Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/icp/asm-x86_64/aes/aesopt.h
48775 views
1
// SPDX-License-Identifier: Brian-Gladman-3-Clause
2
/*
3
* ---------------------------------------------------------------------------
4
* Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
5
*
6
* LICENSE TERMS
7
*
8
* The free distribution and use of this software is allowed (with or without
9
* changes) provided that:
10
*
11
* 1. source code distributions include the above copyright notice, this
12
* list of conditions and the following disclaimer;
13
*
14
* 2. binary distributions include the above copyright notice, this list
15
* of conditions and the following disclaimer in their documentation;
16
*
17
* 3. the name of the copyright holder is not used to endorse products
18
* built using this software without specific written permission.
19
*
20
* DISCLAIMER
21
*
22
* This software is provided 'as is' with no explicit or implied warranties
23
* in respect of its properties, including, but not limited to, correctness
24
* and/or fitness for purpose.
25
* ---------------------------------------------------------------------------
26
* Issue Date: 20/12/2007
27
*
28
* This file contains the compilation options for AES (Rijndael) and code
29
* that is common across encryption, key scheduling and table generation.
30
*
31
* OPERATION
32
*
33
* These source code files implement the AES algorithm Rijndael designed by
34
* Joan Daemen and Vincent Rijmen. This version is designed for the standard
35
* block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
36
* and 32 bytes).
37
*
38
* This version is designed for flexibility and speed using operations on
39
* 32-bit words rather than operations on bytes. It can be compiled with
40
* either big or little endian internal byte order but is faster when the
41
* native byte order for the processor is used.
42
*
43
* THE CIPHER INTERFACE
44
*
45
* The cipher interface is implemented as an array of bytes in which lower
46
* AES bit sequence indexes map to higher numeric significance within bytes.
47
*/
48
49
/*
50
* OpenSolaris changes
51
* 1. Added __cplusplus and _AESTAB_H header guards
52
* 2. Added header files sys/types.h and aes_impl.h
53
* 3. Added defines for AES_ENCRYPT, AES_DECRYPT, AES_REV_DKS, and ASM_AMD64_C
54
* 4. Moved defines for IS_BIG_ENDIAN, IS_LITTLE_ENDIAN, PLATFORM_BYTE_ORDER
55
* from brg_endian.h
56
* 5. Undefined VIA_ACE_POSSIBLE and ASSUME_VIA_ACE_PRESENT
57
* 6. Changed uint_8t and uint_32t to uint8_t and uint32_t
58
* 7. Defined aes_sw32 as htonl() for byte swapping
59
* 8. Cstyled and hdrchk code
60
*
61
*/
62
63
#ifndef _AESOPT_H
64
#define _AESOPT_H
65
66
#ifdef __cplusplus
67
extern "C" {
68
#endif
69
70
#include <sys/zfs_context.h>
71
#include <aes/aes_impl.h>
72
73
/* SUPPORT FEATURES */
74
#define AES_ENCRYPT /* if support for encryption is needed */
75
#define AES_DECRYPT /* if support for decryption is needed */
76
77
/* PLATFORM-SPECIFIC FEATURES */
78
#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
79
#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
80
#define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
81
#define AES_REV_DKS /* define to reverse decryption key schedule */
82
83
84
/*
85
* CONFIGURATION - THE USE OF DEFINES
86
* Later in this section there are a number of defines that control the
87
* operation of the code. In each section, the purpose of each define is
88
* explained so that the relevant form can be included or excluded by
89
* setting either 1's or 0's respectively on the branches of the related
90
* #if clauses. The following local defines should not be changed.
91
*/
92
93
#define ENCRYPTION_IN_C 1
94
#define DECRYPTION_IN_C 2
95
#define ENC_KEYING_IN_C 4
96
#define DEC_KEYING_IN_C 8
97
98
#define NO_TABLES 0
99
#define ONE_TABLE 1
100
#define FOUR_TABLES 4
101
#define NONE 0
102
#define PARTIAL 1
103
#define FULL 2
104
105
/* --- START OF USER CONFIGURED OPTIONS --- */
106
107
/*
108
* 1. BYTE ORDER WITHIN 32 BIT WORDS
109
*
110
* The fundamental data processing units in Rijndael are 8-bit bytes. The
111
* input, output and key input are all enumerated arrays of bytes in which
112
* bytes are numbered starting at zero and increasing to one less than the
113
* number of bytes in the array in question. This enumeration is only used
114
* for naming bytes and does not imply any adjacency or order relationship
115
* from one byte to another. When these inputs and outputs are considered
116
* as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
117
* byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
118
* In this implementation bits are numbered from 0 to 7 starting at the
119
* numerically least significant end of each byte. Bit n represents 2^n.
