Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/icp/algs/blake3/blake3.c
48674 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
23
/*
24
* Based on BLAKE3 v1.3.1, https://github.com/BLAKE3-team/BLAKE3
25
* Copyright (c) 2019-2020 Samuel Neves and Jack O'Connor
26
* Copyright (c) 2021-2022 Tino Reichardt <[email protected]>
27
*/
28
29
#include <sys/simd.h>
30
#include <sys/zfs_context.h>
31
#include <sys/blake3.h>
32
33
#include "blake3_impl.h"
34
35
/*
36
* We need 1056 byte stack for blake3_compress_subtree_wide()
37
* - we define this pragma to make gcc happy
38
*/
39
#if defined(__GNUC__)
40
#pragma GCC diagnostic ignored "-Wframe-larger-than="
41
#endif
42
43
/* internal used */
44
typedef struct {
45
uint32_t input_cv[8];
46
uint64_t counter;
47
uint8_t block[BLAKE3_BLOCK_LEN];
48
uint8_t block_len;
49
uint8_t flags;
50
} output_t;
51
52
/* internal flags */
53
enum blake3_flags {
54
CHUNK_START = 1 << 0,
55
CHUNK_END = 1 << 1,
56
PARENT = 1 << 2,
57
ROOT = 1 << 3,
58
KEYED_HASH = 1 << 4,
59
DERIVE_KEY_CONTEXT = 1 << 5,
60
DERIVE_KEY_MATERIAL = 1 << 6,
61
};
62
63
/* internal start */
64
static void chunk_state_init(blake3_chunk_state_t *ctx,
65
const uint32_t key[8], uint8_t flags)
66
{
67
memcpy(ctx->cv, key, BLAKE3_KEY_LEN);
68
ctx->chunk_counter = 0;
69
memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
70
ctx->buf_len = 0;
71
ctx->blocks_compressed = 0;
72
ctx->flags = flags;
73
}
74
75
static void chunk_state_reset(blake3_chunk_state_t *ctx,
76
const uint32_t key[8], uint64_t chunk_counter)
77
{
78
memcpy(ctx->cv, key, BLAKE3_KEY_LEN);
79
ctx->chunk_counter = chunk_counter;
80
ctx->blocks_compressed = 0;
81
memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
82
ctx->buf_len = 0;
83
}
84
85
static size_t chunk_state_len(const blake3_chunk_state_t *ctx)
86
{
87
return (BLAKE3_BLOCK_LEN * (size_t)ctx->blocks_compressed) +
88
((size_t)ctx->buf_len);
89
}
90
91
static size_t chunk_state_fill_buf(blake3_chunk_state_t *ctx,
92
const uint8_t *input, size_t input_len)
93
{
94
size_t take = BLAKE3_BLOCK_LEN - ((size_t)ctx->buf_len);
95
if (take > input_len) {
96
take = input_len;
97
}
98
uint8_t *dest = ctx->buf + ((size_t)ctx->buf_len);
99
memcpy(dest, input, take);
100
ctx->buf_len += (uint8_t)take;
101
return (take);
102
}
103
104
static uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state_t *ctx)
105
{
106
if (ctx->blocks_compressed == 0) {
107
return (CHUNK_START);
108
} else {
109
return (0);
110
}
111
}
112
113
static output_t make_output(const uint32_t input_cv[8],
114
const uint8_t *block, uint8_t block_len,
115
uint64_t counter, uint8_t flags)
116
{
117
output_t ret;
118
memcpy(ret.input_cv, input_cv, 32);
119
memcpy(ret.block, block, BLAKE3_BLOCK_LEN);
120
ret.block_len = block_len;
121
ret.counter = counter;
122
ret.flags = flags;
123
return (ret);
124
}
125
126
/*
127
* Chaining values within a given chunk (specifically the compress_in_place
128
* interface) are represented as words. This avoids unnecessary bytes<->words
129
* conversion overhead in the portable implementation. However, the hash_many
130
* interface handles both user input and parent node blocks, so it accepts
131
* bytes. For that reason, chaining values in the CV stack are represented as
132
* bytes.
