Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c
48774 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
/*
23
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
24
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
25
* Rewritten for Linux by Brian Behlendorf <[email protected]>.
26
* LLNL-CODE-403049.
27
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
28
* Copyright (c) 2023, 2024, 2025, Klara, Inc.
29
*/
30
31
#include <sys/zfs_context.h>
32
#include <sys/spa_impl.h>
33
#include <sys/vdev_disk.h>
34
#include <sys/vdev_impl.h>
35
#include <sys/vdev_trim.h>
36
#include <sys/abd.h>
37
#include <sys/fs/zfs.h>
38
#include <sys/zio.h>
39
#include <linux/blkpg.h>
40
#include <linux/msdos_fs.h>
41
#include <linux/vfs_compat.h>
42
#include <linux/blk-cgroup.h>
43
44
/*
45
* Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying
46
* block_device. Since it carries the block_device inside, its convenient to
47
* just use the handle as a proxy.
48
*
49
* Linux 6.9.x uses a file for the same purpose.
50
*
51
* For pre-6.8, we just emulate this with a cast, since we don't need any of
52
* the other fields inside the handle.
53
*/
54
#if defined(HAVE_BDEV_OPEN_BY_PATH)
55
typedef struct bdev_handle zfs_bdev_handle_t;
56
#define BDH_BDEV(bdh) ((bdh)->bdev)
57
#define BDH_IS_ERR(bdh) (IS_ERR(bdh))
58
#define BDH_PTR_ERR(bdh) (PTR_ERR(bdh))
59
#define BDH_ERR_PTR(err) (ERR_PTR(err))
60
#elif defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
61
typedef struct file zfs_bdev_handle_t;
62
#define BDH_BDEV(bdh) (file_bdev(bdh))
63
#define BDH_IS_ERR(bdh) (IS_ERR(bdh))
64
#define BDH_PTR_ERR(bdh) (PTR_ERR(bdh))
65
#define BDH_ERR_PTR(err) (ERR_PTR(err))
66
#else
67
typedef void zfs_bdev_handle_t;
68
#define BDH_BDEV(bdh) ((struct block_device *)bdh)
69
#define BDH_IS_ERR(bdh) (IS_ERR(BDH_BDEV(bdh)))
70
#define BDH_PTR_ERR(bdh) (PTR_ERR(BDH_BDEV(bdh)))
71
#define BDH_ERR_PTR(err) (ERR_PTR(err))
72
#endif
73
74
typedef struct vdev_disk {
75
zfs_bdev_handle_t *vd_bdh;
76
krwlock_t vd_lock;
77
} vdev_disk_t;
78
79
/*
80
* Maximum number of segments to add to a bio (min 4). If this is higher than
81
* the maximum allowed by the device queue or the kernel itself, it will be
82
* clamped. Setting it to zero will cause the kernel's ideal size to be used.
83
*/
84
uint_t zfs_vdev_disk_max_segs = 0;
85
86
/*
87
* Unique identifier for the exclusive vdev holder.
88
*/
89
static void *zfs_vdev_holder = VDEV_HOLDER;
90
91
/*
92
* Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
93
* device is missing. The missing path may be transient since the links
94
* can be briefly removed and recreated in response to udev events.
95
*/
96
static uint_t zfs_vdev_open_timeout_ms = 1000;
97
98
/*
99
* Size of the "reserved" partition, in blocks.
100
*/
101
#define EFI_MIN_RESV_SIZE (16 * 1024)
102
103
/*
104
* BIO request failfast mask.
105
*/
106
107
static unsigned int zfs_vdev_failfast_mask = 1;
108
109
/*
110
* Convert SPA mode flags into bdev open mode flags.
111
*/
112
#ifdef HAVE_BLK_MODE_T
113
typedef blk_mode_t vdev_bdev_mode_t;
114
#define VDEV_BDEV_MODE_READ BLK_OPEN_READ
115
#define VDEV_BDEV_MODE_WRITE BLK_OPEN_WRITE
116
#define VDEV_BDEV_MODE_EXCL BLK_OPEN_EXCL
117
#define VDEV_BDEV_MODE_MASK (BLK_OPEN_READ|BLK_OPEN_WRITE|BLK_OPEN_EXCL)
118
#else
119
typedef fmode_t vdev_bdev_mode_t;
120
#define VDEV_BDEV_MODE_READ FMODE_READ
121
#define VDEV_BDEV_MODE_WRITE FMODE_WRITE
122
#define VDEV_BDEV_MODE_EXCL FMODE_EXCL
123
#define VDEV_BDEV_MODE_MASK (FMODE_READ|FMODE_WRITE|FMODE_EXCL)
124
#endif
125
126
static vdev_bdev_mode_t
127
vdev_bdev_mode(spa_mode_t smode)
128
{
129
ASSERT3U(smode, !=, SPA_MODE_UNINIT);
130
ASSERT0(smode & ~(SPA_MODE_READ|SPA_MODE_WRITE));
131
132
vdev_bdev_mode_t bmode = VDEV_BDEV_MODE_EXCL;
133
134
if (smode & SPA_MODE_READ)
135
bmode |= VDEV_BDEV_MODE_READ;
136
137
if (smode & SPA_MODE_WRITE)
138
bmode |= VDEV_BDEV_MODE_WRITE;
139
140
ASSERT(bmode & VDEV_BDEV_MODE_MASK);
141
ASSERT0(bmode & ~VDEV_BDEV_MODE_MASK);
142
143
return (bmode);
144
}
145
146
/*
147
* Returns the usable capacity (in bytes) for the partition or disk.
