Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/os/linux/zfs/zfs_vfsops.c
48774 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
/*
23
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25
*/
26
27
/* Portions Copyright 2010 Robert Milkowski */
28
29
#include <sys/types.h>
30
#include <sys/param.h>
31
#include <sys/sysmacros.h>
32
#include <sys/kmem.h>
33
#include <sys/pathname.h>
34
#include <sys/vnode.h>
35
#include <sys/vfs.h>
36
#include <sys/mntent.h>
37
#include <sys/cmn_err.h>
38
#include <sys/zfs_znode.h>
39
#include <sys/zfs_vnops.h>
40
#include <sys/zfs_dir.h>
41
#include <sys/zil.h>
42
#include <sys/fs/zfs.h>
43
#include <sys/dmu.h>
44
#include <sys/dsl_prop.h>
45
#include <sys/dsl_dataset.h>
46
#include <sys/dsl_deleg.h>
47
#include <sys/spa.h>
48
#include <sys/zap.h>
49
#include <sys/sa.h>
50
#include <sys/sa_impl.h>
51
#include <sys/policy.h>
52
#include <sys/atomic.h>
53
#include <sys/zfs_ioctl.h>
54
#include <sys/zfs_ctldir.h>
55
#include <sys/zfs_fuid.h>
56
#include <sys/zfs_quota.h>
57
#include <sys/sunddi.h>
58
#include <sys/dmu_objset.h>
59
#include <sys/dsl_dir.h>
60
#include <sys/objlist.h>
61
#include <sys/zfeature.h>
62
#include <sys/zpl.h>
63
#include <linux/vfs_compat.h>
64
#include <linux/fs.h>
65
#include "zfs_comutil.h"
66
67
enum {
68
TOKEN_RO,
69
TOKEN_RW,
70
TOKEN_SETUID,
71
TOKEN_NOSETUID,
72
TOKEN_EXEC,
73
TOKEN_NOEXEC,
74
TOKEN_DEVICES,
75
TOKEN_NODEVICES,
76
TOKEN_DIRXATTR,
77
TOKEN_SAXATTR,
78
TOKEN_XATTR,
79
TOKEN_NOXATTR,
80
TOKEN_ATIME,
81
TOKEN_NOATIME,
82
TOKEN_RELATIME,
83
TOKEN_NORELATIME,
84
TOKEN_NBMAND,
85
TOKEN_NONBMAND,
86
TOKEN_MNTPOINT,
87
TOKEN_LAST,
88
};
89
90
static const match_table_t zpl_tokens = {
91
{ TOKEN_RO, MNTOPT_RO },
92
{ TOKEN_RW, MNTOPT_RW },
93
{ TOKEN_SETUID, MNTOPT_SETUID },
94
{ TOKEN_NOSETUID, MNTOPT_NOSETUID },
95
{ TOKEN_EXEC, MNTOPT_EXEC },
96
{ TOKEN_NOEXEC, MNTOPT_NOEXEC },
97
{ TOKEN_DEVICES, MNTOPT_DEVICES },
98
{ TOKEN_NODEVICES, MNTOPT_NODEVICES },
99
{ TOKEN_DIRXATTR, MNTOPT_DIRXATTR },
100
{ TOKEN_SAXATTR, MNTOPT_SAXATTR },
101
{ TOKEN_XATTR, MNTOPT_XATTR },
102
{ TOKEN_NOXATTR, MNTOPT_NOXATTR },
103
{ TOKEN_ATIME, MNTOPT_ATIME },
104
{ TOKEN_NOATIME, MNTOPT_NOATIME },
105
{ TOKEN_RELATIME, MNTOPT_RELATIME },
106
{ TOKEN_NORELATIME, MNTOPT_NORELATIME },
107
{ TOKEN_NBMAND, MNTOPT_NBMAND },
108
{ TOKEN_NONBMAND, MNTOPT_NONBMAND },
109
{ TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" },
110
{ TOKEN_LAST, NULL },
111
};
112
113
static void
114
