Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/os/linux/spl/spl-generic.c
48775 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
4
* Copyright (C) 2007 The Regents of the University of California.
5
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
6
* Written by Brian Behlendorf <[email protected]>.
7
* UCRL-CODE-235197
8
*
9
* This file is part of the SPL, Solaris Porting Layer.
10
*
11
* The SPL is free software; you can redistribute it and/or modify it
12
* under the terms of the GNU General Public License as published by the
13
* Free Software Foundation; either version 2 of the License, or (at your
14
* option) any later version.
15
*
16
* The SPL is distributed in the hope that it will be useful, but WITHOUT
17
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19
* for more details.
20
*
21
* You should have received a copy of the GNU General Public License along
22
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
23
*
24
* Solaris Porting Layer (SPL) Generic Implementation.
25
*/
26
27
#include <sys/isa_defs.h>
28
#include <sys/sysmacros.h>
29
#include <sys/systeminfo.h>
30
#include <sys/vmsystm.h>
31
#include <sys/kmem.h>
32
#include <sys/kmem_cache.h>
33
#include <sys/vmem.h>
34
#include <sys/mutex.h>
35
#include <sys/rwlock.h>
36
#include <sys/taskq.h>
37
#include <sys/tsd.h>
38
#include <sys/zmod.h>
39
#include <sys/debug.h>
40
#include <sys/proc.h>
41
#include <sys/kstat.h>
42
#include <sys/file.h>
43
#include <sys/sunddi.h>
44
#include <linux/ctype.h>
45
#include <sys/disp.h>
46
#include <sys/random.h>
47
#include <sys/string.h>
48
#include <linux/kmod.h>
49
#include <linux/mod_compat.h>
50
#include <sys/cred.h>
51
#include <sys/vnode.h>
52
#include <sys/misc.h>
53
#include <linux/mod_compat.h>
54
55
unsigned long spl_hostid = 0;
56
EXPORT_SYMBOL(spl_hostid);
57
58
module_param(spl_hostid, ulong, 0644);
59
MODULE_PARM_DESC(spl_hostid, "The system hostid.");
60
61
proc_t p0;
62
EXPORT_SYMBOL(p0);
63
64
/*
65
* xoshiro256++ 1.0 PRNG by David Blackman and Sebastiano Vigna
66
*
67
* "Scrambled Linear Pseudorandom Number Generators∗"
68
* https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf
69
*
70
* random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
71
* is to provide bytes containing random numbers. It is mapped to /dev/urandom
72
* on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
73
* random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
74
* we can implement it using a fast PRNG that we seed using Linux' actual
75
* equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
76
* with an independent seed so that all calls to random_get_pseudo_bytes() are
77
* free of atomic instructions.
78
*
79
* A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
80
* to generate words larger than 256 bits will paradoxically be limited to
81
* `2^256 - 1` possibilities. This is because we have a sequence of `2^256 - 1`
82
* 256-bit words and selecting the first will implicitly select the second. If
83
* a caller finds this behavior undesirable, random_get_bytes() should be used
84
* instead.
85
*
86
* XXX: Linux interrupt handlers that trigger within the critical section
87
* formed by `s[3] = xp[3];` and `xp[0] = s[0];` and call this function will
88
* see the same numbers. Nothing in the code currently calls this in an
89
* interrupt handler, so this is considered to be okay. If that becomes a
90
* problem, we could create a set of per-cpu variables for interrupt handlers
91
* and use them when in_interrupt() from linux/preempt_mask.h evaluates to
92
* true.
