Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/lib/libzfs/libzfs_mount.c
48378 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
23
/*
24
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
26
* Copyright (c) 2014, 2022 by Delphix. All rights reserved.
27
* Copyright 2016 Igor Kozhukhov <[email protected]>
28
* Copyright 2017 RackTop Systems.
29
* Copyright (c) 2018 Datto Inc.
30
* Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
31
*/
32
33
/*
34
* Routines to manage ZFS mounts. We separate all the nasty routines that have
35
* to deal with the OS. The following functions are the main entry points --
36
* they are used by mount and unmount and when changing a filesystem's
37
* mountpoint.
38
*
39
* zfs_is_mounted()
40
* zfs_mount()
41
* zfs_mount_at()
42
* zfs_unmount()
43
* zfs_unmountall()
44
*
45
* This file also contains the functions used to manage sharing filesystems:
46
*
47
* zfs_is_shared()
48
* zfs_share()
49
* zfs_unshare()
50
* zfs_unshareall()
51
* zfs_commit_shares()
52
*
53
* The following functions are available for pool consumers, and will
54
* mount/unmount and share/unshare all datasets within pool:
55
*
56
* zpool_enable_datasets()
57
* zpool_disable_datasets()
58
*/
59
60
#include <dirent.h>
61
#include <dlfcn.h>
62
#include <errno.h>
63
#include <fcntl.h>
64
#include <libgen.h>
65
#include <libintl.h>
66
#include <stdio.h>
67
#include <stdlib.h>
68
#include <string.h>
69
#include <unistd.h>
70
#include <zone.h>
71
#include <sys/mntent.h>
72
#include <sys/mount.h>
73
#include <sys/stat.h>
74
#include <sys/vfs.h>
75
#include <sys/dsl_crypt.h>
76
77
#include <libzfs.h>
78
#include <libzutil.h>
79
80
#include "libzfs_impl.h"
81
#include <thread_pool.h>
82
83
#include <libshare.h>
84
#include <sys/systeminfo.h>
85
#define MAXISALEN 257 /* based on sysinfo(2) man page */
86
87
static void zfs_mount_task(void *);
88
89
static const proto_table_t proto_table[SA_PROTOCOL_COUNT] = {
90
[SA_PROTOCOL_NFS] =
91
{ZFS_PROP_SHARENFS, EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
92
[SA_PROTOCOL_SMB] =
93
{ZFS_PROP_SHARESMB, EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
94
};
95
96
static const enum sa_protocol share_all_proto[SA_PROTOCOL_COUNT + 1] = {
97
SA_PROTOCOL_NFS,
98
SA_PROTOCOL_SMB,
99
SA_NO_PROTOCOL
100
};
101
102
103
104
static boolean_t
105
dir_is_empty_stat(const char *dirname)
106
{
107
struct stat st;
108
109
/*
110
* We only want to return false if the given path is a non empty
111
* directory, all other errors are handled elsewhere.
112
*/
113
if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
114
return (B_TRUE);
115
}
116
117
/*
118
* An empty directory will still have two entries in it, one
119
* entry for each of "." and "..".
120
*/
121
if (st.st_size > 2) {
122
return (B_FALSE);
123
}
124
125
return (B_TRUE);
126
}
127
128
static boolean_t
129
dir_is_empty_readdir(const char *dirname)
130
{
131
DIR *dirp;
132
struct dirent64 *dp;
133
int dirfd;
134
135
if ((dirfd = openat(AT_FDCWD, dirname,
136
O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
137
return (B_TRUE);
138
}
139
140
if ((dirp = fdopendir(dirfd)) == NULL) {
141
(void) close(dirfd);
142
return (B_TRUE);
143
}
144
145
while ((dp = readdir64(dirp)) != NULL) {
146
147
if (strcmp(dp->d_name, ".") == 0 ||
148
strcmp(dp->d_name, "..") == 0)
149
continue;
150
151
(void) closedir(dirp);
152
return (B_FALSE);
153
}
154
155
(void) closedir(dirp);
156
return (B_TRUE);
157
}
158
159
/*
160
* Returns true if the specified directory is empty. If we can't open the
161
* directory at all, return true so that the mount can fail with a more
162
* informative error message.
163
*/
164
static boolean_t
165
dir_is_empty(const char *dirname)
166
{
167
struct statfs64 st;
168
169
/*
170
* If the statvfs call fails or the filesystem is not a ZFS
171
* filesystem, fall back to the slow path which uses readdir.
172
*/
173
if ((statfs64(dirname, &st) != 0) ||
174
(st.f_type != ZFS_SUPER_MAGIC)) {
175
return (dir_is_empty_readdir(dirname));
176
}
177
178
/*
179
* At this point, we know the provided path is on a ZFS
180
* filesystem, so we can use stat instead of readdir to
181
* determine if the directory is empty or not. We try to avoid
182
* using readdir because that requires opening "dirname"; this
183
* open file descriptor can potentially end up in a child
184
* process if there's a concurrent fork, thus preventing the
185
* zfs_mount() from otherwise succeeding (the open file
186
* descriptor inherited by the child process will cause the
187
* parent's mount to fail with EBUSY). The performance
188
* implications of replacing the open, read, and close with a
189
* single stat is nice; but is not the main motivation for the
190
* added complexity.
191
*/
192
return (dir_is_empty_stat(dirname));
193
}
194
195
/*
196
* Checks to see if the mount is active. If the filesystem is mounted, we fill
197
* in 'where' with the current mountpoint, and return 1. Otherwise, we return
198
* 0.