zfsvfs_vfs_free(vfs_t *vfsp)
115
{
116
if (vfsp != NULL) {
117
if (vfsp->vfs_mntpoint != NULL)
118
kmem_strfree(vfsp->vfs_mntpoint);
119
mutex_destroy(&vfsp->vfs_mntpt_lock);
120
kmem_free(vfsp, sizeof (vfs_t));
121
}
122
}
123
124
static int
125
zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
126
{
127
switch (token) {
128
case TOKEN_RO:
129
vfsp->vfs_readonly = B_TRUE;
130
vfsp->vfs_do_readonly = B_TRUE;
131
break;
132
case TOKEN_RW:
133
vfsp->vfs_readonly = B_FALSE;
134
vfsp->vfs_do_readonly = B_TRUE;
135
break;
136
case TOKEN_SETUID:
137
vfsp->vfs_setuid = B_TRUE;
138
vfsp->vfs_do_setuid = B_TRUE;
139
break;
140
case TOKEN_NOSETUID:
141
vfsp->vfs_setuid = B_FALSE;
142
vfsp->vfs_do_setuid = B_TRUE;
143
break;
144
case TOKEN_EXEC:
145
vfsp->vfs_exec = B_TRUE;
146
vfsp->vfs_do_exec = B_TRUE;
147
break;
148
case TOKEN_NOEXEC:
149
vfsp->vfs_exec = B_FALSE;
150
vfsp->vfs_do_exec = B_TRUE;
151
break;
152
case TOKEN_DEVICES:
153
vfsp->vfs_devices = B_TRUE;
154
vfsp->vfs_do_devices = B_TRUE;
155
break;
156
case TOKEN_NODEVICES:
157
vfsp->vfs_devices = B_FALSE;
158
vfsp->vfs_do_devices = B_TRUE;
159
break;
160
case TOKEN_DIRXATTR:
161
vfsp->vfs_xattr = ZFS_XATTR_DIR;
162
vfsp->vfs_do_xattr = B_TRUE;
163
break;
164
case TOKEN_SAXATTR:
165
vfsp->vfs_xattr = ZFS_XATTR_SA;
166
vfsp->vfs_do_xattr = B_TRUE;
167
break;
168
case TOKEN_XATTR:
169
vfsp->vfs_xattr = ZFS_XATTR_SA;
170
vfsp->vfs_do_xattr = B_TRUE;
171
break;
172
case TOKEN_NOXATTR:
173
vfsp->vfs_xattr = ZFS_XATTR_OFF;
174
vfsp->vfs_do_xattr = B_TRUE;
175
break;
176
case TOKEN_ATIME:
177
vfsp->vfs_atime = B_TRUE;
178
vfsp->vfs_do_atime = B_TRUE;
179
break;
180
case TOKEN_NOATIME:
181
vfsp->vfs_atime = B_FALSE;
182
vfsp->vfs_do_atime = B_TRUE;
183
break;
184
case TOKEN_RELATIME:
185
vfsp->vfs_relatime = B_TRUE;
186
vfsp->vfs_do_relatime = B_TRUE;
187
break;
188
case TOKEN_NORELATIME:
189
vfsp->vfs_relatime = B_FALSE;
190
vfsp->vfs_do_relatime = B_TRUE;
191
break;
192
case TOKEN_NBMAND:
193
vfsp->vfs_nbmand = B_TRUE;
194
vfsp->vfs_do_nbmand = B_TRUE;
195
break;
196
case TOKEN_NONBMAND:
197
vfsp->vfs_nbmand = B_FALSE;
198
vfsp->vfs_do_nbmand = B_TRUE;
199
break;
200
case TOKEN_MNTPOINT:
201
if (vfsp->vfs_mntpoint != NULL)
202
kmem_strfree(vfsp->vfs_mntpoint);
203
vfsp->vfs_mntpoint = match_strdup(&args[0]);
204
if (vfsp->vfs_mntpoint == NULL)
205
return (SET_ERROR(ENOMEM));
206
break;
207
default:
208
break;
209
}
210
211
return (0);
212
}
213
214
/*
215
* Parse the raw mntopts and return a vfs_t describing the options.
