Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/os/linux/zfs/zfs_dir.c
108059 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
23
/*
24
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25
* Copyright (c) 2013, 2016 by Delphix. All rights reserved.
26
* Copyright 2017 Nexenta Systems, Inc.
27
*/
28
29
#include <sys/types.h>
30
#include <sys/param.h>
31
#include <sys/time.h>
32
#include <sys/sysmacros.h>
33
#include <sys/vfs.h>
34
#include <sys/vnode.h>
35
#include <sys/file.h>
36
#include <sys/kmem.h>
37
#include <sys/uio.h>
38
#include <sys/pathname.h>
39
#include <sys/cmn_err.h>
40
#include <sys/errno.h>
41
#include <sys/stat.h>
42
#include <sys/sunddi.h>
43
#include <sys/random.h>
44
#include <sys/policy.h>
45
#include <sys/zfs_dir.h>
46
#include <sys/zfs_acl.h>
47
#include <sys/zfs_vnops.h>
48
#include <sys/fs/zfs.h>
49
#include <sys/zap.h>
50
#include <sys/dmu.h>
51
#include <sys/atomic.h>
52
#include <sys/zfs_ctldir.h>
53
#include <sys/zfs_fuid.h>
54
#include <sys/sa.h>
55
#include <sys/zfs_sa.h>
56
#include <sys/dmu_objset.h>
57
#include <sys/dsl_dir.h>
58
59
/*
60
* zfs_match_find() is used by zfs_dirent_lock() to perform zap lookups
61
* of names after deciding which is the appropriate lookup interface.
62
*/
63
static int
64
zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, const char *name,
65
matchtype_t mt, boolean_t update, int *deflags, pathname_t *rpnp,
66
uint64_t *zoid)
67
{
68
boolean_t conflict = B_FALSE;
69
int error;
70
71
if (zfsvfs->z_norm) {
72
size_t bufsz = 0;
73
char *buf = NULL;
74
75
if (rpnp) {
76
buf = rpnp->pn_buf;
77
bufsz = rpnp->pn_bufsize;
78
}
79
80
/*
81
* In the non-mixed case we only expect there would ever
82
* be one match, but we need to use the normalizing lookup.
83
*/
84
error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1,
85
zoid, mt, buf, bufsz, &conflict);
86
} else {
87
error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid);
88
}
89
90
/*
91
* Allow multiple entries provided the first entry is
92
* the object id. Non-zpl consumers may safely make
93
* use of the additional space.
94
*
95
* XXX: This should be a feature flag for compatibility
96
*/
97
if (error == EOVERFLOW)
98
error = 0;
99
100
if (zfsvfs->z_norm && !error && deflags)
101
*deflags = conflict ? ED_CASE_CONFLICT : 0;
102
103
*zoid = ZFS_DIRENT_OBJ(*zoid);
104
105
return (error);
106
}
107
108
/*
109
* Lock a directory entry. A dirlock on <dzp, name> protects that name
110
* in dzp's directory zap object. As long as you hold a dirlock, you can
111
* assume two things: (1) dzp cannot be reaped, and (2) no other thread
112
* can change the zap entry for (i.e. link or unlink) this name.
113
*
114
* Input arguments:
115
* dzp - znode for directory
116
* name - name of entry to lock
117
* flag - ZNEW: if the entry already exists, fail with EEXIST.
118
* ZEXISTS: if the entry does not exist, fail with ENOENT.
119
* ZSHARED: allow concurrent access with other ZSHARED callers.
120
* ZXATTR: we want dzp's xattr directory
121
* ZCILOOK: On a mixed sensitivity file system,
122
* this lookup should be case-insensitive.
123
* ZCIEXACT: On a purely case-insensitive file system,
124
* this lookup should be case-sensitive.
125
* ZRENAMING: we are locking for renaming, force narrow locks
126
* ZHAVELOCK: Don't grab the z_name_lock for this call. The
127
* current thread already holds it.
128
*
129
* Output arguments:
130
* zpp - pointer to the znode for the entry (NULL if there isn't one)
131
* dlpp - pointer to the dirlock for this entry (NULL on error)
132
* direntflags - (case-insensitive lookup only)
133
* flags if multiple case-sensitive matches exist in directory
134
* realpnp - (case-insensitive lookup only)
135
* actual name matched within the directory
136
*
137
* Return value: 0 on success or errno on failure.
138
*
139
* NOTE: Always checks for, and rejects, '.' and '..'.
140
* NOTE: For case-insensitive file systems we take wide locks (see below),
141
* but return znode pointers to a single match.
142
*/
143
int
144
zfs_dirent_lock(zfs_dirlock_t **dlpp, znode_t *dzp, char *name,
145
znode_t **zpp, int flag, int *direntflags, pathname_t *realpnp)
146
{
147
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
148
zfs_dirlock_t *dl;
149
boolean_t update;
150
matchtype_t mt = 0;
151
uint64_t zoid;
152
int error = 0;
153
int cmpflags;
154
155
*zpp = NULL;
156
*dlpp = NULL;
157
158
/*
159
* Verify that we are not trying to lock '.', '..', or '.zfs'
160
*/
161
if ((name[0] == '.' &&
162
(name[1] == '\0' || (name[1] == '.' && name[2] == '\0'))) ||
163
(zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0))
164
return (SET_ERROR(EEXIST));
165
166
/*
167
* Case sensitivity and normalization preferences are set when
168
* the file system is created. These are stored in the
169
* zfsvfs->z_case and zfsvfs->z_norm fields. These choices
170
* affect what vnodes can be cached in the DNLC, how we
171
* perform zap lookups, and the "width" of our dirlocks.
172
*
173
* A normal dirlock locks a single name. Note that with
174
* normalization a name can be composed multiple ways, but
175
* when normalized, these names all compare equal. A wide
176
* dirlock locks multiple names. We need these when the file
177
* system is supporting mixed-mode access. It is sometimes
178
* necessary to lock all case permutations of file name at
179
* once so that simultaneous case-insensitive/case-sensitive
180
* behaves as rationally as possible.