199
*/
200
boolean_t
201
is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
202
{
203
struct mnttab entry;
204
205
if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
206
return (B_FALSE);
207
208
if (where != NULL)
209
*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
210
211
return (B_TRUE);
212
}
213
214
boolean_t
215
zfs_is_mounted(zfs_handle_t *zhp, char **where)
216
{
217
return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
218
}
219
220
/*
221
* Checks any higher order concerns about whether the given dataset is
222
* mountable, false otherwise. zfs_is_mountable_internal specifically assumes
223
* that the caller has verified the sanity of mounting the dataset at
224
* its mountpoint to the extent the caller wants.
225
*/
226
static boolean_t
227
zfs_is_mountable_internal(zfs_handle_t *zhp)
228
{
229
if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
230
getzoneid() == GLOBAL_ZONEID)
231
return (B_FALSE);
232
233
return (B_TRUE);
234
}
235
236
/*
237
* Returns true if the given dataset is mountable, false otherwise. Returns the
238
* mountpoint in 'buf'.
239
*/
240
static boolean_t
241
zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
242
zprop_source_t *source, int flags)
243
{
244
char sourceloc[MAXNAMELEN];
245
zprop_source_t sourcetype;
246
247
if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
248
B_FALSE))
249
return (B_FALSE);
250
251
verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
252
&sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
253
254
if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
255
strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
256
return (B_FALSE);
257
258
if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
259
return (B_FALSE);
260
261
if (!zfs_is_mountable_internal(zhp))
262
return (B_FALSE);
263
264
if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE))
265
return (B_FALSE);
266
267
if (source)
268
*source = sourcetype;
269
270
return (B_TRUE);
271
}
272
273
/*
274
* The filesystem is mounted by invoking the system mount utility rather
275
* than by the system call mount(2). This ensures that the /etc/mtab
276
* file is correctly locked for the update. Performing our own locking
277
* and /etc/mtab update requires making an unsafe assumption about how
278
* the mount utility performs its locking. Unfortunately, this also means
279
* in the case of a mount failure we do not have the exact errno. We must
280
* make due with return value from the mount process.
281
*
282
* In the long term a shared library called libmount is under development
283
* which provides a common API to address the locking and errno issues.
284
* Once the standard mount utility has been updated to use this library
285
* we can add an autoconf check to conditionally use it.
286
*
287
* http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
288
*/
289
290
static int
291
zfs_add_option(zfs_handle_t *zhp, char *options, int len,
292
zfs_prop_t prop, const char *on, const char *off)
293
{
294
const char *source;
295
uint64_t value;
296
297
/* Skip adding duplicate default options */
298
if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
299
return (0);
300
301
/*
302
* zfs_prop_get_int() is not used to ensure our mount options
303
* are not influenced by the current /proc/self/mounts contents.
304
*/
305
value = getprop_uint64(zhp, prop, &source);
306
307
(void) strlcat(options, ",", len);
308
(void) strlcat(options, value ? on : off, len);
309
310
return (0);
311
}
312
313
static int
314
zfs_add_options(zfs_handle_t *zhp, char *options, int len)
315
{
316
int error = 0;
317
318
error = zfs_add_option(zhp, options, len,
319
ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
320
/*
321
* don't add relatime/strictatime when atime=off, otherwise strictatime
322
* will force atime=on
323
*/
324
if (strstr(options, MNTOPT_NOATIME) == NULL) {
325
error = zfs_add_option(zhp, options, len,
326
ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME);
327
}
328
error = error ? error : zfs_add_option(zhp, options, len,
329
ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
330
error = error ? error : zfs_add_option(zhp, options, len,
331
ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
332
error = error ? error : zfs_add_option(zhp, options, len,
333
ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
334
error = error ? error : zfs_add_option(zhp, options, len,
335
ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
336
error = error ? error : zfs_add_option(zhp, options, len,
337
ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
338
339
return (error);
340
}
341
342
int
343
zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
344
{
345
char mountpoint[ZFS_MAXPROPLEN];
346
347
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL,
348
flags))
349
return (0);
350
351
return (zfs_mount_at(zhp, options, flags, mountpoint));
352
}
353
354
/*
355
* Mount the given filesystem.
356
*/
357
int
358
zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags,
359
const char *mountpoint)
360
{
361
struct stat buf;
362
char mntopts[MNT_LINE_MAX];
363
char overlay[ZFS_MAXPROPLEN];
364
char prop_encroot[MAXNAMELEN];
365
boolean_t is_encroot;
366
zfs_handle_t *encroot_hp = zhp;
367
libzfs_handle_t *hdl = zhp->zfs_hdl;
368
uint64_t keystatus;
369
int remount = 0, rc;
370
371
if (options == NULL) {
372
(void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
373
} else {
374
(void) strlcpy(mntopts, options, sizeof (mntopts));
375
}
376
377
if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
378
remount = 1;
379
380
/* Potentially duplicates some checks if invoked by zfs_mount(). */
381
if (!zfs_is_mountable_internal(zhp))
382
return (0);
383
384
/*
385
* If the pool is imported read-only then all mounts must be read-only
386
*/
387
if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
388
(void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
389
390
/*
391
* Append default mount options which apply to the mount point.
392
* This is done because under Linux (unlike Solaris) multiple mount
393
* points may reference a single super block. This means that just
394
* given a super block there is no back reference to update the per
395
* mount point options.