216
*/
217
static int
218
zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
219
{
220
vfs_t *tmp_vfsp;
221
int error;
222
223
tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
224
mutex_init(&tmp_vfsp->vfs_mntpt_lock, NULL, MUTEX_DEFAULT, NULL);
225
226
if (mntopts != NULL) {
227
substring_t args[MAX_OPT_ARGS];
228
char *tmp_mntopts, *p, *t;
229
int token;
230
231
tmp_mntopts = t = kmem_strdup(mntopts);
232
if (tmp_mntopts == NULL)
233
return (SET_ERROR(ENOMEM));
234
235
while ((p = strsep(&t, ",")) != NULL) {
236
if (!*p)
237
continue;
238
239
args[0].to = args[0].from = NULL;
240
token = match_token(p, zpl_tokens, args);
241
error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
242
if (error) {
243
kmem_strfree(tmp_mntopts);
244
zfsvfs_vfs_free(tmp_vfsp);
245
return (error);
246
}
247
}
248
249
kmem_strfree(tmp_mntopts);
250
}
251
252
*vfsp = tmp_vfsp;
253
254
return (0);
255
}
256
257
boolean_t
258
zfs_is_readonly(zfsvfs_t *zfsvfs)
259
{
260
return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
261
}
262
263
int
264
zfs_sync(struct super_block *sb, int wait, cred_t *cr)
265
{
266
(void) cr;
267
zfsvfs_t *zfsvfs = sb->s_fs_info;
268
ASSERT3P(zfsvfs, !=, NULL);
269
270
/*
271
* Semantically, the only requirement is that the sync be initiated.
272
* The DMU syncs out txgs frequently, so there's nothing to do.
273
*/
274
if (!wait)
275
return (0);
276
277
int err = zfs_enter(zfsvfs, FTAG);
278
if (err != 0)
279
return (err);
280
281
/*
282
* Sync any pending writes, but do not block if the pool is suspended.
283
* This is to help with shutting down with pools suspended, as we don't
284
* want to block in that case.
285
*/
286
err = zil_commit_flags(zfsvfs->z_log, 0, ZIL_COMMIT_NOW);
287
zfs_exit(zfsvfs, FTAG);
288
289
return (err);
290
}
291
292
static void
293
atime_changed_cb(void *arg, uint64_t newval)
294
{
295
zfsvfs_t *zfsvfs = arg;
296
struct super_block *sb = zfsvfs->z_sb;
297
298
if (sb == NULL)
299
return;
300
/*
301
* Update SB_NOATIME bit in VFS super block. Since atime update is
302
* determined by atime_needs_update(), atime_needs_update() needs to
303
* return false if atime is turned off, and not unconditionally return
304
* false if atime is turned on.
305
*/
306
if (newval)
307
sb->s_flags &= ~SB_NOATIME;
308
else
309
sb->s_flags |= SB_NOATIME;
310
}
311
312
static void
313
relatime_changed_cb(void *arg, uint64_t newval)
314
{
315
((zfsvfs_t *)arg)->z_relatime = newval;
316
}
317
318
static void
319
xattr_changed_cb(void *arg, uint64_t newval)
320
{
321
zfsvfs_t *zfsvfs = arg;
322
323
if (newval == ZFS_XATTR_OFF) {
324
zfsvfs->z_flags &= ~ZSB_XATTR;
325
} else {
326
zfsvfs->z_flags |= ZSB_XATTR;
327
328
if (newval == ZFS_XATTR_SA)
329
zfsvfs->z_xattr_sa = B_TRUE;
330
else
331
zfsvfs->z_xattr_sa = B_FALSE;
332
}
333
}
334
335
static void
336
acltype_changed_cb(void *arg, uint64_t newval)
337
{
338
zfsvfs_t *zfsvfs = arg;
339
340
switch (newval) {
341
case ZFS_ACLTYPE_NFSV4:
342
case ZFS_ACLTYPE_OFF:
343
zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
344
zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
345
break;
346
case ZFS_ACLTYPE_POSIX:
347
#ifdef CONFIG_FS_POSIX_ACL
348
zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
349
zfsvfs->z_sb->s_flags |= SB_POSIXACL;
350
#else
351
zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
352
zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
353
#endif /* CONFIG_FS_POSIX_ACL */
354
break;
355
default:
356
break;
357
}
358
}
359
360
static void
361
blksz_changed_cb(void *arg, uint64_t newval)
362
{
363
zfsvfs_t *zfsvfs = arg;
364
ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
365
ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
366
ASSERT(ISP2(newval));
367
368
zfsvfs->z_max_blksz = newval;
369
}
370
371
static void
372
readonly_changed_cb(void *arg, uint64_t newval)
373
{
374
zfsvfs_t *zfsvfs = arg;
375