93
*/
94
static void __percpu *spl_pseudo_entropy;
95
96
/*
97
* rotl()/spl_rand_next()/spl_rand_jump() are copied from the following CC-0
98
* licensed file:
99
*
100
* https://prng.di.unimi.it/xoshiro256plusplus.c
101
*/
102
103
static inline uint64_t rotl(const uint64_t x, int k)
104
{
105
return ((x << k) | (x >> (64 - k)));
106
}
107
108
static inline uint64_t
109
spl_rand_next(uint64_t *s)
110
{
111
const uint64_t result = rotl(s[0] + s[3], 23) + s[0];
112
113
const uint64_t t = s[1] << 17;
114
115
s[2] ^= s[0];
116
s[3] ^= s[1];
117
s[1] ^= s[2];
118
s[0] ^= s[3];
119
120
s[2] ^= t;
121
122
s[3] = rotl(s[3], 45);
123
124
return (result);
125
}
126
127
static inline void
128
spl_rand_jump(uint64_t *s)
129
{
130
static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba,
131
0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };
132
133
uint64_t s0 = 0;
134
uint64_t s1 = 0;
135
uint64_t s2 = 0;
136
uint64_t s3 = 0;
137
int i, b;
138
for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++)
139
for (b = 0; b < 64; b++) {
140
if (JUMP[i] & 1ULL << b) {
141
s0 ^= s[0];
142
s1 ^= s[1];
143
s2 ^= s[2];
144
s3 ^= s[3];
145
}
146
(void) spl_rand_next(s);
147
}
148
149
s[0] = s0;
150
s[1] = s1;
151
s[2] = s2;
152
s[3] = s3;
153
}
154
155
int
156
random_get_pseudo_bytes(uint8_t *ptr, size_t len)
157
{
158
uint64_t *xp, s[4];
159
160
ASSERT(ptr);
161
162
xp = get_cpu_ptr(spl_pseudo_entropy);
163
164
s[0] = xp[0];
165
s[1] = xp[1];
166
s[2] = xp[2];
167
s[3] = xp[3];
168
169
while (len) {
170
union {
171
uint64_t ui64;
172
uint8_t byte[sizeof (uint64_t)];
173
}entropy;
174
int i = MIN(len, sizeof (uint64_t));
175
176
len -= i;
177
entropy.ui64 = spl_rand_next(s);
178
179
/*
180
* xoshiro256++ has low entropy lower bytes, so we copy the
181
* higher order bytes first.
182
*/
183
while (i--)
184
#ifdef _ZFS_BIG_ENDIAN
185
*ptr++ = entropy.byte[i];
186
#else
187
*ptr++ = entropy.byte[7 - i];
188
#endif
189
}
190
191
xp[0] = s[0];
192
xp[1] = s[1];
193
xp[2] = s[2];
194
xp[3] = s[3];
195
196
put_cpu_ptr(spl_pseudo_entropy);
197
198
return (0);
199
}
200
201
202
EXPORT_SYMBOL(random_get_pseudo_bytes);
203
204
#if BITS_PER_LONG == 32
205
206
/*
207
* Support 64/64 => 64 division on a 32-bit platform. While the kernel
208
* provides a div64_u64() function for this we do not use it because the
209
* implementation is flawed. There are cases which return incorrect
210
* results as late as linux-2.6.35. Until this is fixed upstream the
211
* spl must provide its own implementation.
212
*
213
* This implementation is a slightly modified version of the algorithm
214
* proposed by the book 'Hacker's Delight'. The original source can be
215
* found here and is available for use without restriction.
216
*
217
* http://www.hackersdelight.org/HDcode/newCode/divDouble.c
218
*/
219
220
/*
221
* Calculate number of leading of zeros for a 64-bit value.
222
*/
223
static int
224
nlz64(uint64_t x)
225
{
226
register int n = 0;
227
228
if (x == 0)
229
return (64);
230
231
if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; }
232
if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; }
233
if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n + 8; x = x << 8; }
234
if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n + 4; x = x << 4; }
235
if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n + 2; x = x << 2; }
236
if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n + 1; }
237
238
return (n);
239
}
240
241
/*
242
* Newer kernels have a div_u64() function but we define our own
243
* to simplify portability between kernel versions.