396
*/
397
rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
398
if (rc) {
399
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
400
"default options unavailable"));
401
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
402
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
403
mountpoint));
404
}
405
406
/*
407
* If the filesystem is encrypted the key must be loaded in order to
408
* mount. If the key isn't loaded, the MS_CRYPT flag decides whether
409
* or not we attempt to load the keys. Note: we must call
410
* zfs_refresh_properties() here since some callers of this function
411
* (most notably zpool_enable_datasets()) may implicitly load our key
412
* by loading the parent's key first.
413
*/
414
if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
415
zfs_refresh_properties(zhp);
416
keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
417
418
/*
419
* If the key is unavailable and MS_CRYPT is set give the
420
* user a chance to enter the key. Otherwise just fail
421
* immediately.
422
*/
423
if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
424
if (flags & MS_CRYPT) {
425
rc = zfs_crypto_get_encryption_root(zhp,
426
&is_encroot, prop_encroot);
427
if (rc) {
428
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
429
"Failed to get encryption root for "
430
"'%s'."), zfs_get_name(zhp));
431
return (rc);
432
}
433
434
if (!is_encroot) {
435
encroot_hp = zfs_open(hdl, prop_encroot,
436
ZFS_TYPE_DATASET);
437
if (encroot_hp == NULL)
438
return (hdl->libzfs_error);
439
}
440
441
rc = zfs_crypto_load_key(encroot_hp,
442
B_FALSE, NULL);
443
444
if (!is_encroot)
445
zfs_close(encroot_hp);
446
if (rc)
447
return (rc);
448
} else {
449
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
450
"encryption key not loaded"));
451
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
452
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
453
mountpoint));
454
}
455
}
456
457
}
458
459
/*
460
* Append zfsutil option so the mount helper allow the mount
461
*/
462
strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
463
464
/* Create the directory if it doesn't already exist */
465
if (lstat(mountpoint, &buf) != 0) {
466
if (mkdirp(mountpoint, 0755) != 0) {
467
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
468
"failed to create mountpoint: %s"),
469
zfs_strerror(errno));
470
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
471
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
472
mountpoint));
473
}
474
}
475
476
/*
477
* Overlay mounts are enabled by default but may be disabled
478
* via the 'overlay' property. The -O flag remains for compatibility.
479
*/
480
if (!(flags & MS_OVERLAY)) {
481
if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay,
482
sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) {
483
if (strcmp(overlay, "on") == 0) {
484
flags |= MS_OVERLAY;
485
}
486
}
487
}
488
489
/*
490
* Determine if the mountpoint is empty. If so, refuse to perform the
491
* mount. We don't perform this check if 'remount' is
492
* specified or if overlay option (-O) is given
493
*/
494
if ((flags & MS_OVERLAY) == 0 && !remount &&
495
!dir_is_empty(mountpoint)) {
496
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
497
"directory is not empty"));
498
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
499
dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
500
}
501
502
/* perform the mount */
503
rc = do_mount(zhp, mountpoint, mntopts, flags);
504
if (rc) {
505
/*
506
* Generic errors are nasty, but there are just way too many
507
* from mount(), and they're well-understood. We pick a few
508
* common ones to improve upon.
509
*/
510
if (rc == EBUSY) {
511
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
512
"mountpoint or dataset is busy"));
513
} else if (rc == EPERM) {
514
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
515
"Insufficient privileges"));
516
} else if (rc == ENOTSUP) {
517
int spa_version;
518
519
VERIFY0(zfs_spa_version(zhp, &spa_version));
520
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
521
"Can't mount a version %llu "
522
"file system on a version %d pool. Pool must be"
523
" upgraded to mount this file system."),
524
(u_longlong_t)zfs_prop_get_int(zhp,
525
ZFS_PROP_VERSION), spa_version);
526
} else {
527
zfs_error_aux(hdl, "%s", zfs_strerror(rc));
528
}
529
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
530
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
531
zhp->zfs_name));
532
}
533
534
/* remove the mounted entry before re-adding on remount */
535
if (remount)
536
libzfs_mnttab_remove(hdl, zhp->zfs_name);
537
538
/* add the mounted entry into our cache */
539
libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
540
return (0);
541
}
542
543
/*
544
* Unmount a single filesystem.
545
*/
546
static int
547
unmount_one(zfs_handle_t *zhp, const char *mountpoint, int flags)
548
{
549
int error;
550
551
error = do_unmount(zhp, mountpoint, flags);
552
if (error != 0) {
553
int libzfs_err;
554
555
switch (error) {
556
case EBUSY:
557
libzfs_err = EZFS_BUSY;
558
break;
559
case EIO:
560
libzfs_err = EZFS_IO;
561
break;
562
case ENOENT:
563
libzfs_err = EZFS_NOENT;
564
break;
565
case ENOMEM:
566
libzfs_err = EZFS_NOMEM;
567
break;
568
case EPERM:
569
libzfs_err = EZFS_PERM;
570
break;
571
default:
572
libzfs_err = EZFS_UMOUNTFAILED;
573
}
574
if (zhp) {
575
return (zfs_error_fmt(zhp->zfs_hdl, libzfs_err,
576
dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
577
mountpoint));
578
} else {
579
return (-1);
580
}
581
}
582
583
return (0);
584
}
585
586
/*
587
* Unmount the given filesystem.