148
*/
149
static uint64_t
150
bdev_capacity(struct block_device *bdev)
151
{
152
#ifdef HAVE_BDEV_NR_BYTES
153
return (bdev_nr_bytes(bdev));
154
#else
155
return (i_size_read(bdev->bd_inode));
156
#endif
157
}
158
159
#if !defined(HAVE_BDEV_WHOLE)
160
static inline struct block_device *
161
bdev_whole(struct block_device *bdev)
162
{
163
return (bdev->bd_contains);
164
}
165
#endif
166
167
#if defined(HAVE_BDEVNAME)
168
#define vdev_bdevname(bdev, name) bdevname(bdev, name)
169
#else
170
static inline void
171
vdev_bdevname(struct block_device *bdev, char *name)
172
{
173
snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
174
}
175
#endif
176
177
/*
178
* Returns the maximum expansion capacity of the block device (in bytes).
179
*
180
* It is possible to expand a vdev when it has been created as a wholedisk
181
* and the containing block device has increased in capacity. Or when the
182
* partition containing the pool has been manually increased in size.
183
*
184
* This function is only responsible for calculating the potential expansion
185
* size so it can be reported by 'zpool list'. The efi_use_whole_disk() is
186
* responsible for verifying the expected partition layout in the wholedisk
187
* case, and updating the partition table if appropriate. Once the partition
188
* size has been increased the additional capacity will be visible using
189
* bdev_capacity().
190
*
191
* The returned maximum expansion capacity is always expected to be larger, or
192
* at the very least equal, to its usable capacity to prevent overestimating
193
* the pool expandsize.
194
*/
195
static uint64_t
196
bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
197
{
198
uint64_t psize;
199
int64_t available;
200
201
if (wholedisk && bdev != bdev_whole(bdev)) {
202
/*
203
* When reporting maximum expansion capacity for a wholedisk
204
* deduct any capacity which is expected to be lost due to
205
* alignment restrictions. Over reporting this value isn't
206
* harmful and would only result in slightly less capacity
207
* than expected post expansion.
208
* The estimated available space may be slightly smaller than
209
* bdev_capacity() for devices where the number of sectors is
210
* not a multiple of the alignment size and the partition layout
211
* is keeping less than PARTITION_END_ALIGNMENT bytes after the
212
* "reserved" EFI partition: in such cases return the device
213
* usable capacity.
214
*/
215
available = bdev_capacity(bdev_whole(bdev)) -
216
((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
217
PARTITION_END_ALIGNMENT) << SECTOR_BITS);
218
psize = MAX(available, bdev_capacity(bdev));
219
} else {
220
psize = bdev_capacity(bdev);
221
}
222
223
return (psize);
224
}
225
226
static void
227
vdev_disk_error(zio_t *zio)
228
{
229
/*
230
* This function can be called in interrupt context, for instance while
231
* handling IRQs coming from a misbehaving disk device; use printk()
232
* which is safe from any context.
233
*/
234
printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
235
"offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
236
zio->io_vd->vdev_path, zio->io_error, zio->io_type,
237
(u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
238
zio->io_flags);
239
}
240
241
static void
242
vdev_disk_kobj_evt_post(vdev_t *v)
243
{
244
vdev_disk_t *vd = v->vdev_tsd;
245
if (vd && vd->vd_bdh) {
246
spl_signal_kobj_evt(BDH_BDEV(vd->vd_bdh));
247
} else {
248
vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
249
v->vdev_path);
250
}
251
}
252
253
static zfs_bdev_handle_t *
254
vdev_blkdev_get_by_path(const char *path, spa_mode_t smode, void *holder)
255
{
256
vdev_bdev_mode_t bmode = vdev_bdev_mode(smode);
257
258
#if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
259
return (bdev_file_open_by_path(path, bmode, holder, NULL));
260
#elif defined(HAVE_BDEV_OPEN_BY_PATH)
261
return (bdev_open_by_path(path, bmode, holder, NULL));
262
#elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
263
return (blkdev_get_by_path(path, bmode, holder, NULL));
264
#else
265
return (blkdev_get_by_path(path, bmode, holder));
266
#endif
267
}
268
269
static void
270
vdev_blkdev_put(zfs_bdev_handle_t *bdh, spa_mode_t smode, void *holder)
271
{
272
#if defined(HAVE_BDEV_RELEASE)
273
return (bdev_release(bdh));
274
#elif defined(HAVE_BLKDEV_PUT_HOLDER)
275
return (blkdev_put(BDH_BDEV(bdh), holder));
276
#elif defined(HAVE_BLKDEV_PUT)
277
return (blkdev_put(BDH_BDEV(bdh), vdev_bdev_mode(smode)));
278
#else
279
fput(bdh);
280
#endif
281
}
282
283
static int
284
vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
285
uint64_t *logical_ashift, uint64_t *physical_ashift)
286
{
287
zfs_bdev_handle_t *bdh;
288
spa_mode_t smode = spa_mode(v->vdev_spa);
289
hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
290
vdev_disk_t *vd;
291
292
/* Must have a pathname and it must be absolute. */
293
if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
294
v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
295
vdev_dbgmsg(v, "invalid vdev_path");
296
return (SET_ERROR(EINVAL));
297
}
298
299
/*
300
* Reopen the device if it is currently open. When expanding a
301
* partition force re-scanning the partition table if userland
302
* did not take care of this already. We need to do this while closed
303
* in order to get an accurate updated block device size. Then
304
* since udev may need to recreate the device links increase the
305
* open retry timeout before reporting the device as unavailable.
306
*/
307
vd = v->vdev_tsd;
308
if (vd) {
309
char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
310
boolean_t reread_part = B_FALSE;
311
312
rw_enter(&vd->vd_lock, RW_WRITER);
313
bdh = vd->vd_bdh;
314
vd->vd_bdh = NULL;
315
316
if (bdh) {
317
struct block_device *bdev = BDH_BDEV(bdh);
318
if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
319
vdev_bdevname(bdev_whole(bdev), disk_name + 5);
320
/*
321
* If userland has BLKPG_RESIZE_PARTITION,
322
* then it should have updated the partition
323
* table already. We can detect this by
324
* comparing our current physical size
325
* with that of the device. If they are
326
* the same, then we must not have
327
* BLKPG_RESIZE_PARTITION or it failed to
328
* update the partition table online. We
329
* fallback to rescanning the partition
330
* table from the kernel below. However,
331
* if the capacity already reflects the
332
* updated partition, then we skip
333
* rescanning the partition table here.
