
5873
}
5874
5875
object = od->od_object;
5876
5877
/*
5878
* Generate a random name of the form 'xxx.....' where each
5879
* x is a random printable character and the dots are dots.
5880
* There are 94 such characters, and the name length goes from
5881
* 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5882
*/
5883
namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5884
5885
for (i = 0; i < 3; i++)
5886
name[i] = '!' + ztest_random('~' - '!' + 1);
5887
for (; i < namelen - 1; i++)
5888
name[i] = '.';
5889
name[i] = '\0';
5890
5891
if ((namelen & 1) || micro) {
5892
wsize = sizeof (txg);
5893
wc = 1;
5894
data = &txg;
5895
} else {
5896
wsize = 1;
5897
wc = namelen;
5898
data = string_value;
5899
}
5900
5901
count = -1ULL;
5902
VERIFY0(zap_count(os, object, &count));
5903
ASSERT3S(count, !=, -1ULL);
5904
5905
/*
5906
* Select an operation: length, lookup, add, update, remove.
5907
*/
5908
i = ztest_random(5);
5909
5910
if (i >= 2) {
5911
tx = dmu_tx_create(os);
5912
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5913
txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5914
if (txg == 0) {
5915
umem_free(od, sizeof (ztest_od_t));
5916
return;
5917
}
5918
memcpy(string_value, name, namelen);
5919
} else {
5920
tx = NULL;
5921
txg = 0;
5922
memset(string_value, 0, namelen);
5923
}
5924
5925
switch (i) {
5926
5927
case 0:
5928
error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5929
if (error == 0) {
5930
ASSERT3U(wsize, ==, zl_wsize);
5931
ASSERT3U(wc, ==, zl_wc);
5932
} else {
5933
ASSERT3U(error, ==, ENOENT);
5934
}
5935
break;
5936
5937
case 1:
5938
error = zap_lookup(os, object, name, wsize, wc, data);
5939
if (error == 0) {
5940
if (data == string_value &&
5941
memcmp(name, data, namelen) != 0)
5942
fatal(B_FALSE, "name '%s' != val '%s' len %d",
5943
name, (char *)data, namelen);
5944
} else {
5945
ASSERT3U(error, ==, ENOENT);
5946
}
5947
break;
5948
5949
case 2:
5950
error = zap_add(os, object, name, wsize, wc, data, tx);
5951
ASSERT(error == 0 || error == EEXIST);
5952
break;
5953
5954
case 3:
5955
VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5956
break;
5957
5958
case 4:
5959
error = zap_remove(os, object, name, tx);
5960
ASSERT(error == 0 || error == ENOENT);
5961
break;
5962
}
5963
5964
if (tx != NULL)
5965
dmu_tx_commit(tx);
5966
5967
umem_free(od, sizeof (ztest_od_t));
5968
}
5969
5970
/*
5971
* Commit callback data.
5972
*/
5973
typedef struct ztest_cb_data {
5974
list_node_t zcd_node;
5975
uint64_t zcd_txg;
5976
int zcd_expected_err;
5977
boolean_t zcd_added;
5978
boolean_t zcd_called;
5979
spa_t *zcd_spa;
5980
} ztest_cb_data_t;
5981
5982
/* This is the actual commit callback function */
5983
static void
5984
ztest_commit_callback(void *arg, int error)
5985
{
5986
ztest_cb_data_t *data = arg;
5987
uint64_t synced_txg;
5988
5989
VERIFY3P(data, !=, NULL);
5990
VERIFY3S(data->zcd_expected_err, ==, error);
5991
VERIFY(!data->zcd_called);
5992
5993
synced_txg = spa_last_synced_txg(data->zcd_spa);
5994
if (data->zcd_txg > synced_txg)
5995
fatal(B_FALSE,
5996
"commit callback of txg %"PRIu64" called prematurely, "
5997
"last synced txg = %"PRIu64"\n",
5998
data->zcd_txg, synced_txg);
5999
6000
data->zcd_called = B_TRUE;
6001
6002
if (error == ECANCELED) {
6003
ASSERT0(data->zcd_txg);
6004
ASSERT(!data->zcd_added);
6005
6006
/*
6007
* The private callback data should be destroyed here, but
6008
* since we are going to check the zcd_called field after
6009
* dmu_tx_abort(), we will destroy it there.
6010
*/
6011
return;
6012
}
6013
6014
ASSERT(data->zcd_added);
6015
ASSERT3U(data->zcd_txg, !=, 0);
6016
6017
(void) mutex_enter(&zcl.zcl_callbacks_lock);
6018
6019
/* See if this cb was called more quickly */
6020
if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
6021
zc_min_txg_delay = synced_txg - data->zcd_txg;
6022
6023
/* Remove our callback from the list */
6024
list_remove(&zcl.zcl_callbacks, data);
6025
6026
(void) mutex_exit(&zcl.zcl_callbacks_lock);
6027
6028
umem_free(data, sizeof (ztest_cb_data_t));
6029
}
6030
6031
/* Allocate and initialize callback data structure */
6032
static ztest_cb_data_t *
6033
ztest_create_cb_data(objset_t *os, uint64_t txg)
6034
{
6035
ztest_cb_data_t *cb_data;
6036
6037
cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
6038
6039
cb_data->zcd_txg = txg;
6040
cb_data->zcd_spa = dmu_objset_spa(os);
6041
list_link_init(&cb_data->zcd_node);
6042
6043
return (cb_data);
6044
}
6045
6046
/*
6047
* Commit callback test.
6048
*/
6049
void
6050
ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
6051
{
6052
objset_t *os = zd->zd_os;
6053
ztest_od_t *od;
6054
dmu_tx_t *tx;
6055
ztest_cb_data_t *cb_data[3], *tmp_cb;
6056
uint64_t old_txg, txg;
6057
int i, error = 0;
6058
6059
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
6060
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6061
6062
if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
6063
umem_free(od, sizeof (ztest_od_t));
6064
return;
6065
}
6066
6067
tx = dmu_tx_create(os);
6068
6069
cb_data[0] = ztest_create_cb_data(os, 0);
6070
dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
6071
6072
dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
6073
6074
/* Every once in a while, abort the transaction on purpose */
6075
if (ztest_random(100) == 0)
6076
error = -1;
6077
6078
if (!error)
6079
error = dmu_tx_assign(tx, DMU_TX_NOWAIT);
6080
6081
txg = error ? 0 : dmu_tx_get_txg(tx);
6082
6083
cb_data[0]->zcd_txg = txg;
6084
cb_data[1] = ztest_create_cb_data(os, txg);
6085
dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
6086
6087
if (error) {
6088
/*
6089
* It's not a strict requirement to call the registered
6090
* callbacks from inside dmu_tx_abort(), but that's what
6091
* it's supposed to happen in the current implementation
6092
* so we will check for that.
6093
*/
6094
for (i = 0; i < 2; i++) {
6095
cb_data[i]->zcd_expected_err = ECANCELED;
6096
VERIFY(!cb_data[i]->zcd_called);
6097
}
6098
6099
dmu_tx_abort(tx);
6100
6101
for (i = 0; i < 2; i++) {
6102
VERIFY(cb_data[i]->zcd_called);
6103
umem_free(cb_data[i], sizeof (ztest_cb_data_t));
6104
}
6105
6106
umem_free(od, sizeof (ztest_od_t));
6107
return;
6108
}
6109
6110
cb_data[2] = ztest_create_cb_data(os, txg);
6111
dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
6112
6113
/*
6114
* Read existing data to make sure there isn't a future leak.
6115
*/
6116
VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
6117
&old_txg, DMU_READ_PREFETCH));
6118
6119
if (old_txg > txg)
6120
fatal(B_FALSE,
6121
"future leak: got %"PRIu64", open txg is %"PRIu64"",
6122
old_txg, txg);
6123
6124
dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx,
6125
DMU_READ_PREFETCH);
6126
6127
(void) mutex_enter(&zcl.zcl_callbacks_lock);
6128
6129
/*
6130
* Since commit callbacks don't have any ordering requirement and since
6131
* it is theoretically possible for a commit callback to be called
6132
* after an arbitrary amount of time has elapsed since its txg has been
6133
* synced, it is difficult to reliably determine whether a commit
6134
* callback hasn't been called due to high load or due to a flawed
6135
* implementation.
6136
*
6137
* In practice, we will assume that if after a certain number of txgs a
6138
* commit callback hasn't been called, then most likely there's an
6139
* implementation bug..
6140
*/
6141
tmp_cb = list_head(&zcl.zcl_callbacks);
6142
if (tmp_cb != NULL &&
6143
tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
6144
fatal(B_FALSE,
6145
"Commit callback threshold exceeded, "
6146
"oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
6147
tmp_cb->zcd_txg, txg);
6148
}
6149
6150
/*
6151
* Let's find the place to insert our callbacks.
6152
*
6153
* Even though the list is ordered by txg, it is possible for the
6154
* insertion point to not be the end because our txg may already be
6155
* quiescing at this point and other callbacks in the open txg
6156
* (from other objsets) may have sneaked in.
6157
*/
6158
tmp_cb = list_tail(&zcl.zcl_callbacks);
6159
while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
6160
tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
6161
6162
/* Add the 3 callbacks to the list */
6163
for (i = 0; i < 3; i++) {
6164
if (tmp_cb == NULL)
6165
list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
6166
else
6167
list_insert_after(&zcl.zcl_callbacks, tmp_cb,
6168
cb_data[i]);
6169
6170
cb_data[i]->zcd_added = B_TRUE;
6171
VERIFY(!cb_data[i]->zcd_called);
6172
6173
tmp_cb = cb_data[i];
6174
}
6175
6176
zc_cb_counter += 3;
6177
6178
(void) mutex_exit(&zcl.zcl_callbacks_lock);
6179
6180
dmu_tx_commit(tx);
6181
6182
umem_free(od, sizeof (ztest_od_t));
6183
}
6184
6185
/*
6186
* Visit each object in the dataset. Verify that its properties
6187
* are consistent what was stored in the block tag when it was created,
6188
* and that its unused bonus buffer space has not been overwritten.
6189
*/
6190
void
6191
ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
6192
{
6193
(void) id;
6194
objset_t *os = zd->zd_os;
6195
uint64_t obj;
6196
int err = 0;
6197
6198
for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
6199
ztest_block_tag_t *bt = NULL;
6200
dmu_object_info_t doi;
6201
dmu_buf_t *db;
6202
6203
ztest_object_lock(zd, obj, ZTRL_READER);
6204
if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
6205
ztest_object_unlock(zd, obj);
6206
continue;
6207
}
6208
6209
dmu_object_info_from_db(db, &doi);
6210
if (doi.doi_bonus_size >= sizeof (*bt))
6211
bt = ztest_bt_bonus(db);
6212
6213
if (bt && bt->bt_magic == BT_MAGIC) {
6214
ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
6215
bt->bt_offset, bt->bt_gen, bt->bt_txg,
6216
bt->bt_crtxg);
6217
ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
6218
}
6219
6220
dmu_buf_rele(db, FTAG);
6221
ztest_object_unlock(zd, obj);
6222
}
6223
}
6224
6225
void
6226
ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
6227
{
6228
(void) id;
6229
zfs_prop_t proplist[] = {
6230
ZFS_PROP_CHECKSUM,
6231
ZFS_PROP_COMPRESSION,
6232
ZFS_PROP_COPIES,
6233
ZFS_PROP_DEDUP
6234
};
6235
6236
(void) pthread_rwlock_rdlock(&ztest_name_lock);
6237
6238
for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) {
6239
int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
6240
ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
6241
ASSERT(error == 0 || error == ENOSPC);
6242
}
6243
6244
int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
6245
ztest_random_blocksize(), (int)ztest_random(2));
6246
ASSERT(error == 0 || error == ENOSPC);
6247
6248
(void) pthread_rwlock_unlock(&ztest_name_lock);
6249
}
6250
6251
void
6252
ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
6253
{
6254
(void) zd, (void) id;
6255
6256
(void) pthread_rwlock_rdlock(&ztest_name_lock);
6257
6258
(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
6259
6260
nvlist_t *props = fnvlist_alloc();
6261
6262
VERIFY0(spa_prop_get(ztest_spa, props));
6263
6264
if (ztest_opts.zo_verbose >= 6)
6265
dump_nvlist(props, 4);
6266
6267
fnvlist_free(props);
6268
6269
(void) pthread_rwlock_unlock(&ztest_name_lock);
6270
}
6271
6272
static int
6273
user_release_one(const char *snapname, const char *holdname)
6274
{
6275
nvlist_t *snaps, *holds;
6276
int error;
6277
6278
snaps = fnvlist_alloc();
6279
holds = fnvlist_alloc();
6280
fnvlist_add_boolean(holds, holdname);
6281
fnvlist_add_nvlist(snaps, snapname, holds);
6282
fnvlist_free(holds);
6283
error = dsl_dataset_user_release(snaps, NULL);
6284
fnvlist_free(snaps);
6285
return (error);
6286
}
6287
6288
/*
6289
* Test snapshot hold/release and deferred destroy.
6290
*/
6291
void
6292
ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
6293
{
6294
int error;
6295
objset_t *os = zd->zd_os;
6296
objset_t *origin;
6297
char snapname[100];
6298
char fullname[100];
6299
char clonename[100];
6300
char tag[100];
6301
char osname[ZFS_MAX_DATASET_NAME_LEN];
6302
nvlist_t *holds;
6303
6304
(void) pthread_rwlock_rdlock(&ztest_name_lock);
6305
6306
dmu_objset_name(os, osname);
6307
6308
(void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
6309
(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
6310
(void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
6311
osname, id);
6312
(void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
6313
6314
/*
6315
* Clean up from any previous run.
