Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/icp/asm-x86_64/aes/aeskey.c
48775 views
1
// SPDX-License-Identifier: Brian-Gladman-3-Clause
2
/*
3
* ---------------------------------------------------------------------------
4
* Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
5
*
6
* LICENSE TERMS
7
*
8
* The free distribution and use of this software is allowed (with or without
9
* changes) provided that:
10
*
11
* 1. source code distributions include the above copyright notice, this
12
* list of conditions and the following disclaimer;
13
*
14
* 2. binary distributions include the above copyright notice, this list
15
* of conditions and the following disclaimer in their documentation;
16
*
17
* 3. the name of the copyright holder is not used to endorse products
18
* built using this software without specific written permission.
19
*
20
* DISCLAIMER
21
*
22
* This software is provided 'as is' with no explicit or implied warranties
23
* in respect of its properties, including, but not limited to, correctness
24
* and/or fitness for purpose.
25
* ---------------------------------------------------------------------------
26
* Issue Date: 20/12/2007
27
*/
28
29
#include <aes/aes_impl.h>
30
#include "aesopt.h"
31
#include "aestab.h"
32
#include "aestab2.h"
33
34
/*
35
* Initialise the key schedule from the user supplied key. The key
36
* length can be specified in bytes, with legal values of 16, 24
37
* and 32, or in bits, with legal values of 128, 192 and 256. These
38
* values correspond with Nk values of 4, 6 and 8 respectively.
39
*
40
* The following macros implement a single cycle in the key
41
* schedule generation process. The number of cycles needed
42
* for each cx->n_col and nk value is:
43
*
44
* nk = 4 5 6 7 8
45
* ------------------------------
46
* cx->n_col = 4 10 9 8 7 7
47
* cx->n_col = 5 14 11 10 9 9
48
* cx->n_col = 6 19 15 12 11 11
49
* cx->n_col = 7 21 19 16 13 14
50
* cx->n_col = 8 29 23 19 17 14
51
*/
52
53
/*
54
* OpenSolaris changes
55
* 1. Added header files aes_impl.h and aestab2.h
56
* 2. Changed uint_8t and uint_32t to uint8_t and uint32_t
57
* 3. Remove code under ifdef USE_VIA_ACE_IF_PRESENT (always undefined)
58
* 4. Removed always-defined ifdefs FUNCS_IN_C, ENC_KEYING_IN_C,
59
* AES_128, AES_192, AES_256, AES_VAR defines
60
* 5. Changed aes_encrypt_key* aes_decrypt_key* functions to "static void"
61
* 6. Changed N_COLS to MAX_AES_NB
62
* 7. Replaced functions aes_encrypt_key and aes_decrypt_key with
63
* OpenSolaris-compatible functions rijndael_key_setup_enc_amd64 and
64
* rijndael_key_setup_dec_amd64
65
* 8. cstyled code and removed lint warnings
66
*/
67
68
#if defined(REDUCE_CODE_SIZE)
69
#define ls_box ls_sub
70
uint32_t ls_sub(const uint32_t t, const uint32_t n);
71
#define inv_mcol im_sub
72
uint32_t im_sub(const uint32_t x);
73
#ifdef ENC_KS_UNROLL
74
#undef ENC_KS_UNROLL
75
#endif
76
#ifdef DEC_KS_UNROLL
77
#undef DEC_KS_UNROLL
78
#endif