334
*/
335
if (v->vdev_psize == bdev_capacity(bdev))
336
reread_part = B_TRUE;
337
}
338
339
vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
340
}
341
342
if (reread_part) {
343
bdh = vdev_blkdev_get_by_path(disk_name, smode,
344
zfs_vdev_holder);
345
if (!BDH_IS_ERR(bdh)) {
346
int error =
347
vdev_bdev_reread_part(BDH_BDEV(bdh));
348
vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
349
if (error == 0) {
350
timeout = MSEC2NSEC(
351
zfs_vdev_open_timeout_ms * 2);
352
}
353
}
354
}
355
} else {
356
vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
357
358
rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
359
rw_enter(&vd->vd_lock, RW_WRITER);
360
}
361
362
/*
363
* Devices are always opened by the path provided at configuration
364
* time. This means that if the provided path is a udev by-id path
365
* then drives may be re-cabled without an issue. If the provided
366
* path is a udev by-path path, then the physical location information
367
* will be preserved. This can be critical for more complicated
368
* configurations where drives are located in specific physical
369
* locations to maximize the systems tolerance to component failure.
370
*
371
* Alternatively, you can provide your own udev rule to flexibly map
372
* the drives as you see fit. It is not advised that you use the
373
* /dev/[hd]d devices which may be reordered due to probing order.
374
* Devices in the wrong locations will be detected by the higher
375
* level vdev validation.
376
*
377
* The specified paths may be briefly removed and recreated in
378
* response to udev events. This should be exceptionally unlikely
379
* because the zpool command makes every effort to verify these paths
380
* have already settled prior to reaching this point. Therefore,
381
* a ENOENT failure at this point is highly likely to be transient
382
* and it is reasonable to sleep and retry before giving up. In
383
* practice delays have been observed to be on the order of 100ms.
384
*
385
* When ERESTARTSYS is returned it indicates the block device is
386
* a zvol which could not be opened due to the deadlock detection
387
* logic in zvol_open(). Extend the timeout and retry the open
388
* subsequent attempts are expected to eventually succeed.
389
*/
390
hrtime_t start = gethrtime();
391
bdh = BDH_ERR_PTR(-ENXIO);
392
while (BDH_IS_ERR(bdh) && ((gethrtime() - start) < timeout)) {
393
bdh = vdev_blkdev_get_by_path(v->vdev_path, smode,
394
zfs_vdev_holder);
395
if (unlikely(BDH_PTR_ERR(bdh) == -ENOENT)) {
396
/*
397
* There is no point of waiting since device is removed
398
* explicitly
399
*/
400
if (v->vdev_removed)
401
break;
402
403
schedule_timeout_interruptible(MSEC_TO_TICK(10));
404
} else if (unlikely(BDH_PTR_ERR(bdh) == -ERESTARTSYS)) {
405
timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
406
continue;
407
} else if (BDH_IS_ERR(bdh)) {
408
break;
409
}
410
}
411
412
if (BDH_IS_ERR(bdh)) {
413
int error = -BDH_PTR_ERR(bdh);
414
vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
415
(u_longlong_t)(gethrtime() - start),
416
(u_longlong_t)timeout);
417
vd->vd_bdh = NULL;
418
v->vdev_tsd = vd;
419
rw_exit(&vd->vd_lock);
420
return (SET_ERROR(error));
421
} else {
422
vd->vd_bdh = bdh;
423
v->vdev_tsd = vd;
424
rw_exit(&vd->vd_lock);
425
}
426
427
struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
428
429
/* Determine the physical block size */
430
int physical_block_size = bdev_physical_block_size(bdev);
431
432
/* Determine the logical block size */
433
int logical_block_size = bdev_logical_block_size(bdev);
434
435
/*
436
* If the device has a write cache, clear the nowritecache flag,
437
* so that we start issuing flush requests again.
438
*/
439
v->vdev_nowritecache = !zfs_bdev_has_write_cache(bdev);
440
441
/* Set when device reports it supports TRIM. */
442
v->vdev_has_trim = bdev_discard_supported(bdev);
443
444
/* Set when device reports it supports secure TRIM. */
445
v->vdev_has_securetrim = bdev_secure_discard_supported(bdev);
446
447
/* Inform the ZIO pipeline that we are non-rotational */
448
v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(bdev));
449
450
/* Physical volume size in bytes for the partition */
451
*psize = bdev_capacity(bdev);
452
453
/* Physical volume size in bytes including possible expansion space */
454
*max_psize = bdev_max_capacity(bdev, v->vdev_wholedisk);
455
456
/* Based on the minimum sector size set the block size */
457
*physical_ashift = highbit64(MAX(physical_block_size,
458
SPA_MINBLOCKSIZE)) - 1;
459
460
*logical_ashift = highbit64(MAX(logical_block_size,
461
SPA_MINBLOCKSIZE)) - 1;
462
463
return (0);
464
}
465
466
static void
467
vdev_disk_close(vdev_t *v)
468
{
469
vdev_disk_t *vd = v->vdev_tsd;
470
471
if (v->vdev_reopening || vd == NULL)
472
return;
473
474
rw_enter(&vd->vd_lock, RW_WRITER);
475
476
if (vd->vd_bdh != NULL)
477
vdev_blkdev_put(vd->vd_bdh, spa_mode(v->vdev_spa),
478
zfs_vdev_holder);
479
480
v->vdev_tsd = NULL;
481
482
rw_exit(&vd->vd_lock);
483
rw_destroy(&vd->vd_lock);
484
kmem_free(vd, sizeof (vdev_disk_t));
485
}
486
487
/*
488
* preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
489
* replace it with preempt_schedule under the following condition:
490
*/
491
#if defined(CONFIG_ARM64) && \
492
defined(CONFIG_PREEMPTION) && \
493
defined(CONFIG_BLK_CGROUP)
494
#define preempt_schedule_notrace(x) preempt_schedule(x)
495
#endif
496
497
/*
498
* As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
499
* as an argument removing the need to set it with bio_set_dev(). This
500
* removes the need for all of the following compatibility code.