6316
*/
6317
error = dsl_destroy_head(clonename);
6318
if (error != ENOENT)
6319
ASSERT0(error);
6320
error = user_release_one(fullname, tag);
6321
if (error != ESRCH && error != ENOENT)
6322
ASSERT0(error);
6323
error = dsl_destroy_snapshot(fullname, B_FALSE);
6324
if (error != ENOENT)
6325
ASSERT0(error);
6326
6327
/*
6328
* Create snapshot, clone it, mark snap for deferred destroy,
6329
* destroy clone, verify snap was also destroyed.
6330
*/
6331
error = dmu_objset_snapshot_one(osname, snapname);
6332
if (error) {
6333
if (error == ENOSPC) {
6334
ztest_record_enospc("dmu_objset_snapshot");
6335
goto out;
6336
}
6337
fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6338
}
6339
6340
error = dsl_dataset_clone(clonename, fullname);
6341
if (error) {
6342
if (error == ENOSPC) {
6343
ztest_record_enospc("dsl_dataset_clone");
6344
goto out;
6345
}
6346
fatal(B_FALSE, "dsl_dataset_clone(%s) = %d", clonename, error);
6347
}
6348
6349
error = dsl_destroy_snapshot(fullname, B_TRUE);
6350
if (error) {
6351
fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6352
fullname, error);
6353
}
6354
6355
error = dsl_destroy_head(clonename);
6356
if (error)
6357
fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
6358
6359
error = dmu_objset_hold(fullname, FTAG, &origin);
6360
if (error != ENOENT)
6361
fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
6362
6363
/*
6364
* Create snapshot, add temporary hold, verify that we can't
6365
* destroy a held snapshot, mark for deferred destroy,
6366
* release hold, verify snapshot was destroyed.
6367
*/
6368
error = dmu_objset_snapshot_one(osname, snapname);
6369
if (error) {
6370
if (error == ENOSPC) {
6371
ztest_record_enospc("dmu_objset_snapshot");
6372
goto out;
6373
}
6374
fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6375
}
6376
6377
holds = fnvlist_alloc();
6378
fnvlist_add_string(holds, fullname, tag);
6379
error = dsl_dataset_user_hold(holds, 0, NULL);
6380
fnvlist_free(holds);
6381
6382
if (error == ENOSPC) {
6383
ztest_record_enospc("dsl_dataset_user_hold");
6384
goto out;
6385
} else if (error) {
6386
fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
6387
fullname, tag, error);
6388
}
6389
6390
error = dsl_destroy_snapshot(fullname, B_FALSE);
6391
if (error != EBUSY) {
6392
fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6393
fullname, error);
6394
}
6395
6396
error = dsl_destroy_snapshot(fullname, B_TRUE);
6397
if (error) {
6398
fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6399
fullname, error);
6400
}
6401
6402
error = user_release_one(fullname, tag);
6403
if (error)
6404
fatal(B_FALSE, "user_release_one(%s, %s) = %d",
6405
fullname, tag, error);
6406
6407
VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
6408
6409
out:
6410
(void) pthread_rwlock_unlock(&ztest_name_lock);
6411
}
6412
6413
/*
6414
* Inject random faults into the on-disk data.
6415
*/
6416
void
6417
ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6418
{
6419
(void) zd, (void) id;
6420
ztest_shared_t *zs = ztest_shared;
6421
spa_t *spa = ztest_spa;
6422
int fd;
6423
uint64_t offset;
6424
uint64_t leaves;
6425
uint64_t bad = 0x1990c0ffeedecadeull;
6426
uint64_t top, leaf;
6427
uint64_t raidz_children;
6428
char *path0;
6429
char *pathrand;
6430
size_t fsize;
6431
int bshift = SPA_MAXBLOCKSHIFT + 2;
6432
int iters = 1000;
6433
int maxfaults;
6434
int mirror_save;
6435
vdev_t *vd0 = NULL;
6436
uint64_t guid0 = 0;
6437
boolean_t islog = B_FALSE;
6438
boolean_t injected = B_FALSE;
6439
6440
path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6441
pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6442
6443
mutex_enter(&ztest_vdev_lock);
6444
6445
/*
6446
* Device removal is in progress, fault injection must be disabled
6447
* until it completes and the pool is scrubbed. The fault injection
6448
* strategy for damaging blocks does not take in to account evacuated
6449
* blocks which may have already been damaged.
6450
*/
6451
if (ztest_device_removal_active)
6452
goto out;
6453
6454
/*
6455
* The fault injection strategy for damaging blocks cannot be used
6456
* if raidz expansion is in progress. The leaves value
6457
* (attached raidz children) is variable and strategy for damaging
6458
* blocks will corrupt same data blocks on different child vdevs
6459
* because of the reflow process.
6460
*/
6461
if (spa->spa_raidz_expand != NULL)
6462
goto out;
6463
6464
maxfaults = MAXFAULTS(zs);
6465
raidz_children = ztest_get_raidz_children(spa);
6466
leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
6467
mirror_save = zs->zs_mirrors;
6468
6469
ASSERT3U(leaves, >=, 1);
6470
6471
/*
6472
* While ztest is running the number of leaves will not change. This
6473
* is critical for the fault injection logic as it determines where
6474
* errors can be safely injected such that they are always repairable.
6475
*
6476
* When restarting ztest a different number of leaves may be requested
6477
* which will shift the regions to be damaged. This is fine as long
6478
* as the pool has been scrubbed prior to using the new mapping.
6479
* Failure to do can result in non-repairable damage being injected.
6480
*/
6481
if (ztest_pool_scrubbed == B_FALSE)
6482
goto out;
6483
6484
/*
6485
* Grab the name lock as reader. There are some operations
6486
* which don't like to have their vdevs changed while
6487
* they are in progress (i.e. spa_change_guid). Those
6488
* operations will have grabbed the name lock as writer.
6489
*/
6490
(void) pthread_rwlock_rdlock(&ztest_name_lock);
6491
6492
/*
6493
* We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6494
*/
6495
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6496
6497
if (ztest_random(2) == 0) {
6498
/*
6499
* Inject errors on a normal data device or slog device.
6500
*/
6501
top = ztest_random_vdev_top(spa, B_TRUE);
6502
leaf = ztest_random(leaves) + zs->zs_splits;
6503
6504
/*
6505
* Generate paths to the first leaf in this top-level vdev,
6506
* and to the random leaf we selected. We'll induce transient
6507
* write failures and random online/offline activity on leaf 0,
6508
* and we'll write random garbage to the randomly chosen leaf.
6509
*/
6510
(void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6511
ztest_opts.zo_dir, ztest_opts.zo_pool,
6512
top * leaves + zs->zs_splits);
6513
(void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6514
ztest_opts.zo_dir, ztest_opts.zo_pool,
6515
top * leaves + leaf);
6516
6517
vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6518
if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6519
islog = B_TRUE;
6520
6521
/*
6522
* If the top-level vdev needs to be resilvered
6523
* then we only allow faults on the device that is
6524
* resilvering.
6525
*/
6526
if (vd0 != NULL && maxfaults != 1 &&
6527
(!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6528
vd0->vdev_resilver_txg != 0)) {
6529
/*
6530
* Make vd0 explicitly claim to be unreadable,
6531
* or unwritable, or reach behind its back
6532
* and close the underlying fd. We can do this if
6533
* maxfaults == 0 because we'll fail and reexecute,
6534
* and we can do it if maxfaults >= 2 because we'll
6535
* have enough redundancy. If maxfaults == 1, the
6536
* combination of this with injection of random data
6537
* corruption below exceeds the pool's fault tolerance.
6538
*/
6539
vdev_file_t *vf = vd0->vdev_tsd;
6540
6541
zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6542
(long long)vd0->vdev_id, (int)maxfaults);
6543
6544
if (vf != NULL && ztest_random(3) == 0) {
6545
(void) close(vf->vf_file->f_fd);
6546
vf->vf_file->f_fd = -1;
6547
} else if (ztest_random(2) == 0) {
6548
vd0->vdev_cant_read = B_TRUE;
6549
} else {
6550
vd0->vdev_cant_write = B_TRUE;
6551
}
6552
guid0 = vd0->vdev_guid;
6553
}
6554
} else {
6555
/*
6556
* Inject errors on an l2cache device.
6557
*/
6558
spa_aux_vdev_t *sav = &spa->spa_l2cache;
6559
6560
if (sav->sav_count == 0) {
6561
spa_config_exit(spa, SCL_STATE, FTAG);
6562
(void) pthread_rwlock_unlock(&ztest_name_lock);
6563
goto out;
6564
}
6565
vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6566
guid0 = vd0->vdev_guid;
6567
(void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
6568
(void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
6569
6570
leaf = 0;
6571
leaves = 1;
6572
maxfaults = INT_MAX; /* no limit on cache devices */
6573
}
6574
6575
spa_config_exit(spa, SCL_STATE, FTAG);
6576
(void) pthread_rwlock_unlock(&ztest_name_lock);
6577
6578
/*
6579
* If we can tolerate two or more faults, or we're dealing
6580
* with a slog, randomly online/offline vd0.
6581
*/
6582
if ((maxfaults >= 2 || islog) && guid0 != 0) {
6583
if (ztest_random(10) < 6) {
6584
int flags = (ztest_random(2) == 0 ?
6585
ZFS_OFFLINE_TEMPORARY : 0);
6586
6587
/*
6588
* We have to grab the zs_name_lock as writer to
6589
* prevent a race between offlining a slog and
6590
* destroying a dataset. Offlining the slog will
6591
* grab a reference on the dataset which may cause
6592
* dsl_destroy_head() to fail with EBUSY thus
6593
* leaving the dataset in an inconsistent state.
6594
*/
6595
if (islog)
6596
(void) pthread_rwlock_wrlock(&ztest_name_lock);
6597
6598
VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6599
6600
if (islog)
6601
(void) pthread_rwlock_unlock(&ztest_name_lock);
6602
} else {
6603
/*
6604
* Ideally we would like to be able to randomly
6605
* call vdev_[on|off]line without holding locks
6606
* to force unpredictable failures but the side
6607
* effects of vdev_[on|off]line prevent us from
6608
* doing so.
6609
*/
6610
(void) vdev_online(spa, guid0, 0, NULL);
6611
}
6612
}
6613
6614
if (maxfaults == 0)
6615
goto out;
6616
6617
/*
6618
* We have at least single-fault tolerance, so inject data corruption.
6619
*/
6620
fd = open(pathrand, O_RDWR);
6621
6622
if (fd == -1) /* we hit a gap in the device namespace */
6623
goto out;
6624
6625
fsize = lseek(fd, 0, SEEK_END);
6626
6627
while (--iters != 0) {
6628
/*
6629
* The offset must be chosen carefully to ensure that
6630
* we do not inject a given logical block with errors
6631
* on two different leaf devices, because ZFS can not
6632
* tolerate that (if maxfaults==1).
6633
*
6634
* To achieve this we divide each leaf device into
6635
* chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6636
* Each chunk is further divided into error-injection
6637
* ranges (can accept errors) and clear ranges (we do
6638
* not inject errors in those). Each error-injection
6639
* range can accept errors only for a single leaf vdev.
6640
* Error-injection ranges are separated by clear ranges.
6641
*
6642
* For example, with 3 leaves, each chunk looks like:
6643
* 0 to 32M: injection range for leaf 0
6644
* 32M to 64M: clear range - no injection allowed
6645
* 64M to 96M: injection range for leaf 1
6646
* 96M to 128M: clear range - no injection allowed
6647
* 128M to 160M: injection range for leaf 2
6648
* 160M to 192M: clear range - no injection allowed
6649
*
6650
* Each clear range must be large enough such that a
6651
* single block cannot straddle it. This way a block
6652
* can't be a target in two different injection ranges
6653
* (on different leaf vdevs).
6654
*/
6655
offset = ztest_random(fsize / (leaves << bshift)) *
6656
(leaves << bshift) + (leaf << bshift) +
6657
(ztest_random(1ULL << (bshift - 1)) & -8ULL);
6658
6659
/*
6660
* Only allow damage to the labels at one end of the vdev.
6661
*
6662
* If all labels are damaged, the device will be totally
6663
* inaccessible, which will result in loss of data,
6664
* because we also damage (parts of) the other side of
6665
* the mirror/raidz.
6666
*
6667
* Additionally, we will always have both an even and an
6668
* odd label, so that we can handle crashes in the
6669
* middle of vdev_config_sync().
6670
*/
6671
if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6672
continue;
6673
6674
/*
6675
* The two end labels are stored at the "end" of the disk, but
6676
* the end of the disk (vdev_psize) is aligned to
6677
* sizeof (vdev_label_t).
6678
*/
6679
uint64_t psize = P2ALIGN_TYPED(fsize, sizeof (vdev_label_t),
6680
uint64_t);
6681
if ((leaf & 1) == 1 &&
6682
offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6683
continue;
6684
6685
if (mirror_save != zs->zs_mirrors) {
6686
(void) close(fd);
6687
goto out;
6688
}
6689
6690
if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6691
fatal(B_TRUE,
6692
"can't inject bad word at 0x%"PRIx64" in %s",
6693
offset, pathrand);
6694
6695
if (ztest_opts.zo_verbose >= 7)
6696
(void) printf("injected bad word into %s,"
6697
" offset 0x%"PRIx64"\n", pathrand, offset);
6698
6699
injected = B_TRUE;
6700
}
6701
6702
(void) close(fd);
6703
out:
6704
mutex_exit(&ztest_vdev_lock);
6705
6706
if (injected && ztest_opts.zo_raid_do_expand) {
6707
int error = spa_scan(spa, POOL_SCAN_SCRUB);
6708
if (error == 0) {
6709
while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6710
txg_wait_synced(spa_get_dsl(spa), 0);
6711
}
6712
}
6713
6714
umem_free(path0, MAXPATHLEN);
6715
umem_free(pathrand, MAXPATHLEN);
6716
}
6717
6718
/*
6719
* By design ztest will never inject uncorrectable damage in to the pool.