133
*/
134
static void output_chaining_value(const blake3_ops_t *ops,
135
const output_t *ctx, uint8_t cv[32])
136
{
137
uint32_t cv_words[8];
138
memcpy(cv_words, ctx->input_cv, 32);
139
ops->compress_in_place(cv_words, ctx->block, ctx->block_len,
140
ctx->counter, ctx->flags);
141
store_cv_words(cv, cv_words);
142
}
143
144
static void output_root_bytes(const blake3_ops_t *ops, const output_t *ctx,
145
uint64_t seek, uint8_t *out, size_t out_len)
146
{
147
uint64_t output_block_counter = seek / 64;
148
size_t offset_within_block = seek % 64;
149
uint8_t wide_buf[64];
150
while (out_len > 0) {
151
ops->compress_xof(ctx->input_cv, ctx->block, ctx->block_len,
152
output_block_counter, ctx->flags | ROOT, wide_buf);
153
size_t available_bytes = 64 - offset_within_block;
154
size_t memcpy_len;
155
if (out_len > available_bytes) {
156
memcpy_len = available_bytes;
157
} else {
158
memcpy_len = out_len;
159
}
160
memcpy(out, wide_buf + offset_within_block, memcpy_len);
161
out += memcpy_len;
162
out_len -= memcpy_len;
163
output_block_counter += 1;
164
offset_within_block = 0;
165
}
166
}
167
168
static void chunk_state_update(const blake3_ops_t *ops,
169
blake3_chunk_state_t *ctx, const uint8_t *input, size_t input_len)
170
{
171
if (ctx->buf_len > 0) {
172
size_t take = chunk_state_fill_buf(ctx, input, input_len);
173
input += take;
174
input_len -= take;
175
if (input_len > 0) {
176
ops->compress_in_place(ctx->cv, ctx->buf,
177
BLAKE3_BLOCK_LEN, ctx->chunk_counter,
178
ctx->flags|chunk_state_maybe_start_flag(ctx));
179
ctx->blocks_compressed += 1;
180
ctx->buf_len = 0;
181
memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
182
}
183
}
184
185
while (input_len > BLAKE3_BLOCK_LEN) {
186
ops->compress_in_place(ctx->cv, input, BLAKE3_BLOCK_LEN,
187
ctx->chunk_counter,
188
ctx->flags|chunk_state_maybe_start_flag(ctx));
189
ctx->blocks_compressed += 1;
190
input += BLAKE3_BLOCK_LEN;
191
input_len -= BLAKE3_BLOCK_LEN;
192
}
193
194
chunk_state_fill_buf(ctx, input, input_len);
195
}
196
197
static output_t chunk_state_output(const blake3_chunk_state_t *ctx)
198
{
199
uint8_t block_flags =
200
ctx->flags | chunk_state_maybe_start_flag(ctx) | CHUNK_END;
201
return (make_output(ctx->cv, ctx->buf, ctx->buf_len, ctx->chunk_counter,
202
block_flags));
203
}
204
205
static output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN],
206
const uint32_t key[8], uint8_t flags)
207
{
208
return (make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT));
209
}
210
211
/*
212
* Given some input larger than one chunk, return the number of bytes that
213
* should go in the left subtree. This is the largest power-of-2 number of
214
* chunks that leaves at least 1 byte for the right subtree.
215
*/
216
static size_t left_len(size_t content_len)
217
{
218
/*
219
* Subtract 1 to reserve at least one byte for the right side.
220
* content_len
221
* should always be greater than BLAKE3_CHUNK_LEN.
222
*/
223
size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN;
224
return (round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN);
225
}
226
227
/*
228
* Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
229
* on a single thread. Write out the chunk chaining values and return the
230
* number of chunks hashed. These chunks are never the root and never empty;
231
* those cases use a different codepath.
232
*/
233
static size_t compress_chunks_parallel(const blake3_ops_t *ops,
234
const uint8_t *input, size_t input_len, const uint32_t key[8],
235
uint64_t chunk_counter, uint8_t flags, uint8_t *out)
236
{
237
const uint8_t *chunks_array[MAX_SIMD_DEGREE];
238
size_t input_position = 0;
239
size_t chunks_array_len = 0;
240
while (input_len - input_position >= BLAKE3_CHUNK_LEN) {
241
chunks_array[chunks_array_len] = &input[input_position];
242
input_position += BLAKE3_CHUNK_LEN;
243
chunks_array_len += 1;
244
}
245
246
ops->hash_many(chunks_array, chunks_array_len, BLAKE3_CHUNK_LEN /
247
BLAKE3_BLOCK_LEN, key, chunk_counter, B_TRUE, flags, CHUNK_START,
248
CHUNK_END, out);
249
250
/*
251
* Hash the remaining partial chunk, if there is one. Note that the
252
* empty chunk (meaning the empty message) is a different codepath.