181
*/
182
183
/*
184
* When matching we may need to normalize & change case according to
185
* FS settings.
186
*
187
* Note that a normalized match is necessary for a case insensitive
188
* filesystem when the lookup request is not exact because normalization
189
* can fold case independent of normalizing code point sequences.
190
*
191
* See the table above zfs_dropname().
192
*/
193
if (zfsvfs->z_norm != 0) {
194
mt = MT_NORMALIZE;
195
196
/*
197
* Determine if the match needs to honor the case specified in
198
* lookup, and if so keep track of that so that during
199
* normalization we don't fold case.
200
*/
201
if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE &&
202
(flag & ZCIEXACT)) ||
203
(zfsvfs->z_case == ZFS_CASE_MIXED && !(flag & ZCILOOK))) {
204
mt |= MT_MATCH_CASE;
205
}
206
}
207
208
/*
209
* Only look in or update the DNLC if we are looking for the
210
* name on a file system that does not require normalization
211
* or case folding. We can also look there if we happen to be
212
* on a non-normalizing, mixed sensitivity file system IF we
213
* are looking for the exact name.
214
*
215
* Maybe can add TO-UPPERed version of name to dnlc in ci-only
216
* case for performance improvement?
217
*/
218
update = !zfsvfs->z_norm ||
219
(zfsvfs->z_case == ZFS_CASE_MIXED &&
220
!(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER) && !(flag & ZCILOOK));
221
222
/*
223
* ZRENAMING indicates we are in a situation where we should
224
* take narrow locks regardless of the file system's
225
* preferences for normalizing and case folding. This will
226
* prevent us deadlocking trying to grab the same wide lock
227
* twice if the two names happen to be case-insensitive
228
* matches.
229
*/
230
if (flag & ZRENAMING)
231
cmpflags = 0;
232
else
233
cmpflags = zfsvfs->z_norm;
234
235
/*
236
* Wait until there are no locks on this name.
237
*
238
* Don't grab the lock if it is already held. However, cannot
239
* have both ZSHARED and ZHAVELOCK together.
240
*/
241
ASSERT(!(flag & ZSHARED) || !(flag & ZHAVELOCK));
242
if (!(flag & ZHAVELOCK))
243
rw_enter(&dzp->z_name_lock, RW_READER);
244
245
mutex_enter(&dzp->z_lock);
246
for (;;) {
247
if (dzp->z_unlinked && !(flag & ZXATTR)) {
248
mutex_exit(&dzp->z_lock);
249
if (!(flag & ZHAVELOCK))
250
rw_exit(&dzp->z_name_lock);
251
return (SET_ERROR(ENOENT));
252
}
253
for (dl = dzp->z_dirlocks; dl != NULL; dl = dl->dl_next) {
254
if ((u8_strcmp(name, dl->dl_name, 0, cmpflags,
255
U8_UNICODE_LATEST, &error) == 0) || error != 0)
256
break;
257
}
258
if (error != 0) {
259
mutex_exit(&dzp->z_lock);
260
if (!(flag & ZHAVELOCK))
261
rw_exit(&dzp->z_name_lock);
262
return (SET_ERROR(ENOENT));
263
}
264
if (dl == NULL) {
265
/*
266
* Allocate a new dirlock and add it to the list.
267
*/
268
dl = kmem_alloc(sizeof (zfs_dirlock_t), KM_SLEEP);
269
cv_init(&dl->dl_cv, NULL, CV_DEFAULT, NULL);
270
dl->dl_name = name;
271
dl->dl_sharecnt = 0;
272
dl->dl_namelock = 0;
273
dl->dl_namesize = 0;
274
dl->dl_dzp = dzp;
275
dl->dl_next = dzp->z_dirlocks;
276
dzp->z_dirlocks = dl;
277
break;
278
}
279
if ((flag & ZSHARED) && dl->dl_sharecnt != 0)
280
break;
281
cv_wait(&dl->dl_cv, &dzp->z_lock);
282
}
283
284
/*
285
* If the z_name_lock was NOT held for this dirlock record it.
286
*/
287
if (flag & ZHAVELOCK)
288
dl->dl_namelock = 1;
289
290
if ((flag & ZSHARED) && ++dl->dl_sharecnt > 1 && dl->dl_namesize == 0) {
291
/*
292
* We're the second shared reference to dl. Make a copy of
293
* dl_name in case the first thread goes away before we do.
294
* Note that we initialize the new name before storing its
295
* pointer into dl_name, because the first thread may load
296
* dl->dl_name at any time. It'll either see the old value,
297
* which belongs to it, or the new shared copy; either is OK.
298
*/
299
dl->dl_namesize = strlen(dl->dl_name) + 1;
300
name = kmem_alloc(dl->dl_namesize, KM_SLEEP);
301
memcpy(name, dl->dl_name, dl->dl_namesize);
302
dl->dl_name = name;
303
}
304
305
mutex_exit(&dzp->z_lock);
306
307
/*
308
* We have a dirlock on the name. (Note that it is the dirlock,
309
* not the dzp's z_lock, that protects the name in the zap object.)
310
* See if there's an object by this name; if so, put a hold on it.
311
*/
312
if (flag & ZXATTR) {
313
error = sa_lookup(dzp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &zoid,
314
sizeof (zoid));
315
if (error == 0)
316
error = (zoid == 0 ? SET_ERROR(ENOENT) : 0);
317
} else {
318
error = zfs_match_find(zfsvfs, dzp, name, mt,
319
update, direntflags, realpnp, &zoid);
320
}
321
if (error) {
322
if (error != ENOENT || (flag & ZEXISTS)) {
323
zfs_dirent_unlock(dl);
324
return (error);
325
}
326
} else {
327
if (flag & ZNEW) {
328
zfs_dirent_unlock(dl);
329
return (SET_ERROR(EEXIST));
330
}
331
error = zfs_zget(zfsvfs, zoid, zpp);
332
if (error) {
333
zfs_dirent_unlock(dl);
334
return (error);
335
}
336
}
337
338
*dlpp = dl;
339
340
return (0);
341
}
342
343
/*
344
* Unlock this directory entry and wake anyone who was waiting for it.