6720
* Issue a scrub, wait for it to complete, and verify there is never any
6721
* persistent damage.
6722
*
6723
* Only after a full scrub has been completed is it safe to start injecting
6724
* data corruption. See the comment in zfs_fault_inject().
6725
*
6726
* EBUSY may be returned for the following six cases. It's the callers
6727
* responsibility to handle them accordingly.
6728
*
6729
* Current state Requested
6730
* 1. Normal Scrub Running Normal Scrub or Error Scrub
6731
* 2. Normal Scrub Paused Error Scrub
6732
* 3. Normal Scrub Paused Pause Normal Scrub
6733
* 4. Error Scrub Running Normal Scrub or Error Scrub
6734
* 5. Error Scrub Paused Pause Error Scrub
6735
* 6. Resilvering Anything else
6736
*/
6737
static int
6738
ztest_scrub_impl(spa_t *spa)
6739
{
6740
int error = spa_scan(spa, POOL_SCAN_SCRUB);
6741
if (error)
6742
return (error);
6743
6744
while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6745
txg_wait_synced(spa_get_dsl(spa), 0);
6746
6747
if (spa_approx_errlog_size(spa) > 0)
6748
return (ECKSUM);
6749
6750
ztest_pool_scrubbed = B_TRUE;
6751
6752
return (0);
6753
}
6754
6755
/*
6756
* Scrub the pool.
6757
*/
6758
void
6759
ztest_scrub(ztest_ds_t *zd, uint64_t id)
6760
{
6761
(void) zd, (void) id;
6762
spa_t *spa = ztest_spa;
6763
int error;
6764
6765
/*
6766
* Scrub in progress by device removal.
6767
*/
6768
if (ztest_device_removal_active)
6769
return;
6770
6771
/*
6772
* Start a scrub, wait a moment, then force a restart.
6773
*/
6774
(void) spa_scan(spa, POOL_SCAN_SCRUB);
6775
(void) poll(NULL, 0, 100);
6776
6777
error = ztest_scrub_impl(spa);
6778
if (error == EBUSY)
6779
error = 0;
6780
ASSERT0(error);
6781
}
6782
6783
/*
6784
* Change the guid for the pool.
6785
*/
6786
void
6787
ztest_reguid(ztest_ds_t *zd, uint64_t id)
6788
{
6789
(void) zd, (void) id;
6790
spa_t *spa = ztest_spa;
6791
uint64_t orig, load;
6792
int error;
6793
ztest_shared_t *zs = ztest_shared;
6794
6795
if (ztest_opts.zo_mmp_test)
6796
return;
6797
6798
orig = spa_guid(spa);
6799
load = spa_load_guid(spa);
6800
6801
(void) pthread_rwlock_wrlock(&ztest_name_lock);
6802
error = spa_change_guid(spa, NULL);
6803
zs->zs_guid = spa_guid(spa);
6804
(void) pthread_rwlock_unlock(&ztest_name_lock);
6805
6806
if (error != 0)
6807
return;
6808
6809
if (ztest_opts.zo_verbose >= 4) {
6810
(void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6811
orig, spa_guid(spa));
6812
}
6813
6814
VERIFY3U(orig, !=, spa_guid(spa));
6815
VERIFY3U(load, ==, spa_load_guid(spa));
6816
}
6817
6818
void
6819
ztest_blake3(ztest_ds_t *zd, uint64_t id)
6820
{
6821
(void) zd, (void) id;
6822
hrtime_t end = gethrtime() + NANOSEC;
6823
zio_cksum_salt_t salt;
6824
void *salt_ptr = &salt.zcs_bytes;
6825
struct abd *abd_data, *abd_meta;
6826
void *buf, *templ;
6827
int i, *ptr;
6828
uint32_t size;
6829
BLAKE3_CTX ctx;
6830
const zfs_impl_t *blake3 = zfs_impl_get_ops("blake3");
6831
6832
size = ztest_random_blocksize();
6833
buf = umem_alloc(size, UMEM_NOFAIL);
6834
abd_data = abd_alloc(size, B_FALSE);
6835
abd_meta = abd_alloc(size, B_TRUE);
6836
6837
for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6838
*ptr = ztest_random(UINT_MAX);
6839
memset(salt_ptr, 'A', 32);
6840
6841
abd_copy_from_buf_off(abd_data, buf, 0, size);
6842
abd_copy_from_buf_off(abd_meta, buf, 0, size);
6843
6844
while (gethrtime() <= end) {
6845
int run_count = 100;
6846
zio_cksum_t zc_ref1, zc_ref2;
6847
zio_cksum_t zc_res1, zc_res2;
6848
6849
void *ref1 = &zc_ref1;
6850
void *ref2 = &zc_ref2;
6851
void *res1 = &zc_res1;
6852
void *res2 = &zc_res2;
6853
6854
/* BLAKE3_KEY_LEN = 32 */
6855
VERIFY0(blake3->setname("generic"));
6856
templ = abd_checksum_blake3_tmpl_init(&salt);
6857
Blake3_InitKeyed(&ctx, salt_ptr);
6858
Blake3_Update(&ctx, buf, size);
6859
Blake3_Final(&ctx, ref1);
6860
zc_ref2 = zc_ref1;
6861
ZIO_CHECKSUM_BSWAP(&zc_ref2);
6862
abd_checksum_blake3_tmpl_free(templ);
6863
6864
VERIFY0(blake3->setname("cycle"));
6865
while (run_count-- > 0) {
6866
6867
/* Test current implementation */
6868
Blake3_InitKeyed(&ctx, salt_ptr);
6869
Blake3_Update(&ctx, buf, size);
6870
Blake3_Final(&ctx, res1);
6871
zc_res2 = zc_res1;
6872
ZIO_CHECKSUM_BSWAP(&zc_res2);
6873
6874
VERIFY0(memcmp(ref1, res1, 32));
6875
VERIFY0(memcmp(ref2, res2, 32));
6876
6877
/* Test ABD - data */
6878
templ = abd_checksum_blake3_tmpl_init(&salt);
6879
abd_checksum_blake3_native(abd_data, size,
6880
templ, &zc_res1);
6881
abd_checksum_blake3_byteswap(abd_data, size,
6882
templ, &zc_res2);
6883
6884
VERIFY0(memcmp(ref1, res1, 32));
6885
VERIFY0(memcmp(ref2, res2, 32));
6886
6887
/* Test ABD - metadata */
6888
abd_checksum_blake3_native(abd_meta, size,
6889
templ, &zc_res1);
6890
abd_checksum_blake3_byteswap(abd_meta, size,
6891
templ, &zc_res2);
6892
abd_checksum_blake3_tmpl_free(templ);
6893
6894
VERIFY0(memcmp(ref1, res1, 32));
6895
VERIFY0(memcmp(ref2, res2, 32));
6896
6897
}
6898
}
6899
6900
abd_free(abd_data);
6901
abd_free(abd_meta);
6902
umem_free(buf, size);
6903
}
6904
6905
void
6906
ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6907
{
6908
(void) zd, (void) id;
6909
hrtime_t end = gethrtime() + NANOSEC;
6910
6911
while (gethrtime() <= end) {
6912
int run_count = 100;
6913
void *buf;
6914
struct abd *abd_data, *abd_meta;
6915
uint32_t size;
6916
int *ptr;
6917
int i;
6918
zio_cksum_t zc_ref;
6919
zio_cksum_t zc_ref_byteswap;
6920
6921
size = ztest_random_blocksize();
6922
6923
buf = umem_alloc(size, UMEM_NOFAIL);
6924
abd_data = abd_alloc(size, B_FALSE);
6925
abd_meta = abd_alloc(size, B_TRUE);
6926
6927
for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6928
*ptr = ztest_random(UINT_MAX);
6929
6930
abd_copy_from_buf_off(abd_data, buf, 0, size);
6931
abd_copy_from_buf_off(abd_meta, buf, 0, size);
6932
6933
VERIFY0(fletcher_4_impl_set("scalar"));
6934
fletcher_4_native(buf, size, NULL, &zc_ref);
6935
fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6936
6937
VERIFY0(fletcher_4_impl_set("cycle"));
6938
while (run_count-- > 0) {
6939
zio_cksum_t zc;
6940
zio_cksum_t zc_byteswap;
6941
6942
fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6943
fletcher_4_native(buf, size, NULL, &zc);
6944
6945
VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6946
VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6947
sizeof (zc_byteswap)));
6948
6949
/* Test ABD - data */
6950
abd_fletcher_4_byteswap(abd_data, size, NULL,
6951
&zc_byteswap);
6952
abd_fletcher_4_native(abd_data, size, NULL, &zc);
6953
6954
VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6955
VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6956
sizeof (zc_byteswap)));
6957
6958
/* Test ABD - metadata */
6959
abd_fletcher_4_byteswap(abd_meta, size, NULL,
6960
&zc_byteswap);
6961
abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6962
6963
VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6964
VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6965
sizeof (zc_byteswap)));
6966
6967
}
6968
6969
umem_free(buf, size);
6970
abd_free(abd_data);
6971
abd_free(abd_meta);
6972
}
6973
}
6974
6975
void
6976
ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6977
{
6978
(void) zd, (void) id;
6979
void *buf;
6980
size_t size;
6981
int *ptr;
6982
int i;
6983
zio_cksum_t zc_ref;
6984
zio_cksum_t zc_ref_bswap;
6985
6986
hrtime_t end = gethrtime() + NANOSEC;
6987
6988
while (gethrtime() <= end) {
6989
int run_count = 100;
6990
6991
size = ztest_random_blocksize();
6992
buf = umem_alloc(size, UMEM_NOFAIL);
6993
6994
for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6995
*ptr = ztest_random(UINT_MAX);
6996
6997
VERIFY0(fletcher_4_impl_set("scalar"));
6998
fletcher_4_native(buf, size, NULL, &zc_ref);
6999
fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
7000
7001
VERIFY0(fletcher_4_impl_set("cycle"));
7002
7003
while (run_count-- > 0) {
7004
zio_cksum_t zc;
7005
zio_cksum_t zc_bswap;
7006
size_t pos = 0;
7007
7008
ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
7009
ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
7010
7011
while (pos < size) {
7012
size_t inc = 64 * ztest_random(size / 67);
7013
/* sometimes add few bytes to test non-simd */
7014
if (ztest_random(100) < 10)
7015
inc += P2ALIGN_TYPED(ztest_random(64),
7016
sizeof (uint32_t), uint64_t);
7017
7018
if (inc > (size - pos))
7019
inc = size - pos;
7020
7021
fletcher_4_incremental_native(buf + pos, inc,
7022
&zc);
7023
fletcher_4_incremental_byteswap(buf + pos, inc,
7024
&zc_bswap);
7025
7026
pos += inc;
7027
}
7028
7029
VERIFY3U(pos, ==, size);
7030
7031
VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
7032
VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
7033
7034
/*
7035
* verify if incremental on the whole buffer is
7036
* equivalent to non-incremental version
7037
*/
7038
ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
7039
ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
7040
7041
fletcher_4_incremental_native(buf, size, &zc);
7042
fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
7043
7044
VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
7045
VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
7046
}
7047
7048
umem_free(buf, size);
7049
}
7050
}
7051
7052
void
7053
ztest_pool_prefetch_ddt(ztest_ds_t *zd, uint64_t id)
7054
{
7055
(void) zd, (void) id;
7056
spa_t *spa;
7057
7058
(void) pthread_rwlock_rdlock(&ztest_name_lock);
7059
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7060
7061
ddt_prefetch_all(spa);
7062
7063
spa_close(spa, FTAG);
7064
(void) pthread_rwlock_unlock(&ztest_name_lock);
7065
}
7066
7067
static int
7068
ztest_set_global_vars(void)
7069
{
7070
for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7071
char *kv = ztest_opts.zo_gvars[i];
7072
VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
7073
VERIFY3U(strlen(kv), >, 0);
7074
int err = handle_tunable_option(kv, B_TRUE);
7075
if (ztest_opts.zo_verbose > 0) {
7076
(void) printf("setting global var %s ... %s\n", kv,
7077
err ? "failed" : "ok");
7078
}
7079
if (err != 0) {
7080
(void) fprintf(stderr,
7081
"failed to set global var '%s'\n", kv);
7082
return (err);
7083
}
7084
}
7085
return (0);
7086
}
7087
7088
static char **
7089
ztest_global_vars_to_zdb_args(void)
7090
{
7091
char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
7092
char **cur = args;
7093
if (args == NULL)
7094
return (NULL);
7095
for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7096
*cur++ = (char *)"-o";
7097
*cur++ = ztest_opts.zo_gvars[i];
7098
}
7099
ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
7100
*cur = NULL;
7101
return (args);
7102
}
7103
7104
/* The end of strings is indicated by a NULL element */
7105
static char *
7106
join_strings(char **strings, const char *sep)
7107
{
7108
size_t totallen = 0;
7109
for (char **sp = strings; *sp != NULL; sp++) {
7110
totallen += strlen(*sp);
7111
totallen += strlen(sep);
7112
}
7113
if (totallen > 0) {
7114
ASSERT(totallen >= strlen(sep));
7115
totallen -= strlen(sep);
7116
}
7117
7118
size_t buflen = totallen + 1;
7119
char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
7120
o[0] = '\0';
7121
for (char **sp = strings; *sp != NULL; sp++) {
7122
size_t would;
7123
would = strlcat(o, *sp, buflen);
7124
VERIFY3U(would, <, buflen);
7125
if (*(sp+1) == NULL) {
7126
break;
7127
}
7128
would = strlcat(o, sep, buflen);
7129
VERIFY3U(would, <, buflen);
7130
}
7131
ASSERT3S(strlen(o), ==, totallen);
7132
return (o);
7133
}
7134
7135
static int
7136
ztest_check_path(char *path)
7137
{
7138
struct stat s;
7139
/* return true on success */
7140
return (!stat(path, &s));
7141
}
7142
7143
static void
7144
ztest_get_zdb_bin(char *bin, int len)
7145
{
7146
char *zdb_path;
7147
/*
7148
* Try to use $ZDB and in-tree zdb path. If not successful, just
7149
* let popen to search through PATH.