253
*/
254
if (input_len > input_position) {
255
uint64_t counter = chunk_counter + (uint64_t)chunks_array_len;
256
blake3_chunk_state_t chunk_state;
257
chunk_state_init(&chunk_state, key, flags);
258
chunk_state.chunk_counter = counter;
259
chunk_state_update(ops, &chunk_state, &input[input_position],
260
input_len - input_position);
261
output_t output = chunk_state_output(&chunk_state);
262
output_chaining_value(ops, &output, &out[chunks_array_len *
263
BLAKE3_OUT_LEN]);
264
return (chunks_array_len + 1);
265
} else {
266
return (chunks_array_len);
267
}
268
}
269
270
/*
271
* Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
272
* on a single thread. Write out the parent chaining values and return the
273
* number of parents hashed. (If there's an odd input chaining value left over,
274
* return it as an additional output.) These parents are never the root and
275
* never empty; those cases use a different codepath.
276
*/
277
static size_t compress_parents_parallel(const blake3_ops_t *ops,
278
const uint8_t *child_chaining_values, size_t num_chaining_values,
279
const uint32_t key[8], uint8_t flags, uint8_t *out)
280
{
281
const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2] = {0};
282
size_t parents_array_len = 0;
283
284
while (num_chaining_values - (2 * parents_array_len) >= 2) {
285
parents_array[parents_array_len] = &child_chaining_values[2 *
286
parents_array_len * BLAKE3_OUT_LEN];
287
parents_array_len += 1;
288
}
289
290
ops->hash_many(parents_array, parents_array_len, 1, key, 0, B_FALSE,
291
flags | PARENT, 0, 0, out);
292
293
/* If there's an odd child left over, it becomes an output. */
294
if (num_chaining_values > 2 * parents_array_len) {
295
memcpy(&out[parents_array_len * BLAKE3_OUT_LEN],
296
&child_chaining_values[2 * parents_array_len *
297
BLAKE3_OUT_LEN], BLAKE3_OUT_LEN);
298
return (parents_array_len + 1);
299
} else {
300
return (parents_array_len);
301
}
302
}
303
304
/*
305
* The wide helper function returns (writes out) an array of chaining values
306
* and returns the length of that array. The number of chaining values returned
307
* is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
308
* if the input is shorter than that many chunks. The reason for maintaining a
309
* wide array of chaining values going back up the tree, is to allow the
310
* implementation to hash as many parents in parallel as possible.
311
*
312
* As a special case when the SIMD degree is 1, this function will still return
313
* at least 2 outputs. This guarantees that this function doesn't perform the
314
* root compression. (If it did, it would use the wrong flags, and also we
315
* wouldn't be able to implement exendable ouput.) Note that this function is
316
* not used when the whole input is only 1 chunk long; that's a different
317
* codepath.
318
*
319
* Why not just have the caller split the input on the first update(), instead
320
* of implementing this special rule? Because we don't want to limit SIMD or
321
* multi-threading parallelism for that update().
322
*/
323
static size_t blake3_compress_subtree_wide(const blake3_ops_t *ops,
324
const uint8_t *input, size_t input_len, const uint32_t key[8],
325
uint64_t chunk_counter, uint8_t flags, uint8_t *out)
326
{
327
/*
328
* Note that the single chunk case does *not* bump the SIMD degree up
329
* to 2 when it is 1. If this implementation adds multi-threading in
330
* the future, this gives us the option of multi-threading even the
331
* 2-chunk case, which can help performance on smaller platforms.