244
*/
245
static inline uint64_t
246
__div_u64(uint64_t u, uint32_t v)
247
{
248
(void) do_div(u, v);
249
return (u);
250
}
251
252
/*
253
* Turn off missing prototypes warning for these functions. They are
254
* replacements for libgcc-provided functions and will never be called
255
* directly.
256
*/
257
#if defined(__GNUC__) && !defined(__clang__)
258
#pragma GCC diagnostic push
259
#pragma GCC diagnostic ignored "-Wmissing-prototypes"
260
#endif
261
262
/*
263
* Implementation of 64-bit unsigned division for 32-bit machines.
264
*
265
* First the procedure takes care of the case in which the divisor is a
266
* 32-bit quantity. There are two subcases: (1) If the left half of the
267
* dividend is less than the divisor, one execution of do_div() is all that
268
* is required (overflow is not possible). (2) Otherwise it does two
269
* divisions, using the grade school method.
270
*/
271
uint64_t
272
__udivdi3(uint64_t u, uint64_t v)
273
{
274
uint64_t u0, u1, v1, q0, q1, k;
275
int n;
276
277
if (v >> 32 == 0) { // If v < 2**32:
278
if (u >> 32 < v) { // If u/v cannot overflow,
279
return (__div_u64(u, v)); // just do one division.
280
} else { // If u/v would overflow:
281
u1 = u >> 32; // Break u into two halves.
282
u0 = u & 0xFFFFFFFF;
283
q1 = __div_u64(u1, v); // First quotient digit.
284
k = u1 - q1 * v; // First remainder, < v.
285
u0 += (k << 32);
286
q0 = __div_u64(u0, v); // Seconds quotient digit.
287
return ((q1 << 32) + q0);
288
}
289
} else { // If v >= 2**32:
290
n = nlz64(v); // 0 <= n <= 31.
291
v1 = (v << n) >> 32; // Normalize divisor, MSB is 1.
292
u1 = u >> 1; // To ensure no overflow.
293
q1 = __div_u64(u1, v1); // Get quotient from
294
q0 = (q1 << n) >> 31; // Undo normalization and
295
// division of u by 2.
296
if (q0 != 0) // Make q0 correct or
297
q0 = q0 - 1; // too small by 1.
298
if ((u - q0 * v) >= v)
299
q0 = q0 + 1; // Now q0 is correct.
300
301
return (q0);
302
}
303
}
304
EXPORT_SYMBOL(__udivdi3);
305
306
#ifndef abs64
307
/* CSTYLED */
308
#define abs64(x) ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; })
309
#endif
310
311
/*
312
* Implementation of 64-bit signed division for 32-bit machines.
313
*/
314
int64_t
315
__divdi3(int64_t u, int64_t v)
316
{
317
int64_t q, t;
318
q = __udivdi3(abs64(u), abs64(v));
319
t = (u ^ v) >> 63; // If u, v have different
320
return ((q ^ t) - t); // signs, negate q.
321
}
322
EXPORT_SYMBOL(__divdi3);
323
324
/*
325
* Implementation of 64-bit unsigned modulo for 32-bit machines.
326
*/
327
uint64_t
328
__umoddi3(uint64_t dividend, uint64_t divisor)
329
{
330
return (dividend - (divisor * __udivdi3(dividend, divisor)));
331
}
332
EXPORT_SYMBOL(__umoddi3);
333
334
/* 64-bit signed modulo for 32-bit machines. */
335
int64_t
336
__moddi3(int64_t n, int64_t d)
337
{
338
int64_t q;
339
boolean_t nn = B_FALSE;
340
341
if (n < 0) {
342
nn = B_TRUE;
343
n = -n;
344
}
345
if (d < 0)
346
d = -d;
347
348
q = __umoddi3(n, d);
349
350
return (nn ? -q : q);
351
}
352
EXPORT_SYMBOL(__moddi3);
353
354
/*
355
* Implementation of 64-bit unsigned division/modulo for 32-bit machines.