588
*/
589
int
590
zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
591
{
592
libzfs_handle_t *hdl = zhp->zfs_hdl;
593
struct mnttab entry;
594
char *mntpt = NULL;
595
boolean_t encroot, unmounted = B_FALSE;
596
597
/* check to see if we need to unmount the filesystem */
598
if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
599
libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
600
/*
601
* mountpoint may have come from a call to
602
* getmnt/getmntany if it isn't NULL. If it is NULL,
603
* we know it comes from libzfs_mnttab_find which can
604
* then get freed later. We strdup it to play it safe.
605
*/
606
if (mountpoint == NULL)
607
mntpt = zfs_strdup(hdl, entry.mnt_mountp);
608
else
609
mntpt = zfs_strdup(hdl, mountpoint);
610
611
/*
612
* Unshare and unmount the filesystem
613
*/
614
if (zfs_unshare(zhp, mntpt, share_all_proto) != 0) {
615
free(mntpt);
616
return (-1);
617
}
618
zfs_commit_shares(NULL);
619
620
if (unmount_one(zhp, mntpt, flags) != 0) {
621
free(mntpt);
622
(void) zfs_share(zhp, NULL);
623
zfs_commit_shares(NULL);
624
return (-1);
625
}
626
627
libzfs_mnttab_remove(hdl, zhp->zfs_name);
628
free(mntpt);
629
unmounted = B_TRUE;
630
}
631
632
/*
633
* If the MS_CRYPT flag is provided we must ensure we attempt to
634
* unload the dataset's key regardless of whether we did any work
635
* to unmount it. We only do this for encryption roots.
636
*/
637
if ((flags & MS_CRYPT) != 0 &&
638
zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
639
zfs_refresh_properties(zhp);
640
641
if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 &&
642
unmounted) {
643
(void) zfs_mount(zhp, NULL, 0);
644
return (-1);
645
}
646
647
if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
648
ZFS_KEYSTATUS_AVAILABLE &&
649
zfs_crypto_unload_key(zhp) != 0) {
650
(void) zfs_mount(zhp, NULL, 0);
651
return (-1);
652
}
653
}
654
655
zpool_disable_volume_os(zhp->zfs_name);
656
657
return (0);
658
}
659
660
/*
661
* Unmount this filesystem and any children inheriting the mountpoint property.
662
* To do this, just act like we're changing the mountpoint property, but don't
663
* remount the filesystems afterwards.
664
*/
665
int
666
zfs_unmountall(zfs_handle_t *zhp, int flags)
667
{
668
prop_changelist_t *clp;
669
int ret;
670
671
clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
672
CL_GATHER_ITER_MOUNTED, flags);
673
if (clp == NULL)
674
return (-1);
675
676
ret = changelist_prefix(clp);
677
changelist_free(clp);
678
679
return (ret);
680
}
681
682
/*
683
* Unshare a filesystem by mountpoint.
684
*/
685
static int
686
unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
687
enum sa_protocol proto)
688
{
689
int err = sa_disable_share(mountpoint, proto);
690
if (err != SA_OK)
691
return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
692
dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
693
name, sa_errorstr(err)));
694
695
return (0);
696
}
697
698
/*
699
* Share the given filesystem according to the options in the specified
700
* protocol specific properties (sharenfs, sharesmb). We rely
701
* on "libshare" to do the dirty work for us.
702
*/
703
int
704
zfs_share(zfs_handle_t *zhp, const enum sa_protocol *proto)
705
{
706
char mountpoint[ZFS_MAXPROPLEN];
707
char shareopts[ZFS_MAXPROPLEN];
708
char sourcestr[ZFS_MAXPROPLEN];
709
const enum sa_protocol *curr_proto;
710
zprop_source_t sourcetype;
711
int err = 0;
712
713
if (proto == NULL)
714
proto = share_all_proto;
715
716
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0))
717
return (0);
718
719
for (curr_proto = proto; *curr_proto != SA_NO_PROTOCOL; curr_proto++) {
720
/*
721
* Return success if there are no share options.
722
*/
723
if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
724
shareopts, sizeof (shareopts), &sourcetype, sourcestr,
725
ZFS_MAXPROPLEN, B_FALSE) != 0 ||
726
strcmp(shareopts, "off") == 0)
727
continue;
728
729
/*
730
* If the 'zoned' property is set, then zfs_is_mountable()
731
* will have already bailed out if we are in the global zone.
732
* But local zones cannot be NFS servers, so we ignore it for
733
* local zones as well.
734
*/
735
if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
736
continue;
737
738
err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts,
739
*curr_proto);
740
if (err != SA_OK) {
741
return (zfs_error_fmt(zhp->zfs_hdl,
742
proto_table[*curr_proto].p_share_err,
743
dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"),
744
zfs_get_name(zhp), sa_errorstr(err)));
745
}
746
747
}
748
return (0);
749
}
750
751
/*
752
* Check to see if the filesystem is currently shared.
753
*/
754
boolean_t
755
zfs_is_shared(zfs_handle_t *zhp, char **where,
756
const enum sa_protocol *proto)
757
{
758
char *mountpoint;
759
if (proto == NULL)
760
proto = share_all_proto;
761
762
if (ZFS_IS_VOLUME(zhp))
763
return (B_FALSE);
764
765
if (!zfs_is_mounted(zhp, &mountpoint))
766
return (B_FALSE);
767
768
for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
769
if (sa_is_shared(mountpoint, *p)) {
770
if (where != NULL)
771
*where = mountpoint;
772
else
773
free(mountpoint);
774
return (B_TRUE);
775
}
776
777
free(mountpoint);
778
return (B_FALSE);
779
}
780
781
void
782
zfs_commit_shares(const enum sa_protocol *proto)
783
{
784
if (proto == NULL)
785
proto = share_all_proto;
786
787
for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
788
sa_commit_shares(*p);
789
}
790
791
void
792
zfs_truncate_shares(const enum sa_protocol *proto)
793
{
794
if (proto == NULL)
795
proto = share_all_proto;
796
797
for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
798
sa_truncate_shares(*p);
799
}
800
801
/*
802
* Unshare the given filesystem.