79
#endif /* REDUCE_CODE_SIZE */
80
81
82
#define ke4(k, i) \
83
{ k[4 * (i) + 4] = ss[0] ^= ls_box(ss[3], 3) ^ t_use(r, c)[i]; \
84
k[4 * (i) + 5] = ss[1] ^= ss[0]; \
85
k[4 * (i) + 6] = ss[2] ^= ss[1]; \
86
k[4 * (i) + 7] = ss[3] ^= ss[2]; \
87
}
88
89
static void
90
aes_encrypt_key128(const unsigned char *key, uint32_t rk[])
91
{
92
uint32_t ss[4];
93
94
rk[0] = ss[0] = word_in(key, 0);
95
rk[1] = ss[1] = word_in(key, 1);
96
rk[2] = ss[2] = word_in(key, 2);
97
rk[3] = ss[3] = word_in(key, 3);
98
99
#ifdef ENC_KS_UNROLL
100
ke4(rk, 0); ke4(rk, 1);
101
ke4(rk, 2); ke4(rk, 3);
102
ke4(rk, 4); ke4(rk, 5);
103
ke4(rk, 6); ke4(rk, 7);
104
ke4(rk, 8);
105
#else
106
{
107
uint32_t i;
108
for (i = 0; i < 9; ++i)
109
ke4(rk, i);
110
}
111
#endif /* ENC_KS_UNROLL */
112
ke4(rk, 9);
113
}
114
115
116
#define kef6(k, i) \
117
{ k[6 * (i) + 6] = ss[0] ^= ls_box(ss[5], 3) ^ t_use(r, c)[i]; \
118
k[6 * (i) + 7] = ss[1] ^= ss[0]; \
119
k[6 * (i) + 8] = ss[2] ^= ss[1]; \
120
k[6 * (i) + 9] = ss[3] ^= ss[2]; \
121
}
122
123
#define ke6(k, i) \
124
{ kef6(k, i); \
125
k[6 * (i) + 10] = ss[4] ^= ss[3]; \
126
k[6 * (i) + 11] = ss[5] ^= ss[4]; \
127
}
128
129
static void
130
aes_encrypt_key192(const unsigned char *key, uint32_t rk[])
131
{
132
uint32_t ss[6];
133
134
rk[0] = ss[0] = word_in(key, 0);
135
rk[1] = ss[1] = word_in(key, 1);
136
rk[2] = ss[2] = word_in(key, 2);
137
rk[3] = ss[3] = word_in(key, 3);
138
rk[4] = ss[4] = word_in(key, 4);
139
rk[5] = ss[5] = word_in(key, 5);
140
141
#ifdef ENC_KS_UNROLL
142
ke6(rk, 0); ke6(rk, 1);
143
ke6(rk, 2); ke6(rk, 3);
144
ke6(rk, 4); ke6(rk, 5);
145
ke6(rk, 6);
146
#else
147
{
148
uint32_t i;
149
for (i = 0; i < 7; ++i)
150
ke6(rk, i);
151
}
152
#endif /* ENC_KS_UNROLL */
153
kef6(rk, 7);
154
}
155
156
157
158
#define kef8(k, i) \
159
{ k[8 * (i) + 8] = ss[0] ^= ls_box(ss[7], 3) ^ t_use(r, c)[i]; \
160
k[8 * (i) + 9] = ss[1] ^= ss[0]; \
161
k[8 * (i) + 10] = ss[2] ^= ss[1]; \
162
k[8 * (i) + 11] = ss[3] ^= ss[2]; \
163
}
164
165
#define ke8(k, i) \
166
{ kef8(k, i); \
167
k[8 * (i) + 12] = ss[4] ^= ls_box(ss[3], 0); \
168
k[8 * (i) + 13] = ss[5] ^= ss[4]; \
169
k[8 * (i) + 14] = ss[6] ^= ss[5]; \
170
k[8 * (i) + 15] = ss[7] ^= ss[6]; \
171
}
172
173
static void
174
aes_encrypt_key256(const unsigned char *key, uint32_t rk[])
175
{
176
uint32_t ss[8];
177
178
rk[0] = ss[0] = word_in(key, 0);
179
rk[1] = ss[1] = word_in(key, 1);
180
rk[2] = ss[2] = word_in(key, 2);
181
rk[3] = ss[3] = word_in(key, 3);
182
rk[4] = ss[4] = word_in(key, 4);
183
rk[5] = ss[5] = word_in(key, 5);
184
rk[6] = ss[6] = word_in(key, 6);
185
rk[7] = ss[7] = word_in(key, 7);
186
187
#ifdef ENC_KS_UNROLL
188
ke8(rk, 0); ke8(rk, 1);
189
ke8(rk, 2); ke8(rk, 3);
190
ke8(rk, 4); ke8(rk, 5);
191
#else
192
{
193
uint32_t i;
194
for (i = 0; i < 6; ++i)
195
ke8(rk, i);
196
}
197
#endif /* ENC_KS_UNROLL */
198
kef8(rk, 6);
199
}
200
201
202
/*
203
* Expand the cipher key into the encryption key schedule.