356
*/
357
uint64_t
358
__udivmoddi4(uint64_t n, uint64_t d, uint64_t *r)
359
{
360
uint64_t q = __udivdi3(n, d);
361
if (r)
362
*r = n - d * q;
363
return (q);
364
}
365
EXPORT_SYMBOL(__udivmoddi4);
366
367
/*
368
* Implementation of 64-bit signed division/modulo for 32-bit machines.
369
*/
370
int64_t
371
__divmoddi4(int64_t n, int64_t d, int64_t *r)
372
{
373
int64_t q, rr;
374
boolean_t nn = B_FALSE;
375
boolean_t nd = B_FALSE;
376
if (n < 0) {
377
nn = B_TRUE;
378
n = -n;
379
}
380
if (d < 0) {
381
nd = B_TRUE;
382
d = -d;
383
}
384
385
q = __udivmoddi4(n, d, (uint64_t *)&rr);
386
387
if (nn != nd)
388
q = -q;
389
if (nn)
390
rr = -rr;
391
if (r)
392
*r = rr;
393
return (q);
394
}
395
EXPORT_SYMBOL(__divmoddi4);
396
397
#if defined(__arm) || defined(__arm__)
398
/*
399
* Implementation of 64-bit (un)signed division for 32-bit arm machines.
400
*
401
* Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned)
402
* long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
403
* and the remainder in {r2, r3}. The return type is specifically left
404
* set to 'void' to ensure the compiler does not overwrite these registers
405
* during the return. All results are in registers as per ABI
406
*/
407
void
408
__aeabi_uldivmod(uint64_t u, uint64_t v)
409
{
410
uint64_t res;
411
uint64_t mod;
412
413
res = __udivdi3(u, v);
414
mod = __umoddi3(u, v);
415
{
416
register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
417
register uint32_t r1 asm("r1") = (res >> 32);
418
register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
419
register uint32_t r3 asm("r3") = (mod >> 32);
420
421
asm volatile(""
422
: "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3) /* output */
423
: "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */
424
425
return; /* r0; */
426
}
427
}
428
EXPORT_SYMBOL(__aeabi_uldivmod);
429
430
void
431
__aeabi_ldivmod(int64_t u, int64_t v)
432
{
433
int64_t res;
434
uint64_t mod;
435
436
res = __divdi3(u, v);
437
mod = __umoddi3(u, v);
438
{
439
register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
440
register uint32_t r1 asm("r1") = (res >> 32);
441
register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
442
register uint32_t r3 asm("r3") = (mod >> 32);
443
444
asm volatile(""
445
: "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3) /* output */
446
: "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */
447
448
return; /* r0; */
449
}
450
}
451
EXPORT_SYMBOL(__aeabi_ldivmod);
452
#endif /* __arm || __arm__ */
453
454
#if defined(__GNUC__) && !defined(__clang__)
455
#pragma GCC diagnostic pop
456
#endif
457
458
#endif /* BITS_PER_LONG */
459
460
/*
461
* NOTE: The strtoxx behavior is solely based on my reading of the Solaris
462
* ddi_strtol(9F) man page. I have not verified the behavior of these
463
* functions against their Solaris counterparts. It is possible that I
464
* may have misinterpreted the man page or the man page is incorrect.
