Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/icp/algs/skein/skein_block.c
48775 views
1
// SPDX-License-Identifier: LicenseRef-OpenZFS-ThirdParty-PublicDomain
2
/*
3
* Implementation of the Skein block functions.
4
* Source code author: Doug Whiting, 2008.
5
* This algorithm and source code is released to the public domain.
6
* Compile-time switches:
7
* SKEIN_USE_ASM -- set bits (256/512/1024) to select which
8
* versions use ASM code for block processing
9
* [default: use C for all block sizes]
10
*/
11
/* Copyright 2013 Doug Whiting. This code is released to the public domain. */
12
13
#include <sys/skein.h>
14
#include "skein_impl.h"
15
#include <sys/isa_defs.h> /* for _ILP32 */
16
17
#ifndef SKEIN_USE_ASM
18
#define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
19
#endif
20
21
#ifndef SKEIN_LOOP
22
/*
23
* The low-level checksum routines use a lot of stack space. On systems where
24
* small stacks frame are enforced (like 32-bit kernel builds), do not unroll
25
* checksum calculations to save stack space.
26
*
27
* Even with no loops unrolled, we still can exceed the 1k stack frame limit
28
* in Skein1024_Process_Block() (it hits 1272 bytes on ARM32). We can
29
* safely ignore it though, since that the checksum functions will be called
30
* from a worker thread that won't be using much stack. That's why we have
31
* the #pragma here to ignore the warning.
32
*/
33
#if defined(_ILP32) || defined(__powerpc) /* Assume small stack */
34
#if defined(__GNUC__) && !defined(__clang__)
35
#pragma GCC diagnostic ignored "-Wframe-larger-than="
36
#endif
37
/*
38
* We're running on 32-bit, don't unroll loops to save stack frame space
39
*
40
* Due to the ways the calculations on SKEIN_LOOP are done in
41
* Skein_*_Process_Block(), a value of 111 disables unrolling loops
42
* in any of those functions.
43
*/
44
#define SKEIN_LOOP 111
45
#else
46
/* We're compiling with large stacks */
47
#define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
48
#endif
49
#endif
50
51
/* some useful definitions for code here */
52
#define BLK_BITS (WCNT*64)
53
#define KW_TWK_BASE (0)
54
#define KW_KEY_BASE (3)
55
#define ks (kw + KW_KEY_BASE)
56
#define ts (kw + KW_TWK_BASE)
57
58
/* no debugging in Illumos version */
59
#define DebugSaveTweak(ctx)
60
61
/* Skein_256 */
62
#if !(SKEIN_USE_ASM & 256)
63
void
64
Skein_256_Process_Block(Skein_256_Ctxt_t *ctx, const uint8_t *blkPtr,
65
size_t blkCnt, size_t byteCntAdd)
66
{
67
enum {
68
WCNT = SKEIN_256_STATE_WORDS
69
};
70
#undef RCNT
71
#define RCNT (SKEIN_256_ROUNDS_TOTAL / 8)
72
73
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
74
#define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
75
#else
76
#define SKEIN_UNROLL_256 (0)
77
#endif
78
79
#if SKEIN_UNROLL_256
80
#if (RCNT % SKEIN_UNROLL_256)
81
#error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
82
#endif
83
size_t r;
84
/* key schedule words : chaining vars + tweak + "rotation" */
85
uint64_t kw[WCNT + 4 + RCNT * 2];
86
#else
87
uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
88
#endif
89
/* local copy of context vars, for speed */
90
uint64_t X0, X1, X2, X3;
91
uint64_t w[WCNT]; /* local copy of input block */
92
#ifdef SKEIN_DEBUG
93
/* use for debugging (help compiler put Xn in registers) */
94
const uint64_t *Xptr[4];
95
Xptr[0] = &X0;
96
Xptr[1] = &X1;
97
Xptr[2] = &X2;
98
Xptr[3] = &X3;
99
#endif
100
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