803
*/
804
int
805
zfs_unshare(zfs_handle_t *zhp, const char *mountpoint,
806
const enum sa_protocol *proto)
807
{
808
libzfs_handle_t *hdl = zhp->zfs_hdl;
809
struct mnttab entry;
810
811
if (proto == NULL)
812
proto = share_all_proto;
813
814
if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
815
libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
816
817
/* check to see if need to unmount the filesystem */
818
const char *mntpt = mountpoint ?: entry.mnt_mountp;
819
820
for (const enum sa_protocol *curr_proto = proto;
821
*curr_proto != SA_NO_PROTOCOL; curr_proto++)
822
if (sa_is_shared(mntpt, *curr_proto) &&
823
unshare_one(hdl, zhp->zfs_name,
824
mntpt, *curr_proto) != 0)
825
return (-1);
826
}
827
828
return (0);
829
}
830
831
/*
832
* Same as zfs_unmountall(), but for NFS and SMB unshares.
833
*/
834
int
835
zfs_unshareall(zfs_handle_t *zhp, const enum sa_protocol *proto)
836
{
837
prop_changelist_t *clp;
838
int ret;
839
840
if (proto == NULL)
841
proto = share_all_proto;
842
843
clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
844
if (clp == NULL)
845
return (-1);
846
847
ret = changelist_unshare(clp, proto);
848
changelist_free(clp);
849
850
return (ret);
851
}
852
853
/*
854
* Remove the mountpoint associated with the current dataset, if necessary.
855
* We only remove the underlying directory if:
856
*
857
* - The mountpoint is not 'none' or 'legacy'
858
* - The mountpoint is non-empty
859
* - The mountpoint is the default or inherited
860
* - The 'zoned' property is set, or we're in a local zone
861
*
862
* Any other directories we leave alone.
863
*/
864
void
865
remove_mountpoint(zfs_handle_t *zhp)
866
{
867
char mountpoint[ZFS_MAXPROPLEN];
868
zprop_source_t source;
869
870
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
871
&source, 0))
872
return;
873
874
if (source == ZPROP_SRC_DEFAULT ||
875
source == ZPROP_SRC_INHERITED) {
876
/*
877
* Try to remove the directory, silently ignoring any errors.
878
* The filesystem may have since been removed or moved around,
879
* and this error isn't really useful to the administrator in
880
* any way.
881
*/
882
(void) rmdir(mountpoint);
883
}
884
}
885
886
/*
887
* Add the given zfs handle to the cb_handles array, dynamically reallocating
888
* the array if it is out of space.
889
*/
890
void
891
libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
892
{
893
if (cbp->cb_alloc == cbp->cb_used) {
894
size_t newsz;
895
zfs_handle_t **newhandles;
896
897
newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
898
newhandles = zfs_realloc(zhp->zfs_hdl,
899
cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
900
newsz * sizeof (zfs_handle_t *));
901
cbp->cb_handles = newhandles;
902
cbp->cb_alloc = newsz;
903
}
904
cbp->cb_handles[cbp->cb_used++] = zhp;
905
}
906
907
/*
908
* Recursive helper function used during file system enumeration
909
*/
910
static int
911
zfs_iter_cb(zfs_handle_t *zhp, void *data)
912
{
913
get_all_cb_t *cbp = data;
914
915
if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
916
zfs_close(zhp);
917
return (0);
918
}
919
920
if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
921
zfs_close(zhp);
922
return (0);
923
}
924
925
if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
926
ZFS_KEYSTATUS_UNAVAILABLE) {
927
zfs_close(zhp);
928
return (0);
929
}
930
931
/*
932
* If this filesystem is inconsistent and has a receive resume
933
* token, we can not mount it.
934
*/
935
if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
936
zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
937
NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
938
zfs_close(zhp);
939
return (0);
940
}
941
942
libzfs_add_handle(cbp, zhp);
943
if (zfs_iter_filesystems_v2(zhp, 0, zfs_iter_cb, cbp) != 0) {
944
zfs_close(zhp);
945
return (-1);
946
}
947
return (0);
948
}
949
950
/*
951
* Sort comparator that compares two mountpoint paths. We sort these paths so
952
* that subdirectories immediately follow their parents. This means that we
953
* effectively treat the '/' character as the lowest value non-nul char.
954
* Since filesystems from non-global zones can have the same mountpoint
955
* as other filesystems, the comparator sorts global zone filesystems to
956
* the top of the list. This means that the global zone will traverse the
957
* filesystem list in the correct order and can stop when it sees the
958
* first zoned filesystem. In a non-global zone, only the delegated
959
* filesystems are seen.
960
*
961
* An example sorted list using this comparator would look like:
962
*
963
* /foo
964
* /foo/bar
965
* /foo/bar/baz
966
* /foo/baz
967
* /foo.bar
968
* /foo (NGZ1)
969
* /foo (NGZ2)
970
*
971
* The mounting code depends on this ordering to deterministically iterate
972
* over filesystems in order to spawn parallel mount tasks.