120
*
121
* However, Rijndael can be implemented more efficiently using 32-bit
122
* words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
123
* into word[n]. While in principle these bytes can be assembled into words
124
* in any positions, this implementation only supports the two formats in
125
* which bytes in adjacent positions within words also have adjacent byte
126
* numbers. This order is called big-endian if the lowest numbered bytes
127
* in words have the highest numeric significance and little-endian if the
128
* opposite applies.
129
*
130
* This code can work in either order irrespective of the order used by the
131
* machine on which it runs. Normally the internal byte order will be set
132
* to the order of the processor on which the code is to be run but this
133
* define can be used to reverse this in special situations
134
*
135
* WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
136
* This define will hence be redefined later (in section 4) if necessary
137
*/
138
139
#if 1
140
#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
141
#elif 0
142
#define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
143
#elif 0
144
#define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
145
#else
146
#error The algorithm byte order is not defined
147
#endif
148
149
/* 2. VIA ACE SUPPORT */
150
151
#if defined(__GNUC__) && defined(__i386__) || \
152
defined(_WIN32) && defined(_M_IX86) && \
153
!(defined(_WIN64) || defined(_WIN32_WCE) || \
154
defined(_MSC_VER) && (_MSC_VER <= 800))
155
#define VIA_ACE_POSSIBLE
156
#endif
157
158
/*
159
* Define this option if support for the VIA ACE is required. This uses
160
* inline assembler instructions and is only implemented for the Microsoft,
161
* Intel and GCC compilers. If VIA ACE is known to be present, then defining
162
* ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
163
* code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
164
* it is detected (both present and enabled) but the normal AES code will
165
* also be present.
166
*
167
* When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
168
* aligned; other input/output buffers do not need to be 16 byte aligned
169
* but there are very large performance gains if this can be arranged.
170
* VIA ACE also requires the decryption key schedule to be in reverse
171
* order (which later checks below ensure).
172
*/
173
174
/* VIA ACE is not used here for OpenSolaris: */
175
#undef VIA_ACE_POSSIBLE
176
#undef ASSUME_VIA_ACE_PRESENT
177
178
#if 0 && defined(VIA_ACE_POSSIBLE) && !defined(USE_VIA_ACE_IF_PRESENT)
179
#define USE_VIA_ACE_IF_PRESENT
180
#endif
181
182
#if 0 && defined(VIA_ACE_POSSIBLE) && !defined(ASSUME_VIA_ACE_PRESENT)
183
#define ASSUME_VIA_ACE_PRESENT
184
#endif
185
186
187
/*
188
* 3. ASSEMBLER SUPPORT
189
*
190
* This define (which can be on the command line) enables the use of the
191
* assembler code routines for encryption, decryption and key scheduling
192
* as follows:
193
*
194
* ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
195
* encryption and decryption and but with key scheduling in C
196
* ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for
197
* encryption, decryption and key scheduling
198
* ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
199
* encryption and decryption and but with key scheduling in C
200
* ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
201
* encryption and decryption and but with key scheduling in C
202
*
203
* Change one 'if 0' below to 'if 1' to select the version or define
204
* as a compilation option.
205
*/
206
207
#if 0 && !defined(ASM_X86_V1C)
208
#define ASM_X86_V1C
209
#elif 0 && !defined(ASM_X86_V2)
210
#define ASM_X86_V2
211
#elif 0 && !defined(ASM_X86_V2C)
212
#define ASM_X86_V2C
213
#elif 1 && !defined(ASM_AMD64_C)
214
#define ASM_AMD64_C
215
#endif
216
217
#if (defined(ASM_X86_V1C) || defined(ASM_X86_V2) || defined(ASM_X86_V2C)) && \
218
!defined(_M_IX86) || defined(ASM_AMD64_C) && !defined(_M_X64) && \
219
!defined(__amd64)
220
#error Assembler code is only available for x86 and AMD64 systems
221
#endif
222
223
/*
224
* 4. FAST INPUT/OUTPUT OPERATIONS.