7150
*/
7151
if ((zdb_path = getenv("ZDB"))) {
7152
strlcpy(bin, zdb_path, len); /* In env */
7153
if (!ztest_check_path(bin)) {
7154
ztest_dump_core = 0;
7155
fatal(B_TRUE, "invalid ZDB '%s'", bin);
7156
}
7157
return;
7158
}
7159
7160
VERIFY3P(realpath(getexecname(), bin), !=, NULL);
7161
if (strstr(bin, ".libs/ztest")) {
7162
strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
7163
strcat(bin, "zdb");
7164
if (ztest_check_path(bin))
7165
return;
7166
}
7167
strcpy(bin, "zdb");
7168
}
7169
7170
static vdev_t *
7171
ztest_random_concrete_vdev_leaf(vdev_t *vd)
7172
{
7173
if (vd == NULL)
7174
return (NULL);
7175
7176
if (vd->vdev_children == 0)
7177
return (vd);
7178
7179
vdev_t *eligible[vd->vdev_children];
7180
int eligible_idx = 0, i;
7181
for (i = 0; i < vd->vdev_children; i++) {
7182
vdev_t *cvd = vd->vdev_child[i];
7183
if (cvd->vdev_top->vdev_removing)
7184
continue;
7185
if (cvd->vdev_children > 0 ||
7186
(vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
7187
eligible[eligible_idx++] = cvd;
7188
}
7189
}
7190
VERIFY3S(eligible_idx, >, 0);
7191
7192
uint64_t child_no = ztest_random(eligible_idx);
7193
return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
7194
}
7195
7196
void
7197
ztest_initialize(ztest_ds_t *zd, uint64_t id)
7198
{
7199
(void) zd, (void) id;
7200
spa_t *spa = ztest_spa;
7201
int error = 0;
7202
7203
mutex_enter(&ztest_vdev_lock);
7204
7205
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7206
7207
/* Random leaf vdev */
7208
vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7209
if (rand_vd == NULL) {
7210
spa_config_exit(spa, SCL_VDEV, FTAG);
7211
mutex_exit(&ztest_vdev_lock);
7212
return;
7213
}
7214
7215
/*
7216
* The random vdev we've selected may change as soon as we
7217
* drop the spa_config_lock. We create local copies of things
7218
* we're interested in.
7219
*/
7220
uint64_t guid = rand_vd->vdev_guid;
7221
char *path = strdup(rand_vd->vdev_path);
7222
boolean_t active = rand_vd->vdev_initialize_thread != NULL;
7223
7224
zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
7225
spa_config_exit(spa, SCL_VDEV, FTAG);
7226
7227
uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
7228
7229
nvlist_t *vdev_guids = fnvlist_alloc();
7230
nvlist_t *vdev_errlist = fnvlist_alloc();
7231
fnvlist_add_uint64(vdev_guids, path, guid);
7232
error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
7233
fnvlist_free(vdev_guids);
7234
fnvlist_free(vdev_errlist);
7235
7236
switch (cmd) {
7237
case POOL_INITIALIZE_CANCEL:
7238
if (ztest_opts.zo_verbose >= 4) {
7239
(void) printf("Cancel initialize %s", path);
7240
if (!active)
7241
(void) printf(" failed (no initialize active)");
7242
(void) printf("\n");
7243
}
7244
break;
7245
case POOL_INITIALIZE_START:
7246
if (ztest_opts.zo_verbose >= 4) {
7247
(void) printf("Start initialize %s", path);
7248
if (active && error == 0)
7249
(void) printf(" failed (already active)");
7250
else if (error != 0)
7251
(void) printf(" failed (error %d)", error);
7252
(void) printf("\n");
7253
}
7254
break;
7255
case POOL_INITIALIZE_SUSPEND:
7256
if (ztest_opts.zo_verbose >= 4) {
7257
(void) printf("Suspend initialize %s", path);
7258
if (!active)
7259
(void) printf(" failed (no initialize active)");
7260
(void) printf("\n");
7261
}
7262
break;
7263
}
7264
free(path);
7265
mutex_exit(&ztest_vdev_lock);
7266
}
7267
7268
void
7269
ztest_trim(ztest_ds_t *zd, uint64_t id)
7270
{
7271
(void) zd, (void) id;
7272
spa_t *spa = ztest_spa;
7273
int error = 0;
7274
7275
mutex_enter(&ztest_vdev_lock);
7276
7277
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7278
7279
/* Random leaf vdev */
7280
vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7281
if (rand_vd == NULL) {
7282
spa_config_exit(spa, SCL_VDEV, FTAG);
7283
mutex_exit(&ztest_vdev_lock);
7284
return;
7285
}
7286
7287
/*
7288
* The random vdev we've selected may change as soon as we
7289
* drop the spa_config_lock. We create local copies of things
7290
* we're interested in.
7291
*/
7292
uint64_t guid = rand_vd->vdev_guid;
7293
char *path = strdup(rand_vd->vdev_path);
7294
boolean_t active = rand_vd->vdev_trim_thread != NULL;
7295
7296
zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
7297
spa_config_exit(spa, SCL_VDEV, FTAG);
7298
7299
uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
7300
uint64_t rate = 1 << ztest_random(30);
7301
boolean_t partial = (ztest_random(5) > 0);
7302
boolean_t secure = (ztest_random(5) > 0);
7303
7304
nvlist_t *vdev_guids = fnvlist_alloc();
7305
nvlist_t *vdev_errlist = fnvlist_alloc();
7306
fnvlist_add_uint64(vdev_guids, path, guid);
7307
error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
7308
secure, vdev_errlist);
7309
fnvlist_free(vdev_guids);
7310
fnvlist_free(vdev_errlist);
7311
7312
switch (cmd) {
7313
case POOL_TRIM_CANCEL:
7314
if (ztest_opts.zo_verbose >= 4) {
7315
(void) printf("Cancel TRIM %s", path);
7316
if (!active)
7317
(void) printf(" failed (no TRIM active)");
7318
(void) printf("\n");
7319
}
7320
break;
7321
case POOL_TRIM_START:
7322
if (ztest_opts.zo_verbose >= 4) {
7323
(void) printf("Start TRIM %s", path);
7324
if (active && error == 0)
7325
(void) printf(" failed (already active)");
7326
else if (error != 0)
7327
(void) printf(" failed (error %d)", error);
7328
(void) printf("\n");
7329
}
7330
break;
7331
case POOL_TRIM_SUSPEND:
7332
if (ztest_opts.zo_verbose >= 4) {
7333
(void) printf("Suspend TRIM %s", path);
7334
if (!active)
7335
(void) printf(" failed (no TRIM active)");
7336
(void) printf("\n");
7337
}
7338
break;
7339
}
7340
free(path);
7341
mutex_exit(&ztest_vdev_lock);
7342
}
7343
7344
void
7345
ztest_ddt_prune(ztest_ds_t *zd, uint64_t id)
7346
{
7347
(void) zd, (void) id;
7348
7349
spa_t *spa = ztest_spa;
7350
uint64_t pct = ztest_random(15) + 1;
7351
7352
(void) ddt_prune_unique_entries(spa, ZPOOL_DDT_PRUNE_PERCENTAGE, pct);
7353
}
7354
7355
/*
7356
* Verify pool integrity by running zdb.
7357
*/
7358
static void
7359
ztest_run_zdb(uint64_t guid)
7360
{
7361
int status;
7362
char *bin;
7363
char *zdb;
7364
char *zbuf;
7365
const int len = MAXPATHLEN + MAXNAMELEN + 20;
7366
FILE *fp;
7367
7368
bin = umem_alloc(len, UMEM_NOFAIL);
7369
zdb = umem_alloc(len, UMEM_NOFAIL);
7370
zbuf = umem_alloc(1024, UMEM_NOFAIL);
7371
7372
ztest_get_zdb_bin(bin, len);
7373
7374
char **set_gvars_args = ztest_global_vars_to_zdb_args();
7375
if (set_gvars_args == NULL) {
7376
fatal(B_FALSE, "Failed to allocate memory in "
7377
"ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
7378
}
7379
char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
7380
free(set_gvars_args);
7381
7382
size_t would = snprintf(zdb, len,
7383
"%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64,
7384
bin,
7385
ztest_opts.zo_verbose >= 3 ? "s" : "",
7386
ztest_opts.zo_verbose >= 4 ? "v" : "",
7387
set_gvars_args_joined,
7388
ztest_opts.zo_dir,
7389
guid);
7390
ASSERT3U(would, <, len);
7391
7392
umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
7393
7394
if (ztest_opts.zo_verbose >= 5)
7395
(void) printf("Executing %s\n", zdb);
7396
7397
fp = popen(zdb, "r");
7398
7399
while (fgets(zbuf, 1024, fp) != NULL)
7400
if (ztest_opts.zo_verbose >= 3)
7401
(void) printf("%s", zbuf);
7402
7403
status = pclose(fp);
7404
7405
if (status == 0)
7406
goto out;
7407
7408
ztest_dump_core = 0;
7409
if (WIFEXITED(status))
7410
fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
7411
else
7412
fatal(B_FALSE, "'%s' died with signal %d",
7413
zdb, WTERMSIG(status));
7414
out:
7415
umem_free(bin, len);
7416
umem_free(zdb, len);
7417
umem_free(zbuf, 1024);
7418
}
7419
7420
static void
7421
ztest_walk_pool_directory(const char *header)
7422
{
7423
spa_t *spa = NULL;
7424
7425
if (ztest_opts.zo_verbose >= 6)
7426
(void) puts(header);
7427
7428
spa_namespace_enter(FTAG);
7429
while ((spa = spa_next(spa)) != NULL)
7430
if (ztest_opts.zo_verbose >= 6)
7431
(void) printf("\t%s\n", spa_name(spa));
7432
spa_namespace_exit(FTAG);
7433
}
7434
7435
static void
7436
ztest_spa_import_export(char *oldname, char *newname)
7437
{
7438
nvlist_t *config, *newconfig;
7439
uint64_t pool_guid;
7440
spa_t *spa;
7441
int error;
7442
7443
if (ztest_opts.zo_verbose >= 4) {
7444
(void) printf("import/export: old = %s, new = %s\n",
7445
oldname, newname);
7446
}
7447
7448
/*
7449
* Clean up from previous runs.
7450
*/
7451
(void) spa_destroy(newname);
7452
7453
/*
7454
* Get the pool's configuration and guid.
7455
*/
7456
VERIFY0(spa_open(oldname, &spa, FTAG));
7457
7458
/*
7459
* Kick off a scrub to tickle scrub/export races.
7460
*/
7461
if (ztest_random(2) == 0)
7462
(void) spa_scan(spa, POOL_SCAN_SCRUB);
7463
7464
pool_guid = spa_guid(spa);
7465
spa_close(spa, FTAG);
7466
7467
ztest_walk_pool_directory("pools before export");
7468
7469
/*
7470
* Export it.
7471
*/
7472
VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
7473
7474
ztest_walk_pool_directory("pools after export");
7475
7476
/*
7477
* Try to import it.
7478
*/
7479
newconfig = spa_tryimport(config);
7480
ASSERT3P(newconfig, !=, NULL);
7481
fnvlist_free(newconfig);
7482
7483
/*
7484
* Import it under the new name.
7485
*/
7486
error = spa_import(newname, config, NULL, 0);
7487
if (error != 0) {
7488
dump_nvlist(config, 0);
7489
fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
7490
oldname, newname, error);
7491
}
7492
7493
ztest_walk_pool_directory("pools after import");
7494
7495
/*
7496
* Try to import it again -- should fail with EEXIST.
7497
*/
7498
VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
7499
7500
/*
7501
* Try to import it under a different name -- should fail with EEXIST.
7502
*/
7503
VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
7504
7505
/*
7506
* Verify that the pool is no longer visible under the old name.
7507
*/
7508
VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
7509
7510
/*
7511
* Verify that we can open and close the pool using the new name.
7512
*/
7513
VERIFY0(spa_open(newname, &spa, FTAG));
7514
ASSERT3U(pool_guid, ==, spa_guid(spa));
7515
spa_close(spa, FTAG);
7516
7517
fnvlist_free(config);
7518
}
7519
7520
static void
7521
ztest_resume(spa_t *spa)
7522
{
7523
if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
7524
(void) printf("resuming from suspended state\n");
7525
spa_vdev_state_enter(spa, SCL_NONE);
7526
vdev_clear(spa, NULL);
7527
(void) spa_vdev_state_exit(spa, NULL, 0);
7528
(void) zio_resume(spa);
7529
}
7530
7531
static __attribute__((noreturn)) void
7532
ztest_resume_thread(void *arg)
7533
{
7534
spa_t *spa = arg;
7535
7536
/*
7537
* Synthesize aged DDT entries for ddt prune testing
7538
*/
7539
ddt_prune_artificial_age = B_TRUE;
7540
if (ztest_opts.zo_verbose >= 3)
7541
ddt_dump_prune_histogram = B_TRUE;
7542
7543
while (!ztest_exiting) {
7544
if (spa_suspended(spa))
7545
ztest_resume(spa);
7546
(void) poll(NULL, 0, 100);
7547
7548
/*
7549
* Periodically change the zfs_compressed_arc_enabled setting.
7550
*/
7551
if (ztest_random(10) == 0)
7552
zfs_compressed_arc_enabled = ztest_random(2);
7553
7554
/*
7555
* Periodically change the zfs_abd_scatter_enabled setting.