973
*/
974
static int
975
mountpoint_cmp(const void *arga, const void *argb)
976
{
977
zfs_handle_t *const *zap = arga;
978
zfs_handle_t *za = *zap;
979
zfs_handle_t *const *zbp = argb;
980
zfs_handle_t *zb = *zbp;
981
char mounta[MAXPATHLEN];
982
char mountb[MAXPATHLEN];
983
const char *a = mounta;
984
const char *b = mountb;
985
boolean_t gota, gotb;
986
uint64_t zoneda, zonedb;
987
988
zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
989
zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
990
if (zoneda && !zonedb)
991
return (1);
992
if (!zoneda && zonedb)
993
return (-1);
994
995
gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
996
if (gota) {
997
verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
998
sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
999
}
1000
gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
1001
if (gotb) {
1002
verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
1003
sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
1004
}
1005
1006
if (gota && gotb) {
1007
while (*a != '\0' && (*a == *b)) {
1008
a++;
1009
b++;
1010
}
1011
if (*a == *b)
1012
return (0);
1013
if (*a == '\0')
1014
return (-1);
1015
if (*b == '\0')
1016
return (1);
1017
if (*a == '/')
1018
return (-1);
1019
if (*b == '/')
1020
return (1);
1021
return (*a < *b ? -1 : *a > *b);
1022
}
1023
1024
if (gota)
1025
return (-1);
1026
if (gotb)
1027
return (1);
1028
1029
/*
1030
* If neither filesystem has a mountpoint, revert to sorting by
1031
* dataset name.
1032
*/
1033
return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
1034
}
1035
1036
/*
1037
* Return true if path2 is a child of path1 or path2 equals path1 or
1038
* path1 is "/" (path2 is always a child of "/").
1039
*/
1040
static boolean_t
1041
libzfs_path_contains(const char *path1, const char *path2)
1042
{
1043
return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 ||
1044
(strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'));
1045
}
1046
1047
/*
1048
* Given a mountpoint specified by idx in the handles array, find the first
1049
* non-descendent of that mountpoint and return its index. Descendant paths
1050
* start with the parent's path. This function relies on the ordering
1051
* enforced by mountpoint_cmp().
1052
*/
1053
static int
1054
non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
1055
{
1056
char parent[ZFS_MAXPROPLEN];
1057
char child[ZFS_MAXPROPLEN];
1058
int i;
1059
1060
verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
1061
sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
1062
1063
for (i = idx + 1; i < num_handles; i++) {
1064
verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
1065
sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1066
if (!libzfs_path_contains(parent, child))
1067
break;
1068
}
1069
return (i);
1070
}
1071
1072
typedef struct mnt_param {
1073
libzfs_handle_t *mnt_hdl;
1074
tpool_t *mnt_tp;
1075
zfs_handle_t **mnt_zhps; /* filesystems to mount */
1076
size_t mnt_num_handles;
1077
int mnt_idx; /* Index of selected entry to mount */
1078
zfs_iter_f mnt_func;
1079
void *mnt_data;
1080
} mnt_param_t;
1081
1082
/*
1083
* Allocate and populate the parameter struct for mount function, and
1084
* schedule mounting of the entry selected by idx.
1085
*/
1086
static void
1087
zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
1088
size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp)
1089
{
1090
mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
1091
1092
mnt_param->mnt_hdl = hdl;
1093
mnt_param->mnt_tp = tp;
1094
mnt_param->mnt_zhps = handles;
1095
mnt_param->mnt_num_handles = num_handles;
1096
mnt_param->mnt_idx = idx;
1097
mnt_param->mnt_func = func;
1098
mnt_param->mnt_data = data;
1099
1100
if (tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param)) {
1101
/* Could not dispatch to thread pool; execute directly */
1102
zfs_mount_task((void*)mnt_param);
1103
}
1104
}
1105
1106
/*
1107
* This is the structure used to keep state of mounting or sharing operations
1108
* during a call to zpool_enable_datasets().
1109
*/
1110
typedef struct mount_state {
1111
/*
1112
* ms_mntstatus is set to -1 if any mount fails. While multiple threads
1113
* could update this variable concurrently, no synchronization is
1114
* needed as it's only ever set to -1.
1115
*/
1116
int ms_mntstatus;
1117
int ms_mntflags;
1118
const char *ms_mntopts;
1119
} mount_state_t;
1120
1121
static int
1122
zfs_mount_one(zfs_handle_t *zhp, void *arg)
1123
{
1124
mount_state_t *ms = arg;
1125
int ret = 0;
1126
1127
/*
1128
* don't attempt to mount encrypted datasets with
1129
* unloaded keys
1130
*/
1131
if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1132
ZFS_KEYSTATUS_UNAVAILABLE)
1133
return (0);
1134
1135
if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
1136
ret = ms->ms_mntstatus = -1;
1137
return (ret);
1138
}
1139
1140
static int
1141
zfs_share_one(zfs_handle_t *zhp, void *arg)
1142
{
1143
mount_state_t *ms = arg;
1144
int ret = 0;
1145
1146
if (zfs_share(zhp, NULL) != 0)
1147
ret = ms->ms_mntstatus = -1;
1148
return (ret);
1149
}
1150
1151
/*
1152
* Thread pool function to mount one file system. On completion, it finds and
1153
* schedules its children to be mounted. This depends on the sorting done in
1154
* zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
1155
* each descending from the previous) will have no parallelism since we always
1156
* have to wait for the parent to finish mounting before we can schedule
1157
* its children.