225
*
226
* On some machines it is possible to improve speed by transferring the
227
* bytes in the input and output arrays to and from the internal 32-bit
228
* variables by addressing these arrays as if they are arrays of 32-bit
229
* words. On some machines this will always be possible but there may
230
* be a large performance penalty if the byte arrays are not aligned on
231
* the normal word boundaries. On other machines this technique will
232
* lead to memory access errors when such 32-bit word accesses are not
233
* properly aligned. The option SAFE_IO avoids such problems but will
234
* often be slower on those machines that support misaligned access
235
* (especially so if care is taken to align the input and output byte
236
* arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
237
* assumed that access to byte arrays as if they are arrays of 32-bit
238
* words will not cause problems when such accesses are misaligned.
239
*/
240
#if 1 && !defined(_MSC_VER)
241
#define SAFE_IO
242
#endif
243
244
/*
245
* 5. LOOP UNROLLING
246
*
247
* The code for encryption and decryption cycles through a number of rounds
248
* that can be implemented either in a loop or by expanding the code into a
249
* long sequence of instructions, the latter producing a larger program but
250
* one that will often be much faster. The latter is called loop unrolling.
251
* There are also potential speed advantages in expanding two iterations in
252
* a loop with half the number of iterations, which is called partial loop
253
* unrolling. The following options allow partial or full loop unrolling
254
* to be set independently for encryption and decryption
255
*/
256
#if 1
257
#define ENC_UNROLL FULL
258
#elif 0
259
#define ENC_UNROLL PARTIAL
260
#else
261
#define ENC_UNROLL NONE
262
#endif
263
264
#if 1
265
#define DEC_UNROLL FULL
266
#elif 0
267
#define DEC_UNROLL PARTIAL
268
#else
269
#define DEC_UNROLL NONE
270
#endif
271
272
#if 1
273
#define ENC_KS_UNROLL
274
#endif
275
276
#if 1
277
#define DEC_KS_UNROLL
278
#endif
279
280
/*
281
* 6. FAST FINITE FIELD OPERATIONS
282
*
283
* If this section is included, tables are used to provide faster finite
284
* field arithmetic. This has no effect if FIXED_TABLES is defined.
285
*/
286
#if 1
287
#define FF_TABLES
288
#endif
289
290
/*
291
* 7. INTERNAL STATE VARIABLE FORMAT
292
*
293
* The internal state of Rijndael is stored in a number of local 32-bit
294
* word variables which can be defined either as an array or as individual
295
* names variables. Include this section if you want to store these local
296
* variables in arrays. Otherwise individual local variables will be used.
297
*/
298
#if 1
299
#define ARRAYS
300
#endif
301
302
/*
303
* 8. FIXED OR DYNAMIC TABLES
304
*
305
* When this section is included the tables used by the code are compiled
306
* statically into the binary file. Otherwise the subroutine aes_init()
307
* must be called to compute them before the code is first used.
308
*/
309
#if 1 && !(defined(_MSC_VER) && (_MSC_VER <= 800))
310
#define FIXED_TABLES
311
#endif
312
313
/*
314
* 9. MASKING OR CASTING FROM LONGER VALUES TO BYTES
315
*
316
* In some systems it is better to mask longer values to extract bytes
317
* rather than using a cast. This option allows this choice.
318
*/
319
#if 0
320
#define to_byte(x) ((uint8_t)(x))
321
#else
322
#define to_byte(x) ((x) & 0xff)
323
#endif
324
325
/*
326
* 10. TABLE ALIGNMENT
327
*
328
* On some systems speed will be improved by aligning the AES large lookup
329
* tables on particular boundaries. This define should be set to a power of
330
* two giving the desired alignment. It can be left undefined if alignment
331
* is not needed. This option is specific to the Microsoft VC++ compiler -
332
* it seems to sometimes cause trouble for the VC++ version 6 compiler.