332
*/
333
if (input_len <= (size_t)(ops->degree * BLAKE3_CHUNK_LEN)) {
334
return (compress_chunks_parallel(ops, input, input_len, key,
335
chunk_counter, flags, out));
336
}
337
338
339
/*
340
* With more than simd_degree chunks, we need to recurse. Start by
341
* dividing the input into left and right subtrees. (Note that this is
342
* only optimal as long as the SIMD degree is a power of 2. If we ever
343
* get a SIMD degree of 3 or something, we'll need a more complicated
344
* strategy.)
345
*/
346
size_t left_input_len = left_len(input_len);
347
size_t right_input_len = input_len - left_input_len;
348
const uint8_t *right_input = &input[left_input_len];
349
uint64_t right_chunk_counter = chunk_counter +
350
(uint64_t)(left_input_len / BLAKE3_CHUNK_LEN);
351
352
/*
353
* Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2
354
* to account for the special case of returning 2 outputs when the
355
* SIMD degree is 1.
356
*/
357
uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
358
size_t degree = ops->degree;
359
if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) {
360
361
/*
362
* The special case: We always use a degree of at least two,
363
* to make sure there are two outputs. Except, as noted above,
364
* at the chunk level, where we allow degree=1. (Note that the
365
* 1-chunk-input case is a different codepath.)
366
*/
367
degree = 2;
368
}
369
uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN];
370
371
/*
372
* Recurse! If this implementation adds multi-threading support in the
373
* future, this is where it will go.
374
*/
375
size_t left_n = blake3_compress_subtree_wide(ops, input, left_input_len,
376
key, chunk_counter, flags, cv_array);
377
size_t right_n = blake3_compress_subtree_wide(ops, right_input,
378
right_input_len, key, right_chunk_counter, flags, right_cvs);
379
380
/*
381
* The special case again. If simd_degree=1, then we'll have left_n=1
382
* and right_n=1. Rather than compressing them into a single output,
383
* return them directly, to make sure we always have at least two
384
* outputs.
385
*/
386
if (left_n == 1) {
387
memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
388
return (2);
389
}
390
391
/* Otherwise, do one layer of parent node compression. */
392
size_t num_chaining_values = left_n + right_n;
393
return compress_parents_parallel(ops, cv_array,
394
num_chaining_values, key, flags, out);
395
}
396
397
/*
398
* Hash a subtree with compress_subtree_wide(), and then condense the resulting
399
* list of chaining values down to a single parent node. Don't compress that
400
* last parent node, however. Instead, return its message bytes (the
401
* concatenated chaining values of its children). This is necessary when the
402
* first call to update() supplies a complete subtree, because the topmost
403
* parent node of that subtree could end up being the root. It's also necessary
404
* for extended output in the general case.
405
*
406
* As with compress_subtree_wide(), this function is not used on inputs of 1
407
* chunk or less. That's a different codepath.
408
*/
409
static void compress_subtree_to_parent_node(const blake3_ops_t *ops,
410
const uint8_t *input, size_t input_len, const uint32_t key[8],
411
uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN])
412
{
413
uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
414
size_t num_cvs = blake3_compress_subtree_wide(ops, input, input_len,
415
key, chunk_counter, flags, cv_array);
416
417
/*
418
* If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
419
* compress_subtree_wide() returns more than 2 chaining values. Condense
420
* them into 2 by forming parent nodes repeatedly.
421
*/
422
uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2];
423
while (num_cvs > 2) {
424
num_cvs = compress_parents_parallel(ops, cv_array, num_cvs, key,
425
flags, out_array);
426
memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN);
427
}
428
memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
429
}
430
431
static void hasher_init_base(BLAKE3_CTX *ctx, const uint32_t key[8],
432
uint8_t flags)
433
{
434
memcpy(ctx->key, key, BLAKE3_KEY_LEN);
435
chunk_state_init(&ctx->chunk, key, flags);
436
ctx->cv_stack_len = 0;
437
ctx->ops = blake3_get_ops();
438
}
439
440
/*
441
* As described in hasher_push_cv() below, we do "lazy merging", delaying
442
* merges until right before the next CV is about to be added. This is
443
* different from the reference implementation. Another difference is that we
444
* aren't always merging 1 chunk at a time. Instead, each CV might represent
445
* any power-of-two number of chunks, as long as the smaller-above-larger
446
* stack order is maintained. Instead of the "count the trailing 0-bits"
447
* algorithm described in the spec, we use a "count the total number of
448
* 1-bits" variant that doesn't require us to retain the subtree size of the
449
* CV on top of the stack. The principle is the same: each CV that should
450
* remain in the stack is represented by a 1-bit in the total number of chunks
451
* (or bytes) so far.