501
*/
502
#if !defined(HAVE_BIO_ALLOC_4ARG)
503
504
#if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
505
/*
506
* The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
507
* blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
508
* As a side effect the function was converted to GPL-only. Define our
509
* own version when needed which uses rcu_read_lock_sched().
510
*
511
* The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
512
* part, moving blkg_tryget into the private one. Define our own version.
513
*/
514
#if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
515
static inline bool
516
vdev_blkg_tryget(struct blkcg_gq *blkg)
517
{
518
struct percpu_ref *ref = &blkg->refcnt;
519
unsigned long __percpu *count;
520
bool rc;
521
522
rcu_read_lock_sched();
523
524
if (__ref_is_percpu(ref, &count)) {
525
this_cpu_inc(*count);
526
rc = true;
527
} else {
528
#ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
529
rc = atomic_long_inc_not_zero(&ref->data->count);
530
#else
531
rc = atomic_long_inc_not_zero(&ref->count);
532
#endif
533
}
534
535
rcu_read_unlock_sched();
536
537
return (rc);
538
}
539
#else
540
#define vdev_blkg_tryget(bg) blkg_tryget(bg)
541
#endif
542
#ifdef HAVE_BIO_SET_DEV_MACRO
543
/*
544
* The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
545
* GPL-only bio_associate_blkg() symbol thus inadvertently converting
546
* the entire macro. Provide a minimal version which always assigns the
547
* request queue's root_blkg to the bio.
548
*/
549
static inline void
550
vdev_bio_associate_blkg(struct bio *bio)
551
{
552
#if defined(HAVE_BIO_BDEV_DISK)
553
struct request_queue *q = bio->bi_bdev->bd_disk->queue;
554
#else
555
struct request_queue *q = bio->bi_disk->queue;
556
#endif
557
558
ASSERT3P(q, !=, NULL);
559
ASSERT0P(bio->bi_blkg);
560
561
if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
562
bio->bi_blkg = q->root_blkg;
563
}
564
565
#define bio_associate_blkg vdev_bio_associate_blkg
566
#else
567
static inline void
568
vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
569
{
570
#if defined(HAVE_BIO_BDEV_DISK)
571
struct request_queue *q = bdev->bd_disk->queue;
572
#else
573
struct request_queue *q = bio->bi_disk->queue;
574
#endif
575
bio_clear_flag(bio, BIO_REMAPPED);
576
if (bio->bi_bdev != bdev)
577
bio_clear_flag(bio, BIO_THROTTLED);
578
bio->bi_bdev = bdev;
579
580
ASSERT3P(q, !=, NULL);
581
ASSERT0P(bio->bi_blkg);
582
583
if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
584
bio->bi_blkg = q->root_blkg;
585
}
586
#define bio_set_dev vdev_bio_set_dev
587
#endif
588
#endif
589
#endif /* !HAVE_BIO_ALLOC_4ARG */
590
591
static inline void
592
vdev_submit_bio(struct bio *bio)
593
{
594
struct bio_list *bio_list = current->bio_list;
595
current->bio_list = NULL;
596
(void) submit_bio(bio);
597
current->bio_list = bio_list;
598
}
599
600
static inline struct bio *
601
vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
602
unsigned short nr_vecs)
603
{
604
struct bio *bio;
605
606
#ifdef HAVE_BIO_ALLOC_4ARG
607
bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
608
#else
609
bio = bio_alloc(gfp_mask, nr_vecs);
610
if (likely(bio != NULL))
611
bio_set_dev(bio, bdev);
612
#endif
613
614
return (bio);
615
}
616
617
static inline uint_t
618
vdev_bio_max_segs(struct block_device *bdev)
619
{
620
/*
621
* Smallest of the device max segs and the tunable max segs. Minimum
622
* 4, so there's room to finish split pages if they come up.
623
*/
624
const uint_t dev_max_segs = queue_max_segments(bdev_get_queue(bdev));
625
const uint_t tune_max_segs = (zfs_vdev_disk_max_segs > 0) ?
626
MAX(4, zfs_vdev_disk_max_segs) : dev_max_segs;
627
const uint_t max_segs = MIN(tune_max_segs, dev_max_segs);
628
629
#ifdef HAVE_BIO_MAX_SEGS
630
return (bio_max_segs(max_segs));
631
#else
632
return (MIN(max_segs, BIO_MAX_PAGES));
633
#endif
634
}
635
636
static inline uint_t
637
vdev_bio_max_bytes(struct block_device *bdev)
638
{
639
return (queue_max_sectors(bdev_get_queue(bdev)) << 9);
640
}
641
642
643
/*
644
* Virtual block IO object (VBIO)
645
*
646
* Linux block IO (BIO) objects have a limit on how many data segments (pages)
647
* they can hold. Depending on how they're allocated and structured, a large
648
* ZIO can require more than one BIO to be submitted to the kernel, which then
649
* all have to complete before we can return the completed ZIO back to ZFS.
650
*
651
* A VBIO is a wrapper around multiple BIOs, carrying everything needed to
652
* translate a ZIO down into the kernel block layer and back again.
653
*
654
* Note that these are only used for data ZIOs (read/write). Meta-operations
655
* (flush/trim) don't need multiple BIOs and so can just make the call
656
* directly.