333
*/
334
335
#if 1 && defined(_MSC_VER) && (_MSC_VER >= 1300)
336
#define TABLE_ALIGN 32
337
#endif
338
339
/*
340
* 11. REDUCE CODE AND TABLE SIZE
341
*
342
* This replaces some expanded macros with function calls if AES_ASM_V2 or
343
* AES_ASM_V2C are defined
344
*/
345
346
#if 1 && (defined(ASM_X86_V2) || defined(ASM_X86_V2C))
347
#define REDUCE_CODE_SIZE
348
#endif
349
350
/*
351
* 12. TABLE OPTIONS
352
*
353
* This cipher proceeds by repeating in a number of cycles known as rounds
354
* which are implemented by a round function which is optionally be speeded
355
* up using tables. The basic tables are 256 32-bit words, with either
356
* one or four tables being required for each round function depending on
357
* how much speed is required. Encryption and decryption round functions
358
* are different and the last encryption and decryption round functions are
359
* different again making four different round functions in all.
360
*
361
* This means that:
362
* 1. Normal encryption and decryption rounds can each use either 0, 1
363
* or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
364
* 2. The last encryption and decryption rounds can also use either 0, 1
365
* or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
366
*
367
* Include or exclude the appropriate definitions below to set the number
368
* of tables used by this implementation.
369
*/
370
371
#if 1 /* set tables for the normal encryption round */
372
#define ENC_ROUND FOUR_TABLES
373
#elif 0
374
#define ENC_ROUND ONE_TABLE
375
#else
376
#define ENC_ROUND NO_TABLES
377
#endif
378
379
#if 1 /* set tables for the last encryption round */
380
#define LAST_ENC_ROUND FOUR_TABLES
381
#elif 0
382
#define LAST_ENC_ROUND ONE_TABLE
383
#else
384
#define LAST_ENC_ROUND NO_TABLES
385
#endif
386
387
#if 1 /* set tables for the normal decryption round */
388
#define DEC_ROUND FOUR_TABLES
389
#elif 0
390
#define DEC_ROUND ONE_TABLE
391
#else
392
#define DEC_ROUND NO_TABLES
393
#endif
394
395
#if 1 /* set tables for the last decryption round */
396
#define LAST_DEC_ROUND FOUR_TABLES
397
#elif 0
398
#define LAST_DEC_ROUND ONE_TABLE
399
#else
400
#define LAST_DEC_ROUND NO_TABLES
401
#endif
402
403
/*
404
* The decryption key schedule can be speeded up with tables in the same
405
* way that the round functions can. Include or exclude the following
406
* defines to set this requirement.
407
*/
408
#if 1
409
#define KEY_SCHED FOUR_TABLES
410
#elif 0
411
#define KEY_SCHED ONE_TABLE
412
#else
413
#define KEY_SCHED NO_TABLES
414
#endif
415
416
/* ---- END OF USER CONFIGURED OPTIONS ---- */
417
418
/* VIA ACE support is only available for VC++ and GCC */
419
420
#if !defined(_MSC_VER) && !defined(__GNUC__)
421
#if defined(ASSUME_VIA_ACE_PRESENT)
422
#undef ASSUME_VIA_ACE_PRESENT
423
#endif
424
#if defined(USE_VIA_ACE_IF_PRESENT)
425
#undef USE_VIA_ACE_IF_PRESENT
426
#endif
427
#endif
428
429
#if defined(ASSUME_VIA_ACE_PRESENT) && !defined(USE_VIA_ACE_IF_PRESENT)
430
#define USE_VIA_ACE_IF_PRESENT
431
#endif
432
433
#if defined(USE_VIA_ACE_IF_PRESENT) && !defined(AES_REV_DKS)
434
#define AES_REV_DKS
435
#endif
436
437
/* Assembler support requires the use of platform byte order */
438
439
#if (defined(ASM_X86_V1C) || defined(ASM_X86_V2C) || defined(ASM_AMD64_C)) && \
440
(ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
441
#undef ALGORITHM_BYTE_ORDER
442
#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
443
#endif
444
445
/*
446
* In this implementation the columns of the state array are each held in
447
* 32-bit words. The state array can be held in various ways: in an array
448
* of words, in a number of individual word variables or in a number of
449
* processor registers. The following define maps a variable name x and
450
* a column number c to the way the state array variable is to be held.
451
* The first define below maps the state into an array x[c] whereas the
452
* second form maps the state into a number of individual variables x0,
453
* x1, etc. Another form could map individual state columns to machine
454
* register names.