452
*/
453
static void hasher_merge_cv_stack(BLAKE3_CTX *ctx, uint64_t total_len)
454
{
455
size_t post_merge_stack_len = (size_t)popcnt(total_len);
456
while (ctx->cv_stack_len > post_merge_stack_len) {
457
uint8_t *parent_node =
458
&ctx->cv_stack[(ctx->cv_stack_len - 2) * BLAKE3_OUT_LEN];
459
output_t output =
460
parent_output(parent_node, ctx->key, ctx->chunk.flags);
461
output_chaining_value(ctx->ops, &output, parent_node);
462
ctx->cv_stack_len -= 1;
463
}
464
}
465
466
/*
467
* In reference_impl.rs, we merge the new CV with existing CVs from the stack
468
* before pushing it. We can do that because we know more input is coming, so
469
* we know none of the merges are root.
470
*
471
* This setting is different. We want to feed as much input as possible to
472
* compress_subtree_wide(), without setting aside anything for the chunk_state.
473
* If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once
474
* as a single subtree, if at all possible.
475
*
476
* This leads to two problems:
477
* 1) This 64 KiB input might be the only call that ever gets made to update.
478
* In this case, the root node of the 64 KiB subtree would be the root node
479
* of the whole tree, and it would need to be ROOT finalized. We can't
480
* compress it until we know.
481
* 2) This 64 KiB input might complete a larger tree, whose root node is
482
* similarly going to be the the root of the whole tree. For example, maybe
483
* we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the
484
* node at the root of the 256 KiB subtree until we know how to finalize it.
485
*
486
* The second problem is solved with "lazy merging". That is, when we're about
487
* to add a CV to the stack, we don't merge it with anything first, as the
488
* reference impl does. Instead we do merges using the *previous* CV that was
489
* added, which is sitting on top of the stack, and we put the new CV
490
* (unmerged) on top of the stack afterwards. This guarantees that we never
491
* merge the root node until finalize().
492
*
493
* Solving the first problem requires an additional tool,
494
* compress_subtree_to_parent_node(). That function always returns the top
495
* *two* chaining values of the subtree it's compressing. We then do lazy
496
* merging with each of them separately, so that the second CV will always
497
* remain unmerged. (That also helps us support extendable output when we're
498
* hashing an input all-at-once.)
499
*/
500
static void hasher_push_cv(BLAKE3_CTX *ctx, uint8_t new_cv[BLAKE3_OUT_LEN],
501
uint64_t chunk_counter)
502
{
503
hasher_merge_cv_stack(ctx, chunk_counter);
504
memcpy(&ctx->cv_stack[ctx->cv_stack_len * BLAKE3_OUT_LEN], new_cv,
505
BLAKE3_OUT_LEN);
506
ctx->cv_stack_len += 1;
507
}
508
509
void
510
Blake3_Init(BLAKE3_CTX *ctx)
511
{
512
hasher_init_base(ctx, BLAKE3_IV, 0);
513
}
514
515
void
516
Blake3_InitKeyed(BLAKE3_CTX *ctx, const uint8_t key[BLAKE3_KEY_LEN])
517
{
518
uint32_t key_words[8];
519
load_key_words(key, key_words);
520
hasher_init_base(ctx, key_words, KEYED_HASH);
521
}
522
523
static void
524
Blake3_Update2(BLAKE3_CTX *ctx, const void *input, size_t input_len)
525
{
526
/*
527
* Explicitly checking for zero avoids causing UB by passing a null
528
* pointer to memcpy. This comes up in practice with things like:
529
* std::vector<uint8_t> v;
530
* blake3_hasher_update(&hasher, v.data(), v.size());
531
*/
532
if (input_len == 0) {
533
return;
534
}
535
536
const uint8_t *input_bytes = (const uint8_t *)input;
537
538
/*
539
* If we have some partial chunk bytes in the internal chunk_state, we
540
* need to finish that chunk first.