7556
*/
7557
if (ztest_random(10) == 0)
7558
zfs_abd_scatter_enabled = ztest_random(2);
7559
}
7560
7561
thread_exit();
7562
}
7563
7564
static __attribute__((noreturn)) void
7565
ztest_deadman_thread(void *arg)
7566
{
7567
ztest_shared_t *zs = arg;
7568
spa_t *spa = ztest_spa;
7569
hrtime_t delay, overdue, last_run = gethrtime();
7570
7571
delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7572
MSEC2NSEC(zfs_deadman_synctime_ms);
7573
7574
while (!ztest_exiting) {
7575
/*
7576
* Wait for the delay timer while checking occasionally
7577
* if we should stop.
7578
*/
7579
if (gethrtime() < last_run + delay) {
7580
(void) poll(NULL, 0, 1000);
7581
continue;
7582
}
7583
7584
/*
7585
* If the pool is suspended then fail immediately. Otherwise,
7586
* check to see if the pool is making any progress. If
7587
* vdev_deadman() discovers that there hasn't been any recent
7588
* I/Os then it will end up aborting the tests.
7589
*/
7590
if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7591
fatal(B_FALSE,
7592
"aborting test after %llu seconds because "
7593
"pool has transitioned to a suspended state.",
7594
(u_longlong_t)zfs_deadman_synctime_ms / 1000);
7595
}
7596
vdev_deadman(spa->spa_root_vdev, FTAG);
7597
7598
/*
7599
* If the process doesn't complete within a grace period of
7600
* zfs_deadman_synctime_ms over the expected finish time,
7601
* then it may be hung and is terminated.
7602
*/
7603
overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7604
if (gethrtime() > overdue) {
7605
fatal(B_FALSE,
7606
"aborting test after %llu seconds because "
7607
"the process is overdue for termination.",
7608
(gethrtime() - zs->zs_proc_start) / NANOSEC);
7609
}
7610
7611
(void) printf("ztest has been running for %lld seconds\n",
7612
(gethrtime() - zs->zs_proc_start) / NANOSEC);
7613
7614
last_run = gethrtime();
7615
delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7616
}
7617
7618
thread_exit();
7619
}
7620
7621
static void
7622
ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7623
{
7624
ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7625
ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7626
hrtime_t functime = gethrtime();
7627
int i;
7628
7629
for (i = 0; i < zi->zi_iters; i++)
7630
zi->zi_func(zd, id);
7631
7632
functime = gethrtime() - functime;
7633
7634
atomic_add_64(&zc->zc_count, 1);
7635
atomic_add_64(&zc->zc_time, functime);
7636
7637
if (ztest_opts.zo_verbose >= 4)
7638
(void) printf("%6.2f sec in %s\n",
7639
(double)functime / NANOSEC, zi->zi_funcname);
7640
}
7641
7642
typedef struct ztest_raidz_expand_io {
7643
uint64_t rzx_id;
7644
uint64_t rzx_amount;
7645
uint64_t rzx_bufsize;
7646
const void *rzx_buffer;
7647
uint64_t rzx_alloc_max;
7648
spa_t *rzx_spa;
7649
} ztest_expand_io_t;
7650
7651
#undef OD_ARRAY_SIZE
7652
#define OD_ARRAY_SIZE 10
7653
7654
/*
7655
* Write a request amount of data to some dataset objects.
7656
* There will be ztest_opts.zo_threads count of these running in parallel.
7657
*/
7658
static __attribute__((noreturn)) void
7659
ztest_rzx_thread(void *arg)
7660
{
7661
ztest_expand_io_t *info = (ztest_expand_io_t *)arg;
7662
ztest_od_t *od;
7663
int batchsize;
7664
int od_size;
7665
ztest_ds_t *zd = &ztest_ds[info->rzx_id % ztest_opts.zo_datasets];
7666
spa_t *spa = info->rzx_spa;
7667
7668
od_size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
7669
od = umem_alloc(od_size, UMEM_NOFAIL);
7670
batchsize = OD_ARRAY_SIZE;
7671
7672
/* Create objects to write to */
7673
for (int b = 0; b < batchsize; b++) {
7674
ztest_od_init(od + b, info->rzx_id, FTAG, b,
7675
DMU_OT_UINT64_OTHER, 0, 0, 0);
7676
}
7677
if (ztest_object_init(zd, od, od_size, B_FALSE) != 0) {
7678
umem_free(od, od_size);
7679
thread_exit();
7680
}
7681
7682
for (uint64_t offset = 0, written = 0; written < info->rzx_amount;
7683
offset += info->rzx_bufsize) {
7684
/* write to 10 objects */
7685
for (int i = 0; i < batchsize && written < info->rzx_amount;
7686
i++) {
7687
(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
7688
ztest_write(zd, od[i].od_object, offset,
7689
info->rzx_bufsize, info->rzx_buffer);
7690
(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
7691
written += info->rzx_bufsize;
7692
}
7693
txg_wait_synced(spa_get_dsl(spa), 0);
7694
/* due to inflation, we'll typically bail here */
7695
if (metaslab_class_get_alloc(spa_normal_class(spa)) >
7696
info->rzx_alloc_max) {
7697
break;
7698
}
7699
}
7700
7701
/* Remove a few objects to leave some holes in allocation space */
7702
mutex_enter(&zd->zd_dirobj_lock);
7703
(void) ztest_remove(zd, od, 2);
7704
mutex_exit(&zd->zd_dirobj_lock);
7705
7706
umem_free(od, od_size);
7707
7708
thread_exit();
7709
}
7710
7711
static __attribute__((noreturn)) void
7712
ztest_thread(void *arg)
7713
{
7714
int rand;
7715
uint64_t id = (uintptr_t)arg;
7716
ztest_shared_t *zs = ztest_shared;
7717
uint64_t call_next;
7718
hrtime_t now;
7719
ztest_info_t *zi;
7720
ztest_shared_callstate_t *zc;
7721
7722
while ((now = gethrtime()) < zs->zs_thread_stop) {
7723
/*
7724
* See if it's time to force a crash.
7725
*/
7726
if (now > zs->zs_thread_kill &&
7727
raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE) {
7728
ztest_kill(zs);
7729
}
7730
7731
/*
7732
* If we're getting ENOSPC with some regularity, stop.
7733
*/
7734
if (zs->zs_enospc_count > 10)
7735
break;
7736
7737
/*
7738
* Pick a random function to execute.
7739
*/
7740
rand = ztest_random(ZTEST_FUNCS);
7741
zi = &ztest_info[rand];
7742
zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7743
call_next = zc->zc_next;
7744
7745
if (now >= call_next &&
7746
atomic_cas_64(&zc->zc_next, call_next, call_next +
7747
ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7748
ztest_execute(rand, zi, id);
7749
}
7750
}
7751
7752
thread_exit();
7753
}
7754
7755
static void
7756
ztest_dataset_name(char *dsname, const char *pool, int d)
7757
{
7758
(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7759
}
7760
7761
static void
7762
ztest_dataset_destroy(int d)
7763
{
7764
char name[ZFS_MAX_DATASET_NAME_LEN];
7765
int t;
7766
7767
ztest_dataset_name(name, ztest_opts.zo_pool, d);
7768
7769
if (ztest_opts.zo_verbose >= 3)
7770
(void) printf("Destroying %s to free up space\n", name);
7771
7772
/*
7773
* Cleanup any non-standard clones and snapshots. In general,
7774
* ztest thread t operates on dataset (t % zopt_datasets),
7775
* so there may be more than one thing to clean up.
7776
*/
7777
for (t = d; t < ztest_opts.zo_threads;
7778
t += ztest_opts.zo_datasets)
7779
ztest_dsl_dataset_cleanup(name, t);
7780
7781
(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7782
DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7783
}
7784
7785
static void
7786
ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7787
{
7788
uint64_t usedobjs, dirobjs, scratch;
7789
7790
/*
7791
* ZTEST_DIROBJ is the object directory for the entire dataset.
7792
* Therefore, the number of objects in use should equal the
7793
* number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7794
* If not, we have an object leak.
7795
*
7796
* Note that we can only check this in ztest_dataset_open(),
7797
* when the open-context and syncing-context values agree.
7798
* That's because zap_count() returns the open-context value,
7799
* while dmu_objset_space() returns the rootbp fill count.
7800
*/
7801
VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7802
dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7803
ASSERT3U(dirobjs + 1, ==, usedobjs);
7804
}
7805
7806
static int
7807
ztest_dataset_open(int d)
7808
{
7809
ztest_ds_t *zd = &ztest_ds[d];
7810
uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7811
objset_t *os;
7812
zilog_t *zilog;
7813
char name[ZFS_MAX_DATASET_NAME_LEN];
7814
int error;
7815
7816
ztest_dataset_name(name, ztest_opts.zo_pool, d);
7817
7818
if (ztest_opts.zo_verbose >= 6)
7819
(void) printf("Opening %s\n", name);
7820
7821
(void) pthread_rwlock_rdlock(&ztest_name_lock);
7822
7823
error = ztest_dataset_create(name);
7824
if (error == ENOSPC) {
7825
(void) pthread_rwlock_unlock(&ztest_name_lock);
7826
ztest_record_enospc(FTAG);
7827
return (error);
7828
}
7829
ASSERT(error == 0 || error == EEXIST);
7830
7831
VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7832
B_TRUE, zd, &os));
7833
(void) pthread_rwlock_unlock(&ztest_name_lock);
7834
7835
ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7836
7837
zilog = zd->zd_zilog;
7838
7839
if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7840
zilog->zl_header->zh_claim_lr_seq < committed_seq)
7841
fatal(B_FALSE, "missing log records: "
7842
"claimed %"PRIu64" < committed %"PRIu64"",
7843
zilog->zl_header->zh_claim_lr_seq, committed_seq);
7844
7845
ztest_dataset_dirobj_verify(zd);
7846
7847
zil_replay(os, zd, ztest_replay_vector);
7848
7849
ztest_dataset_dirobj_verify(zd);
7850
7851
if (ztest_opts.zo_verbose >= 6)
7852
(void) printf("%s replay %"PRIu64" blocks, "
7853
"%"PRIu64" records, seq %"PRIu64"\n",
7854
zd->zd_name,
7855
zilog->zl_parse_blk_count,
7856
zilog->zl_parse_lr_count,
7857
zilog->zl_replaying_seq);
7858
7859
zilog = zil_open(os, ztest_get_data, NULL);
7860
7861
if (zilog->zl_replaying_seq != 0 &&
7862
zilog->zl_replaying_seq < committed_seq)
7863
fatal(B_FALSE, "missing log records: "
7864
"replayed %"PRIu64" < committed %"PRIu64"",
7865
zilog->zl_replaying_seq, committed_seq);
7866
7867
return (0);
7868
}
7869
7870
static void
7871
ztest_dataset_close(int d)
7872
{
7873
ztest_ds_t *zd = &ztest_ds[d];
7874
7875
zil_close(zd->zd_zilog);
7876
dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7877
7878
ztest_zd_fini(zd);
7879
}
7880
7881
static int
7882
ztest_replay_zil_cb(const char *name, void *arg)
7883
{
7884
(void) arg;
7885
objset_t *os;
7886
ztest_ds_t *zdtmp;
7887
7888
VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7889
B_TRUE, FTAG, &os));
7890
7891
zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7892
7893
ztest_zd_init(zdtmp, NULL, os);
7894
zil_replay(os, zdtmp, ztest_replay_vector);
7895
ztest_zd_fini(zdtmp);
7896
7897
if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7898
ztest_opts.zo_verbose >= 6) {
7899
zilog_t *zilog = dmu_objset_zil(os);
7900
7901
(void) printf("%s replay %"PRIu64" blocks, "
7902
"%"PRIu64" records, seq %"PRIu64"\n",
7903
name,
7904
zilog->zl_parse_blk_count,
7905
zilog->zl_parse_lr_count,
7906
zilog->zl_replaying_seq);
7907
}
7908
7909
umem_free(zdtmp, sizeof (ztest_ds_t));
7910
7911
dmu_objset_disown(os, B_TRUE, FTAG);
7912
return (0);
7913
}
7914
7915
static void
7916
ztest_freeze(void)
7917
{
7918
ztest_ds_t *zd = &ztest_ds[0];
7919
spa_t *spa;
7920
int numloops = 0;
7921
7922
/* freeze not supported during RAIDZ expansion */
7923
if (ztest_opts.zo_raid_do_expand)
7924
return;
7925
7926
if (ztest_opts.zo_verbose >= 3)
7927
(void) printf("testing spa_freeze()...\n");
7928
7929
raidz_scratch_verify();
7930
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7931
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7932
VERIFY0(ztest_dataset_open(0));
7933
ztest_spa = spa;
7934
7935
/*
7936
* Force the first log block to be transactionally allocated.
7937
* We have to do this before we freeze the pool -- otherwise
7938
* the log chain won't be anchored.
7939
*/
7940
while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7941
ztest_dmu_object_alloc_free(zd, 0);
7942
VERIFY0(zil_commit(zd->zd_zilog, 0));
7943
}
7944
7945
txg_wait_synced(spa_get_dsl(spa), 0);
7946
7947
/*
7948
* Freeze the pool. This stops spa_sync() from doing anything,
7949
* so that the only way to record changes from now on is the ZIL.
7950
*/
7951
spa_freeze(spa);
7952
7953
/*
7954
* Because it is hard to predict how much space a write will actually
7955
* require beforehand, we leave ourselves some fudge space to write over
7956
* capacity.
7957
*/
7958
uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7959
7960
/*
7961
* Run tests that generate log records but don't alter the pool config
7962
* or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7963
* We do a txg_wait_synced() after each iteration to force the txg
7964
* to increase well beyond the last synced value in the uberblock.
7965
* The ZIL should be OK with that.
7966
*
7967
* Run a random number of times less than zo_maxloops and ensure we do
7968
* not run out of space on the pool.