struct super_block *sb = zfsvfs->z_sb;
376
377
if (sb == NULL)
378
return;
379
380
if (newval)
381
sb->s_flags |= SB_RDONLY;
382
else
383
sb->s_flags &= ~SB_RDONLY;
384
}
385
386
static void
387
devices_changed_cb(void *arg, uint64_t newval)
388
{
389
}
390
391
static void
392
setuid_changed_cb(void *arg, uint64_t newval)
393
{
394
}
395
396
static void
397
exec_changed_cb(void *arg, uint64_t newval)
398
{
399
}
400
401
static void
402
nbmand_changed_cb(void *arg, uint64_t newval)
403
{
404
zfsvfs_t *zfsvfs = arg;
405
struct super_block *sb = zfsvfs->z_sb;
406
407
if (sb == NULL)
408
return;
409
410
if (newval == TRUE)
411
sb->s_flags |= SB_MANDLOCK;
412
else
413
sb->s_flags &= ~SB_MANDLOCK;
414
}
415
416
static void
417
snapdir_changed_cb(void *arg, uint64_t newval)
418
{
419
((zfsvfs_t *)arg)->z_show_ctldir = newval;
420
}
421
422
static void
423
acl_mode_changed_cb(void *arg, uint64_t newval)
424
{
425
zfsvfs_t *zfsvfs = arg;
426
427
zfsvfs->z_acl_mode = newval;
428
}
429
430
static void
431
acl_inherit_changed_cb(void *arg, uint64_t newval)
432
{
433
((zfsvfs_t *)arg)->z_acl_inherit = newval;
434
}
435
436
static void
437
longname_changed_cb(void *arg, uint64_t newval)
438
{
439
((zfsvfs_t *)arg)->z_longname = newval;
440
}
441
442
static int
443
zfs_register_callbacks(vfs_t *vfsp)
444
{
445
struct dsl_dataset *ds = NULL;
446
objset_t *os = NULL;
447
zfsvfs_t *zfsvfs = NULL;
448
int error = 0;
449
450
ASSERT(vfsp);
451
zfsvfs = vfsp->vfs_data;
452
ASSERT(zfsvfs);
453
os = zfsvfs->z_os;
454
455
/*
456
* The act of registering our callbacks will destroy any mount
457
* options we may have. In order to enable temporary overrides
458
* of mount options, we stash away the current values and
459
* restore them after we register the callbacks.
460
*/
461
if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
462
vfsp->vfs_do_readonly = B_TRUE;
463
vfsp->vfs_readonly = B_TRUE;
464
}
465
466
/*
467
* Register property callbacks.
468
*
469
* It would probably be fine to just check for i/o error from
470
* the first prop_register(), but I guess I like to go
471
* overboard...
472
*/
473
ds = dmu_objset_ds(os);
474
dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
475
error = dsl_prop_register(ds,
476
zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
477
error = error ? error : dsl_prop_register(ds,
478
zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
479
error = error ? error : dsl_prop_register(ds,
480
zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
481
error = error ? error : dsl_prop_register(ds,
482
zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
483
error = error ? error : dsl_prop_register(ds,
484
zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
485
error = error ? error : dsl_prop_register(ds,
486
zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
487
error = error ? error : dsl_prop_register(ds,
488
zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
489
error = error ? error : dsl_prop_register(ds,
490
zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
491
error = error ? error : dsl_prop_register(ds,
492
zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
493
error = error ? error : dsl_prop_register(ds,
494
zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
495
error = error ? error : dsl_prop_register(ds,
496
zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
497
error = error ? error : dsl_prop_register(ds,
498
zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
499
zfsvfs);
500
error = error ? error : dsl_prop_register(ds,
501
zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
502
error = error ? error : dsl_prop_register(ds,
503
zfs_prop_to_name(ZFS_PROP_LONGNAME), longname_changed_cb, zfsvfs);
504
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
505
if (error)
506
goto unregister;
507
508
/*
509
* Invoke our callbacks to restore temporary mount options.