204
*
205
* Return the number of rounds for the given cipher key size.
206
* The size of the key schedule depends on the number of rounds
207
* (which can be computed from the size of the key), i.e. 4 * (Nr + 1).
208
*
209
* Parameters:
210
* rk AES key schedule 32-bit array to be initialized
211
* cipherKey User key
212
* keyBits AES key size (128, 192, or 256 bits)
213
*/
214
int
215
rijndael_key_setup_enc_amd64(uint32_t rk[], const uint32_t cipherKey[],
216
int keyBits)
217
{
218
switch (keyBits) {
219
case 128:
220
aes_encrypt_key128((unsigned char *)&cipherKey[0], rk);
221
return (10);
222
case 192:
223
aes_encrypt_key192((unsigned char *)&cipherKey[0], rk);
224
return (12);
225
case 256:
226
aes_encrypt_key256((unsigned char *)&cipherKey[0], rk);
227
return (14);
228
default: /* should never get here */
229
break;
230
}
231
232
return (0);
233
}
234
235
236
/* this is used to store the decryption round keys */
237
/* in forward or reverse order */
238
239
#ifdef AES_REV_DKS
240
#define v(n, i) ((n) - (i) + 2 * ((i) & 3))
241
#else
242
#define v(n, i) (i)
243
#endif
244
245
#if DEC_ROUND == NO_TABLES
246
#define ff(x) (x)
247
#else
248
#define ff(x) inv_mcol(x)
249
#if defined(dec_imvars)
250
#define d_vars dec_imvars
251
#endif
252
#endif /* FUNCS_IN_C & DEC_KEYING_IN_C */
253
254
255
#define k4e(k, i) \
256
{ k[v(40, (4 * (i)) + 4)] = ss[0] ^= ls_box(ss[3], 3) ^ t_use(r, c)[i]; \
257
k[v(40, (4 * (i)) + 5)] = ss[1] ^= ss[0]; \
258
k[v(40, (4 * (i)) + 6)] = ss[2] ^= ss[1]; \
259
k[v(40, (4 * (i)) + 7)] = ss[3] ^= ss[2]; \
260
}
261
262
#if 1
263
264
#define kdf4(k, i) \
265
{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \
266
ss[1] = ss[1] ^ ss[3]; \
267
ss[2] = ss[2] ^ ss[3]; \
268
ss[4] = ls_box(ss[(i + 3) % 4], 3) ^ t_use(r, c)[i]; \
269
ss[i % 4] ^= ss[4]; \
270
ss[4] ^= k[v(40, (4 * (i)))]; k[v(40, (4 * (i)) + 4)] = ff(ss[4]); \
271
ss[4] ^= k[v(40, (4 * (i)) + 1)]; k[v(40, (4 * (i)) + 5)] = ff(ss[4]); \
272
ss[4] ^= k[v(40, (4 * (i)) + 2)]; k[v(40, (4 * (i)) + 6)] = ff(ss[4]); \
273
ss[4] ^= k[v(40, (4 * (i)) + 3)]; k[v(40, (4 * (i)) + 7)] = ff(ss[4]); \
274
}
275
276
#define kd4(k, i) \
277
{ ss[4] = ls_box(ss[(i + 3) % 4], 3) ^ t_use(r, c)[i]; \
278
ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
279
k[v(40, (4 * (i)) + 4)] = ss[4] ^= k[v(40, (4 * (i)))]; \
280