657
*/
658
typedef struct {
659
zio_t *vbio_zio; /* parent zio */
660
661
struct block_device *vbio_bdev; /* blockdev to submit bios to */
662
663
abd_t *vbio_abd; /* abd carrying borrowed linear buf */
664
665
uint_t vbio_max_segs; /* max segs per bio */
666
667
uint_t vbio_max_bytes; /* max bytes per bio */
668
uint_t vbio_lbs_mask; /* logical block size mask */
669
670
uint64_t vbio_offset; /* start offset of next bio */
671
672
struct bio *vbio_bio; /* pointer to the current bio */
673
int vbio_flags; /* bio flags */
674
} vbio_t;
675
676
static vbio_t *
677
vbio_alloc(zio_t *zio, struct block_device *bdev, int flags)
678
{
679
vbio_t *vbio = kmem_zalloc(sizeof (vbio_t), KM_SLEEP);
680
681
vbio->vbio_zio = zio;
682
vbio->vbio_bdev = bdev;
683
vbio->vbio_abd = NULL;
684
vbio->vbio_max_segs = vdev_bio_max_segs(bdev);
685
vbio->vbio_max_bytes = vdev_bio_max_bytes(bdev);
686
vbio->vbio_lbs_mask = ~(bdev_logical_block_size(bdev)-1);
687
vbio->vbio_offset = zio->io_offset;
688
vbio->vbio_bio = NULL;
689
vbio->vbio_flags = flags;
690
691
return (vbio);
692
}
693
694
static void vbio_completion(struct bio *bio);
695
696
static int
697
vbio_add_page(vbio_t *vbio, struct page *page, uint_t size, uint_t offset)
698
{
699
struct bio *bio = vbio->vbio_bio;
700
uint_t ssize;
701
702
while (size > 0) {
703
if (bio == NULL) {
704
/* New BIO, allocate and set up */
705
bio = vdev_bio_alloc(vbio->vbio_bdev, GFP_NOIO,
706
vbio->vbio_max_segs);
707
VERIFY(bio);
708
709
BIO_BI_SECTOR(bio) = vbio->vbio_offset >> 9;
710
bio_set_op_attrs(bio,
711
vbio->vbio_zio->io_type == ZIO_TYPE_WRITE ?
712
WRITE : READ, vbio->vbio_flags);
713
714
if (vbio->vbio_bio) {
715
bio_chain(vbio->vbio_bio, bio);
716
vdev_submit_bio(vbio->vbio_bio);
717
}
718
vbio->vbio_bio = bio;
719
}
720
721
/*
722
* Only load as much of the current page data as will fit in
723
* the space left in the BIO, respecting lbs alignment. Older
724
* kernels will error if we try to overfill the BIO, while
725
* newer ones will accept it and split the BIO. This ensures
726
* everything works on older kernels, and avoids an additional
727
* overhead on the new.
728
*/
729
ssize = MIN(size, (vbio->vbio_max_bytes - BIO_BI_SIZE(bio)) &
730
vbio->vbio_lbs_mask);
731
if (ssize > 0 &&
732
bio_add_page(bio, page, ssize, offset) == ssize) {
733
/* Accepted, adjust and load any remaining. */
734
size -= ssize;
735
offset += ssize;
736
continue;
737
}
738
739
/* No room, set up for a new BIO and loop */
740
vbio->vbio_offset += BIO_BI_SIZE(bio);
741
742
/* Signal new BIO allocation wanted */
743
bio = NULL;
744
}
745
746
return (0);
747
}
748
749
/* Iterator callback to submit ABD pages to the vbio. */
750
static int
751
vbio_fill_cb(struct page *page, size_t off, size_t len, void *priv)
752
{
753
vbio_t *vbio = priv;
754
return (vbio_add_page(vbio, page, len, off));
755
}
756
757
/* Create some BIOs, fill them with data and submit them */
758
static void
759
vbio_submit(vbio_t *vbio, abd_t *abd, uint64_t size)
760
{
761
/*
762
* We plug so we can submit the BIOs as we go and only unplug them when
763
* they are fully created and submitted. This is important; if we don't
764
* plug, then the kernel may start executing earlier BIOs while we're
765
* still creating and executing later ones, and if the device goes
766
* away while that's happening, older kernels can get confused and
767
* trample memory.
768
*/
769
struct blk_plug plug;
770
blk_start_plug(&plug);
771
772
(void) abd_iterate_page_func(abd, 0, size, vbio_fill_cb, vbio);
773
ASSERT(vbio->vbio_bio);
774
775
vbio->vbio_bio->bi_end_io = vbio_completion;
776
vbio->vbio_bio->bi_private = vbio;
777
778
/*
779
* Once submitted, vbio_bio now owns vbio (through bi_private) and we
780
* can't touch it again. The bio may complete and vbio_completion() be
781
* called and free the vbio before this task is run again, so we must
782
* consider it invalid from this point.
783
*/
784
vdev_submit_bio(vbio->vbio_bio);
785
786
blk_finish_plug(&plug);
787
}
788
789
/* IO completion callback */
790
static void
791
vbio_completion(struct bio *bio)
792
{
793
vbio_t *vbio = bio->bi_private;
794
zio_t *zio = vbio->vbio_zio;
795
796
ASSERT(zio);
797
798
/* Capture and log any errors */
799
zio->io_error = bi_status_to_errno(bio->bi_status);
800
ASSERT3U(zio->io_error, >=, 0);
801
802
if (zio->io_error)
803
vdev_disk_error(zio);
804
805
/* Return the BIO to the kernel */
806
bio_put(bio);
807
808
/*
809
* We're likely in an interrupt context so we can't do ABD/memory work
810
* here; instead we stash vbio on the zio and take care of it in the
811
* done callback.
812
*/
813
ASSERT0P(zio->io_bio);
814
zio->io_bio = vbio;
815
816
zio_delay_interrupt(zio);
817
}
818
819
/*
820
* Iterator callback to count ABD pages and check their size & alignment.
821
*
822
* On Linux, each BIO segment can take a page pointer, and an offset+length of
823
* the data within that page. A page can be arbitrarily large ("compound"
824
* pages) but we still have to ensure the data portion is correctly sized and
825
* aligned to the logical block size, to ensure that if the kernel wants to
826
* split the BIO, the two halves will still be properly aligned.
827
*
828
* NOTE: if you change this function, change the copy in
829
* tests/zfs-tests/tests/functional/vdev_disk/page_alignment.c, and add test
830
* data there to validate the change you're making.