465
*/
466
int ddi_strtol(const char *, char **, int, long *);
467
int ddi_strtoull(const char *, char **, int, unsigned long long *);
468
int ddi_strtoll(const char *, char **, int, long long *);
469
470
#define define_ddi_strtox(type, valtype) \
471
int ddi_strto##type(const char *str, char **endptr, \
472
int base, valtype *result) \
473
{ \
474
valtype last_value, value = 0; \
475
char *ptr = (char *)str; \
476
int digit, minus = 0; \
477
\
478
while (strchr(" \t\n\r\f", *ptr)) \
479
++ptr; \
480
\
481
if (strlen(ptr) == 0) \
482
return (EINVAL); \
483
\
484
switch (*ptr) { \
485
case '-': \
486
minus = 1; \
487
zfs_fallthrough; \
488
case '+': \
489
++ptr; \
490
break; \
491
} \
492
\
493
/* Auto-detect base based on prefix */ \
494
if (!base) { \
495
if (str[0] == '0') { \
496
if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \
497
base = 16; /* hex */ \
498
ptr += 2; \
499
} else if (str[1] >= '0' && str[1] < '8') { \
500
base = 8; /* octal */ \
501
ptr += 1; \
502
} else { \
503
return (EINVAL); \
504
} \
505
} else { \
506
base = 10; /* decimal */ \
507
} \
508
} \
509
\
510
while (1) { \
511
if (isdigit(*ptr)) \
512
digit = *ptr - '0'; \
513
else if (isalpha(*ptr)) \
514
digit = tolower(*ptr) - 'a' + 10; \
515
else \
516
break; \
517
\
518
if (digit >= base) \
519
break; \
520
\
521
last_value = value; \
522
value = value * base + digit; \
523
if (last_value > value) /* Overflow */ \
524
return (ERANGE); \
525
\
526
ptr++; \
527
} \
528
\
529
*result = minus ? -value : value; \
530
\
531
if (endptr) \
532
*endptr = ptr; \
533
\
534
return (0); \
535
} \
536
537
define_ddi_strtox(l, long)
538
define_ddi_strtox(ull, unsigned long long)
539
define_ddi_strtox(ll, long long)
540
541
EXPORT_SYMBOL(ddi_strtol);
542
EXPORT_SYMBOL(ddi_strtoll);
543
EXPORT_SYMBOL(ddi_strtoull);
544
545
int
546
ddi_copyin(const void *from, void *to, size_t len, int flags)
547
{
548
/* Fake ioctl() issued by kernel, 'from' is a kernel address */
549
if (flags & FKIOCTL) {
550
memcpy(to, from, len);
551
return (0);
552
}
553
554
return (copyin(from, to, len));
555
}
556
EXPORT_SYMBOL(ddi_copyin);
557
558
/*
559
* Post a uevent to userspace whenever a new vdev adds to the pool. It is
560
* necessary to sync blkid information with udev, which zed daemon uses
561
* during device hotplug to identify the vdev.
562
*/
563
void
564
spl_signal_kobj_evt(struct block_device *bdev)
565
{
566
#if defined(HAVE_BDEV_KOBJ) || defined(HAVE_PART_TO_DEV)
567
#ifdef HAVE_BDEV_KOBJ
568
struct kobject *disk_kobj = bdev_kobj(bdev);
569
#else
570
struct kobject *disk_kobj = &part_to_dev(bdev->bd_part)->kobj;
571
#endif
572
if (disk_kobj) {
573
int ret = kobject_uevent(disk_kobj, KOBJ_CHANGE);
574
if (ret) {
575
pr_warn("ZFS: Sending event '%d' to kobject: '%s'"
576
" (%p): failed(ret:%d)\n", KOBJ_CHANGE,
577
kobject_name(disk_kobj), disk_kobj, ret);
578
}
579
}
580
#else
581
/*
582
* This is encountered if neither bdev_kobj() nor part_to_dev() is available
583
* in the kernel - likely due to an API change that needs to be chased down.