k[v(40, (4 * (i)) + 5)] = ss[4] ^= k[v(40, (4 * (i)) + 1)]; \
281
k[v(40, (4 * (i)) + 6)] = ss[4] ^= k[v(40, (4 * (i)) + 2)]; \
282
k[v(40, (4 * (i)) + 7)] = ss[4] ^= k[v(40, (4 * (i)) + 3)]; \
283
}
284
285
#define kdl4(k, i) \
286
{ ss[4] = ls_box(ss[(i + 3) % 4], 3) ^ t_use(r, c)[i]; \
287
ss[i % 4] ^= ss[4]; \
288
k[v(40, (4 * (i)) + 4)] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \
289
k[v(40, (4 * (i)) + 5)] = ss[1] ^ ss[3]; \
290
k[v(40, (4 * (i)) + 6)] = ss[0]; \
291
k[v(40, (4 * (i)) + 7)] = ss[1]; \
292
}
293
294
#else
295
296
#define kdf4(k, i) \
297
{ ss[0] ^= ls_box(ss[3], 3) ^ t_use(r, c)[i]; \
298
k[v(40, (4 * (i)) + 4)] = ff(ss[0]); \
299
ss[1] ^= ss[0]; k[v(40, (4 * (i)) + 5)] = ff(ss[1]); \
300
ss[2] ^= ss[1]; k[v(40, (4 * (i)) + 6)] = ff(ss[2]); \
301
ss[3] ^= ss[2]; k[v(40, (4 * (i)) + 7)] = ff(ss[3]); \
302
}
303
304
#define kd4(k, i) \
305
{ ss[4] = ls_box(ss[3], 3) ^ t_use(r, c)[i]; \
306
ss[0] ^= ss[4]; \
307
ss[4] = ff(ss[4]); \
308
k[v(40, (4 * (i)) + 4)] = ss[4] ^= k[v(40, (4 * (i)))]; \
309
ss[1] ^= ss[0]; \
310
k[v(40, (4 * (i)) + 5)] = ss[4] ^= k[v(40, (4 * (i)) + 1)]; \
311
ss[2] ^= ss[1]; \
312
k[v(40, (4 * (i)) + 6)] = ss[4] ^= k[v(40, (4 * (i)) + 2)]; \
313
ss[3] ^= ss[2]; \
314
k[v(40, (4 * (i)) + 7)] = ss[4] ^= k[v(40, (4 * (i)) + 3)]; \
315
}
316
317
#define kdl4(k, i) \
318
{ ss[0] ^= ls_box(ss[3], 3) ^ t_use(r, c)[i]; \
319
k[v(40, (4 * (i)) + 4)] = ss[0]; \
320
ss[1] ^= ss[0]; k[v(40, (4 * (i)) + 5)] = ss[1]; \
321
ss[2] ^= ss[1]; k[v(40, (4 * (i)) + 6)] = ss[2]; \
322
ss[3] ^= ss[2]; k[v(40, (4 * (i)) + 7)] = ss[3]; \
323
}
324
325
#endif
326
327
static void
328
aes_decrypt_key128(const unsigned char *key, uint32_t rk[])
329
{
330
uint32_t ss[5];
331
#if defined(d_vars)
332
d_vars;
333
#endif
334
rk[v(40, (0))] = ss[0] = word_in(key, 0);
335
rk[v(40, (1))] = ss[1] = word_in(key, 1);
336
rk[v(40, (2))] = ss[2] = word_in(key, 2);
337
rk[v(40, (3))] = ss[3] = word_in(key, 3);
338
339
#ifdef DEC_KS_UNROLL
340
kdf4(rk, 0); kd4(rk, 1);
341
kd4(rk, 2); kd4(rk, 3);
342
kd4(rk, 4); kd4(rk, 5);
343
kd4(rk, 6); kd4(rk, 7);
344
kd4(rk, 8); kdl4(rk, 9);
345
#else
346
{
347
uint32_t i;
348
for (i = 0; i < 10; ++i)
349
k4e(rk, i);
350
#if !(DEC_ROUND == NO_TABLES)
351
for (i = MAX_AES_NB; i < 10 * MAX_AES_NB; ++i)
352
rk[i] = inv_mcol(rk[i]);
353
#endif
354
}
355
#endif /* DEC_KS_UNROLL */
356
}
357
358