345
*/
346
void
347
zfs_dirent_unlock(zfs_dirlock_t *dl)
348
{
349
znode_t *dzp = dl->dl_dzp;
350
zfs_dirlock_t **prev_dl, *cur_dl;
351
352
mutex_enter(&dzp->z_lock);
353
354
if (!dl->dl_namelock)
355
rw_exit(&dzp->z_name_lock);
356
357
if (dl->dl_sharecnt > 1) {
358
dl->dl_sharecnt--;
359
mutex_exit(&dzp->z_lock);
360
return;
361
}
362
prev_dl = &dzp->z_dirlocks;
363
while ((cur_dl = *prev_dl) != dl)
364
prev_dl = &cur_dl->dl_next;
365
*prev_dl = dl->dl_next;
366
cv_broadcast(&dl->dl_cv);
367
mutex_exit(&dzp->z_lock);
368
369
if (dl->dl_namesize != 0)
370
kmem_free(dl->dl_name, dl->dl_namesize);
371
cv_destroy(&dl->dl_cv);
372
kmem_free(dl, sizeof (*dl));
373
}
374
375
/*
376
* Look up an entry in a directory.
377
*
378
* NOTE: '.' and '..' are handled as special cases because
379
* no directory entries are actually stored for them. If this is
380
* the root of a filesystem, then '.zfs' is also treated as a
381
* special pseudo-directory.
382
*/
383
int
384
zfs_dirlook(znode_t *dzp, char *name, znode_t **zpp, int flags,
385
int *deflg, pathname_t *rpnp)
386
{
387
zfs_dirlock_t *dl;
388
znode_t *zp;
389
struct inode *ip;
390
int error = 0;
391
uint64_t parent;
392
393
if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) {
394
*zpp = dzp;
395
zhold(*zpp);
396
} else if (name[0] == '.' && name[1] == '.' && name[2] == 0) {
397
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
398
399
/*
400
* If we are a snapshot mounted under .zfs, return
401
* the inode pointer for the snapshot directory.
402
*/
403
if ((error = sa_lookup(dzp->z_sa_hdl,
404
SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0)
405
return (error);
406
407
if (parent == dzp->z_id && zfsvfs->z_parent != zfsvfs) {
408
error = zfsctl_root_lookup(zfsvfs->z_parent->z_ctldir,
409
"snapshot", &ip, 0, kcred, NULL, NULL);
410
*zpp = ITOZ(ip);
411
return (error);
412
}
413
rw_enter(&dzp->z_parent_lock, RW_READER);
414
error = zfs_zget(zfsvfs, parent, &zp);
415
if (error == 0)
416
*zpp = zp;
417
rw_exit(&dzp->z_parent_lock);
418
} else if (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) {
419
if (ZTOZSB(dzp)->z_show_ctldir == ZFS_SNAPDIR_DISABLED) {
420
return (SET_ERROR(ENOENT));
421
}
422
ip = zfsctl_root(dzp);
423
*zpp = ITOZ(ip);
424
} else {
425
int zf;
426
427
zf = ZEXISTS | ZSHARED;
428
if (flags & FIGNORECASE)
429
zf |= ZCILOOK;
430
431
error = zfs_dirent_lock(&dl, dzp, name, &zp, zf, deflg, rpnp);
432
if (error == 0) {
433
*zpp = zp;
434
zfs_dirent_unlock(dl);
435
dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */
436
}
437
rpnp = NULL;
438
}
439
440
if ((flags & FIGNORECASE) && rpnp && !error)
441
(void) strlcpy(rpnp->pn_buf, name, rpnp->pn_bufsize);
442
443
return (error);
444
}
445
446
/*
447
* unlinked Set (formerly known as the "delete queue") Error Handling
448
*
449
* When dealing with the unlinked set, we dmu_tx_hold_zap(), but we
450
* don't specify the name of the entry that we will be manipulating. We
451
* also fib and say that we won't be adding any new entries to the
452
* unlinked set, even though we might (this is to lower the minimum file
453
* size that can be deleted in a full filesystem). So on the small
454
* chance that the nlink list is using a fat zap (ie. has more than
455
* 2000 entries), we *may* not pre-read a block that's needed.
456
* Therefore it is remotely possible for some of the assertions
457
* regarding the unlinked set below to fail due to i/o error. On a
458
* nondebug system, this will result in the space being leaked.
459
*/
460
void
461
zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx)
462
{
463
zfsvfs_t *zfsvfs = ZTOZSB(zp);
464
465
ASSERT(zp->z_unlinked);
466
ASSERT0(ZTOI(zp)->i_nlink);
467
468
VERIFY3U(0, ==,
469
zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));
470
471
dataset_kstats_update_nunlinks_kstat(&zfsvfs->z_kstat, 1);
472
}
473
474
/*
475
* Clean up any znodes that had no links when we either crashed or
476
* (force) umounted the file system.
477
*/
478
static void
479
zfs_unlinked_drain_task(void *arg)
480
{
481
zfsvfs_t *zfsvfs = arg;
482
zap_cursor_t zc;
483
zap_attribute_t *zap = zap_attribute_alloc();
484
dmu_object_info_t doi;
485
znode_t *zp;
486
int error;
487
488
ASSERT3B(zfsvfs->z_draining, ==, B_TRUE);
489
490
/*
491
* Iterate over the contents of the unlinked set.