455
*/
456
457
#if defined(ARRAYS)
458
#define s(x, c) x[c]
459
#else
460
#define s(x, c) x##c
461
#endif
462
463
/*
464
* This implementation provides subroutines for encryption, decryption
465
* and for setting the three key lengths (separately) for encryption
466
* and decryption. Since not all functions are needed, masks are set
467
* up here to determine which will be implemented in C
468
*/
469
470
#if !defined(AES_ENCRYPT)
471
#define EFUNCS_IN_C 0
472
#elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \
473
defined(ASM_X86_V2C) || defined(ASM_AMD64_C)
474
#define EFUNCS_IN_C ENC_KEYING_IN_C
475
#elif !defined(ASM_X86_V2)
476
#define EFUNCS_IN_C (ENCRYPTION_IN_C | ENC_KEYING_IN_C)
477
#else
478
#define EFUNCS_IN_C 0
479
#endif
480
481
#if !defined(AES_DECRYPT)
482
#define DFUNCS_IN_C 0
483
#elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \
484
defined(ASM_X86_V2C) || defined(ASM_AMD64_C)
485
#define DFUNCS_IN_C DEC_KEYING_IN_C
486
#elif !defined(ASM_X86_V2)
487
#define DFUNCS_IN_C (DECRYPTION_IN_C | DEC_KEYING_IN_C)
488
#else
489
#define DFUNCS_IN_C 0
490
#endif
491
492
#define FUNCS_IN_C (EFUNCS_IN_C | DFUNCS_IN_C)
493
494
/* END OF CONFIGURATION OPTIONS */
495
496
/* Disable or report errors on some combinations of options */
497
498
#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
499
#undef LAST_ENC_ROUND
500
#define LAST_ENC_ROUND NO_TABLES
501
#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
502
#undef LAST_ENC_ROUND
503
#define LAST_ENC_ROUND ONE_TABLE
504
#endif
505
506
#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
507
#undef ENC_UNROLL
508
#define ENC_UNROLL NONE
509
#endif
510
511
#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
512
#undef LAST_DEC_ROUND
513
#define LAST_DEC_ROUND NO_TABLES
514
#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
515
#undef LAST_DEC_ROUND
516
#define LAST_DEC_ROUND ONE_TABLE
517
#endif
518
519
#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
520
#undef DEC_UNROLL
521
#define DEC_UNROLL NONE
522
#endif
523
524
#if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN)
525
#define aes_sw32 htonl
526
#elif defined(bswap32)
527
#define aes_sw32 bswap32
528
#elif defined(bswap_32)
529
#define aes_sw32 bswap_32
530
#else
531
#define brot(x, n) (((uint32_t)(x) << (n)) | ((uint32_t)(x) >> (32 - (n))))
532
#define aes_sw32(x) ((brot((x), 8) & 0x00ff00ff) | (brot((x), 24) & 0xff00ff00))
533
#endif
534
535
536
/*
537
* upr(x, n): rotates bytes within words by n positions, moving bytes to
538
* higher index positions with wrap around into low positions
539
* ups(x, n): moves bytes by n positions to higher index positions in
540
* words but without wrap around
541
* bval(x, n): extracts a byte from a word
542
*
543
* WARNING: The definitions given here are intended only for use with
544
* unsigned variables and with shift counts that are compile
545
* time constants
546
*/
547
548
#if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN)
549
#define upr(x, n) (((uint32_t)(x) << (8 * (n))) | \
550
((uint32_t)(x) >> (32 - 8 * (n))))
551
#define ups(x, n) ((uint32_t)(x) << (8 * (n)))
552
#define bval(x, n) to_byte((x) >> (8 * (n)))
553
#define bytes2word(b0, b1, b2, b3) \
554
(((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | \
555
((uint32_t)(b1) << 8) | (b0))
556
#endif
557
558