359
360
#define k6ef(k, i) \
361
{ k[v(48, (6 * (i)) + 6)] = ss[0] ^= ls_box(ss[5], 3) ^ t_use(r, c)[i]; \
362
k[v(48, (6 * (i)) + 7)] = ss[1] ^= ss[0]; \
363
k[v(48, (6 * (i)) + 8)] = ss[2] ^= ss[1]; \
364
k[v(48, (6 * (i)) + 9)] = ss[3] ^= ss[2]; \
365
}
366
367
#define k6e(k, i) \
368
{ k6ef(k, i); \
369
k[v(48, (6 * (i)) + 10)] = ss[4] ^= ss[3]; \
370
k[v(48, (6 * (i)) + 11)] = ss[5] ^= ss[4]; \
371
}
372
373
#define kdf6(k, i) \
374
{ ss[0] ^= ls_box(ss[5], 3) ^ t_use(r, c)[i]; \
375
k[v(48, (6 * (i)) + 6)] = ff(ss[0]); \
376
ss[1] ^= ss[0]; k[v(48, (6 * (i)) + 7)] = ff(ss[1]); \
377
ss[2] ^= ss[1]; k[v(48, (6 * (i)) + 8)] = ff(ss[2]); \
378
ss[3] ^= ss[2]; k[v(48, (6 * (i)) + 9)] = ff(ss[3]); \
379
ss[4] ^= ss[3]; k[v(48, (6 * (i)) + 10)] = ff(ss[4]); \
380
ss[5] ^= ss[4]; k[v(48, (6 * (i)) + 11)] = ff(ss[5]); \
381
}
382
383
#define kd6(k, i) \
384
{ ss[6] = ls_box(ss[5], 3) ^ t_use(r, c)[i]; \
385
ss[0] ^= ss[6]; ss[6] = ff(ss[6]); \
386
k[v(48, (6 * (i)) + 6)] = ss[6] ^= k[v(48, (6 * (i)))]; \
387
ss[1] ^= ss[0]; \
388
k[v(48, (6 * (i)) + 7)] = ss[6] ^= k[v(48, (6 * (i)) + 1)]; \
389
ss[2] ^= ss[1]; \
390
k[v(48, (6 * (i)) + 8)] = ss[6] ^= k[v(48, (6 * (i)) + 2)]; \
391
ss[3] ^= ss[2]; \
392
k[v(48, (6 * (i)) + 9)] = ss[6] ^= k[v(48, (6 * (i)) + 3)]; \
393
ss[4] ^= ss[3]; \
394
k[v(48, (6 * (i)) + 10)] = ss[6] ^= k[v(48, (6 * (i)) + 4)]; \
395
ss[5] ^= ss[4]; \
396
k[v(48, (6 * (i)) + 11)] = ss[6] ^= k[v(48, (6 * (i)) + 5)]; \
397
}
398
399
#define kdl6(k, i) \
400
{ ss[0] ^= ls_box(ss[5], 3) ^ t_use(r, c)[i]; \
401
k[v(48, (6 * (i)) + 6)] = ss[0]; \
402
ss[1] ^= ss[0]; k[v(48, (6 * (i)) + 7)] = ss[1]; \
403
ss[2] ^= ss[1]; k[v(48, (6 * (i)) + 8)] = ss[2]; \
404
ss[3] ^= ss[2]; k[v(48, (6 * (i)) + 9)] = ss[3]; \
405
}
406
407
static void
408
aes_decrypt_key192(const unsigned char *key, uint32_t rk[])
409
{
410
uint32_t ss[7];
411
#if defined(d_vars)
412
d_vars;
413
#endif
414
rk[v(48, (0))] = ss[0] = word_in(key, 0);
415
rk[v(48, (1))] = ss[1] = word_in(key, 1);
416
rk[v(48, (2))] = ss[2] = word_in(key, 2);
417
rk[v(48, (3))] = ss[3] = word_in(key, 3);
418
419
#ifdef DEC_KS_UNROLL
420
ss[4] = word_in(key, 4);
421
rk[v(48, (4))] = ff(ss[4]);
422
ss[5] = word_in(key, 5);
423
rk[v(48, (5))] = ff(ss[5]);
424
kdf6(rk, 0); kd6(rk, 1);
425
kd6(rk, 2); kd6(rk, 3);
426
kd6(rk, 4); kd6(rk, 5);
427
kd6(rk, 6); kdl6(rk, 7);