541
*/
542
if (chunk_state_len(&ctx->chunk) > 0) {
543
size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&ctx->chunk);
544
if (take > input_len) {
545
take = input_len;
546
}
547
chunk_state_update(ctx->ops, &ctx->chunk, input_bytes, take);
548
input_bytes += take;
549
input_len -= take;
550
/*
551
* If we've filled the current chunk and there's more coming,
552
* finalize this chunk and proceed. In this case we know it's
553
* not the root.
554
*/
555
if (input_len > 0) {
556
output_t output = chunk_state_output(&ctx->chunk);
557
uint8_t chunk_cv[32];
558
output_chaining_value(ctx->ops, &output, chunk_cv);
559
hasher_push_cv(ctx, chunk_cv, ctx->chunk.chunk_counter);
560
chunk_state_reset(&ctx->chunk, ctx->key,
561
ctx->chunk.chunk_counter + 1);
562
} else {
563
return;
564
}
565
}
566
567
/*
568
* Now the chunk_state is clear, and we have more input. If there's
569
* more than a single chunk (so, definitely not the root chunk), hash
570
* the largest whole subtree we can, with the full benefits of SIMD
571
* (and maybe in the future, multi-threading) parallelism. Two
572
* restrictions:
573
* - The subtree has to be a power-of-2 number of chunks. Only
574
* subtrees along the right edge can be incomplete, and we don't know
575
* where the right edge is going to be until we get to finalize().
576
* - The subtree must evenly divide the total number of chunks up
577
* until this point (if total is not 0). If the current incomplete
578
* subtree is only waiting for 1 more chunk, we can't hash a subtree
579
* of 4 chunks. We have to complete the current subtree first.
580
* Because we might need to break up the input to form powers of 2, or
581
* to evenly divide what we already have, this part runs in a loop.
582
*/
583
while (input_len > BLAKE3_CHUNK_LEN) {
584
size_t subtree_len = round_down_to_power_of_2(input_len);
585
uint64_t count_so_far =
586
ctx->chunk.chunk_counter * BLAKE3_CHUNK_LEN;
587
/*
588
* Shrink the subtree_len until it evenly divides the count so
589
* far. We know that subtree_len itself is a power of 2, so we
590
* can use a bitmasking trick instead of an actual remainder
591
* operation. (Note that if the caller consistently passes
592
* power-of-2 inputs of the same size, as is hopefully
593
* typical, this loop condition will always fail, and
594
* subtree_len will always be the full length of the input.)
595
*
596
* An aside: We don't have to shrink subtree_len quite this
597
* much. For example, if count_so_far is 1, we could pass 2
598
* chunks to compress_subtree_to_parent_node. Since we'll get
599
* 2 CVs back, we'll still get the right answer in the end,
600
* and we might get to use 2-way SIMD parallelism. The problem
601
* with this optimization, is that it gets us stuck always
602
* hashing 2 chunks. The total number of chunks will remain
603
* odd, and we'll never graduate to higher degrees of
604
* parallelism. See
605
* https://github.com/BLAKE3-team/BLAKE3/issues/69.
606
*/
607
while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) {
608
subtree_len /= 2;
609
}
610
/*
611
* The shrunken subtree_len might now be 1 chunk long. If so,
612
* hash that one chunk by itself. Otherwise, compress the
613
* subtree into a pair of CVs.
614
*/
615
uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN;
616
if (subtree_len <= BLAKE3_CHUNK_LEN) {
617
blake3_chunk_state_t chunk_state;
618
chunk_state_init(&chunk_state, ctx->key,
619
ctx->chunk.flags);
620
chunk_state.chunk_counter = ctx->chunk.chunk_counter;
621
chunk_state_update(ctx->ops, &chunk_state, input_bytes,
622
subtree_len);
623
output_t output = chunk_state_output(&chunk_state);
624
uint8_t cv[BLAKE3_OUT_LEN];
625
output_chaining_value(ctx->ops, &output, cv);
626
hasher_push_cv(ctx, cv, chunk_state.chunk_counter);
627
} else {
628
/*
629
* This is the high-performance happy path, though
630
* getting here depends on the caller giving us a long
631
* enough input.