831
*/
832
typedef struct {
833
size_t blocksize;
834
int seen_first;
835
int seen_last;
836
} vdev_disk_check_alignment_t;
837
838
static int
839
vdev_disk_check_alignment_cb(struct page *page, size_t off, size_t len,
840
void *priv)
841
{
842
(void) page;
843
vdev_disk_check_alignment_t *s = priv;
844
845
/*
846
* The cardinal rule: a single on-disk block must never cross an
847
* physical (order-0) page boundary, as the kernel expects to be able
848
* to split at both LBS and page boundaries.
849
*
850
* This implies various alignment rules for the blocks in this
851
* (possibly compound) page, which we can check for.
852
*/
853
854
/*
855
* If the previous page did not end on a page boundary, then we
856
* can't proceed without creating a hole.
857
*/
858
if (s->seen_last)
859
return (1);
860
861
/* This page must contain only whole LBS-sized blocks. */
862
if (!IS_P2ALIGNED(len, s->blocksize))
863
return (1);
864
865
/*
866
* If this is not the first page in the ABD, then the data must start
867
* on a page-aligned boundary (so the kernel can split on page
868
* boundaries without having to deal with a hole). If it is, then
869
* it can start on LBS-alignment.
870
*/
871
if (s->seen_first) {
872
if (!IS_P2ALIGNED(off, PAGESIZE))
873
return (1);
874
} else {
875
if (!IS_P2ALIGNED(off, s->blocksize))
876
return (1);
877
s->seen_first = 1;
878
}
879
880
/*
881
* If this data does not end on a page-aligned boundary, then this
882
* must be the last page in the ABD, for the same reason.
883
*/
884
s->seen_last = !IS_P2ALIGNED(off+len, PAGESIZE);
885
886
return (0);
887
}
888
889
/*
890
* Check if we can submit the pages in this ABD to the kernel as-is. Returns
891
* the number of pages, or 0 if it can't be submitted like this.
892
*/
893
static boolean_t
894
vdev_disk_check_alignment(abd_t *abd, uint64_t size, struct block_device *bdev)
895
{
896
vdev_disk_check_alignment_t s = {
897
.blocksize = bdev_logical_block_size(bdev),
898
};
899
900
if (abd_iterate_page_func(abd, 0, size,
901
vdev_disk_check_alignment_cb, &s))
902
return (B_FALSE);
903
904
return (B_TRUE);
905
}
906
907
static int
908
vdev_disk_io_rw(zio_t *zio)
909
{
910
vdev_t *v = zio->io_vd;
911
vdev_disk_t *vd = v->vdev_tsd;
912
struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
913
int flags = 0;
914
915
/*
916
* Accessing outside the block device is never allowed.
917
*/
918
if (zio->io_offset + zio->io_size > bdev_capacity(bdev)) {
919
vdev_dbgmsg(zio->io_vd,
920
"Illegal access %llu size %llu, device size %llu",
921
(u_longlong_t)zio->io_offset,
922
(u_longlong_t)zio->io_size,
923
(u_longlong_t)bdev_capacity(bdev));
924
return (SET_ERROR(EIO));
925
}
926
927
if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
928
v->vdev_failfast == B_TRUE) {
929
bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
930
zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
931
}
932
933
/*
934
* Check alignment of the incoming ABD. If any part of it would require
935
* submitting a page that is not aligned to both the logical block size
936
* and the page size, then we take a copy into a new memory region with
937
* correct alignment. This should be impossible on a 512b LBS. On
938
* larger blocks, this can happen at least when a small number of
939
* blocks (usually 1) are allocated from a shared slab, or when
940
* abnormally-small data regions (eg gang headers) are mixed into the
941
* same ABD as larger allocations (eg aggregations).
942
*/
943
abd_t *abd = zio->io_abd;
944
if (!vdev_disk_check_alignment(abd, zio->io_size, bdev)) {
945
/* Allocate a new memory region with guaranteed alignment */
946
abd = abd_alloc_for_io(zio->io_size,
947
zio->io_abd->abd_flags & ABD_FLAG_META);
948
949
/* If we're writing copy our data into it */
950
if (zio->io_type == ZIO_TYPE_WRITE)
951
abd_copy(abd, zio->io_abd, zio->io_size);
952
953
/*
954
* False here would mean the new allocation has an invalid
955
* alignment too, which would mean that abd_alloc() is not
956
* guaranteeing this, or our logic in
957
* vdev_disk_check_alignment() is wrong. In either case,
958
* something in seriously wrong and its not safe to continue.
959
*/
960
VERIFY(vdev_disk_check_alignment(abd, zio->io_size, bdev));
961
}
962
963
/* Allocate vbio, with a pointer to the borrowed ABD if necessary */
964
vbio_t *vbio = vbio_alloc(zio, bdev, flags);
965
if (abd != zio->io_abd)
966
vbio->vbio_abd = abd;
967
968
/* Fill it with data pages and submit it to the kernel */
969
vbio_submit(vbio, abd, zio->io_size);
970
return (0);
971
}
972
973
static void
974
vdev_disk_io_flush_completion(struct bio *bio)
975
{
976
zio_t *zio = bio->bi_private;
977
zio->io_error = bi_status_to_errno(bio->bi_status);
978
if (zio->io_error == EOPNOTSUPP || zio->io_error == ENOTTY)
979
zio->io_error = SET_ERROR(ENOTSUP);
980
981
bio_put(bio);
982
ASSERT3S(zio->io_error, >=, 0);
983
if (zio->io_error)
984
vdev_disk_error(zio);
985
zio_interrupt(zio);
986
}
987
988
static int
989
vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
990
{
991
struct request_queue *q;
992
struct bio *bio;
993
994
q = bdev_get_queue(bdev);
995
if (!q)
996
return (SET_ERROR(ENXIO));
997
998
bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
999
if (unlikely(bio == NULL))
1000
return (SET_ERROR(ENOMEM));
1001
1002
bio->bi_end_io = vdev_disk_io_flush_completion;
1003
bio->bi_private = zio;
1004
bio_set_flush(bio);
1005
vdev_submit_bio(bio);
1006
invalidate_bdev(bdev);
1007
1008
return (0);
1009
}
1010
1011
static void
1012
vdev_disk_discard_end_io(struct bio *bio)
1013
{
1014
zio_t *zio = bio->bi_private;
1015
zio->io_error = bi_status_to_errno(bio->bi_status);
1016
1017
bio_put(bio);
1018
if (zio->io_error)
1019
vdev_disk_error(zio);
1020
zio_interrupt(zio);
1021
}
1022
1023
/*
1024
* Wrappers for the different secure erase and discard APIs. We use async
1025
* when available; in this case, *biop is set to the last bio in the chain.