101
ts[0] = ctx->h.T[0];
102
ts[1] = ctx->h.T[1];
103
do {
104
/*
105
* this implementation only supports 2**64 input bytes
106
* (no carry out here)
107
*/
108
ts[0] += byteCntAdd; /* update processed length */
109
110
/* precompute the key schedule for this block */
111
ks[0] = ctx->X[0];
112
ks[1] = ctx->X[1];
113
ks[2] = ctx->X[2];
114
ks[3] = ctx->X[3];
115
ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
116
117
ts[2] = ts[0] ^ ts[1];
118
119
/* get input block in little-endian format */
120
Skein_Get64_LSB_First(w, blkPtr, WCNT);
121
DebugSaveTweak(ctx);
122
Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
123
124
X0 = w[0] + ks[0]; /* do the first full key injection */
125
X1 = w[1] + ks[1] + ts[0];
126
X2 = w[2] + ks[2] + ts[1];
127
X3 = w[3] + ks[3];
128
129
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
130
Xptr); /* show starting state values */
131
132
blkPtr += SKEIN_256_BLOCK_BYTES;
133
134
/* run the rounds */
135
136
#define Round256(p0, p1, p2, p3, ROT, rNum) \
137
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
138
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
139
140
#if SKEIN_UNROLL_256 == 0
141
#define R256(p0, p1, p2, p3, ROT, rNum) /* fully unrolled */ \
142
Round256(p0, p1, p2, p3, ROT, rNum) \
143
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
144
145
#define I256(R) \
146
X0 += ks[((R) + 1) % 5]; /* inject the key schedule value */ \
147
X1 += ks[((R) + 2) % 5] + ts[((R) + 1) % 3]; \
148
X2 += ks[((R) + 3) % 5] + ts[((R) + 2) % 3]; \
149
X3 += ks[((R) + 4) % 5] + (R) + 1; \
150
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
151
#else /* looping version */
152
#define R256(p0, p1, p2, p3, ROT, rNum) \
153
Round256(p0, p1, p2, p3, ROT, rNum) \
154
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
155
156
#define I256(R) \
157
X0 += ks[r + (R) + 0]; /* inject the key schedule value */ \
158
X1 += ks[r + (R) + 1] + ts[r + (R) + 0]; \
159
X2 += ks[r + (R) + 2] + ts[r + (R) + 1]; \
160
X3 += ks[r + (R) + 3] + r + (R); \
161
ks[r + (R) + 4] = ks[r + (R) - 1]; /* rotate key schedule */ \
162
ts[r + (R) + 2] = ts[r + (R) - 1]; \
163
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
164
165
/* loop through it */
166
for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256)
167
#endif
168
{
169
#define R256_8_rounds(R) \
170
R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1); \
171
R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2); \
172
R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3); \
173
R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4); \
174
I256(2 * (R)); \
175
R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5); \
176
R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6); \
177
R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7); \
178
R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8); \
179
I256(2 * (R) + 1);
180
181
R256_8_rounds(0);
182
183
#define R256_Unroll_R(NN) \
184
((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
185
(SKEIN_UNROLL_256 > (NN)))
186
187
#if R256_Unroll_R(1)
188
R256_8_rounds(1);
189
#endif
190
#if R256_Unroll_R(2)
191
R256_8_rounds(2);
192
#endif
193
#if R256_Unroll_R(3)
194
R256_8_rounds(3);
195
#endif
196
#if R256_Unroll_R(4)
197
R256_8_rounds(4);
198
#endif
199
#if R256_Unroll_R(5)
200
R256_8_rounds(5);
201
#endif
202
#if R256_Unroll_R(6)
203
R256_8_rounds(6);
204
#endif
205
#if R256_Unroll_R(7)
206
R256_8_rounds(7);