510
*/
511
if (vfsp->vfs_do_readonly)
512
readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
513
if (vfsp->vfs_do_setuid)
514
setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
515
if (vfsp->vfs_do_exec)
516
exec_changed_cb(zfsvfs, vfsp->vfs_exec);
517
if (vfsp->vfs_do_devices)
518
devices_changed_cb(zfsvfs, vfsp->vfs_devices);
519
if (vfsp->vfs_do_xattr)
520
xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
521
if (vfsp->vfs_do_atime)
522
atime_changed_cb(zfsvfs, vfsp->vfs_atime);
523
if (vfsp->vfs_do_relatime)
524
relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
525
if (vfsp->vfs_do_nbmand)
526
nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
527
528
return (0);
529
530
unregister:
531
dsl_prop_unregister_all(ds, zfsvfs);
532
return (error);
533
}
534
535
/*
536
* Takes a dataset, a property, a value and that value's setpoint as
537
* found in the ZAP. Checks if the property has been changed in the vfs.
538
* If so, val and setpoint will be overwritten with updated content.
539
* Otherwise, they are left unchanged.
540
*/
541
int
542
zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
543
char *setpoint)
544
{
545
int error;
546
zfsvfs_t *zfvp;
547
vfs_t *vfsp;
548
objset_t *os;
549
uint64_t tmp = *val;
550
551
error = dmu_objset_from_ds(ds, &os);
552
if (error != 0)
553
return (error);
554
555
if (dmu_objset_type(os) != DMU_OST_ZFS)
556
return (EINVAL);
557
558
mutex_enter(&os->os_user_ptr_lock);
559
zfvp = dmu_objset_get_user(os);
560
mutex_exit(&os->os_user_ptr_lock);
561
if (zfvp == NULL)
562
return (ESRCH);
563
564
vfsp = zfvp->z_vfs;
565
566
switch (zfs_prop) {
567
case ZFS_PROP_ATIME:
568
if (vfsp->vfs_do_atime)
569
tmp = vfsp->vfs_atime;
570
break;
571
case ZFS_PROP_RELATIME:
572
if (vfsp->vfs_do_relatime)
573
tmp = vfsp->vfs_relatime;
574
break;
575
case ZFS_PROP_DEVICES:
576
if (vfsp->vfs_do_devices)
577
tmp = vfsp->vfs_devices;
578
break;
579
case ZFS_PROP_EXEC:
580
if (vfsp->vfs_do_exec)
581
tmp = vfsp->vfs_exec;
582
break;
583
case ZFS_PROP_SETUID:
584
if (vfsp->vfs_do_setuid)
585
tmp = vfsp->vfs_setuid;
586
break;
587
case ZFS_PROP_READONLY:
588
if (vfsp->vfs_do_readonly)
589
tmp = vfsp->vfs_readonly;
590
break;
591
case ZFS_PROP_XATTR:
592
if (vfsp->vfs_do_xattr)
593
tmp = vfsp->vfs_xattr;
594
break;
595
case ZFS_PROP_NBMAND:
596
if (vfsp->vfs_do_nbmand)
597
tmp = vfsp->vfs_nbmand;
598
break;
599
default:
600
return (ENOENT);
601
}
602
603
if (tmp != *val) {
604
if (setpoint)
605
(void) strcpy(setpoint, "temporary");
606
*val = tmp;
607
}
608
return (0);
609
}
610
611
/*
612
* Associate this zfsvfs with the given objset, which must be owned.
613
* This will cache a bunch of on-disk state from the objset in the
614
* zfsvfs.
615
*/
616
static int
617
zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
618
{
619
int error;
620
uint64_t val;
621
622
zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
623
zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
624
zfsvfs->z_os = os;
625
626
error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
627
if (error != 0)
628
return (error);
629
if (zfsvfs->z_version >
630
zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
631
(void) printk("Can't mount a version %lld file system "
632
"on a version %lld pool\n. Pool must be upgraded to mount "
633
"this file system.\n", (u_longlong_t)zfsvfs->z_version,
634
(u_longlong_t)spa_version(dmu_objset_spa(os)));
635
return (SET_ERROR(ENOTSUP));
636
}
637
error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
638
if (error != 0)
639
return (error);
640
zfsvfs->z_norm = (int)val;
641
642
error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
643
if (error != 0)
644
return (error);
645
zfsvfs->z_utf8 = (val != 0);
646
647
error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
648
if (error != 0)
649
return (error);
650
zfsvfs->z_case = (uint_t)val;
651
652
if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
653
return (error);
654
zfsvfs->z_acl_type = (uint_t)val;
655
656
/*
657
* Fold case on file systems that are always or sometimes case
658
* insensitive.