492
*/
493
for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_unlinkedobj);
494
zap_cursor_retrieve(&zc, zap) == 0 && !zfsvfs->z_drain_cancel;
495
zap_cursor_advance(&zc)) {
496
497
/*
498
* See what kind of object we have in list
499
*/
500
501
error = dmu_object_info(zfsvfs->z_os,
502
zap->za_first_integer, &doi);
503
if (error != 0)
504
continue;
505
506
ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) ||
507
(doi.doi_type == DMU_OT_DIRECTORY_CONTENTS));
508
/*
509
* We need to re-mark these list entries for deletion,
510
* so we pull them back into core and set zp->z_unlinked.
511
*/
512
error = zfs_zget(zfsvfs, zap->za_first_integer, &zp);
513
514
/*
515
* We may pick up znodes that are already marked for deletion.
516
* This could happen during the purge of an extended attribute
517
* directory. All we need to do is skip over them, since they
518
* are already in the system marked z_unlinked.
519
*/
520
if (error != 0)
521
continue;
522
523
zp->z_unlinked = B_TRUE;
524
525
/*
526
* zrele() decrements the znode's ref count and may cause
527
* it to be synchronously freed. We interrupt freeing
528
* of this znode by checking the return value of
529
* dmu_objset_zfs_unmounting() in dmu_free_long_range()
530
* when an unmount is requested.
531
*/
532
zrele(zp);
533
ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
534
}
535
zap_cursor_fini(&zc);
536
537
zfsvfs->z_draining = B_FALSE;
538
zfsvfs->z_drain_task = TASKQID_INVALID;
539
zap_attribute_free(zap);
540
}
541
542
/*
543
* Sets z_draining then tries to dispatch async unlinked drain.
544
* If that fails executes synchronous unlinked drain.
545
*/
546
void
547
zfs_unlinked_drain(zfsvfs_t *zfsvfs)
548
{
549
ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
550
ASSERT3B(zfsvfs->z_draining, ==, B_FALSE);
551
552
zfsvfs->z_draining = B_TRUE;
553
zfsvfs->z_drain_cancel = B_FALSE;
554
555
zfsvfs->z_drain_task = taskq_dispatch(
556
dsl_pool_unlinked_drain_taskq(dmu_objset_pool(zfsvfs->z_os)),
557
zfs_unlinked_drain_task, zfsvfs, TQ_SLEEP);
558
if (zfsvfs->z_drain_task == TASKQID_INVALID) {
559
zfs_dbgmsg("async zfs_unlinked_drain dispatch failed");
560
zfs_unlinked_drain_task(zfsvfs);
561
}
562
}
563
564
/*
565
* Wait for the unlinked drain taskq task to stop. This will interrupt the
566
* unlinked set processing if it is in progress.
567
*/
568
void
569
zfs_unlinked_drain_stop_wait(zfsvfs_t *zfsvfs)
570
{
571
ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
572
573
if (zfsvfs->z_draining) {
574
zfsvfs->z_drain_cancel = B_TRUE;
575
taskq_cancel_id(dsl_pool_unlinked_drain_taskq(
576
dmu_objset_pool(zfsvfs->z_os)), zfsvfs->z_drain_task,
577
B_TRUE);
578
zfsvfs->z_drain_task = TASKQID_INVALID;
579
zfsvfs->z_draining = B_FALSE;
580
}
581
}
582
583
/*
584
* Delete the entire contents of a directory. Return a count
585
* of the number of entries that could not be deleted. If we encounter
586
* an error, return a count of at least one so that the directory stays
587
* in the unlinked set.
588
*
589
* NOTE: this function assumes that the directory is inactive,
590
* so there is no need to lock its entries before deletion.
591
* Also, it assumes the directory contents is *only* regular
592
* files.
593
*/
594
static int
595
zfs_purgedir(znode_t *dzp)
596
{
597
zap_cursor_t zc;
598
zap_attribute_t *zap = zap_attribute_alloc();
599
znode_t *xzp;
600
dmu_tx_t *tx;
601
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
602
zfs_dirlock_t dl;
603
int skipped = 0;
604
int error;
605
606
for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id);
607
(error = zap_cursor_retrieve(&zc, zap)) == 0;
608
zap_cursor_advance(&zc)) {
609
error = zfs_zget(zfsvfs,
610
ZFS_DIRENT_OBJ(zap->za_first_integer), &xzp);
611
if (error) {
612
skipped += 1;
613
continue;
614
}
615
616
ASSERT(S_ISREG(ZTOI(xzp)->i_mode) ||
617
S_ISLNK(ZTOI(xzp)->i_mode));
618
619
tx = dmu_tx_create(zfsvfs->z_os);
620
dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
621
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap->za_name);
622
dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
623
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
624
/* Is this really needed ? */
625
zfs_sa_upgrade_txholds(tx, xzp);
626
dmu_tx_mark_netfree(tx);
627
error = dmu_tx_assign(tx, DMU_TX_WAIT);
628
if (error) {
629
dmu_tx_abort(tx);
630
zfs_zrele_async(xzp);
631
skipped += 1;
632
continue;
633
}
634
memset(&dl, 0, sizeof (dl));
635
dl.dl_dzp = dzp;
636
dl.dl_name = zap->za_name;
637
638
error = zfs_link_destroy(&dl, xzp, tx, 0, NULL);
639
if (error)
640
skipped += 1;
641
dmu_tx_commit(tx);
642
643
zfs_zrele_async(xzp);
644
}
645
zap_cursor_fini(&zc);
646
zap_attribute_free(zap);
647
if (error != ENOENT)
648
skipped += 1;
649
return (skipped);
650
}
651
652
void
653
zfs_rmnode(znode_t *zp)
654
{
655
zfsvfs_t *zfsvfs = ZTOZSB(zp);
656
objset_t *os = zfsvfs->z_os;
657
znode_t *xzp = NULL;
658
dmu_tx_t *tx;
659
znode_hold_t *zh;
660
uint64_t z_id = zp->z_id;
661
uint64_t acl_obj;
662
uint64_t xattr_obj;
663
uint64_t links;
664
int error;
665
666
ASSERT0(ZTOI(zp)->i_nlink);
667
ASSERT0(atomic_read(&ZTOI(zp)->i_count));
668
669
/*
670
* If this is an attribute directory, purge its contents.