207
#endif
208
#if R256_Unroll_R(8)
209
R256_8_rounds(8);
210
#endif
211
#if R256_Unroll_R(9)
212
R256_8_rounds(9);
213
#endif
214
#if R256_Unroll_R(10)
215
R256_8_rounds(10);
216
#endif
217
#if R256_Unroll_R(11)
218
R256_8_rounds(11);
219
#endif
220
#if R256_Unroll_R(12)
221
R256_8_rounds(12);
222
#endif
223
#if R256_Unroll_R(13)
224
R256_8_rounds(13);
225
#endif
226
#if R256_Unroll_R(14)
227
R256_8_rounds(14);
228
#endif
229
#if (SKEIN_UNROLL_256 > 14)
230
#error "need more unrolling in Skein_256_Process_Block"
231
#endif
232
}
233
/*
234
* do the final "feedforward" xor, update context chaining vars
235
*/
236
ctx->X[0] = X0 ^ w[0];
237
ctx->X[1] = X1 ^ w[1];
238
ctx->X[2] = X2 ^ w[2];
239
ctx->X[3] = X3 ^ w[3];
240
241
Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
242
243
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
244
} while (--blkCnt);
245
ctx->h.T[0] = ts[0];
246
ctx->h.T[1] = ts[1];
247
}
248
249
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
250
size_t
251
Skein_256_Process_Block_CodeSize(void)
252
{
253
return ((uint8_t *)Skein_256_Process_Block_CodeSize) -
254
((uint8_t *)Skein_256_Process_Block);
255
}
256
257
uint_t
258
Skein_256_Unroll_Cnt(void)
259
{
260
return (SKEIN_UNROLL_256);
261
}
262
#endif
263
#endif
264
265
/* Skein_512 */
266
#if !(SKEIN_USE_ASM & 512)
267
void
268
Skein_512_Process_Block(Skein_512_Ctxt_t *ctx, const uint8_t *blkPtr,
269
size_t blkCnt, size_t byteCntAdd)
270
{
271
enum {
272
WCNT = SKEIN_512_STATE_WORDS
273
};
274
#undef RCNT
275
#define RCNT (SKEIN_512_ROUNDS_TOTAL / 8)
276
277
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
278
#define SKEIN_UNROLL_512 (((SKEIN_LOOP) / 10) % 10)
279
#else
280
#define SKEIN_UNROLL_512 (0)
281
#endif
282
283
#if SKEIN_UNROLL_512
284
#if (RCNT % SKEIN_UNROLL_512)
285
#error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
286
#endif
287
size_t r;
288
/* key schedule words : chaining vars + tweak + "rotation" */
289
uint64_t kw[WCNT + 4 + RCNT * 2];
290
#else
291
uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
292
#endif
293
/* local copy of vars, for speed */
294
uint64_t X0, X1, X2, X3, X4, X5, X6, X7;
295
uint64_t w[WCNT]; /* local copy of input block */
296
#ifdef SKEIN_DEBUG
297
/* use for debugging (help compiler put Xn in registers) */
298
const uint64_t *Xptr[8];
299
Xptr[0] = &X0;
300
Xptr[1] = &X1;
301
Xptr[2] = &X2;
302
Xptr[3] = &X3;
303
Xptr[4] = &X4;
304
Xptr[5] = &X5;
305
Xptr[6] = &X6;
306
Xptr[7] = &X7;
307
#endif
308
309
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
310
ts[0] = ctx->h.T[0];
311
ts[1] = ctx->h.T[1];
312
do {
313
/*
314
* this implementation only supports 2**64 input bytes
315
* (no carry out here)
316
*/
317
ts[0] += byteCntAdd; /* update processed length */
318
319
/* precompute the key schedule for this block */
320
ks[0] = ctx->X[0];
321
ks[1] = ctx->X[1];
322
ks[2] = ctx->X[2];
323
ks[3] = ctx->X[3];
324
ks[4] = ctx->X[4];
325
ks[5] = ctx->X[5];
326
ks[6] = ctx->X[6];
327
ks[7] = ctx->X[7];
328
ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
329
ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
330
331
ts[2] = ts[0] ^ ts[1];
332
333
/* get input block in little-endian format */
334
Skein_Get64_LSB_First(w, blkPtr, WCNT);
335
DebugSaveTweak(ctx);
336
Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
337
338
X0 = w[0] + ks[0]; /* do the first full key injection */
339
X1 = w[1] + ks[1];
340
X2 = w[2] + ks[2];