1158
*/
1159
static void
1160
zfs_mount_task(void *arg)
1161
{
1162
mnt_param_t *mp = arg;
1163
int idx = mp->mnt_idx;
1164
zfs_handle_t **handles = mp->mnt_zhps;
1165
size_t num_handles = mp->mnt_num_handles;
1166
char mountpoint[ZFS_MAXPROPLEN];
1167
1168
verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
1169
sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
1170
1171
if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
1172
goto out;
1173
1174
/*
1175
* We dispatch tasks to mount filesystems with mountpoints underneath
1176
* this one. We do this by dispatching the next filesystem with a
1177
* descendant mountpoint of the one we just mounted, then skip all of
1178
* its descendants, dispatch the next descendant mountpoint, and so on.
1179
* The non_descendant_idx() function skips over filesystems that are
1180
* descendants of the filesystem we just dispatched.
1181
*/
1182
for (int i = idx + 1; i < num_handles;
1183
i = non_descendant_idx(handles, num_handles, i)) {
1184
char child[ZFS_MAXPROPLEN];
1185
verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
1186
child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1187
1188
if (!libzfs_path_contains(mountpoint, child))
1189
break; /* not a descendant, return */
1190
zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
1191
mp->mnt_func, mp->mnt_data, mp->mnt_tp);
1192
}
1193
1194
out:
1195
free(mp);
1196
}
1197
1198
/*
1199
* Issue the func callback for each ZFS handle contained in the handles
1200
* array. This function is used to mount all datasets, and so this function
1201
* guarantees that filesystems for parent mountpoints are called before their
1202
* children. As such, before issuing any callbacks, we first sort the array
1203
* of handles by mountpoint.
1204
*
1205
* Callbacks are issued in one of two ways:
1206
*
1207
* 1. Sequentially: If the nthr argument is <= 1 or the ZFS_SERIAL_MOUNT
1208
* environment variable is set, then we issue callbacks sequentially.
1209
*
1210
* 2. In parallel: If the nthr argument is > 1 and the ZFS_SERIAL_MOUNT
1211
* environment variable is not set, then we use a tpool to dispatch threads
1212
* to mount filesystems in parallel. This function dispatches tasks to mount
1213
* the filesystems at the top-level mountpoints, and these tasks in turn
1214
* are responsible for recursively mounting filesystems in their children
1215
* mountpoints. The value of the nthr argument will be the number of worker
1216
* threads for the thread pool.
1217
*/
1218
void
1219
zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
1220
size_t num_handles, zfs_iter_f func, void *data, uint_t nthr)
1221
{
1222
zoneid_t zoneid = getzoneid();
1223
1224
/*
1225
* The ZFS_SERIAL_MOUNT environment variable is an undocumented
1226
* variable that can be used as a convenience to do a/b comparison
1227
* of serial vs. parallel mounting.
1228
*/
1229
boolean_t serial_mount = nthr <= 1 ||
1230
(getenv("ZFS_SERIAL_MOUNT") != NULL);
1231
1232
/*
1233
* Sort the datasets by mountpoint. See mountpoint_cmp for details
1234
* of how these are sorted.
1235
*/
1236
qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
1237
1238
if (serial_mount) {
1239
for (int i = 0; i < num_handles; i++) {
1240
func(handles[i], data);
1241
}
1242
return;
1243
}
1244
1245
/*
1246
* Issue the callback function for each dataset using a parallel
1247
* algorithm that uses a thread pool to manage threads.
1248
*/
1249
tpool_t *tp = tpool_create(1, nthr, 0, NULL);
1250
1251
/*
1252
* There may be multiple "top level" mountpoints outside of the pool's
1253
* root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
1254
* these.
1255
*/
1256
for (int i = 0; i < num_handles;
1257
i = non_descendant_idx(handles, num_handles, i)) {
1258
/*
1259
* Since the mountpoints have been sorted so that the zoned
1260
* filesystems are at the end, a zoned filesystem seen from
1261
* the global zone means that we're done.
1262
*/
1263
if (zoneid == GLOBAL_ZONEID &&
1264
zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
1265
break;
1266
zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
1267
tp);
1268
}
1269
1270
tpool_wait(tp); /* wait for all scheduled mounts to complete */
1271
tpool_destroy(tp);
1272
}
1273
1274
/*
1275
* Mount and share all datasets within the given pool. This assumes that no
1276
* datasets within the pool are currently mounted. nthr will be number of
1277
* worker threads to use while mounting datasets.
1278
*/
1279
int
1280
zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags,
1281
uint_t nthr)
1282
{
1283
get_all_cb_t cb = { 0 };
1284
mount_state_t ms = { 0 };
1285
zfs_handle_t *zfsp;
1286
int ret = 0;
1287
1288
if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
1289
ZFS_TYPE_DATASET)) == NULL)
1290
goto out;
1291
1292
/*
1293
* Gather all non-snapshot datasets within the pool. Start by adding
1294
* the root filesystem for this pool to the list, and then iterate
1295
* over all child filesystems.
1296
*/
1297
libzfs_add_handle(&cb, zfsp);
1298
if (zfs_iter_filesystems_v2(zfsp, 0, zfs_iter_cb, &cb) != 0)
1299
goto out;
1300
1301
/*
1302
* Mount all filesystems
1303
*/
1304
ms.ms_mntopts = mntopts;
1305
ms.ms_mntflags = flags;
1306
zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1307
zfs_mount_one, &ms, nthr);
1308
if (ms.ms_mntstatus != 0)
1309
ret = EZFS_MOUNTFAILED;
1310
1311
/*
1312
* Share all filesystems that need to be shared. This needs to be
1313
* a separate pass because libshare is not mt-safe, and so we need
1314
* to share serially.