584
*/
585
#error "Unsupported kernel: unable to get struct kobj from bdev"
586
#endif
587
}
588
EXPORT_SYMBOL(spl_signal_kobj_evt);
589
590
int
591
ddi_copyout(const void *from, void *to, size_t len, int flags)
592
{
593
/* Fake ioctl() issued by kernel, 'from' is a kernel address */
594
if (flags & FKIOCTL) {
595
memcpy(to, from, len);
596
return (0);
597
}
598
599
return (copyout(from, to, len));
600
}
601
EXPORT_SYMBOL(ddi_copyout);
602
603
static int
604
spl_getattr(struct file *filp, struct kstat *stat)
605
{
606
int rc;
607
608
ASSERT(filp);
609
ASSERT(stat);
610
611
rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS,
612
AT_STATX_SYNC_AS_STAT);
613
if (rc)
614
return (-rc);
615
616
return (0);
617
}
618
619
/*
620
* Read the unique system identifier from the /etc/hostid file.
621
*
622
* The behavior of /usr/bin/hostid on Linux systems with the
623
* regular eglibc and coreutils is:
624
*
625
* 1. Generate the value if the /etc/hostid file does not exist
626
* or if the /etc/hostid file is less than four bytes in size.
627
*
628
* 2. If the /etc/hostid file is at least 4 bytes, then return
629
* the first four bytes [0..3] in native endian order.
630
*
631
* 3. Always ignore bytes [4..] if they exist in the file.
632
*
633
* Only the first four bytes are significant, even on systems that
634
* have a 64-bit word size.
635
*
636
* See:
637
*
638
* eglibc: sysdeps/unix/sysv/linux/gethostid.c
639
* coreutils: src/hostid.c
640
*
641
* Notes:
642
*
643
* The /etc/hostid file on Solaris is a text file that often reads:
644
*
645
* # DO NOT EDIT
646
* "0123456789"
647
*
648
* Directly copying this file to Linux results in a constant
649
* hostid of 4f442023 because the default comment constitutes
650
* the first four bytes of the file.
651
*
652
*/
653
654
static char *spl_hostid_path = HW_HOSTID_PATH;
655
module_param(spl_hostid_path, charp, 0444);
656
MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");
657
658
static int
659
hostid_read(uint32_t *hostid)
660
{
661
uint64_t size;
662
uint32_t value = 0;
663
int error;
664
loff_t off;
665
struct file *filp;
666
struct kstat stat;
667
668
filp = filp_open(spl_hostid_path, 0, 0);
669
670
if (IS_ERR(filp))
671
return (ENOENT);
672
673
error = spl_getattr(filp, &stat);
674
if (error) {
675
filp_close(filp, 0);
676
return (error);
677
}
678
size = stat.size;
679
// cppcheck-suppress sizeofwithnumericparameter
680
if (size < sizeof (HW_HOSTID_MASK)) {
681
filp_close(filp, 0);
682
return (EINVAL);
683
}
684
685
off = 0;
686
/*
687
* Read directly into the variable like eglibc does.
688
* Short reads are okay; native behavior is preserved.
689
*/
690
error = kernel_read(filp, &value, sizeof (value), &off);
691
if (error < 0) {
692
filp_close(filp, 0);
693
return (EIO);
694
}
695
696
/* Mask down to 32 bits like coreutils does. */
697
*hostid = (value & HW_HOSTID_MASK);
698
filp_close(filp, 0);
699
700
return (0);
701
}
702
703
/*
704
* Return the system hostid. Preferentially use the spl_hostid module option
705
* when set, otherwise use the value in the /etc/hostid file.
706
*/
707
uint32_t
708
zone_get_hostid(void *zone)
709
{
710
uint32_t hostid;
711
712
ASSERT0P(zone);
713
714
if (spl_hostid != 0)
715
return ((uint32_t)(spl_hostid & HW_HOSTID_MASK));
716
717
if (hostid_read(&hostid) == 0)
718
return (hostid);
719
720
return (0);
721
}
722
EXPORT_SYMBOL(zone_get_hostid);
723
724
static int
725
spl_kvmem_init(void)
726
{
727
int rc = 0;
728
729
rc = spl_kmem_init();
730
if (rc)
731
return (rc);
732
733
rc = spl_vmem_init();
734
if (rc) {
735
spl_kmem_fini();
736
return (rc);
737
}
738
739
return (rc);
740
}
741
742
/*
743
* We initialize the random number generator with 128 bits of entropy from the
744
* system random number generator. In the improbable case that we have a zero
745
* seed, we fallback to the system jiffies, unless it is also zero, in which
746
* situation we use a preprogrammed seed. We step forward by 2^64 iterations to
747
* initialize each of the per-cpu seeds so that the sequences generated on each
748
* CPU are guaranteed to never overlap in practice.