341
X3 = w[3] + ks[3];
342
X4 = w[4] + ks[4];
343
X5 = w[5] + ks[5] + ts[0];
344
X6 = w[6] + ks[6] + ts[1];
345
X7 = w[7] + ks[7];
346
347
blkPtr += SKEIN_512_BLOCK_BYTES;
348
349
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
350
Xptr);
351
/* run the rounds */
352
#define Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
353
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
354
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
355
X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
356
X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;
357
358
#if SKEIN_UNROLL_512 == 0
359
#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) /* unrolled */ \
360
Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
361
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
362
363
#define I512(R) \
364
X0 += ks[((R) + 1) % 9]; /* inject the key schedule value */\
365
X1 += ks[((R) + 2) % 9]; \
366
X2 += ks[((R) + 3) % 9]; \
367
X3 += ks[((R) + 4) % 9]; \
368
X4 += ks[((R) + 5) % 9]; \
369
X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \
370
X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \
371
X7 += ks[((R) + 8) % 9] + (R) + 1; \
372
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
373
#else /* looping version */
374
#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
375
Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
376
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
377
378
#define I512(R) \
379
X0 += ks[r + (R) + 0]; /* inject the key schedule value */ \
380
X1 += ks[r + (R) + 1]; \
381
X2 += ks[r + (R) + 2]; \
382
X3 += ks[r + (R) + 3]; \
383
X4 += ks[r + (R) + 4]; \
384
X5 += ks[r + (R) + 5] + ts[r + (R) + 0]; \
385
X6 += ks[r + (R) + 6] + ts[r + (R) + 1]; \
386
X7 += ks[r + (R) + 7] + r + (R); \
387
ks[r + (R)+8] = ks[r + (R) - 1]; /* rotate key schedule */\
388
ts[r + (R)+2] = ts[r + (R) - 1]; \
389
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
390
391
/* loop through it */
392
for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_512)
393
#endif /* end of looped code definitions */
394
{
395
#define R512_8_rounds(R) /* do 8 full rounds */ \
396
R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \
397
R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \
398
R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3); \
399
R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4); \
400
I512(2 * (R)); \
401
R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5); \
402
R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6); \
403
R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7); \
404
R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8); \
405
I512(2*(R) + 1); /* and key injection */
406
407
R512_8_rounds(0);
408
409
#define R512_Unroll_R(NN) \
410
((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL / 8 > (NN)) || \
411
(SKEIN_UNROLL_512 > (NN)))
412
413
#if R512_Unroll_R(1)
414
R512_8_rounds(1);
415
#endif
416
#if R512_Unroll_R(2)
417
R512_8_rounds(2);
418
#endif
419
#if R512_Unroll_R(3)
420
R512_8_rounds(3);
421
#endif
422
#if R512_Unroll_R(4)
423
R512_8_rounds(4);
424
#endif
425
#if R512_Unroll_R(5)
426
R512_8_rounds(5);
427
#endif
428
#if R512_Unroll_R(6)
429
R512_8_rounds(6);
430
#endif
431
#if R512_Unroll_R(7)
432
R512_8_rounds(7);
433
#endif
434
#if R512_Unroll_R(8)
435
R512_8_rounds(8);
436
#endif
437
#if R512_Unroll_R(9)
438
R512_8_rounds(9);
439
#endif
440
#if R512_Unroll_R(10)
441