1315
*/
1316
ms.ms_mntstatus = 0;
1317
zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1318
zfs_share_one, &ms, 1);
1319
if (ms.ms_mntstatus != 0)
1320
ret = EZFS_SHAREFAILED;
1321
else
1322
zfs_commit_shares(NULL);
1323
1324
out:
1325
for (int i = 0; i < cb.cb_used; i++)
1326
zfs_close(cb.cb_handles[i]);
1327
free(cb.cb_handles);
1328
1329
return (ret);
1330
}
1331
1332
struct sets_s {
1333
char *mountpoint;
1334
zfs_handle_t *dataset;
1335
};
1336
1337
static int
1338
mountpoint_compare(const void *a, const void *b)
1339
{
1340
const struct sets_s *mounta = (struct sets_s *)a;
1341
const struct sets_s *mountb = (struct sets_s *)b;
1342
1343
return (strcmp(mountb->mountpoint, mounta->mountpoint));
1344
}
1345
1346
/*
1347
* Unshare and unmount all datasets within the given pool. We don't want to
1348
* rely on traversing the DSL to discover the filesystems within the pool,
1349
* because this may be expensive (if not all of them are mounted), and can fail
1350
* arbitrarily (on I/O error, for example). Instead, we walk /proc/self/mounts
1351
* and gather all the filesystems that are currently mounted.
1352
*/
1353
int
1354
zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
1355
{
1356
int used, alloc;
1357
FILE *mnttab;
1358
struct mnttab entry;
1359
size_t namelen;
1360
struct sets_s *sets = NULL;
1361
libzfs_handle_t *hdl = zhp->zpool_hdl;
1362
int i;
1363
int ret = -1;
1364
int flags = (force ? MS_FORCE : 0);
1365
1366
namelen = strlen(zhp->zpool_name);
1367
1368
if ((mnttab = fopen(MNTTAB, "re")) == NULL)
1369
return (ENOENT);
1370
1371
used = alloc = 0;
1372
while (getmntent(mnttab, &entry) == 0) {
1373
/*
1374
* Ignore non-ZFS entries.
1375
*/
1376
if (entry.mnt_fstype == NULL ||
1377
strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
1378
continue;
1379
1380
/*
1381
* Ignore filesystems not within this pool.
1382
*/
1383
if (entry.mnt_mountp == NULL ||
1384
strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
1385
(entry.mnt_special[namelen] != '/' &&
1386
entry.mnt_special[namelen] != '\0'))
1387
continue;
1388
1389
/*
1390
* At this point we've found a filesystem within our pool. Add
1391
* it to our growing list.
1392
*/
1393
if (used == alloc) {
1394
if (alloc == 0) {
1395
sets = zfs_alloc(hdl,
1396
8 * sizeof (struct sets_s));
1397
alloc = 8;
1398
} else {
1399
sets = zfs_realloc(hdl, sets,
1400
alloc * sizeof (struct sets_s),
1401
alloc * 2 * sizeof (struct sets_s));
1402
1403
alloc *= 2;
1404
}
1405
}
1406
1407
sets[used].mountpoint = zfs_strdup(hdl, entry.mnt_mountp);
1408
1409
/*
1410
* This is allowed to fail, in case there is some I/O error. It
1411
* is only used to determine if we need to remove the underlying
1412
* mountpoint, so failure is not fatal.
1413
*/
1414
sets[used].dataset = make_dataset_handle(hdl,
1415
entry.mnt_special);
1416
1417
used++;
1418
}
1419
1420
/*
1421
* At this point, we have the entire list of filesystems, so sort it by
1422
* mountpoint.
1423
*/
1424
if (used != 0)
1425
qsort(sets, used, sizeof (struct sets_s), mountpoint_compare);
1426
1427
/*
1428
* Walk through and first unshare everything.
1429
*/
1430
for (i = 0; i < used; i++) {
1431
for (enum sa_protocol p = 0; p < SA_PROTOCOL_COUNT; ++p) {
1432
if (sa_is_shared(sets[i].mountpoint, p) &&
1433
unshare_one(hdl, sets[i].mountpoint,
1434
sets[i].mountpoint, p) != 0)
1435
goto out;
1436
}
1437
}
1438
zfs_commit_shares(NULL);
1439
1440
/*
1441
* Now unmount everything, removing the underlying directories as
1442
* appropriate.
1443
*/
1444
for (i = 0; i < used; i++) {
1445
if (unmount_one(sets[i].dataset, sets[i].mountpoint,
1446
flags) != 0)
1447
goto out;
1448
}
1449
1450
for (i = 0; i < used; i++) {
1451
if (sets[i].dataset)
1452
remove_mountpoint(sets[i].dataset);
1453
}
1454
1455
zpool_disable_datasets_os(zhp, force);
1456
1457
ret = 0;
1458
out:
1459
(void) fclose(mnttab);
1460
for (i = 0; i < used; i++) {
1461
if (sets[i].dataset)
1462
zfs_close(sets[i].dataset);
1463
free(sets[i].mountpoint);
1464
}
1465
free(sets);
1466
1467
return (ret);
1468
}
1469
1470