659
*/
660
if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
661
zfsvfs->z_case == ZFS_CASE_MIXED)
662
zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
663
664
zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
665
zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
666
667
uint64_t sa_obj = 0;
668
if (zfsvfs->z_use_sa) {
669
/* should either have both of these objects or none */
670
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
671
&sa_obj);
672
if (error != 0)
673
return (error);
674
675
error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
676
if ((error == 0) && (val == ZFS_XATTR_SA))
677
zfsvfs->z_xattr_sa = B_TRUE;
678
}
679
680
error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTUSERQUOTA,
681
&zfsvfs->z_defaultuserquota);
682
if (error != 0)
683
return (error);
684
685
error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTGROUPQUOTA,
686
&zfsvfs->z_defaultgroupquota);
687
if (error != 0)
688
return (error);
689
690
error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTPROJECTQUOTA,
691
&zfsvfs->z_defaultprojectquota);
692
if (error != 0)
693
return (error);
694
695
error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTUSEROBJQUOTA,
696
&zfsvfs->z_defaultuserobjquota);
697
if (error != 0)
698
return (error);
699
700
error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTGROUPOBJQUOTA,
701
&zfsvfs->z_defaultgroupobjquota);
702
if (error != 0)
703
return (error);
704
705
error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTPROJECTOBJQUOTA,
706
&zfsvfs->z_defaultprojectobjquota);
707
if (error != 0)
708
return (error);
709
710
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
711
&zfsvfs->z_root);
712
if (error != 0)
713
return (error);
714
ASSERT(zfsvfs->z_root != 0);
715
716
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
717
&zfsvfs->z_unlinkedobj);
718
if (error != 0)
719
return (error);
720
721
error = zap_lookup(os, MASTER_NODE_OBJ,
722
zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
723
8, 1, &zfsvfs->z_userquota_obj);
724
if (error == ENOENT)
725
zfsvfs->z_userquota_obj = 0;
726
else if (error != 0)
727
return (error);
728
729
error = zap_lookup(os, MASTER_NODE_OBJ,
730
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
731
8, 1, &zfsvfs->z_groupquota_obj);
732
if (error == ENOENT)
733
zfsvfs->z_groupquota_obj = 0;
734
else if (error != 0)
735
return (error);
736
737
error = zap_lookup(os, MASTER_NODE_OBJ,
738
zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
739
8, 1, &zfsvfs->z_projectquota_obj);
740
if (error == ENOENT)
741
zfsvfs->z_projectquota_obj = 0;
742
else if (error != 0)
743
return (error);
744
745
error = zap_lookup(os, MASTER_NODE_OBJ,
746
zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
747
8, 1, &zfsvfs->z_userobjquota_obj);
748
if (error == ENOENT)
749
zfsvfs->z_userobjquota_obj = 0;
750
else if (error != 0)
751
return (error);
752
753
error = zap_lookup(os, MASTER_NODE_OBJ,
754
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
755
8, 1, &zfsvfs->z_groupobjquota_obj);
756
if (error == ENOENT)
757
zfsvfs->z_groupobjquota_obj = 0;
758
else if (error != 0)
759
return (error);
760
761
error = zap_lookup(os, MASTER_NODE_OBJ,
762
zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
763
8, 1, &zfsvfs->z_projectobjquota_obj);
764
if (error == ENOENT)
765
zfsvfs->z_projectobjquota_obj = 0;
766
else if (error != 0)
767
return (error);
768
769
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
770
&zfsvfs->z_fuid_obj);
771
if (error == ENOENT)
772
zfsvfs->z_fuid_obj = 0;
773
else if (error != 0)
774
return (error);
775
776
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
777
&zfsvfs->z_shares_dir);
778
if (error == ENOENT)
779
zfsvfs->z_shares_dir = 0;
780
else if (error != 0)
781
return (error);
782
783
error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
784
&zfsvfs->z_attr_table);
785
if (error != 0)
786
return (error);
787
788
if (zfsvfs->z_version >= ZPL_VERSION_SA)
789
sa_register_update_callback(os, zfs_sa_upgrade);
790
791
return (0);
792
}
793
794
int
795
zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
796
{
797
objset_t *os;
798
zfsvfs_t *zfsvfs;
799
int error;
800
boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
801
802
zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
803
804
error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
805
if (error != 0) {
806
kmem_free(zfsvfs, sizeof (zfsvfs_t));
807
return (error);
808
}
809
810
error = zfsvfs_create_impl(zfvp, zfsvfs, os);
811
812
return (error);
813
}
814
815
816
/*
817
* Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
818
* on a failure. Do not pass in a statically allocated zfsvfs.