R512_8_rounds(10);
442
#endif
443
#if R512_Unroll_R(11)
444
R512_8_rounds(11);
445
#endif
446
#if R512_Unroll_R(12)
447
R512_8_rounds(12);
448
#endif
449
#if R512_Unroll_R(13)
450
R512_8_rounds(13);
451
#endif
452
#if R512_Unroll_R(14)
453
R512_8_rounds(14);
454
#endif
455
#if (SKEIN_UNROLL_512 > 14)
456
#error "need more unrolling in Skein_512_Process_Block"
457
#endif
458
}
459
460
/*
461
* do the final "feedforward" xor, update context chaining vars
462
*/
463
ctx->X[0] = X0 ^ w[0];
464
ctx->X[1] = X1 ^ w[1];
465
ctx->X[2] = X2 ^ w[2];
466
ctx->X[3] = X3 ^ w[3];
467
ctx->X[4] = X4 ^ w[4];
468
ctx->X[5] = X5 ^ w[5];
469
ctx->X[6] = X6 ^ w[6];
470
ctx->X[7] = X7 ^ w[7];
471
Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
472
473
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
474
} while (--blkCnt);
475
ctx->h.T[0] = ts[0];
476
ctx->h.T[1] = ts[1];
477
}
478
479
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
480
size_t
481
Skein_512_Process_Block_CodeSize(void)
482
{
483
return ((uint8_t *)Skein_512_Process_Block_CodeSize) -
484
((uint8_t *)Skein_512_Process_Block);
485
}
486
487
uint_t
488
Skein_512_Unroll_Cnt(void)
489
{
490
return (SKEIN_UNROLL_512);
491
}
492
#endif
493
#endif
494
495
/* Skein1024 */
496
#if !(SKEIN_USE_ASM & 1024)
497
void
498
Skein1024_Process_Block(Skein1024_Ctxt_t *ctx, const uint8_t *blkPtr,
499
size_t blkCnt, size_t byteCntAdd)
500
{
501
/* do it in C, always looping (unrolled is bigger AND slower!) */
502
enum {
503
WCNT = SKEIN1024_STATE_WORDS
504
};
505
#undef RCNT
506
#define RCNT (SKEIN1024_ROUNDS_TOTAL/8)
507
508
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
509
#define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
510
#else
511
#define SKEIN_UNROLL_1024 (0)
512
#endif
513
514
#if (SKEIN_UNROLL_1024 != 0)
515
#if (RCNT % SKEIN_UNROLL_1024)
516
#error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
517
#endif
518
size_t r;
519
/* key schedule words : chaining vars + tweak + "rotation" */
520
uint64_t kw[WCNT + 4 + RCNT * 2];
521
#else
522
uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
523
#endif
524
525
/* local copy of vars, for speed */
526
uint64_t X00, X01, X02, X03, X04, X05, X06, X07, X08, X09, X10, X11,
527
X12, X13, X14, X15;
528
uint64_t w[WCNT]; /* local copy of input block */
529
#ifdef SKEIN_DEBUG
530
/* use for debugging (help compiler put Xn in registers) */
531
const uint64_t *Xptr[16];
532
Xptr[0] = &X00;
533
Xptr[1] = &X01;
534
Xptr[2] = &X02;
535
Xptr[3] = &X03;
536
Xptr[4] = &X04;
537
Xptr[5] = &X05;
538
Xptr[6] = &X06;
539
Xptr[7] = &X07;
540
Xptr[8] = &X08;
541
Xptr[9] = &X09;
542
Xptr[10] = &X10;
543
Xptr[11] = &X11;
544
Xptr[12] = &X12;
545
Xptr[13] = &X13;
546
Xptr[14] = &X14;
547
Xptr[15] = &X15;
548
#endif
549
550
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
551
ts[0] = ctx->h.T[0];
552
ts[1] = ctx->h.T[1];
553
do {
554
/*
555
* this implementation only supports 2**64 input bytes
556
* (no carry out here)
557
*/
558
ts[0] += byteCntAdd; /* update processed length */
559
560
/* precompute the key schedule for this block */
561
ks[0] = ctx->X[0];
562
ks[1] = ctx->X[1];
563
ks[2] = ctx->X[2];
564
ks[3] = ctx->X[3];
565
ks[4] = ctx->X[4];
566
ks[5] = ctx->X[5];
567
ks[6] = ctx->X[6];
568
ks[7] = ctx->X[7];
569
ks[8] = ctx->X[8];
570
ks[9] = ctx->X[9];
571
ks[10] = ctx->X[10];
572
ks[11] = ctx->X[11];
573
ks[12] = ctx->X[12];
574
ks[13] = ctx->X[13];
575
ks[14] = ctx->X[14];