671
*/
672
if (S_ISDIR(ZTOI(zp)->i_mode) && (zp->z_pflags & ZFS_XATTR)) {
673
if (zfs_purgedir(zp) != 0) {
674
/*
675
* Not enough space to delete some xattrs.
676
* Leave it in the unlinked set.
677
*/
678
zh = zfs_znode_hold_enter(zfsvfs, z_id);
679
zfs_znode_dmu_fini(zp);
680
zfs_znode_hold_exit(zfsvfs, zh);
681
return;
682
}
683
}
684
685
/*
686
* Free up all the data in the file. We don't do this for directories
687
* because we need truncate and remove to be in the same tx, like in
688
* zfs_znode_delete(). Otherwise, if we crash here we'll end up with
689
* an inconsistent truncated zap object in the delete queue. Note a
690
* truncated file is harmless since it only contains user data.
691
*/
692
if (S_ISREG(ZTOI(zp)->i_mode)) {
693
error = dmu_free_long_range(os, zp->z_id, 0, DMU_OBJECT_END);
694
if (error) {
695
/*
696
* Not enough space or we were interrupted by unmount.
697
* Leave the file in the unlinked set.
698
*/
699
zh = zfs_znode_hold_enter(zfsvfs, z_id);
700
zfs_znode_dmu_fini(zp);
701
zfs_znode_hold_exit(zfsvfs, zh);
702
return;
703
}
704
}
705
706
/*
707
* If the file has extended attributes, we're going to unlink
708
* the xattr dir.
709
*/
710
error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
711
&xattr_obj, sizeof (xattr_obj));
712
if (error == 0 && xattr_obj) {
713
error = zfs_zget(zfsvfs, xattr_obj, &xzp);
714
ASSERT0(error);
715
}
716
717
acl_obj = zfs_external_acl(zp);
718
719
/*
720
* Set up the final transaction.
721
*/
722
tx = dmu_tx_create(os);
723
dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
724
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
725
if (xzp) {
726
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL);
727
dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
728
}
729
if (acl_obj)
730
dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
731
732
zfs_sa_upgrade_txholds(tx, zp);
733
error = dmu_tx_assign(tx, DMU_TX_WAIT);
734
if (error) {
735
/*
736
* Not enough space to delete the file. Leave it in the
737
* unlinked set, leaking it until the fs is remounted (at
738
* which point we'll call zfs_unlinked_drain() to process it).
739
*/
740
dmu_tx_abort(tx);
741
zh = zfs_znode_hold_enter(zfsvfs, z_id);
742
zfs_znode_dmu_fini(zp);
743
zfs_znode_hold_exit(zfsvfs, zh);
744
goto out;
745
}
746
747
if (xzp) {
748
ASSERT0(error);
749
mutex_enter(&xzp->z_lock);
750
xzp->z_unlinked = B_TRUE; /* mark xzp for deletion */
751
clear_nlink(ZTOI(xzp)); /* no more links to it */
752
links = 0;
753
VERIFY0(sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
754
&links, sizeof (links), tx));
755
mutex_exit(&xzp->z_lock);
756
zfs_unlinked_add(xzp, tx);
757
}
758
759
mutex_enter(&os->os_dsl_dataset->ds_dir->dd_activity_lock);
760
761
/*
762
* Remove this znode from the unlinked set. If a has rollback has
763
* occurred while a file is open and unlinked. Then when the file
764
* is closed post rollback it will not exist in the rolled back
765
* version of the unlinked object.
766
*/
767
error = zap_remove_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
768
zp->z_id, tx);
769
VERIFY(error == 0 || error == ENOENT);
770
771
uint64_t count;
772
if (zap_count(os, zfsvfs->z_unlinkedobj, &count) == 0 && count == 0) {
773
cv_broadcast(&os->os_dsl_dataset->ds_dir->dd_activity_cv);
774
}
775
776
mutex_exit(&os->os_dsl_dataset->ds_dir->dd_activity_lock);
777
778
dataset_kstats_update_nunlinked_kstat(&zfsvfs->z_kstat, 1);
779
780
zfs_znode_delete(zp, tx);
781
782
dmu_tx_commit(tx);
783
out:
784
if (xzp)
785
zfs_zrele_async(xzp);
786
}
787
788
static uint64_t
789
zfs_dirent(znode_t *zp, uint64_t mode)
790
{
791
uint64_t de = zp->z_id;
792
793
if (ZTOZSB(zp)->z_version >= ZPL_VERSION_DIRENT_TYPE)
794
de |= IFTODT(mode) << 60;
795
return (de);
796
}
797
798
/*
799
* Link zp into dl. Can fail in the following cases :
800
* - if zp has been unlinked.
801
* - if the number of entries with the same hash (aka. colliding entries)
802
* exceed the capacity of a leaf-block of fatzap and splitting of the
803
* leaf-block does not help.