632
*/
633
uint8_t cv_pair[2 * BLAKE3_OUT_LEN];
634
compress_subtree_to_parent_node(ctx->ops, input_bytes,
635
subtree_len, ctx->key, ctx-> chunk.chunk_counter,
636
ctx->chunk.flags, cv_pair);
637
hasher_push_cv(ctx, cv_pair, ctx->chunk.chunk_counter);
638
hasher_push_cv(ctx, &cv_pair[BLAKE3_OUT_LEN],
639
ctx->chunk.chunk_counter + (subtree_chunks / 2));
640
}
641
ctx->chunk.chunk_counter += subtree_chunks;
642
input_bytes += subtree_len;
643
input_len -= subtree_len;
644
}
645
646
/*
647
* If there's any remaining input less than a full chunk, add it to
648
* the chunk state. In that case, also do a final merge loop to make
649
* sure the subtree stack doesn't contain any unmerged pairs. The
650
* remaining input means we know these merges are non-root. This merge
651
* loop isn't strictly necessary here, because hasher_push_chunk_cv
652
* already does its own merge loop, but it simplifies
653
* blake3_hasher_finalize below.
654
*/
655
if (input_len > 0) {
656
chunk_state_update(ctx->ops, &ctx->chunk, input_bytes,
657
input_len);
658
hasher_merge_cv_stack(ctx, ctx->chunk.chunk_counter);
659
}
660
}
661
662
void
663
Blake3_Update(BLAKE3_CTX *ctx, const void *input, size_t todo)
664
{
665
size_t done = 0;
666
const uint8_t *data = input;
667
const size_t block_max = 1024 * 64;
668
669
/* max feed buffer to leave the stack size small */
670
while (todo != 0) {
671
size_t block = (todo >= block_max) ? block_max : todo;
672
Blake3_Update2(ctx, data + done, block);
673
done += block;
674
todo -= block;
675
}
676
}
677
678
void
679
Blake3_Final(const BLAKE3_CTX *ctx, uint8_t *out)
680
{
681
Blake3_FinalSeek(ctx, 0, out, BLAKE3_OUT_LEN);
682
}
683
684
void
685
Blake3_FinalSeek(const BLAKE3_CTX *ctx, uint64_t seek, uint8_t *out,
686
size_t out_len)
687
{
688
/*
689
* Explicitly checking for zero avoids causing UB by passing a null
690
* pointer to memcpy. This comes up in practice with things like:
691
* std::vector<uint8_t> v;
692
* blake3_hasher_finalize(&hasher, v.data(), v.size());
693
*/
694
if (out_len == 0) {
695
return;
696
}
697
/* If the subtree stack is empty, then the current chunk is the root. */
698
if (ctx->cv_stack_len == 0) {
699
output_t output = chunk_state_output(&ctx->chunk);
700
output_root_bytes(ctx->ops, &output, seek, out, out_len);
701
return;
702
}
703
/*
704
* If there are any bytes in the chunk state, finalize that chunk and
705
* do a roll-up merge between that chunk hash and every subtree in the
706
* stack. In this case, the extra merge loop at the end of
707
* blake3_hasher_update guarantees that none of the subtrees in the
708
* stack need to be merged with each other first. Otherwise, if there
709
* are no bytes in the chunk state, then the top of the stack is a
710
* chunk hash, and we start the merge from that.
711
*/
712
output_t output;
713
size_t cvs_remaining;
714
if (chunk_state_len(&ctx->chunk) > 0) {
715
cvs_remaining = ctx->cv_stack_len;
716
output = chunk_state_output(&ctx->chunk);
717
} else {
718
/* There are always at least 2 CVs in the stack in this case. */
719
cvs_remaining = ctx->cv_stack_len - 2;
720
output = parent_output(&ctx->cv_stack[cvs_remaining * 32],
721
ctx->key, ctx->chunk.flags);
722
}
723
while (cvs_remaining > 0) {
724
cvs_remaining -= 1;
725
uint8_t parent_block[BLAKE3_BLOCK_LEN];
726
memcpy(parent_block, &ctx->cv_stack[cvs_remaining * 32], 32);
727
output_chaining_value(ctx->ops, &output, &parent_block[32]);
728
output = parent_output(parent_block, ctx->key,
729
ctx->chunk.flags);
730
}
731
output_root_bytes(ctx->ops, &output, seek, out, out_len);
732
}
733
734