576
ks[15] = ctx->X[15];
577
ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
578
ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
579
ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
580
ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
581
582
ts[2] = ts[0] ^ ts[1];
583
584
/* get input block in little-endian format */
585
Skein_Get64_LSB_First(w, blkPtr, WCNT);
586
DebugSaveTweak(ctx);
587
Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
588
589
X00 = w[0] + ks[0]; /* do the first full key injection */
590
X01 = w[1] + ks[1];
591
X02 = w[2] + ks[2];
592
X03 = w[3] + ks[3];
593
X04 = w[4] + ks[4];
594
X05 = w[5] + ks[5];
595
X06 = w[6] + ks[6];
596
X07 = w[7] + ks[7];
597
X08 = w[8] + ks[8];
598
X09 = w[9] + ks[9];
599
X10 = w[10] + ks[10];
600
X11 = w[11] + ks[11];
601
X12 = w[12] + ks[12];
602
X13 = w[13] + ks[13] + ts[0];
603
X14 = w[14] + ks[14] + ts[1];
604
X15 = w[15] + ks[15];
605
606
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
607
Xptr);
608
609
#define Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
610
pD, pE, pF, ROT, rNum) \
611
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
612
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
613
X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
614
X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;\
615
X##p8 += X##p9; X##p9 = RotL_64(X##p9, ROT##_4); X##p9 ^= X##p8;\
616
X##pA += X##pB; X##pB = RotL_64(X##pB, ROT##_5); X##pB ^= X##pA;\
617
X##pC += X##pD; X##pD = RotL_64(X##pD, ROT##_6); X##pD ^= X##pC;\
618
X##pE += X##pF; X##pF = RotL_64(X##pF, ROT##_7); X##pF ^= X##pE;
619
620
#if SKEIN_UNROLL_1024 == 0
621
#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, \
622
pE, pF, ROT, rn) \
623
Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
624
pD, pE, pF, ROT, rn) \
625
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, Xptr);
626
627
#define I1024(R) \
628
X00 += ks[((R) + 1) % 17]; /* inject the key schedule value */\
629
X01 += ks[((R) + 2) % 17]; \
630
X02 += ks[((R) + 3) % 17]; \
631
X03 += ks[((R) + 4) % 17]; \
632
X04 += ks[((R) + 5) % 17]; \
633
X05 += ks[((R) + 6) % 17]; \
634
X06 += ks[((R) + 7) % 17]; \
635
X07 += ks[((R) + 8) % 17]; \
636
X08 += ks[((R) + 9) % 17]; \
637
X09 += ks[((R) + 10) % 17]; \
638
X10 += ks[((R) + 11) % 17]; \
639
X11 += ks[((R) + 12) % 17]; \
640
X12 += ks[((R) + 13) % 17]; \
641
X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \
642
X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \
643
X15 += ks[((R) + 16) % 17] + (R) +1; \
644
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
645
#else /* looping version */
646
#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, \
647
pE, pF, ROT, rn) \
648
Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
649
pD, pE, pF, ROT, rn) \
650
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, Xptr);
651
652
#define I1024(R) \
653
X00 += ks[r + (R) + 0]; /* inject the key schedule value */ \
654
X01 += ks[r + (R) + 1]; \
655
X02 += ks[r + (R) + 2]; \
656
X03 += ks[r + (R) + 3]; \
657
X04 += ks[r + (R) + 4]; \
658
X05 += ks[r + (R) + 5]; \
659
X06 += ks[r + (R) + 6]; \
660
X07 += ks[r + (R) + 7]; \
661
X08 += ks[r + (R) + 8]; \
662
X09 += ks[r + (R) + 9]; \
663
X10 += ks[r + (R) + 10]; \
664
X11 += ks[r + (R) + 11]; \
665
X12 += ks[r + (R) + 12]; \
666
X13 += ks[r + (R) + 13] + ts[r + (R) + 0]; \
667
X14 += ks[r + (R) + 14] + ts[r + (R) + 1]; \
668