7969
*/
7970
while (ztest_random(10) != 0 &&
7971
numloops++ < ztest_opts.zo_maxloops &&
7972
metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7973
ztest_od_t od;
7974
ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7975
VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7976
ztest_io(zd, od.od_object,
7977
ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7978
txg_wait_synced(spa_get_dsl(spa), 0);
7979
}
7980
7981
/*
7982
* Commit all of the changes we just generated.
7983
*/
7984
VERIFY0(zil_commit(zd->zd_zilog, 0));
7985
txg_wait_synced(spa_get_dsl(spa), 0);
7986
7987
/*
7988
* Close our dataset and close the pool.
7989
*/
7990
ztest_dataset_close(0);
7991
spa_close(spa, FTAG);
7992
kernel_fini();
7993
7994
/*
7995
* Open and close the pool and dataset to induce log replay.
7996
*/
7997
raidz_scratch_verify();
7998
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7999
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8000
ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
8001
VERIFY0(ztest_dataset_open(0));
8002
ztest_spa = spa;
8003
txg_wait_synced(spa_get_dsl(spa), 0);
8004
ztest_dataset_close(0);
8005
ztest_reguid(NULL, 0);
8006
8007
spa_close(spa, FTAG);
8008
kernel_fini();
8009
}
8010
8011
static void
8012
ztest_import_impl(void)
8013
{
8014
importargs_t args = { 0 };
8015
nvlist_t *cfg = NULL;
8016
int nsearch = 1;
8017
char *searchdirs[nsearch];
8018
int flags = ZFS_IMPORT_MISSING_LOG;
8019
8020
searchdirs[0] = ztest_opts.zo_dir;
8021
args.paths = nsearch;
8022
args.path = searchdirs;
8023
args.can_be_active = B_FALSE;
8024
8025
libpc_handle_t lpch = {
8026
.lpc_lib_handle = NULL,
8027
.lpc_ops = &libzpool_config_ops,
8028
.lpc_printerr = B_TRUE
8029
};
8030
VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
8031
VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
8032
fnvlist_free(cfg);
8033
}
8034
8035
/*
8036
* Import a storage pool with the given name.
8037
*/
8038
static void
8039
ztest_import(ztest_shared_t *zs)
8040
{
8041
spa_t *spa;
8042
8043
mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8044
mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8045
VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8046
8047
raidz_scratch_verify();
8048
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8049
8050
ztest_import_impl();
8051
8052
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8053
zs->zs_metaslab_sz =
8054
1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8055
zs->zs_guid = spa_guid(spa);
8056
spa_close(spa, FTAG);
8057
8058
kernel_fini();
8059
8060
if (!ztest_opts.zo_mmp_test) {
8061
ztest_run_zdb(zs->zs_guid);
8062
ztest_freeze();
8063
ztest_run_zdb(zs->zs_guid);
8064
}
8065
8066
(void) pthread_rwlock_destroy(&ztest_name_lock);
8067
mutex_destroy(&ztest_vdev_lock);
8068
mutex_destroy(&ztest_checkpoint_lock);
8069
}
8070
8071
/*
8072
* After the expansion was killed, check that the pool is healthy
8073
*/
8074
static void
8075
ztest_raidz_expand_check(spa_t *spa)
8076
{
8077
ASSERT3U(ztest_opts.zo_raidz_expand_test, ==, RAIDZ_EXPAND_KILLED);
8078
/*
8079
* Set pool check done flag, main program will run a zdb check
8080
* of the pool when we exit.
8081
*/
8082
ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_CHECKED;
8083
8084
/* Wait for reflow to finish */
8085
if (ztest_opts.zo_verbose >= 1) {
8086
(void) printf("\nwaiting for reflow to finish ...\n");
8087
}
8088
pool_raidz_expand_stat_t rzx_stats;
8089
pool_raidz_expand_stat_t *pres = &rzx_stats;
8090
do {
8091
txg_wait_synced(spa_get_dsl(spa), 0);
8092
(void) poll(NULL, 0, 500); /* wait 1/2 second */
8093
8094
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8095
(void) spa_raidz_expand_get_stats(spa, pres);
8096
spa_config_exit(spa, SCL_CONFIG, FTAG);
8097
} while (pres->pres_state != DSS_FINISHED &&
8098
pres->pres_reflowed < pres->pres_to_reflow);
8099
8100
if (ztest_opts.zo_verbose >= 1) {
8101
(void) printf("verifying an interrupted raidz "
8102
"expansion using a pool scrub ...\n");
8103
}
8104
8105
/* Will fail here if there is non-recoverable corruption detected */
8106
int error = ztest_scrub_impl(spa);
8107
if (error == EBUSY)
8108
error = 0;
8109
8110
VERIFY0(error);
8111
8112
if (ztest_opts.zo_verbose >= 1) {
8113
(void) printf("raidz expansion scrub check complete\n");
8114
}
8115
}
8116
8117
/*
8118
* Start a raidz expansion test. We run some I/O on the pool for a while
8119
* to get some data in the pool. Then we grow the raidz and
8120
* kill the test at the requested offset into the reflow, verifying that
8121
* doing such does not lead to pool corruption.
8122
*/
8123
static void
8124
ztest_raidz_expand_run(ztest_shared_t *zs, spa_t *spa)
8125
{
8126
nvlist_t *root;
8127
pool_raidz_expand_stat_t rzx_stats;
8128
pool_raidz_expand_stat_t *pres = &rzx_stats;
8129
kthread_t **run_threads;
8130
vdev_t *cvd, *rzvd = spa->spa_root_vdev->vdev_child[0];
8131
int total_disks = rzvd->vdev_children;
8132
int data_disks = total_disks - vdev_get_nparity(rzvd);
8133
uint64_t alloc_goal;
8134
uint64_t csize;
8135
int error, t;
8136
int threads = ztest_opts.zo_threads;
8137
ztest_expand_io_t *thread_args;
8138
8139
ASSERT3U(ztest_opts.zo_raidz_expand_test, !=, RAIDZ_EXPAND_NONE);
8140
ASSERT3P(rzvd->vdev_ops, ==, &vdev_raidz_ops);
8141
ztest_opts.zo_raidz_expand_test = RAIDZ_EXPAND_STARTED;
8142
8143
/* Setup a 1 MiB buffer of random data */
8144
uint64_t bufsize = 1024 * 1024;
8145
void *buffer = umem_alloc(bufsize, UMEM_NOFAIL);
8146
random_get_pseudo_bytes((uint8_t *)buffer, bufsize);
8147
8148
/*
8149
* Put some data in the pool and then attach a vdev to initiate
8150
* reflow.
8151
*/
8152
run_threads = umem_zalloc(threads * sizeof (kthread_t *), UMEM_NOFAIL);
8153
thread_args = umem_zalloc(threads * sizeof (ztest_expand_io_t),
8154
UMEM_NOFAIL);
8155
/* Aim for roughly 25% of allocatable space up to 1GB */
8156
alloc_goal = (vdev_get_min_asize(rzvd) * data_disks) / total_disks;
8157
alloc_goal = MIN(alloc_goal >> 2, 1024*1024*1024);
8158
if (ztest_opts.zo_verbose >= 1) {
8159
(void) printf("adding data to pool '%s', goal %llu bytes\n",
8160
ztest_opts.zo_pool, (u_longlong_t)alloc_goal);
8161
}
8162
8163
/*
8164
* Kick off all the I/O generators that run in parallel.
8165
*/
8166
for (t = 0; t < threads; t++) {
8167
if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8168
umem_free(run_threads, threads * sizeof (kthread_t *));
8169
umem_free(buffer, bufsize);
8170
return;
8171
}
8172
thread_args[t].rzx_id = t;
8173
thread_args[t].rzx_amount = alloc_goal / threads;
8174
thread_args[t].rzx_bufsize = bufsize;
8175
thread_args[t].rzx_buffer = buffer;
8176
thread_args[t].rzx_alloc_max = alloc_goal;
8177
thread_args[t].rzx_spa = spa;
8178
run_threads[t] = thread_create(NULL, 0, ztest_rzx_thread,
8179
&thread_args[t], 0, NULL, TS_RUN | TS_JOINABLE,
8180
defclsyspri);
8181
}
8182
8183
/*
8184
* Wait for all of the writers to complete.
8185
*/
8186
for (t = 0; t < threads; t++)
8187
VERIFY0(thread_join(run_threads[t]));
8188
8189
/*
8190
* Close all datasets. This must be done after all the threads
8191
* are joined so we can be sure none of the datasets are in-use
8192
* by any of the threads.
8193
*/
8194
for (t = 0; t < ztest_opts.zo_threads; t++) {
8195
if (t < ztest_opts.zo_datasets)
8196
ztest_dataset_close(t);
8197
}
8198
8199
txg_wait_synced(spa_get_dsl(spa), 0);
8200
8201
zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8202
zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8203
8204
umem_free(buffer, bufsize);
8205
umem_free(run_threads, threads * sizeof (kthread_t *));
8206
umem_free(thread_args, threads * sizeof (ztest_expand_io_t));
8207
8208
/* Set our reflow target to 25%, 50% or 75% of allocated size */
8209
uint_t multiple = ztest_random(3) + 1;
8210
uint64_t reflow_max = (rzvd->vdev_stat.vs_alloc * multiple) / 4;
8211
raidz_expand_max_reflow_bytes = reflow_max;
8212
8213
if (ztest_opts.zo_verbose >= 1) {
8214
(void) printf("running raidz expansion test, killing when "
8215
"reflow reaches %llu bytes (%u/4 of allocated space)\n",
8216
(u_longlong_t)reflow_max, multiple);
8217
}
8218
8219
/* XXX - do we want some I/O load during the reflow? */
8220
8221
/*
8222
* Use a disk size that is larger than existing ones
8223
*/
8224
cvd = rzvd->vdev_child[0];
8225
csize = vdev_get_min_asize(cvd);
8226
csize += csize / 10;
8227
/*
8228
* Path to vdev to be attached
8229
*/
8230
char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8231
(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
8232
ztest_opts.zo_dir, ztest_opts.zo_pool, rzvd->vdev_children);
8233
/*
8234
* Build the nvlist describing newpath.
8235
*/
8236
root = make_vdev_root(newpath, NULL, NULL, csize, ztest_get_ashift(),
8237
NULL, 0, 0, 1);
8238
/*
8239
* Expand the raidz vdev by attaching the new disk
8240
*/
8241
if (ztest_opts.zo_verbose >= 1) {
8242
(void) printf("expanding raidz: %d wide to %d wide with '%s'\n",
8243
(int)rzvd->vdev_children, (int)rzvd->vdev_children + 1,
8244
newpath);
8245
}
8246
error = spa_vdev_attach(spa, rzvd->vdev_guid, root, B_FALSE, B_FALSE);
8247
nvlist_free(root);
8248
if (error != 0) {
8249
fatal(0, "raidz expand: attach (%s %llu) returned %d",
8250
newpath, (long long)csize, error);
8251
}
8252
8253
/*
8254
* Wait for reflow to begin
8255
*/
8256
while (spa->spa_raidz_expand == NULL) {
8257
txg_wait_synced(spa_get_dsl(spa), 0);
8258
(void) poll(NULL, 0, 100); /* wait 1/10 second */
8259
}
8260
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8261
(void) spa_raidz_expand_get_stats(spa, pres);
8262
spa_config_exit(spa, SCL_CONFIG, FTAG);
8263
while (pres->pres_state != DSS_SCANNING) {
8264
txg_wait_synced(spa_get_dsl(spa), 0);
8265
(void) poll(NULL, 0, 100); /* wait 1/10 second */
8266
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8267
(void) spa_raidz_expand_get_stats(spa, pres);
8268
spa_config_exit(spa, SCL_CONFIG, FTAG);
8269
}
8270
8271
ASSERT3U(pres->pres_state, ==, DSS_SCANNING);
8272
ASSERT3U(pres->pres_to_reflow, !=, 0);
8273
/*
8274
* Set so when we are killed we go to raidz checking rather than
8275
* restarting test.
8276
*/
8277
ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_KILLED;
8278
if (ztest_opts.zo_verbose >= 1) {
8279
(void) printf("raidz expansion reflow started, waiting for "
8280
"%llu bytes to be copied\n", (u_longlong_t)reflow_max);
8281
}
8282
8283
/*
8284
* Wait for reflow maximum to be reached and then kill the test
8285
*/
8286
while (pres->pres_reflowed < reflow_max) {
8287
txg_wait_synced(spa_get_dsl(spa), 0);
8288
(void) poll(NULL, 0, 100); /* wait 1/10 second */
8289
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8290
(void) spa_raidz_expand_get_stats(spa, pres);
8291
spa_config_exit(spa, SCL_CONFIG, FTAG);
8292
}
8293
8294
/* Reset the reflow pause before killing */
8295
raidz_expand_max_reflow_bytes = 0;
8296
8297
if (ztest_opts.zo_verbose >= 1) {
8298
(void) printf("killing raidz expansion test after reflow "
8299
"reached %llu bytes\n", (u_longlong_t)pres->pres_reflowed);
8300
}
8301
8302
/*
8303
* Kill ourself to simulate a panic during a reflow. Our parent will
8304
* restart the test and the changed flag value will drive the test
8305
* through the scrub/check code to verify the pool is not corrupted.
8306
*/
8307
ztest_kill(zs);
8308
}
8309
8310
static void
8311
ztest_generic_run(ztest_shared_t *zs, spa_t *spa)
8312
{
8313
kthread_t **run_threads;
8314
int i, ndatasets;
8315
8316
run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
8317
UMEM_NOFAIL);
8318
8319
/*
8320
* Actual number of datasets to be used.
8321
*/
8322
ndatasets = MIN(ztest_opts.zo_datasets, ztest_opts.zo_threads);
8323
8324
/*
8325
* Prepare the datasets first.