428
#else
429
rk[v(48, (4))] = ss[4] = word_in(key, 4);
430
rk[v(48, (5))] = ss[5] = word_in(key, 5);
431
{
432
uint32_t i;
433
434
for (i = 0; i < 7; ++i)
435
k6e(rk, i);
436
k6ef(rk, 7);
437
#if !(DEC_ROUND == NO_TABLES)
438
for (i = MAX_AES_NB; i < 12 * MAX_AES_NB; ++i)
439
rk[i] = inv_mcol(rk[i]);
440
#endif
441
}
442
#endif
443
}
444
445
446
447
#define k8ef(k, i) \
448
{ k[v(56, (8 * (i)) + 8)] = ss[0] ^= ls_box(ss[7], 3) ^ t_use(r, c)[i]; \
449
k[v(56, (8 * (i)) + 9)] = ss[1] ^= ss[0]; \
450
k[v(56, (8 * (i)) + 10)] = ss[2] ^= ss[1]; \
451
k[v(56, (8 * (i)) + 11)] = ss[3] ^= ss[2]; \
452
}
453
454
#define k8e(k, i) \
455
{ k8ef(k, i); \
456
k[v(56, (8 * (i)) + 12)] = ss[4] ^= ls_box(ss[3], 0); \
457
k[v(56, (8 * (i)) + 13)] = ss[5] ^= ss[4]; \
458
k[v(56, (8 * (i)) + 14)] = ss[6] ^= ss[5]; \
459
k[v(56, (8 * (i)) + 15)] = ss[7] ^= ss[6]; \
460
}
461
462
#define kdf8(k, i) \
463
{ ss[0] ^= ls_box(ss[7], 3) ^ t_use(r, c)[i]; \
464
k[v(56, (8 * (i)) + 8)] = ff(ss[0]); \
465
ss[1] ^= ss[0]; k[v(56, (8 * (i)) + 9)] = ff(ss[1]); \
466
ss[2] ^= ss[1]; k[v(56, (8 * (i)) + 10)] = ff(ss[2]); \
467
ss[3] ^= ss[2]; k[v(56, (8 * (i)) + 11)] = ff(ss[3]); \
468
ss[4] ^= ls_box(ss[3], 0); k[v(56, (8 * (i)) + 12)] = ff(ss[4]); \
469
ss[5] ^= ss[4]; k[v(56, (8 * (i)) + 13)] = ff(ss[5]); \
470
ss[6] ^= ss[5]; k[v(56, (8 * (i)) + 14)] = ff(ss[6]); \
471
ss[7] ^= ss[6]; k[v(56, (8 * (i)) + 15)] = ff(ss[7]); \
472
}
473
474
#define kd8(k, i) \
475
{ ss[8] = ls_box(ss[7], 3) ^ t_use(r, c)[i]; \
476
ss[0] ^= ss[8]; \
477
ss[8] = ff(ss[8]); \
478
k[v(56, (8 * (i)) + 8)] = ss[8] ^= k[v(56, (8 * (i)))]; \
479
ss[1] ^= ss[0]; \
480
k[v(56, (8 * (i)) + 9)] = ss[8] ^= k[v(56, (8 * (i)) + 1)]; \
481
ss[2] ^= ss[1]; \
482
k[v(56, (8 * (i)) + 10)] = ss[8] ^= k[v(56, (8 * (i)) + 2)]; \
483
ss[3] ^= ss[2]; \
484
k[v(56, (8 * (i)) + 11)] = ss[8] ^= k[v(56, (8 * (i)) + 3)]; \
485
ss[8] = ls_box(ss[3], 0); \
486
ss[4] ^= ss[8]; \
487
ss[8] = ff(ss[8]); \
488
k[v(56, (8 * (i)) + 12)] = ss[8] ^= k[v(56, (8 * (i)) + 4)]; \
489
ss[5] ^= ss[4]; \
490
k[v(56, (8 * (i)) + 13)] = ss[8] ^= k[v(56, (8 * (i)) + 5)]; \
491
ss[6] ^= ss[5]; \
492
k[v(56, (8 * (i)) + 14)] = ss[8] ^= k[v(56, (8 * (i)) + 6)]; \
493
ss[7] ^= ss[6]; \
494
k[v(56, (8 * (i)) + 15)] = ss[8] ^= k[v(56, (8 * (i)) + 7)]; \
495
}
496
497
#define kdl8(k, i) \
498
