Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/lua/lopcodes.h
48383 views
1
// SPDX-License-Identifier: MIT
2
/*
3
** $Id: lopcodes.h,v 1.142.1.2 2014/10/20 18:32:09 roberto Exp $
4
** Opcodes for Lua virtual machine
5
** See Copyright Notice in lua.h
6
*/
7
8
#ifndef lopcodes_h
9
#define lopcodes_h
10
11
#include "llimits.h"
12
13
14
/*===========================================================================
15
We assume that instructions are unsigned numbers.
16
All instructions have an opcode in the first 6 bits.
17
Instructions can have the following fields:
18
`A' : 8 bits
19
`B' : 9 bits
20
`C' : 9 bits
21
'Ax' : 26 bits ('A', 'B', and 'C' together)
22
`Bx' : 18 bits (`B' and `C' together)
23
`sBx' : signed Bx
24
25
A signed argument is represented in excess K; that is, the number
26
value is the unsigned value minus K. K is exactly the maximum value
27
for that argument (so that -max is represented by 0, and +max is
28
represented by 2*max), which is half the maximum for the corresponding
29
unsigned argument.
30
===========================================================================*/
31
32
33
enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
34
35
36
/*
37
** size and position of opcode arguments.
38
*/
39
#define SIZE_C 9
40
#define SIZE_B 9
41
#define SIZE_Bx (SIZE_C + SIZE_B)
42
#define SIZE_A 8
43
#define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A)
44
45
#define SIZE_OP 6
46
47
#define POS_OP 0
48
#define POS_A (POS_OP + SIZE_OP)
49
#define POS_C (POS_A + SIZE_A)
50
#define POS_B (POS_C + SIZE_C)
51
#define POS_Bx POS_C
52
#define POS_Ax POS_A
53
54
55
/*
56
** limits for opcode arguments.
57
** we use (signed) int to manipulate most arguments,
58
** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
59
*/
60
#if SIZE_Bx < LUAI_BITSINT-1
61
#define MAXARG_Bx ((1<<SIZE_Bx)-1)
62
#define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */
63
#else
64
#define MAXARG_Bx MAX_INT
65
#define MAXARG_sBx MAX_INT
66
#endif
67
68
#if SIZE_Ax < LUAI_BITSINT-1
69
#define MAXARG_Ax ((1<<SIZE_Ax)-1)
70
#else
71
#define MAXARG_Ax MAX_INT
72
#endif
73
74
75
#define MAXARG_A ((1<<SIZE_A)-1)
76
#define MAXARG_B ((1<<SIZE_B)-1)
77
#define MAXARG_C ((1<<SIZE_C)-1)
78
79
80
/* creates a mask with `n' 1 bits at position `p' */
81
#define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p))
82
83
/* creates a mask with `n' 0 bits at position `p' */
84
#define MASK0(n,p) (~MASK1(n,p))
85
86
/*
87
** the following macros help to manipulate instructions
88
*/
89
90
#define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
91
#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
92
((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
93
94
#define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0)))
95
#define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
96
((cast(Instruction, v)<<pos)&MASK1(size,pos))))
97
98
#define GETARG_A(i) getarg(i, POS_A, SIZE_A)
99
#define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A)
100
101
#define GETARG_B(i) getarg(i, POS_B, SIZE_B)
102
#define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B)
103
104
#define GETARG_C(i) getarg(i, POS_C, SIZE_C)
105
#define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C)
106
107
#define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx)
108
#define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
109
110
#define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax)
111
#define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
112
113
#define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
114
#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
115
116
117
#define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \
118
| (cast(Instruction, a)<<POS_A) \
119
| (cast(Instruction, b)<<POS_B) \
120
| (cast(Instruction, c)<<POS_C))
121
122
#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
123
| (cast(Instruction, a)<<POS_A) \
124
| (cast(Instruction, bc)<<POS_Bx))
125
126
#define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
127
| (cast(Instruction, a)<<POS_Ax))
128
129
130
/*
131
** Macros to operate RK indices
132
*/
133
134
/* this bit 1 means constant (0 means register) */
135
#define BITRK (1 << (SIZE_B - 1))
136
137
/* test whether value is a constant */
138
#define ISK(x) ((x) & BITRK)
139
140
/* gets the index of the constant */
141
#define INDEXK(r) ((int)(r) & ~BITRK)
142
143
#define MAXINDEXRK (BITRK - 1)
144
145
/* code a constant index as a RK value */
146
#define RKASK(x) ((x) | BITRK)
147
148
149
/*
150
** invalid register that fits in 8 bits
151
*/
152
#define NO_REG MAXARG_A
153
154
155
/*
156
** R(x) - register
157
** Kst(x) - constant (in constant table)
158
** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
159
*/
160
161
162
/*
163
** grep "ORDER OP" if you change these enums
164
*/
165
166
typedef enum {
167
/*----------------------------------------------------------------------
168
name args description
169
------------------------------------------------------------------------*/
170
OP_MOVE,/* A B R(A) := R(B) */
171
OP_LOADK,/* A Bx R(A) := Kst(Bx) */
172
OP_LOADKX,/* A R(A) := Kst(extra arg) */
173
OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
174
OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */
175
OP_GETUPVAL,/* A B R(A) := UpValue[B] */
176
177
OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */
178
OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
179
180
OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */
181
OP_SETUPVAL,/* A B UpValue[B] := R(A) */
182
OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
183
184
OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
185
186
OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
187
188
OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
189
OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
190
OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
191
OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
192
OP_MOD,/* A B C R(A) := RK(B) % RK(C) */
193
OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
194
OP_UNM,/* A B R(A) := -R(B) */
195
OP_NOT,/* A B R(A) := not R(B) */
196
OP_LEN,/* A B R(A) := length of R(B) */
197
198
OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
199
200
OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A - 1) */
201
OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
202
OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
203
OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
204
205
OP_TEST,/* A C if not (R(A) <=> C) then pc++ */
206
OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
207
208
OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
209
OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
210
OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
211
212
OP_FORLOOP,/* A sBx R(A)+=R(A+2);
213
if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
214
OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */
215
216
OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */
217
OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/
218
219
OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
220
221
OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */
222
223
OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */
224
225
OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */
226
} OpCode;
227
228
229
#define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1)
230
231
232
233
/*===========================================================================
234
Notes:
235
(*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is
236
set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
237
OP_SETLIST) may use `top'.
238
239
(*) In OP_VARARG, if (B == 0) then use actual number of varargs and
240
set top (like in OP_CALL with C == 0).
241
242
(*) In OP_RETURN, if (B == 0) then return up to `top'.
243
244
(*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next
245
'instruction' is EXTRAARG(real C).
246
247
(*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
248
249
(*) For comparisons, A specifies what condition the test should accept
250
(true or false).
251
252
(*) All `skips' (pc++) assume that next instruction is a jump.
253
254
===========================================================================*/
255
256
257
/*
258
** masks for instruction properties. The format is:
259
** bits 0-1: op mode
260
** bits 2-3: C arg mode
261
** bits 4-5: B arg mode
262
** bit 6: instruction set register A
263
** bit 7: operator is a test (next instruction must be a jump)
264
*/
265
266
enum OpArgMask {
267
OpArgN, /* argument is not used */
268
OpArgU, /* argument is used */
269
OpArgR, /* argument is a register or a jump offset */
270
OpArgK /* argument is a constant or register/constant */
271
};
272
273
LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
274
275
#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
276
#define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
277
#define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
278
#define testAMode(m) (luaP_opmodes[m] & (1 << 6))
279
#define testTMode(m) (luaP_opmodes[m] & (1 << 7))
280
281
282
LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */
283
284
285
/* number of list items to accumulate before a SETLIST instruction */
286
#define LFIELDS_PER_FLUSH 50
287
288
289
#endif
290
291