819
*/
820
int
821
zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
822
{
823
int error;
824
825
zfsvfs->z_vfs = NULL;
826
zfsvfs->z_sb = NULL;
827
zfsvfs->z_parent = zfsvfs;
828
829
mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
830
mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
831
list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
832
offsetof(znode_t, z_link_node));
833
ZFS_TEARDOWN_INIT(zfsvfs);
834
rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
835
rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
836
837
int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
838
ZFS_OBJ_MTX_MAX);
839
zfsvfs->z_hold_size = size;
840
zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
841
KM_SLEEP);
842
zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
843
for (int i = 0; i != size; i++) {
844
avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
845
sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
846
mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
847
}
848
849
error = zfsvfs_init(zfsvfs, os);
850
if (error != 0) {
851
dmu_objset_disown(os, B_TRUE, zfsvfs);
852
*zfvp = NULL;
853
zfsvfs_free(zfsvfs);
854
return (error);
855
}
856
857
zfsvfs->z_drain_task = TASKQID_INVALID;
858
zfsvfs->z_draining = B_FALSE;
859
zfsvfs->z_drain_cancel = B_TRUE;
860
861
*zfvp = zfsvfs;
862
return (0);
863
}
864
865
static int
866
zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
867
{
868
int error;
869
boolean_t readonly = zfs_is_readonly(zfsvfs);
870
871
error = zfs_register_callbacks(zfsvfs->z_vfs);
872
if (error)
873
return (error);
874
875
/*
876
* If we are not mounting (ie: online recv), then we don't
877
* have to worry about replaying the log as we blocked all
878
* operations out since we closed the ZIL.
879
*/
880
if (mounting) {
881
ASSERT0P(zfsvfs->z_kstat.dk_kstats);
882
error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
883
if (error)
884
return (error);
885
zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
886
&zfsvfs->z_kstat.dk_zil_sums);
887
888
/*
889
* During replay we remove the read only flag to
890
* allow replays to succeed.
891
*/
892
if (readonly != 0) {
893
readonly_changed_cb(zfsvfs, B_FALSE);
894
} else {
895
zap_stats_t zs;
896
if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
897
&zs) == 0) {
898
dataset_kstats_update_nunlinks_kstat(
899
&zfsvfs->z_kstat, zs.zs_num_entries);
900
dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
901
"num_entries in unlinked set: %llu",
902
zs.zs_num_entries);
903
}
904
zfs_unlinked_drain(zfsvfs);
905
dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
906
dd->dd_activity_cancelled = B_FALSE;
907
}
908
909
/*
910
* Parse and replay the intent log.
911
*
912
* Because of ziltest, this must be done after
913
* zfs_unlinked_drain(). (Further note: ziltest
914
* doesn't use readonly mounts, where
915
* zfs_unlinked_drain() isn't called.) This is because
916
* ziltest causes spa_sync() to think it's committed,
917
* but actually it is not, so the intent log contains
918
* many txg's worth of changes.
919
*
920
* In particular, if object N is in the unlinked set in
921
* the last txg to actually sync, then it could be
922
* actually freed in a later txg and then reallocated
923
* in a yet later txg. This would write a "create
924
* object N" record to the intent log. Normally, this
925
* would be fine because the spa_sync() would have
926
* written out the fact that object N is free, before
927
* we could write the "create object N" intent log
928
* record.