8326
*/
8327
for (i = 0; i < ndatasets; i++)
8328
VERIFY0(ztest_dataset_open(i));
8329
8330
/*
8331
* Kick off all the tests that run in parallel.
8332
*/
8333
for (i = 0; i < ztest_opts.zo_threads; i++) {
8334
run_threads[i] = thread_create(NULL, 0, ztest_thread,
8335
(void *)(uintptr_t)i, 0, NULL, TS_RUN | TS_JOINABLE,
8336
defclsyspri);
8337
}
8338
8339
/*
8340
* Wait for all of the tests to complete.
8341
*/
8342
for (i = 0; i < ztest_opts.zo_threads; i++)
8343
VERIFY0(thread_join(run_threads[i]));
8344
8345
/*
8346
* Close all datasets. This must be done after all the threads
8347
* are joined so we can be sure none of the datasets are in-use
8348
* by any of the threads.
8349
*/
8350
for (i = 0; i < ndatasets; i++)
8351
ztest_dataset_close(i);
8352
8353
txg_wait_synced(spa_get_dsl(spa), 0);
8354
8355
zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8356
zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8357
8358
umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
8359
}
8360
8361
/*
8362
* Setup our test context and kick off threads to run tests on all datasets
8363
* in parallel.
8364
*/
8365
static void
8366
ztest_run(ztest_shared_t *zs)
8367
{
8368
spa_t *spa;
8369
objset_t *os;
8370
kthread_t *resume_thread, *deadman_thread;
8371
uint64_t object;
8372
int error;
8373
int t, d;
8374
8375
ztest_exiting = B_FALSE;
8376
8377
/*
8378
* Initialize parent/child shared state.
8379
*/
8380
mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8381
mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8382
VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8383
8384
zs->zs_thread_start = gethrtime();
8385
zs->zs_thread_stop =
8386
zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
8387
zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
8388
zs->zs_thread_kill = zs->zs_thread_stop;
8389
if (ztest_random(100) < ztest_opts.zo_killrate) {
8390
zs->zs_thread_kill -=
8391
ztest_random(ztest_opts.zo_passtime * NANOSEC);
8392
}
8393
8394
mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
8395
8396
list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
8397
offsetof(ztest_cb_data_t, zcd_node));
8398
8399
/*
8400
* Open our pool. It may need to be imported first depending on
8401
* what tests were running when the previous pass was terminated.
8402
*/
8403
raidz_scratch_verify();
8404
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8405
error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
8406
if (error) {
8407
VERIFY3S(error, ==, ENOENT);
8408
ztest_import_impl();
8409
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8410
zs->zs_metaslab_sz =
8411
1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8412
}
8413
8414
metaslab_preload_limit = ztest_random(20) + 1;
8415
ztest_spa = spa;
8416
8417
/*
8418
* XXX - BUGBUG raidz expansion do not run this for generic for now
8419
*/
8420
if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8421
VERIFY0(vdev_raidz_impl_set("cycle"));
8422
8423
dmu_objset_stats_t dds;
8424
VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
8425
DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
8426
dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
8427
dmu_objset_fast_stat(os, &dds);
8428
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
8429
dmu_objset_disown(os, B_TRUE, FTAG);
8430
8431
/* Give the dedicated raidz expansion test more grace time */
8432
if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8433
zfs_deadman_synctime_ms *= 2;
8434
8435
/*
8436
* Create a thread to periodically resume suspended I/O.
8437
*/
8438
resume_thread = thread_create(NULL, 0, ztest_resume_thread,
8439
spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8440
8441
/*
8442
* Create a deadman thread and set to panic if we hang.
8443
*/
8444
deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
8445
zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8446
8447
spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
8448
8449
/*
8450
* Verify that we can safely inquire about any object,
8451
* whether it's allocated or not. To make it interesting,
8452
* we probe a 5-wide window around each power of two.
8453
* This hits all edge cases, including zero and the max.
8454
*/
8455
for (t = 0; t < 64; t++) {
8456
for (d = -5; d <= 5; d++) {
8457
error = dmu_object_info(spa->spa_meta_objset,
8458
(1ULL << t) + d, NULL);
8459
ASSERT(error == 0 || error == ENOENT ||
8460
error == EINVAL);
8461
}
8462
}
8463
8464
/*
8465
* If we got any ENOSPC errors on the previous run, destroy something.
8466
*/
8467
if (zs->zs_enospc_count != 0) {
8468
/* Not expecting ENOSPC errors during raidz expansion tests */
8469
ASSERT3U(ztest_opts.zo_raidz_expand_test, ==,
8470
RAIDZ_EXPAND_NONE);
8471
8472
int d = ztest_random(ztest_opts.zo_datasets);
8473
ztest_dataset_destroy(d);
8474
txg_wait_synced(spa_get_dsl(spa), 0);
8475
}
8476
zs->zs_enospc_count = 0;
8477
8478
/*
8479
* If we were in the middle of ztest_device_removal() and were killed
8480
* we need to ensure the removal and scrub complete before running
8481
* any tests that check ztest_device_removal_active. The removal will
8482
* be restarted automatically when the spa is opened, but we need to
8483
* initiate the scrub manually if it is not already in progress. Note
8484
* that we always run the scrub whenever an indirect vdev exists
8485
* because we have no way of knowing for sure if ztest_device_removal()
8486
* fully completed its scrub before the pool was reimported.
8487
*
8488
* Does not apply for the RAIDZ expansion specific test runs
8489
*/
8490
if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_NONE &&
8491
(spa->spa_removing_phys.sr_state == DSS_SCANNING ||
8492
spa->spa_removing_phys.sr_prev_indirect_vdev != -1)) {
8493
while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
8494
txg_wait_synced(spa_get_dsl(spa), 0);
8495
8496
error = ztest_scrub_impl(spa);
8497
if (error == EBUSY)
8498
error = 0;
8499
ASSERT0(error);
8500
}
8501
8502
if (ztest_opts.zo_verbose >= 4)
8503
(void) printf("starting main threads...\n");
8504
8505
/*
8506
* Replay all logs of all datasets in the pool. This is primarily for
8507
* temporary datasets which wouldn't otherwise get replayed, which
8508
* can trigger failures when attempting to offline a SLOG in
8509
* ztest_fault_inject().
8510
*/
8511
(void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
8512
NULL, DS_FIND_CHILDREN);
8513
8514
if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED)
8515
ztest_raidz_expand_run(zs, spa);
8516
else if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_KILLED)
8517
ztest_raidz_expand_check(spa);
8518
else
8519
ztest_generic_run(zs, spa);
8520
8521
/* Kill the resume and deadman threads */
8522
ztest_exiting = B_TRUE;
8523
VERIFY0(thread_join(resume_thread));
8524
VERIFY0(thread_join(deadman_thread));
8525
ztest_resume(spa);
8526
8527
/*
8528
* Right before closing the pool, kick off a bunch of async I/O;
8529
* spa_close() should wait for it to complete.
8530
*/
8531
for (object = 1; object < 50; object++) {
8532
dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
8533
ZIO_PRIORITY_SYNC_READ);
8534
}
8535
8536
/* Verify that at least one commit cb was called in a timely fashion */
8537
if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
8538
VERIFY0(zc_min_txg_delay);
8539
8540
spa_close(spa, FTAG);
8541
8542
/*
8543
* Verify that we can loop over all pools.
8544
*/
8545
spa_namespace_enter(FTAG);
8546
for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
8547
if (ztest_opts.zo_verbose > 3)
8548
(void) printf("spa_next: found %s\n", spa_name(spa));
8549
spa_namespace_exit(FTAG);
8550
8551
/*
8552
* Verify that we can export the pool and reimport it under a
8553
* different name.
8554
*/
8555
if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
8556
char name[ZFS_MAX_DATASET_NAME_LEN];
8557
(void) snprintf(name, sizeof (name), "%s_import",
8558
ztest_opts.zo_pool);
8559
ztest_spa_import_export(ztest_opts.zo_pool, name);
8560
ztest_spa_import_export(name, ztest_opts.zo_pool);
8561
}
8562
8563
kernel_fini();
8564
8565
list_destroy(&zcl.zcl_callbacks);
8566
mutex_destroy(&zcl.zcl_callbacks_lock);
8567
(void) pthread_rwlock_destroy(&ztest_name_lock);
8568
mutex_destroy(&ztest_vdev_lock);
8569
mutex_destroy(&ztest_checkpoint_lock);
8570
}
8571
8572
static void
8573
print_time(hrtime_t t, char *timebuf)
8574
{
8575
hrtime_t s = t / NANOSEC;
8576
hrtime_t m = s / 60;
8577
hrtime_t h = m / 60;
8578
hrtime_t d = h / 24;
8579
8580
s -= m * 60;
8581
m -= h * 60;
8582
h -= d * 24;
8583
8584
timebuf[0] = '\0';
8585
8586
if (d)
8587
(void) sprintf(timebuf,
8588
"%llud%02lluh%02llum%02llus", d, h, m, s);
8589
else if (h)
8590
(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
8591
else if (m)
8592
(void) sprintf(timebuf, "%llum%02llus", m, s);
8593
else
8594
(void) sprintf(timebuf, "%llus", s);
8595
}
8596
8597
static nvlist_t *
8598
make_random_pool_props(void)
8599
{
8600
nvlist_t *props;
8601
8602
props = fnvlist_alloc();
8603
8604
/* Twenty percent of the time enable ZPOOL_PROP_DEDUP_TABLE_QUOTA */
8605
if (ztest_random(5) == 0) {
8606
fnvlist_add_uint64(props,
8607
zpool_prop_to_name(ZPOOL_PROP_DEDUP_TABLE_QUOTA),
8608
2 * 1024 * 1024);
8609
}
8610
8611
/* Fifty percent of the time enable ZPOOL_PROP_AUTOREPLACE */
8612
if (ztest_random(2) == 0) {
8613
fnvlist_add_uint64(props,
8614
zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
8615
}
8616
8617
return (props);
8618
}
8619
8620
/*
8621
* Create a storage pool with the given name and initial vdev size.
8622
* Then test spa_freeze() functionality.
8623
*/
8624
static void
8625
ztest_init(ztest_shared_t *zs)
8626
{
8627
spa_t *spa;
8628
nvlist_t *nvroot, *props;
8629
int i;
8630
8631
mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8632
mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8633
VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8634
8635
raidz_scratch_verify();
8636
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8637
8638
/*
8639
* Create the storage pool.
8640
*/
8641
(void) spa_destroy(ztest_opts.zo_pool);
8642
ztest_shared->zs_vdev_next_leaf = 0;
8643
zs->zs_splits = 0;
8644
zs->zs_mirrors = ztest_opts.zo_mirrors;
8645
nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
8646
NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
8647
props = make_random_pool_props();
8648
8649
/*
8650
* We don't expect the pool to suspend unless maxfaults == 0,
8651
* in which case ztest_fault_inject() temporarily takes away
8652
* the only valid replica.
8653
*/
8654
fnvlist_add_uint64(props,
8655
zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
8656
MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
8657
8658
for (i = 0; i < SPA_FEATURES; i++) {
8659
char *buf;
8660
8661
if (!spa_feature_table[i].fi_zfs_mod_supported)
8662
continue;
8663
8664
/*
8665
* 75% chance of using the log space map feature. We want ztest
8666
* to exercise both the code paths that use the log space map
8667
* feature and the ones that don't.