804
*/
805
int
806
zfs_link_create(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag)
807
{
808
znode_t *dzp = dl->dl_dzp;
809
zfsvfs_t *zfsvfs = ZTOZSB(zp);
810
uint64_t value;
811
int zp_is_dir = S_ISDIR(ZTOI(zp)->i_mode);
812
sa_bulk_attr_t bulk[5];
813
uint64_t mtime[2], ctime[2];
814
uint64_t links;
815
int count = 0;
816
int error;
817
818
mutex_enter(&zp->z_lock);
819
820
if (!(flag & ZRENAMING)) {
821
if (zp->z_unlinked) { /* no new links to unlinked zp */
822
ASSERT(!(flag & (ZNEW | ZEXISTS)));
823
mutex_exit(&zp->z_lock);
824
return (SET_ERROR(ENOENT));
825
}
826
if (!(flag & ZNEW)) {
827
/*
828
* ZNEW nodes come from zfs_mknode() where the link
829
* count has already been initialised
830
*/
831
inc_nlink(ZTOI(zp));
832
links = ZTOI(zp)->i_nlink;
833
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
834
NULL, &links, sizeof (links));
835
}
836
}
837
838
value = zfs_dirent(zp, zp->z_mode);
839
error = zap_add(ZTOZSB(zp)->z_os, dzp->z_id, dl->dl_name, 8, 1,
840
&value, tx);
841
842
/*
843
* zap_add could fail to add the entry if it exceeds the capacity of the
844
* leaf-block and zap_leaf_split() failed to help.
845
* The caller of this routine is responsible for failing the transaction
846
* which will rollback the SA updates done above.
847
*/
848
if (error != 0) {
849
if (!(flag & ZRENAMING) && !(flag & ZNEW))
850
drop_nlink(ZTOI(zp));
851
mutex_exit(&zp->z_lock);
852
return (error);
853
}
854
855
/*
856
* If we added a longname activate the SPA_FEATURE_LONGNAME.
857
*/
858
if (strlen(dl->dl_name) >= ZAP_MAXNAMELEN) {
859
dsl_dataset_t *ds = dmu_objset_ds(zfsvfs->z_os);
860
ds->ds_feature_activation[SPA_FEATURE_LONGNAME] =
861
(void *)B_TRUE;
862
}
863
864
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
865
&dzp->z_id, sizeof (dzp->z_id));
866
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
867
&zp->z_pflags, sizeof (zp->z_pflags));
868
869
if (!(flag & ZNEW)) {
870
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
871
ctime, sizeof (ctime));
872
zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime,
873
ctime);
874
}
875
error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
876
ASSERT0(error);
877
878
mutex_exit(&zp->z_lock);
879
880
mutex_enter(&dzp->z_lock);
881
dzp->z_size++;
882
if (zp_is_dir)
883
inc_nlink(ZTOI(dzp));
884
links = ZTOI(dzp)->i_nlink;
885
count = 0;
886
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
887
&dzp->z_size, sizeof (dzp->z_size));
888
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
889
&links, sizeof (links));
890
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
891
mtime, sizeof (mtime));
892
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
893
ctime, sizeof (ctime));
894
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
895
&dzp->z_pflags, sizeof (dzp->z_pflags));
896
zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime);
897
error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx);
898
ASSERT0(error);
899
mutex_exit(&dzp->z_lock);
900
901
return (0);
902
}
903
904
/*
905
* The match type in the code for this function should conform to:
906
*
907
* ------------------------------------------------------------------------
908
* fs type | z_norm | lookup type | match type
909
* ---------|-------------|-------------|----------------------------------
910
* CS !norm | 0 | 0 | 0 (exact)
911
* CS norm | formX | 0 | MT_NORMALIZE
912
* CI !norm | upper | !ZCIEXACT | MT_NORMALIZE
913
* CI !norm | upper | ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE
914
* CI norm | upper|formX | !ZCIEXACT | MT_NORMALIZE
915
* CI norm | upper|formX | ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE
916
* CM !norm | upper | !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE
917
* CM !norm | upper | ZCILOOK | MT_NORMALIZE
918
* CM norm | upper|formX | !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE
919
* CM norm | upper|formX | ZCILOOK | MT_NORMALIZE
920
*
921
* Abbreviations:
922
* CS = Case Sensitive, CI = Case Insensitive, CM = Case Mixed
923
* upper = case folding set by fs type on creation (U8_TEXTPREP_TOUPPER)
924
* formX = unicode normalization form set on fs creation
925
*/
926
static int
927
zfs_dropname(zfs_dirlock_t *dl, znode_t *zp, znode_t *dzp, dmu_tx_t *tx,
928
int flag)
929
{
930
int error;
931
932
if (ZTOZSB(zp)->z_norm) {
933
matchtype_t mt = MT_NORMALIZE;
934
935
if ((ZTOZSB(zp)->z_case == ZFS_CASE_INSENSITIVE &&
936
(flag & ZCIEXACT)) ||
937
(ZTOZSB(zp)->z_case == ZFS_CASE_MIXED &&
938
!(flag & ZCILOOK))) {
939
mt |= MT_MATCH_CASE;
940
}
941
942
error = zap_remove_norm(ZTOZSB(zp)->z_os, dzp->z_id,
943
dl->dl_name, mt, tx);
944
} else {
945
error = zap_remove(ZTOZSB(zp)->z_os, dzp->z_id, dl->dl_name,
946
tx);
947
}
948
949
return (error);
950
}
951
952
static int
953
zfs_drop_nlink_locked(znode_t *zp, dmu_tx_t *tx, boolean_t *unlinkedp)
954
{
955
zfsvfs_t *zfsvfs = ZTOZSB(zp);
956
int zp_is_dir = S_ISDIR(ZTOI(zp)->i_mode);
957
boolean_t unlinked = B_FALSE;
958
sa_bulk_attr_t bulk[3];
959
uint64_t mtime[2], ctime[2];
960
uint64_t links;
961
int count = 0;
962
int error;
963
964
if (zp_is_dir && !zfs_dirempty(zp))
965
return (SET_ERROR(ENOTEMPTY));
966
967
if (ZTOI(zp)->i_nlink <= zp_is_dir) {
968
zfs_panic_recover("zfs: link count on %lu is %u, "
969
"should be at least %u", zp->z_id,
970
(int)ZTOI(zp)->i_nlink, zp_is_dir + 1);
971
set_nlink(ZTOI(zp), zp_is_dir + 1);
972
}
973
drop_nlink(ZTOI(zp));
974
if (ZTOI(zp)->i_nlink == zp_is_dir) {
975
zp->z_unlinked = B_TRUE;
976
clear_nlink(ZTOI(zp));
977
unlinked = B_TRUE;
978
} else {
979
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs),
980
NULL, &ctime, sizeof (ctime));
981
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
982
NULL, &zp->z_pflags, sizeof (zp->z_pflags));
983
zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime,
984
ctime);
985
}
986
links = ZTOI(zp)->i_nlink;
987
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
988
NULL, &links, sizeof (links));
989
error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
990
ASSERT0(error);
991
992
if (unlinkedp != NULL)
993
*unlinkedp = unlinked;
994
else if (unlinked)
995
zfs_unlinked_add(zp, tx);
996
997
return (0);
998
}
999
1000
/*
1001
* Forcefully drop an nlink reference from (zp) and mark it for deletion if it
1002
* was the last link. This *must* only be done to znodes which have already
1003
* been zfs_link_destroy()'d with ZRENAMING. This is explicitly only used in
1004
* the error path of zfs_rename(), where we have to correct the nlink count if
1005
* we failed to link the target as well as failing to re-link the original
1006
* znodes.