{ ss[0] ^= ls_box(ss[7], 3) ^ t_use(r, c)[i]; \
499
k[v(56, (8 * (i)) + 8)] = ss[0]; \
500
ss[1] ^= ss[0]; k[v(56, (8 * (i)) + 9)] = ss[1]; \
501
ss[2] ^= ss[1]; k[v(56, (8 * (i)) + 10)] = ss[2]; \
502
ss[3] ^= ss[2]; k[v(56, (8 * (i)) + 11)] = ss[3]; \
503
}
504
505
static void
506
aes_decrypt_key256(const unsigned char *key, uint32_t rk[])
507
{
508
uint32_t ss[9];
509
#if defined(d_vars)
510
d_vars;
511
#endif
512
rk[v(56, (0))] = ss[0] = word_in(key, 0);
513
rk[v(56, (1))] = ss[1] = word_in(key, 1);
514
rk[v(56, (2))] = ss[2] = word_in(key, 2);
515
rk[v(56, (3))] = ss[3] = word_in(key, 3);
516
517
#ifdef DEC_KS_UNROLL
518
ss[4] = word_in(key, 4);
519
rk[v(56, (4))] = ff(ss[4]);
520
ss[5] = word_in(key, 5);
521
rk[v(56, (5))] = ff(ss[5]);
522
ss[6] = word_in(key, 6);
523
rk[v(56, (6))] = ff(ss[6]);
524
ss[7] = word_in(key, 7);
525
rk[v(56, (7))] = ff(ss[7]);
526
kdf8(rk, 0); kd8(rk, 1);
527
kd8(rk, 2); kd8(rk, 3);
528
kd8(rk, 4); kd8(rk, 5);
529
kdl8(rk, 6);
530
#else
531
rk[v(56, (4))] = ss[4] = word_in(key, 4);
532
rk[v(56, (5))] = ss[5] = word_in(key, 5);
533
rk[v(56, (6))] = ss[6] = word_in(key, 6);
534
rk[v(56, (7))] = ss[7] = word_in(key, 7);
535
{
536
uint32_t i;
537
538
for (i = 0; i < 6; ++i)
539
k8e(rk, i);
540
k8ef(rk, 6);
541
#if !(DEC_ROUND == NO_TABLES)
542
for (i = MAX_AES_NB; i < 14 * MAX_AES_NB; ++i)
543
rk[i] = inv_mcol(rk[i]);
544
#endif
545
}
546
#endif /* DEC_KS_UNROLL */
547
}
548
549
550
/*
551
* Expand the cipher key into the decryption key schedule.
552
*
553
* Return the number of rounds for the given cipher key size.
554
* The size of the key schedule depends on the number of rounds
555
* (which can be computed from the size of the key), i.e. 4 * (Nr + 1).
556
*
557
* Parameters:
558
* rk AES key schedule 32-bit array to be initialized
559
* cipherKey User key
560
* keyBits AES key size (128, 192, or 256 bits)
561
*/
562
int
563
rijndael_key_setup_dec_amd64(uint32_t rk[], const uint32_t cipherKey[],
564
int keyBits)
565
{
566
switch (keyBits) {
567
case 128:
568
aes_decrypt_key128((unsigned char *)&cipherKey[0], rk);
569
return (10);
570
case 192:
571
aes_decrypt_key192((unsigned char *)&cipherKey[0], rk);
572
return (12);
573
case 256:
574
aes_decrypt_key256((unsigned char *)&cipherKey[0], rk);
575
return (14);
576
default: /* should never get here */
577
break;
578
}
579
580
return (0);
581
}
582
583