#if (ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN)
559
#define upr(x, n) (((uint32_t)(x) >> (8 * (n))) | \
560
((uint32_t)(x) << (32 - 8 * (n))))
561
#define ups(x, n) ((uint32_t)(x) >> (8 * (n)))
562
#define bval(x, n) to_byte((x) >> (24 - 8 * (n)))
563
#define bytes2word(b0, b1, b2, b3) \
564
(((uint32_t)(b0) << 24) | ((uint32_t)(b1) << 16) | \
565
((uint32_t)(b2) << 8) | (b3))
566
#endif
567
568
#if defined(SAFE_IO)
569
#define word_in(x, c) bytes2word(((const uint8_t *)(x) + 4 * c)[0], \
570
((const uint8_t *)(x) + 4 * c)[1], \
571
((const uint8_t *)(x) + 4 * c)[2], \
572
((const uint8_t *)(x) + 4 * c)[3])
573
#define word_out(x, c, v) { ((uint8_t *)(x) + 4 * c)[0] = bval(v, 0); \
574
((uint8_t *)(x) + 4 * c)[1] = bval(v, 1); \
575
((uint8_t *)(x) + 4 * c)[2] = bval(v, 2); \
576
((uint8_t *)(x) + 4 * c)[3] = bval(v, 3); }
577
#elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
578
#define word_in(x, c) (*((uint32_t *)(x) + (c)))
579
#define word_out(x, c, v) (*((uint32_t *)(x) + (c)) = (v))
580
#else
581
#define word_in(x, c) aes_sw32(*((uint32_t *)(x) + (c)))
582
#define word_out(x, c, v) (*((uint32_t *)(x) + (c)) = aes_sw32(v))
583
#endif
584
585
/* the finite field modular polynomial and elements */
586
587
#define WPOLY 0x011b
588
#define BPOLY 0x1b
589
590
/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
591
592
#define m1 0x80808080
593
#define m2 0x7f7f7f7f
594
#define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
595
596
/*
597
* The following defines provide alternative definitions of gf_mulx that might
598
* give improved performance if a fast 32-bit multiply is not available. Note
599
* that a temporary variable u needs to be defined where gf_mulx is used.
600
*
601
* #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ \
602
* ((u >> 3) | (u >> 6))
603
* #define m4 (0x01010101 * BPOLY)
604
* #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) \
605
* & m4)
606
*/
607
608
/* Work out which tables are needed for the different options */
609
610
#if defined(ASM_X86_V1C)
611
#if defined(ENC_ROUND)
612
#undef ENC_ROUND
613
#endif
614
#define ENC_ROUND FOUR_TABLES
615
#if defined(LAST_ENC_ROUND)
616
#undef LAST_ENC_ROUND
617
#endif
618
#define LAST_ENC_ROUND FOUR_TABLES
619
#if defined(DEC_ROUND)
620
#undef DEC_ROUND
621
#endif
622
#define DEC_ROUND FOUR_TABLES
623
#if defined(LAST_DEC_ROUND)
624
#undef LAST_DEC_ROUND
625
#endif
626
#define LAST_DEC_ROUND FOUR_TABLES
627
#if defined(KEY_SCHED)
628
#undef KEY_SCHED
629
#define KEY_SCHED FOUR_TABLES
630
#endif
631
#endif
632
633
#if (FUNCS_IN_C & ENCRYPTION_IN_C) || defined(ASM_X86_V1C)
634
#if ENC_ROUND == ONE_TABLE
635
#define FT1_SET
636
#elif ENC_ROUND == FOUR_TABLES
637
#define FT4_SET
638
#else
639
#define SBX_SET
640
#endif
641
#if LAST_ENC_ROUND == ONE_TABLE
642
#define FL1_SET
643
#elif LAST_ENC_ROUND == FOUR_TABLES
644
#define FL4_SET
645
#elif !defined(SBX_SET)
646
#define SBX_SET
647
#endif
648
#endif
649
650
#if (FUNCS_IN_C & DECRYPTION_IN_C) || defined(ASM_X86_V1C)
651
#if DEC_ROUND == ONE_TABLE
652
#define IT1_SET
653
#elif DEC_ROUND == FOUR_TABLES
654
#define IT4_SET
655
#else
656
#define ISB_SET
657
#endif
658
#if LAST_DEC_ROUND == ONE_TABLE
659
#define IL1_SET
660
#elif LAST_DEC_ROUND == FOUR_TABLES
661
#define IL4_SET
662
#elif !defined(ISB_SET)
663