1007
*/
1008
int
1009
zfs_drop_nlink(znode_t *zp, dmu_tx_t *tx, boolean_t *unlinkedp)
1010
{
1011
int error;
1012
1013
mutex_enter(&zp->z_lock);
1014
error = zfs_drop_nlink_locked(zp, tx, unlinkedp);
1015
mutex_exit(&zp->z_lock);
1016
1017
return (error);
1018
}
1019
1020
/*
1021
* Unlink zp from dl, and mark zp for deletion if this was the last link. Can
1022
* fail if zp is a mount point (EBUSY) or a non-empty directory (ENOTEMPTY).
1023
* If 'unlinkedp' is NULL, we put unlinked znodes on the unlinked list.
1024
* If it's non-NULL, we use it to indicate whether the znode needs deletion,
1025
* and it's the caller's job to do it.
1026
*/
1027
int
1028
zfs_link_destroy(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag,
1029
boolean_t *unlinkedp)
1030
{
1031
znode_t *dzp = dl->dl_dzp;
1032
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1033
int zp_is_dir = S_ISDIR(ZTOI(zp)->i_mode);
1034
boolean_t unlinked = B_FALSE;
1035
sa_bulk_attr_t bulk[5];
1036
uint64_t mtime[2], ctime[2];
1037
uint64_t links;
1038
int count = 0;
1039
int error;
1040
1041
if (!(flag & ZRENAMING)) {
1042
mutex_enter(&zp->z_lock);
1043
1044
if (zp_is_dir && !zfs_dirempty(zp)) {
1045
mutex_exit(&zp->z_lock);
1046
return (SET_ERROR(ENOTEMPTY));
1047
}
1048
1049
/*
1050
* If we get here, we are going to try to remove the object.
1051
* First try removing the name from the directory; if that
1052
* fails, return the error.
1053
*/
1054
error = zfs_dropname(dl, zp, dzp, tx, flag);
1055
if (error != 0) {
1056
mutex_exit(&zp->z_lock);
1057
return (error);
1058
}
1059
1060
/* The only error is !zfs_dirempty() and we checked earlier. */
1061
error = zfs_drop_nlink_locked(zp, tx, &unlinked);
1062
ASSERT0(error);
1063
mutex_exit(&zp->z_lock);
1064
} else {
1065
error = zfs_dropname(dl, zp, dzp, tx, flag);
1066
if (error != 0)
1067
return (error);
1068
}
1069
1070
mutex_enter(&dzp->z_lock);
1071
dzp->z_size--; /* one dirent removed */
1072
if (zp_is_dir)
1073
drop_nlink(ZTOI(dzp)); /* ".." link from zp */
1074
links = ZTOI(dzp)->i_nlink;
1075
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
1076
NULL, &links, sizeof (links));
1077
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1078
NULL, &dzp->z_size, sizeof (dzp->z_size));
1079
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs),
1080
NULL, ctime, sizeof (ctime));
1081
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
1082
NULL, mtime, sizeof (mtime));
1083
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1084
NULL, &dzp->z_pflags, sizeof (dzp->z_pflags));
1085
zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime);
1086
error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx);
1087
ASSERT0(error);
1088
mutex_exit(&dzp->z_lock);
1089
1090
if (unlinkedp != NULL)
1091
*unlinkedp = unlinked;
1092
else if (unlinked)
1093
zfs_unlinked_add(zp, tx);
1094
1095
return (0);
1096
}
1097
1098
/*
1099
* Indicate whether the directory is empty. Works with or without z_lock
1100
* held, but can only be consider a hint in the latter case. Returns true
1101
* if only "." and ".." remain and there's no work in progress.
1102
*
1103
* The internal ZAP size, rather than zp->z_size, needs to be checked since
1104
* some consumers (Lustre) do not strictly maintain an accurate SA_ZPL_SIZE.