X15 += ks[r + (R) + 15] + r + (R); \
669
ks[r + (R) + 16] = ks[r + (R) - 1]; /* rotate key schedule */\
670
ts[r + (R) + 2] = ts[r + (R) - 1]; \
671
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
672
673
/* loop through it */
674
for (r = 1; r <= 2 * RCNT; r += 2 * SKEIN_UNROLL_1024)
675
#endif
676
{
677
#define R1024_8_rounds(R) /* do 8 full rounds */ \
678
R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, \
679
14, 15, R1024_0, 8 * (R) + 1); \
680
R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, \
681
08, 01, R1024_1, 8 * (R) + 2); \
682
R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, \
683
10, 09, R1024_2, 8 * (R) + 3); \
684
R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, \
685
12, 07, R1024_3, 8 * (R) + 4); \
686
I1024(2 * (R)); \
687
R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, \
688
14, 15, R1024_4, 8 * (R) + 5); \
689
R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, \
690
08, 01, R1024_5, 8 * (R) + 6); \
691
R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, \
692
10, 09, R1024_6, 8 * (R) + 7); \
693
R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, \
694
12, 07, R1024_7, 8 * (R) + 8); \
695
I1024(2 * (R) + 1);
696
697
R1024_8_rounds(0);
698
699
#define R1024_Unroll_R(NN) \
700
((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || \
701
(SKEIN_UNROLL_1024 > (NN)))
702
703
#if R1024_Unroll_R(1)
704
R1024_8_rounds(1);
705
#endif
706
#if R1024_Unroll_R(2)
707
R1024_8_rounds(2);
708
#endif
709
#if R1024_Unroll_R(3)
710
R1024_8_rounds(3);
711
#endif
712
#if R1024_Unroll_R(4)
713
R1024_8_rounds(4);
714
#endif
715
#if R1024_Unroll_R(5)
716
R1024_8_rounds(5);
717
#endif
718
#if R1024_Unroll_R(6)
719
R1024_8_rounds(6);
720
#endif
721
#if R1024_Unroll_R(7)
722
R1024_8_rounds(7);
723
#endif
724
#if R1024_Unroll_R(8)
725
R1024_8_rounds(8);
726
#endif
727
#if R1024_Unroll_R(9)
728
R1024_8_rounds(9);
729
#endif
730
#if R1024_Unroll_R(10)
731
R1024_8_rounds(10);
732
#endif
733
#if R1024_Unroll_R(11)
734
R1024_8_rounds(11);
735
#endif
736
#if R1024_Unroll_R(12)
737
R1024_8_rounds(12);
738
#endif
739
#if R1024_Unroll_R(13)
740
R1024_8_rounds(13);
741
#endif
742
#if R1024_Unroll_R(14)
743
R1024_8_rounds(14);
744
#endif
745
#if (SKEIN_UNROLL_1024 > 14)
746
#error "need more unrolling in Skein_1024_Process_Block"
747
#endif
748
}
749
/*
750
* do the final "feedforward" xor, update context chaining vars
751
*/
752
753
ctx->X[0] = X00 ^ w[0];
754
ctx->X[1] = X01 ^ w[1];
755
ctx->X[2] = X02 ^ w[2];
756
ctx->X[3] = X03 ^ w[3];
757
ctx->X[4] = X04 ^ w[4];
758
ctx->X[5] = X05 ^ w[5];
759
ctx->X[6] = X06 ^ w[6];
760
ctx->X[7] = X07 ^ w[7];
761
ctx->X[8] = X08 ^ w[8];
762
ctx->X[9] = X09 ^ w[9];
763
ctx->X[10] = X10 ^ w[10];
764
ctx->X[11] = X11 ^ w[11];
765
ctx->X[12] = X12 ^ w[12];
766
ctx->X[13] = X13 ^ w[13];
767
ctx->X[14] = X14 ^ w[14];
768
ctx->X[15] = X15 ^ w[15];
769
770
Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
771
772
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
773
blkPtr += SKEIN1024_BLOCK_BYTES;
774
} while (--blkCnt);
775
ctx->h.T[0] = ts[0];
776
ctx->h.T[1] = ts[1];
777
}
778
779
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
780
size_t
781
Skein1024_Process_Block_CodeSize(void)
782
{
783
return ((uint8_t *)Skein1024_Process_Block_CodeSize) -
784
((uint8_t *)Skein1024_Process_Block);
785
}
786
787
uint_t
788
Skein1024_Unroll_Cnt(void)
789
{
790
return (SKEIN_UNROLL_1024);
791
}
792
#endif
793
#endif
794
795