8668
*/
8669
if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
8670
continue;
8671
8672
/*
8673
* split 50/50 between legacy and fast dedup
8674
*/
8675
if (i == SPA_FEATURE_FAST_DEDUP && ztest_random(2) != 0)
8676
continue;
8677
8678
VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
8679
spa_feature_table[i].fi_uname));
8680
fnvlist_add_uint64(props, buf, 0);
8681
free(buf);
8682
}
8683
8684
VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
8685
fnvlist_free(nvroot);
8686
fnvlist_free(props);
8687
8688
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8689
zs->zs_metaslab_sz =
8690
1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8691
zs->zs_guid = spa_guid(spa);
8692
spa_close(spa, FTAG);
8693
8694
kernel_fini();
8695
8696
if (!ztest_opts.zo_mmp_test) {
8697
ztest_run_zdb(zs->zs_guid);
8698
ztest_freeze();
8699
ztest_run_zdb(zs->zs_guid);
8700
}
8701
8702
(void) pthread_rwlock_destroy(&ztest_name_lock);
8703
mutex_destroy(&ztest_vdev_lock);
8704
mutex_destroy(&ztest_checkpoint_lock);
8705
}
8706
8707
static void
8708
setup_data_fd(void)
8709
{
8710
static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
8711
8712
ztest_fd_data = mkstemp(ztest_name_data);
8713
ASSERT3S(ztest_fd_data, >=, 0);
8714
(void) unlink(ztest_name_data);
8715
}
8716
8717
static int
8718
shared_data_size(ztest_shared_hdr_t *hdr)
8719
{
8720
int size;
8721
8722
size = hdr->zh_hdr_size;
8723
size += hdr->zh_opts_size;
8724
size += hdr->zh_size;
8725
size += hdr->zh_stats_size * hdr->zh_stats_count;
8726
size += hdr->zh_ds_size * hdr->zh_ds_count;
8727
size += hdr->zh_scratch_state_size;
8728
8729
return (size);
8730
}
8731
8732
static void
8733
setup_hdr(void)
8734
{
8735
int size;
8736
ztest_shared_hdr_t *hdr;
8737
8738
hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8739
PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8740
ASSERT3P(hdr, !=, MAP_FAILED);
8741
8742
VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
8743
8744
hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
8745
hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
8746
hdr->zh_size = sizeof (ztest_shared_t);
8747
hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
8748
hdr->zh_stats_count = ZTEST_FUNCS;
8749
hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
8750
hdr->zh_ds_count = ztest_opts.zo_datasets;
8751
hdr->zh_scratch_state_size = sizeof (ztest_shared_scratch_state_t);
8752
8753
size = shared_data_size(hdr);
8754
VERIFY0(ftruncate(ztest_fd_data, size));
8755
8756
(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8757
}
8758
8759
static void
8760
setup_data(void)
8761
{
8762
int size, offset;
8763
ztest_shared_hdr_t *hdr;
8764
uint8_t *buf;
8765
8766
hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8767
PROT_READ, MAP_SHARED, ztest_fd_data, 0);
8768
ASSERT3P(hdr, !=, MAP_FAILED);
8769
8770
size = shared_data_size(hdr);
8771
8772
(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8773
hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
8774
PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8775
ASSERT3P(hdr, !=, MAP_FAILED);
8776
buf = (uint8_t *)hdr;
8777
8778
offset = hdr->zh_hdr_size;
8779
ztest_shared_opts = (void *)&buf[offset];
8780
offset += hdr->zh_opts_size;
8781
ztest_shared = (void *)&buf[offset];
8782
offset += hdr->zh_size;
8783
ztest_shared_callstate = (void *)&buf[offset];
8784
offset += hdr->zh_stats_size * hdr->zh_stats_count;
8785
ztest_shared_ds = (void *)&buf[offset];
8786
offset += hdr->zh_ds_size * hdr->zh_ds_count;
8787
ztest_scratch_state = (void *)&buf[offset];
8788
}
8789
8790
static boolean_t
8791
exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
8792
{
8793
pid_t pid;
8794
int status;
8795
char *cmdbuf = NULL;
8796
8797
pid = fork();
8798
8799
if (cmd == NULL) {
8800
cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8801
(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
8802
cmd = cmdbuf;
8803
}
8804
8805
if (pid == -1)
8806
fatal(B_TRUE, "fork failed");
8807
8808
if (pid == 0) { /* child */
8809
char fd_data_str[12];
8810
8811
VERIFY3S(11, >=,
8812
snprintf(fd_data_str, 12, "%d", ztest_fd_data));
8813
VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
8814
8815
if (libpath != NULL) {
8816
const char *curlp = getenv("LD_LIBRARY_PATH");
8817
if (curlp == NULL)
8818
VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
8819
else {
8820
char *newlp = NULL;
8821
VERIFY3S(-1, !=,
8822
asprintf(&newlp, "%s:%s", libpath, curlp));
8823
VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
8824
free(newlp);
8825
}
8826
}
8827
(void) execl(cmd, cmd, (char *)NULL);
8828
ztest_dump_core = B_FALSE;
8829
fatal(B_TRUE, "exec failed: %s", cmd);
8830
}
8831
8832
if (cmdbuf != NULL) {
8833
umem_free(cmdbuf, MAXPATHLEN);
8834
cmd = NULL;
8835
}
8836
8837
while (waitpid(pid, &status, 0) != pid)
8838
continue;
8839
if (statusp != NULL)
8840
*statusp = status;
8841
8842
if (WIFEXITED(status)) {
8843
if (WEXITSTATUS(status) != 0) {
8844
(void) fprintf(stderr, "child exited with code %d\n",
8845
WEXITSTATUS(status));
8846
exit(2);
8847
}
8848
return (B_FALSE);
8849
} else if (WIFSIGNALED(status)) {
8850
if (!ignorekill || WTERMSIG(status) != SIGKILL) {
8851
(void) fprintf(stderr, "child died with signal %d\n",
8852
WTERMSIG(status));
8853
exit(3);
8854
}
8855
return (B_TRUE);
8856
} else {
8857
(void) fprintf(stderr, "something strange happened to child\n");
8858
exit(4);
8859
}
8860
}
8861
8862
static void
8863
ztest_run_init(void)
8864
{
8865
int i;
8866
8867
ztest_shared_t *zs = ztest_shared;
8868
8869
/*
8870
* Blow away any existing copy of zpool.cache
8871
*/
8872
(void) remove(spa_config_path);
8873
8874
if (ztest_opts.zo_init == 0) {
8875
if (ztest_opts.zo_verbose >= 1)
8876
(void) printf("Importing pool %s\n",
8877
ztest_opts.zo_pool);
8878
ztest_import(zs);
8879
return;
8880
}
8881
8882
/*
8883
* Create and initialize our storage pool.
8884
*/
8885
for (i = 1; i <= ztest_opts.zo_init; i++) {
8886
memset(zs, 0, sizeof (*zs));
8887
if (ztest_opts.zo_verbose >= 3 &&
8888
ztest_opts.zo_init != 1) {
8889
(void) printf("ztest_init(), pass %d\n", i);
8890
}
8891
ztest_init(zs);
8892
}
8893
}
8894
8895
int
8896
main(int argc, char **argv)
8897
{
8898
int kills = 0;
8899
int iters = 0;
8900
int older = 0;
8901
int newer = 0;
8902
ztest_shared_t *zs;
8903
ztest_info_t *zi;
8904
ztest_shared_callstate_t *zc;
8905
char timebuf[100];
8906
char numbuf[NN_NUMBUF_SZ];
8907
char *cmd;
8908
boolean_t hasalt;
8909
int f, err;
8910
char *fd_data_str = getenv("ZTEST_FD_DATA");
8911
struct sigaction action;
8912
8913
(void) setvbuf(stdout, NULL, _IOLBF, 0);
8914
8915
dprintf_setup(&argc, argv);
8916
zfs_deadman_synctime_ms = 300000;
8917
zfs_deadman_checktime_ms = 30000;
8918
/*
8919
* As two-word space map entries may not come up often (especially
8920
* if pool and vdev sizes are small) we want to force at least some
8921
* of them so the feature get tested.
8922
*/
8923
zfs_force_some_double_word_sm_entries = B_TRUE;
8924
8925
/*
8926
* Verify that even extensively damaged split blocks with many
8927
* segments can be reconstructed in a reasonable amount of time
8928
* when reconstruction is known to be possible.
8929
*
8930
* Note: the lower this value is, the more damage we inflict, and
8931
* the more time ztest spends in recovering that damage. We chose
8932
* to induce damage 1/100th of the time so recovery is tested but
8933
* not so frequently that ztest doesn't get to test other code paths.
8934
*/
8935
zfs_reconstruct_indirect_damage_fraction = 100;
8936
8937
action.sa_handler = sig_handler;
8938
sigemptyset(&action.sa_mask);
8939
action.sa_flags = 0;
8940
8941
if (sigaction(SIGSEGV, &action, NULL) < 0) {
8942
(void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8943
strerror(errno));
8944
exit(EXIT_FAILURE);
8945
}
8946
8947
if (sigaction(SIGABRT, &action, NULL) < 0) {
8948
(void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8949
strerror(errno));
8950
exit(EXIT_FAILURE);
8951
}
8952
8953
libspl_init();
8954
8955
/*
8956
* Force random_get_bytes() to use /dev/urandom in order to prevent
8957
* ztest from needlessly depleting the system entropy pool.
8958
*/
8959
random_force_pseudo(B_TRUE);
8960
8961
if (!fd_data_str) {
8962
process_options(argc, argv);
8963
8964
setup_data_fd();
8965
setup_hdr();
8966
setup_data();
8967
memcpy(ztest_shared_opts, &ztest_opts,
8968
sizeof (*ztest_shared_opts));
8969
} else {
8970
ztest_fd_data = atoi(fd_data_str);
8971
setup_data();
8972
memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8973
}
8974
ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8975
8976
err = ztest_set_global_vars();
8977
if (err != 0 && !fd_data_str) {
8978
/* error message done by ztest_set_global_vars */
8979
exit(EXIT_FAILURE);
8980
} else {
8981
/* children should not be spawned if setting gvars fails */
8982
VERIFY0(err);
8983
}
8984
8985
/* Override location of zpool.cache */
8986
VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8987
ztest_opts.zo_dir), !=, -1);
8988
8989
ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8990
UMEM_NOFAIL);
8991
zs = ztest_shared;
8992
8993
if (fd_data_str) {
8994
metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8995
metaslab_df_alloc_threshold =
8996
zs->zs_metaslab_df_alloc_threshold;
8997
8998
if (zs->zs_do_init)
8999
ztest_run_init();
9000
else
9001
ztest_run(zs);
9002
exit(0);
9003
}
9004
9005
hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
9006
9007
if (ztest_opts.zo_verbose >= 1) {
9008
(void) printf("%"PRIu64" vdevs, %d datasets, %d threads, "
9009
"%d %s disks, parity %d, %"PRIu64" seconds...\n\n",
9010
ztest_opts.zo_vdevs,
9011
ztest_opts.zo_datasets,
9012
ztest_opts.zo_threads,
9013
ztest_opts.zo_raid_children,
9014
ztest_opts.zo_raid_type,
9015
ztest_opts.zo_raid_parity,
9016
ztest_opts.zo_time);
9017
}
9018
9019
cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
9020
(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
9021
9022
zs->zs_do_init = B_TRUE;
9023
if (strlen(ztest_opts.zo_alt_ztest) != 0) {
9024
if (ztest_opts.zo_verbose >= 1) {
9025
(void) printf("Executing older ztest for "
9026
"initialization: %s\n", ztest_opts.zo_alt_ztest);
9027
}
9028
VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
9029
ztest_opts.zo_alt_libpath, B_FALSE, NULL));
9030
} else {
9031
VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
9032
}
9033
zs->zs_do_init = B_FALSE;
9034
9035
zs->zs_proc_start = gethrtime();
9036
zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
9037
9038
for (f = 0; f < ZTEST_FUNCS; f++) {
9039
zi = &ztest_info[f];
9040
zc = ZTEST_GET_SHARED_CALLSTATE(f);
9041
if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
9042
zc->zc_next = UINT64_MAX;
9043
else
9044
zc->zc_next = zs->zs_proc_start +
9045
ztest_random(2 * zi->zi_interval[0] + 1);
9046
}
9047
9048
/*
9049
* Run the tests in a loop. These tests include fault injection
9050
* to verify that self-healing data works, and forced crashes
9051
* to verify that we never lose on-disk consistency.
9052
*/
9053
while (gethrtime() < zs->zs_proc_stop) {
9054
int status;
9055
boolean_t killed;
9056
9057
/*
9058
* Initialize the workload counters for each function.
9059
*/
9060
for (f = 0; f < ZTEST_FUNCS; f++) {
9061
zc = ZTEST_GET_SHARED_CALLSTATE(f);
9062
zc->zc_count = 0;
9063
zc->zc_time = 0;
9064
}
9065
9066
/* Set the allocation switch size */
9067
zs->zs_metaslab_df_alloc_threshold =
9068
ztest_random(zs->zs_metaslab_sz / 4) + 1;
9069
9070
if (!hasalt || ztest_random(2) == 0) {
9071
if (hasalt && ztest_opts.zo_verbose >= 1) {
9072
(void) printf("Executing newer ztest: %s\n",
9073
cmd);
9074
}
9075
newer++;
9076
killed = exec_child(cmd, NULL, B_TRUE, &status);
9077
} else {
9078
if (hasalt && ztest_opts.zo_verbose >= 1) {
9079
(void) printf("Executing older ztest: %s\n",
9080
ztest_opts.zo_alt_ztest);
9081
}
9082
older++;
9083
killed = exec_child(ztest_opts.zo_alt_ztest,
9084
ztest_opts.zo_alt_libpath, B_TRUE, &status);
9085
}
9086
9087
if (killed)
9088
kills++;
9089
iters++;
9090
9091
if (ztest_opts.zo_verbose >= 1) {
9092
hrtime_t now = gethrtime();
9093
9094
now = MIN(now, zs->zs_proc_stop);
9095
print_time(zs->zs_proc_stop - now, timebuf);
9096
nicenum(zs->zs_space, numbuf, sizeof (numbuf));
9097
9098
(void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
9099
"%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
9100
iters,
9101
WIFEXITED(status) ? "Complete" : "SIGKILL",
9102
zs->zs_enospc_count,
9103
100.0 * zs->zs_alloc / zs->zs_space,
9104
numbuf,
9105
100.0 * (now - zs->zs_proc_start) /
9106
(ztest_opts.zo_time * NANOSEC), timebuf);
9107
}
9108
9109
if (ztest_opts.zo_verbose >= 2) {
9110
(void) printf("\nWorkload summary:\n\n");
9111
(void) printf("%7s %9s %s\n",
9112
"Calls", "Time", "Function");
9113
(void) printf("%7s %9s %s\n",
9114
"-----", "----", "--------");
9115
for (f = 0; f < ZTEST_FUNCS; f++) {
9116
zi = &ztest_info[f];
9117
zc = ZTEST_GET_SHARED_CALLSTATE(f);
9118
print_time(zc->zc_time, timebuf);
9119
(void) printf("%7"PRIu64" %9s %s\n",
9120
zc->zc_count, timebuf,
9121
zi->zi_funcname);
9122
}
9123
(void) printf("\n");
9124
}
9125
9126
if (!ztest_opts.zo_mmp_test)
9127
ztest_run_zdb(zs->zs_guid);
9128
if (ztest_shared_opts->zo_raidz_expand_test ==
9129
RAIDZ_EXPAND_CHECKED)
9130
break; /* raidz expand test complete */
9131
}
9132
9133
if (ztest_opts.zo_verbose >= 1) {
9134
if (hasalt) {
9135
(void) printf("%d runs of older ztest: %s\n", older,
9136
ztest_opts.zo_alt_ztest);
9137
(void) printf("%d runs of newer ztest: %s\n", newer,
9138
cmd);
9139
}
9140
(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
9141
kills, iters - kills, (100.0 * kills) / MAX(1, iters));
9142
}
9143
9144
umem_free(cmd, MAXNAMELEN);
9145
9146
return (0);
9147
}
9148
9149