1105
*/
1106
boolean_t
1107
zfs_dirempty(znode_t *dzp)
1108
{
1109
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1110
uint64_t count;
1111
int error;
1112
1113
if (dzp->z_dirlocks != NULL)
1114
return (B_FALSE);
1115
1116
error = zap_count(zfsvfs->z_os, dzp->z_id, &count);
1117
if (error != 0 || count != 0)
1118
return (B_FALSE);
1119
1120
return (B_TRUE);
1121
}
1122
1123
int
1124
zfs_make_xattrdir(znode_t *zp, vattr_t *vap, znode_t **xzpp, cred_t *cr)
1125
{
1126
zfsvfs_t *zfsvfs = ZTOZSB(zp);
1127
znode_t *xzp;
1128
dmu_tx_t *tx;
1129
int error;
1130
zfs_acl_ids_t acl_ids;
1131
boolean_t fuid_dirtied;
1132
#ifdef ZFS_DEBUG
1133
uint64_t parent;
1134
#endif
1135
1136
*xzpp = NULL;
1137
1138
if ((error = zfs_acl_ids_create(zp, IS_XATTR, vap, cr, NULL,
1139
&acl_ids, zfs_init_idmap)) != 0)
1140
return (error);
1141
if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zp->z_projid)) {
1142
zfs_acl_ids_free(&acl_ids);
1143
return (SET_ERROR(EDQUOT));
1144
}
1145
1146
tx = dmu_tx_create(zfsvfs->z_os);
1147
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1148
ZFS_SA_BASE_ATTR_SIZE);
1149
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1150
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1151
fuid_dirtied = zfsvfs->z_fuid_dirty;
1152
if (fuid_dirtied)
1153
zfs_fuid_txhold(zfsvfs, tx);
1154
error = dmu_tx_assign(tx, DMU_TX_WAIT);
1155
if (error) {
1156
zfs_acl_ids_free(&acl_ids);
1157
dmu_tx_abort(tx);
1158
return (error);
1159
}
1160
zfs_mknode(zp, vap, tx, cr, IS_XATTR, &xzp, &acl_ids);
1161
1162
if (fuid_dirtied)
1163
zfs_fuid_sync(zfsvfs, tx);
1164
1165
#ifdef ZFS_DEBUG
1166
error = sa_lookup(xzp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1167
&parent, sizeof (parent));
1168
ASSERT(error == 0 && parent == zp->z_id);
1169
#endif
1170
1171
VERIFY0(sa_update(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xzp->z_id,
1172
sizeof (xzp->z_id), tx));
1173
1174
if (!zp->z_unlinked)
1175
zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp, xzp, "", NULL,
1176
acl_ids.z_fuidp, vap);
1177
1178
zfs_acl_ids_free(&acl_ids);
1179
dmu_tx_commit(tx);
1180
1181
*xzpp = xzp;
1182
1183
return (0);
1184
}
1185
1186
/*
1187
* Return a znode for the extended attribute directory for zp.
1188
* ** If the directory does not already exist, it is created **
1189
*
1190
* IN: zp - znode to obtain attribute directory from
1191
* cr - credentials of caller
1192
* flags - flags from the VOP_LOOKUP call
1193
*
1194
* OUT: xipp - pointer to extended attribute znode
1195
*
1196
* RETURN: 0 on success
1197
* error number on failure
1198
*/
1199
int
1200
zfs_get_xattrdir(znode_t *zp, znode_t **xzpp, cred_t *cr, int flags)
1201
{
1202
zfsvfs_t *zfsvfs = ZTOZSB(zp);
1203
znode_t *xzp;
1204
zfs_dirlock_t *dl;
1205
vattr_t va;
1206
int error;
1207
top:
1208
error = zfs_dirent_lock(&dl, zp, "", &xzp, ZXATTR, NULL, NULL);
1209
if (error)
1210
return (error);
1211
1212
if (xzp != NULL) {
1213
*xzpp = xzp;
1214
zfs_dirent_unlock(dl);
1215
return (0);
1216
}
1217
1218
if (!(flags & CREATE_XATTR_DIR)) {
1219
zfs_dirent_unlock(dl);
1220
return (SET_ERROR(ENOENT));
1221
}
1222
1223
if (zfs_is_readonly(zfsvfs)) {
1224
zfs_dirent_unlock(dl);
1225
return (SET_ERROR(EROFS));
1226
}
1227
1228
/*
1229
* The ability to 'create' files in an attribute
1230
* directory comes from the write_xattr permission on the base file.
1231
*
1232
* The ability to 'search' an attribute directory requires
1233
* read_xattr permission on the base file.
1234
*
1235
* Once in a directory the ability to read/write attributes
1236
* is controlled by the permissions on the attribute file.
1237
*/
1238
va.va_mask = ATTR_MODE | ATTR_UID | ATTR_GID;
1239
va.va_mode = S_IFDIR | S_ISVTX | 0777;
1240
zfs_fuid_map_ids(zp, cr, &va.va_uid, &va.va_gid);
1241
1242
va.va_dentry = NULL;
1243
error = zfs_make_xattrdir(zp, &va, xzpp, cr);
1244
zfs_dirent_unlock(dl);
1245
1246
if (error == ERESTART) {
1247
/* NB: we already did dmu_tx_wait() if necessary */
1248
goto top;
1249
}
1250
1251
return (error);
1252
}
1253
1254
/*
1255
* Decide whether it is okay to remove within a sticky directory.
1256
*
1257
* In sticky directories, write access is not sufficient;
1258
* you can remove entries from a directory only if:
1259
*
1260
* you own the directory,
1261
* you own the entry,
1262
* you have write access to the entry,
1263
* or you are privileged (checked in secpolicy...).
1264
*
1265
* The function returns 0 if remove access is granted.
1266
*/
1267
int
1268
zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr)
1269
{
1270
uid_t uid;
1271
uid_t downer;
1272
uid_t fowner;
1273
zfsvfs_t *zfsvfs = ZTOZSB(zdp);
1274
1275
if (zfsvfs->z_replay)
1276
return (0);
1277
1278
if ((zdp->z_mode & S_ISVTX) == 0)
1279
return (0);
1280
1281
downer = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(ZTOI(zdp)->i_uid),
1282
cr, ZFS_OWNER);
1283
fowner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(ZTOI(zp)->i_uid),
1284
cr, ZFS_OWNER);
1285
1286
if ((uid = crgetuid(cr)) == downer || uid == fowner ||
1287
zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr,
1288
zfs_init_idmap) == 0)
1289
return (0);
1290
else
1291
return (secpolicy_vnode_remove(cr));
1292
}
1293
1294