#define ISB_SET
664
#endif
665
#endif
666
667
668
#if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \
669
defined(ASM_X86_V2C)))
670
#if ((FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C))
671
#if KEY_SCHED == ONE_TABLE
672
#if !defined(FL1_SET) && !defined(FL4_SET)
673
#define LS1_SET
674
#endif
675
#elif KEY_SCHED == FOUR_TABLES
676
#if !defined(FL4_SET)
677
#define LS4_SET
678
#endif
679
#elif !defined(SBX_SET)
680
#define SBX_SET
681
#endif
682
#endif
683
#if (FUNCS_IN_C & DEC_KEYING_IN_C)
684
#if KEY_SCHED == ONE_TABLE
685
#define IM1_SET
686
#elif KEY_SCHED == FOUR_TABLES
687
#define IM4_SET
688
#elif !defined(SBX_SET)
689
#define SBX_SET
690
#endif
691
#endif
692
#endif
693
694
/* generic definitions of Rijndael macros that use tables */
695
696
#define no_table(x, box, vf, rf, c) bytes2word(\
697
box[bval(vf(x, 0, c), rf(0, c))], \
698
box[bval(vf(x, 1, c), rf(1, c))], \
699
box[bval(vf(x, 2, c), rf(2, c))], \
700
box[bval(vf(x, 3, c), rf(3, c))])
701
702
#define one_table(x, op, tab, vf, rf, c) \
703
(tab[bval(vf(x, 0, c), rf(0, c))] \
704
^ op(tab[bval(vf(x, 1, c), rf(1, c))], 1) \
705
^ op(tab[bval(vf(x, 2, c), rf(2, c))], 2) \
706
^ op(tab[bval(vf(x, 3, c), rf(3, c))], 3))
707
708
#define four_tables(x, tab, vf, rf, c) \
709
(tab[0][bval(vf(x, 0, c), rf(0, c))] \
710
^ tab[1][bval(vf(x, 1, c), rf(1, c))] \
711
^ tab[2][bval(vf(x, 2, c), rf(2, c))] \
712
^ tab[3][bval(vf(x, 3, c), rf(3, c))])
713
714
#define vf1(x, r, c) (x)
715
#define rf1(r, c) (r)
716
#define rf2(r, c) ((8+r-c)&3)
717
718
/*
719
* Perform forward and inverse column mix operation on four bytes in long word
720
* x in parallel. NOTE: x must be a simple variable, NOT an expression in
721
* these macros.
722
*/
723
724
#if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \
725
defined(ASM_X86_V2C)))
726
727
#if defined(FM4_SET) /* not currently used */
728
#define fwd_mcol(x) four_tables(x, t_use(f, m), vf1, rf1, 0)
729
#elif defined(FM1_SET) /* not currently used */
730
#define fwd_mcol(x) one_table(x, upr, t_use(f, m), vf1, rf1, 0)
731
#else
732
#define dec_fmvars uint32_t g2
733
#define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ \
734
upr((x), 2) ^ upr((x), 1))
735
#endif
736
737
#if defined(IM4_SET)
738
#define inv_mcol(x) four_tables(x, t_use(i, m), vf1, rf1, 0)
739
#elif defined(IM1_SET)
740
#define inv_mcol(x) one_table(x, upr, t_use(i, m), vf1, rf1, 0)
741
#else
742
#define dec_imvars uint32_t g2, g4, g9
743
#define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = \
744
(x) ^ gf_mulx(g4), g4 ^= g9, \
745
(x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ \
746
upr(g4, 2) ^ upr(g9, 1))
747
#endif
748
749
#if defined(FL4_SET)
750
#define ls_box(x, c) four_tables(x, t_use(f, l), vf1, rf2, c)
751
#elif defined(LS4_SET)
752
#define ls_box(x, c) four_tables(x, t_use(l, s), vf1, rf2, c)
753
#elif defined(FL1_SET)
754
#define ls_box(x, c) one_table(x, upr, t_use(f, l), vf1, rf2, c)
755
#elif defined(LS1_SET)
756
#define ls_box(x, c) one_table(x, upr, t_use(l, s), vf1, rf2, c)
757
#else
758
#define ls_box(x, c) no_table(x, t_use(s, box), vf1, rf2, c)
759
#endif
760
761
#endif
762
763
#if defined(ASM_X86_V1C) && defined(AES_DECRYPT) && !defined(ISB_SET)
764
#define ISB_SET
765
#endif
766
767
#ifdef __cplusplus
768
}
769
#endif
770
771
#endif /* _AESOPT_H */
772
773