1026
*/
1027
static int
1028
vdev_bdev_issue_secure_erase(zfs_bdev_handle_t *bdh, sector_t sector,
1029
sector_t nsect, struct bio **biop)
1030
{
1031
*biop = NULL;
1032
int error;
1033
1034
#if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
1035
error = blkdev_issue_secure_erase(BDH_BDEV(bdh),
1036
sector, nsect, GFP_NOFS);
1037
#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1038
error = __blkdev_issue_discard(BDH_BDEV(bdh),
1039
sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE, biop);
1040
#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1041
error = blkdev_issue_discard(BDH_BDEV(bdh),
1042
sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE);
1043
#else
1044
#error "unsupported kernel"
1045
#endif
1046
1047
return (error);
1048
}
1049
1050
static int
1051
vdev_bdev_issue_discard(zfs_bdev_handle_t *bdh, sector_t sector,
1052
sector_t nsect, struct bio **biop)
1053
{
1054
*biop = NULL;
1055
int error;
1056
1057
#if defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1058
error = __blkdev_issue_discard(BDH_BDEV(bdh),
1059
sector, nsect, GFP_NOFS, 0, biop);
1060
#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_NOFLAGS)
1061
error = __blkdev_issue_discard(BDH_BDEV(bdh),
1062
sector, nsect, GFP_NOFS, biop);
1063
#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1064
error = blkdev_issue_discard(BDH_BDEV(bdh),
1065
sector, nsect, GFP_NOFS, 0);
1066
#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_NOFLAGS)
1067
error = blkdev_issue_discard(BDH_BDEV(bdh),
1068
sector, nsect, GFP_NOFS);
1069
#else
1070
#error "unsupported kernel"
1071
#endif
1072
1073
return (error);
1074
}
1075
1076
/*
1077
* Entry point for TRIM ops. This calls the right wrapper for secure erase or
1078
* discard, and then does the appropriate finishing work for error vs success
1079
* and async vs sync.
1080
*/
1081
static int
1082
vdev_disk_io_trim(zio_t *zio)
1083
{
1084
int error;
1085
struct bio *bio;
1086
1087
zfs_bdev_handle_t *bdh = ((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh;
1088
sector_t sector = zio->io_offset >> 9;
1089
sector_t nsects = zio->io_size >> 9;
1090
1091
if (zio->io_trim_flags & ZIO_TRIM_SECURE)
1092
error = vdev_bdev_issue_secure_erase(bdh, sector, nsects, &bio);
1093
else
1094
error = vdev_bdev_issue_discard(bdh, sector, nsects, &bio);
1095
1096
if (error != 0)
1097
return (SET_ERROR(-error));
1098
1099
if (bio == NULL) {
1100
/*
1101
* This was a synchronous op that completed successfully, so
1102
* return it to ZFS immediately.
1103
*/
1104
zio_interrupt(zio);
1105
} else {
1106
/*
1107
* This was an asynchronous op; set up completion callback and
1108
* issue it.
1109
*/
1110
bio->bi_private = zio;
1111
bio->bi_end_io = vdev_disk_discard_end_io;
1112
vdev_submit_bio(bio);
1113
}
1114
1115
return (0);
1116
}
1117
1118
static void
1119
vdev_disk_io_start(zio_t *zio)
1120
{
1121
vdev_t *v = zio->io_vd;
1122
vdev_disk_t *vd = v->vdev_tsd;
1123
int error;
1124
1125
/*
1126
* If the vdev is closed, it's likely in the REMOVED or FAULTED state.
1127
* Nothing to be done here but return failure.
1128
*/
1129
if (vd == NULL) {
1130
zio->io_error = ENXIO;
1131
zio_interrupt(zio);
1132
return;
1133
}
1134
1135
rw_enter(&vd->vd_lock, RW_READER);
1136
1137
/*
1138
* If the vdev is closed, it's likely due to a failed reopen and is
1139
* in the UNAVAIL state. Nothing to be done here but return failure.
1140
*/
1141
if (vd->vd_bdh == NULL) {
1142
rw_exit(&vd->vd_lock);
1143
zio->io_error = ENXIO;
1144
zio_interrupt(zio);
1145
return;
1146
}
1147
1148
switch (zio->io_type) {
1149
case ZIO_TYPE_FLUSH:
1150
1151
if (!vdev_readable(v)) {
1152
/* Drive not there, can't flush */
1153
error = SET_ERROR(ENXIO);
1154
} else if (zfs_nocacheflush) {
1155
/* Flushing disabled by operator, declare success */
1156
error = 0;
1157
} else if (v->vdev_nowritecache) {
1158
/* This vdev not capable of flushing */
1159
error = SET_ERROR(ENOTSUP);
1160
} else {
1161
/*
1162
* Issue the flush. If successful, the response will
1163
* be handled in the completion callback, so we're done.