749
*/
750
static int __init
751
spl_random_init(void)
752
{
753
uint64_t s[4];
754
int i = 0;
755
756
spl_pseudo_entropy = __alloc_percpu(4 * sizeof (uint64_t),
757
sizeof (uint64_t));
758
759
if (!spl_pseudo_entropy)
760
return (-ENOMEM);
761
762
get_random_bytes(s, sizeof (s));
763
764
if (s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0) {
765
if (jiffies != 0) {
766
s[0] = jiffies;
767
s[1] = ~0 - jiffies;
768
s[2] = ~jiffies;
769
s[3] = jiffies - ~0;
770
} else {
771
(void) memcpy(s, "improbable seed", 16);
772
}
773
printk("SPL: get_random_bytes() returned 0 "
774
"when generating random seed. Setting initial seed to "
775
"0x%016llx%016llx%016llx%016llx.\n", cpu_to_be64(s[0]),
776
cpu_to_be64(s[1]), cpu_to_be64(s[2]), cpu_to_be64(s[3]));
777
}
778
779
for_each_possible_cpu(i) {
780
uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i);
781
782
spl_rand_jump(s);
783
784
wordp[0] = s[0];
785
wordp[1] = s[1];
786
wordp[2] = s[2];
787
wordp[3] = s[3];
788
}
789
790
return (0);
791
}
792
793
static void
794
spl_random_fini(void)
795
{
796
free_percpu(spl_pseudo_entropy);
797
}
798
799
static void
800
spl_kvmem_fini(void)
801
{
802
spl_vmem_fini();
803
spl_kmem_fini();
804
}
805
806
static int __init
807
spl_init(void)
808
{
809
int rc = 0;
810
811
if ((rc = spl_random_init()))
812
goto out0;
813
814
if ((rc = spl_kvmem_init()))
815
goto out1;
816
817
if ((rc = spl_tsd_init()))
818
goto out2;
819
820
if ((rc = spl_proc_init()))
821
goto out3;
822
823
if ((rc = spl_kstat_init()))
824
goto out4;
825
826
if ((rc = spl_taskq_init()))
827
goto out5;
828
829
if ((rc = spl_kmem_cache_init()))
830
goto out6;
831
832
if ((rc = spl_zlib_init()))
833
goto out7;
834
835
if ((rc = spl_zone_init()))
836
goto out8;
837
838
return (rc);
839
840
out8:
841
spl_zlib_fini();
842
out7:
843
spl_kmem_cache_fini();
844
out6:
845
spl_taskq_fini();
846
out5:
847
spl_kstat_fini();
848
out4:
849
spl_proc_fini();
850
out3:
851
spl_tsd_fini();
852
out2:
853
spl_kvmem_fini();
854
out1:
855
spl_random_fini();
856
out0:
857
return (rc);
858
}
859
860
static void __exit
861
spl_fini(void)
862
{
863
spl_zone_fini();
864
spl_zlib_fini();
865
spl_kmem_cache_fini();
866
spl_taskq_fini();
867
spl_kstat_fini();
868
spl_proc_fini();
869
spl_tsd_fini();
870
spl_kvmem_fini();
871
spl_random_fini();
872
}
873
874
module_init(spl_init);
875
module_exit(spl_fini);
876
877
MODULE_DESCRIPTION("Solaris Porting Layer");
878
MODULE_AUTHOR(ZFS_META_AUTHOR);
879
MODULE_LICENSE("GPL");
880
MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
881
882