1164
*/
1165
error = vdev_disk_io_flush(BDH_BDEV(vd->vd_bdh), zio);
1166
if (error == 0) {
1167
rw_exit(&vd->vd_lock);
1168
return;
1169
}
1170
}
1171
1172
/* Couldn't issue the flush, so set the error and return it */
1173
rw_exit(&vd->vd_lock);
1174
zio->io_error = error;
1175
zio_execute(zio);
1176
return;
1177
1178
case ZIO_TYPE_TRIM:
1179
error = vdev_disk_io_trim(zio);
1180
rw_exit(&vd->vd_lock);
1181
if (error) {
1182
zio->io_error = error;
1183
zio_execute(zio);
1184
}
1185
return;
1186
1187
case ZIO_TYPE_READ:
1188
case ZIO_TYPE_WRITE:
1189
zio->io_target_timestamp = zio_handle_io_delay(zio);
1190
error = vdev_disk_io_rw(zio);
1191
rw_exit(&vd->vd_lock);
1192
if (error) {
1193
zio->io_error = error;
1194
zio_interrupt(zio);
1195
}
1196
return;
1197
1198
default:
1199
/*
1200
* Getting here means our parent vdev has made a very strange
1201
* request of us, and shouldn't happen. Assert here to force a
1202
* crash in dev builds, but in production return the IO
1203
* unhandled. The pool will likely suspend anyway but that's
1204
* nicer than crashing the kernel.
1205
*/
1206
ASSERT3S(zio->io_type, ==, -1);
1207
1208
rw_exit(&vd->vd_lock);
1209
zio->io_error = SET_ERROR(ENOTSUP);
1210
zio_interrupt(zio);
1211
return;
1212
}
1213
1214
__builtin_unreachable();
1215
}
1216
1217
static void
1218
vdev_disk_io_done(zio_t *zio)
1219
{
1220
/* If this was a read or write, we need to clean up the vbio */
1221
if (zio->io_bio != NULL) {
1222
vbio_t *vbio = zio->io_bio;
1223
zio->io_bio = NULL;
1224
1225
/*
1226
* If we copied the ABD before issuing it, clean up and return
1227
* the copy to the ADB, with changes if appropriate.
1228
*/
1229
if (vbio->vbio_abd != NULL) {
1230
if (zio->io_type == ZIO_TYPE_READ)
1231
abd_copy(zio->io_abd, vbio->vbio_abd,
1232
zio->io_size);
1233
1234
abd_free(vbio->vbio_abd);
1235
vbio->vbio_abd = NULL;
1236
}
1237
1238
/* Final cleanup */
1239
kmem_free(vbio, sizeof (vbio_t));
1240
}
1241
1242
/*
1243
* If the device returned EIO, we revalidate the media. If it is
1244
* determined the media has changed this triggers the asynchronous
1245
* removal of the device from the configuration.
1246
*/
1247
if (zio->io_error == EIO) {
1248
vdev_t *v = zio->io_vd;
1249
vdev_disk_t *vd = v->vdev_tsd;
1250
1251
if (!zfs_check_disk_status(BDH_BDEV(vd->vd_bdh))) {
1252
invalidate_bdev(BDH_BDEV(vd->vd_bdh));
1253
v->vdev_remove_wanted = B_TRUE;
1254
spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
1255
}
1256
}
1257
}
1258
1259
static void
1260
vdev_disk_hold(vdev_t *vd)
1261
{
1262
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1263
1264
/* We must have a pathname, and it must be absolute. */
1265
if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
1266
return;
1267
1268
/*
1269
* Only prefetch path and devid info if the device has
1270
* never been opened.
1271
*/
1272
if (vd->vdev_tsd != NULL)
1273
return;
1274
1275
}
1276
1277
static void
1278
vdev_disk_rele(vdev_t *vd)
1279
{
1280
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1281
1282
/* XXX: Implement me as a vnode rele for the device */
1283
}
1284
1285
vdev_ops_t vdev_disk_ops = {
1286
.vdev_op_init = NULL,
1287
.vdev_op_fini = NULL,
1288
.vdev_op_open = vdev_disk_open,
1289
.vdev_op_close = vdev_disk_close,
1290
.vdev_op_asize_to_psize = vdev_default_psize,
1291
.vdev_op_psize_to_asize = vdev_default_asize,
1292
.vdev_op_min_asize = vdev_default_min_asize,
1293
.vdev_op_min_alloc = NULL,
1294
.vdev_op_io_start = vdev_disk_io_start,
1295
.vdev_op_io_done = vdev_disk_io_done,
1296
.vdev_op_state_change = NULL,
1297
.vdev_op_need_resilver = NULL,
1298
.vdev_op_hold = vdev_disk_hold,
1299
.vdev_op_rele = vdev_disk_rele,
1300
.vdev_op_remap = NULL,
1301
.vdev_op_xlate = vdev_default_xlate,
1302
.vdev_op_rebuild_asize = NULL,
1303
.vdev_op_metaslab_init = NULL,
1304
.vdev_op_config_generate = NULL,
1305
.vdev_op_nparity = NULL,
1306
.vdev_op_ndisks = NULL,
1307
.vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
1308
.vdev_op_leaf = B_TRUE, /* leaf vdev */
1309
.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
1310
};
1311
1312
int
1313
param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1314
{
1315
uint_t val;
1316
int error;
1317
1318
error = kstrtouint(buf, 0, &val);
1319
if (error < 0)
1320
return (SET_ERROR(error));
1321
1322
if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
1323
return (SET_ERROR(-EINVAL));
1324
1325
error = param_set_uint(buf, kp);
1326
if (error < 0)
1327
return (SET_ERROR(error));
1328
1329
return (0);
1330
}
1331
1332
int
1333
param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1334
{
1335
uint_t val;
1336
int error;
1337
1338
error = kstrtouint(buf, 0, &val);
1339
if (error < 0)
1340
return (SET_ERROR(error));
1341
1342
if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1343
return (SET_ERROR(-EINVAL));
1344
1345
error = param_set_uint(buf, kp);
1346
if (error < 0)
1347
return (SET_ERROR(error));
1348
1349
return (0);
1350
}
1351
1352
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
1353
"Timeout before determining that a device is missing");
1354
1355
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
1356
"Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
1357
1358
ZFS_MODULE_PARAM(zfs_vdev_disk, zfs_vdev_disk_, max_segs, UINT, ZMOD_RW,
1359
"Maximum number of data segments to add to an IO request (min 4)");
1360
1361