929
*
930
* But when we are in ziltest mode, we advance the "open
931
* txg" without actually spa_sync()-ing the changes to
932
* disk. So we would see that object N is still
933
* allocated and in the unlinked set, and there is an
934
* intent log record saying to allocate it.
935
*/
936
if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
937
if (zil_replay_disable) {
938
zil_destroy(zfsvfs->z_log, B_FALSE);
939
} else {
940
zfsvfs->z_replay = B_TRUE;
941
zil_replay(zfsvfs->z_os, zfsvfs,
942
zfs_replay_vector);
943
zfsvfs->z_replay = B_FALSE;
944
}
945
}
946
947
/* restore readonly bit */
948
if (readonly != 0)
949
readonly_changed_cb(zfsvfs, B_TRUE);
950
} else {
951
ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL);
952
zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
953
&zfsvfs->z_kstat.dk_zil_sums);
954
}
955
956
/*
957
* Set the objset user_ptr to track its zfsvfs.
958
*/
959
mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
960
dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
961
mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
962
963
return (0);
964
}
965
966
void
967
zfsvfs_free(zfsvfs_t *zfsvfs)
968
{
969
int i, size = zfsvfs->z_hold_size;
970
971
zfs_fuid_destroy(zfsvfs);
972
973
mutex_destroy(&zfsvfs->z_znodes_lock);
974
mutex_destroy(&zfsvfs->z_lock);
975
list_destroy(&zfsvfs->z_all_znodes);
976
ZFS_TEARDOWN_DESTROY(zfsvfs);
977
rw_destroy(&zfsvfs->z_teardown_inactive_lock);
978
rw_destroy(&zfsvfs->z_fuid_lock);
979
for (i = 0; i != size; i++) {
980
avl_destroy(&zfsvfs->z_hold_trees[i]);
981
mutex_destroy(&zfsvfs->z_hold_locks[i]);
982
}
983
vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
984
vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
985
zfsvfs_vfs_free(zfsvfs->z_vfs);
986
dataset_kstats_destroy(&zfsvfs->z_kstat);
987
kmem_free(zfsvfs, sizeof (zfsvfs_t));
988
}
989
990
static void
991
zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
992
{
993
zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
994
zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
995
}
996
997
static void
998
zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
999
{
1000
objset_t *os = zfsvfs->z_os;
1001
1002
if (!dmu_objset_is_snapshot(os))
1003
dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1004
}
1005
1006
#ifdef HAVE_MLSLABEL
1007
/*
1008
* Check that the hex label string is appropriate for the dataset being
1009
* mounted into the global_zone proper.
1010
*
1011
* Return an error if the hex label string is not default or
1012
* admin_low/admin_high. For admin_low labels, the corresponding
1013
* dataset must be readonly.
1014
*/
1015
int
1016
zfs_check_global_label(const char *dsname, const char *hexsl)
1017
{
1018
if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1019
return (0);
1020
if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1021
return (0);
1022
if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1023
/* must be readonly */
1024
uint64_t rdonly;
1025
1026
if (dsl_prop_get_integer(dsname,
1027
zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1028
return (SET_ERROR(EACCES));
1029
return (rdonly ? 0 : SET_ERROR(EACCES));
1030
}
1031
return (SET_ERROR(EACCES));
1032
}
1033
#endif /* HAVE_MLSLABEL */
1034
1035
static int
1036
zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
1037
uint32_t bshift)
1038
{
1039
char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1040
uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1041
uint64_t quota;
1042
uint64_t used;
1043
int err;
1044
1045
strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1046
err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
1047
sizeof (buf) - offset, B_FALSE);
1048
if (err)
1049
return (err);
1050
1051
if (zfsvfs->z_projectquota_obj == 0) {
1052
if (zfsvfs->z_defaultprojectquota == 0)
1053
goto objs;
1054
quota = zfsvfs->z_defaultprojectquota;
1055
} else {
1056
err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1057
buf + offset, 8, 1, &quota);
1058
if (err && (quota = zfsvfs->z_defaultprojectquota) == 0) {
1059
if (err == ENOENT)
1060
goto objs;
1061
return (err);
1062
}
1063
}
1064
1065
err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1066
buf + offset, 8, 1, &used);
1067
if (unlikely(err == ENOENT)) {
1068
uint32_t blksize;
1069
u_longlong_t nblocks;
1070
1071
/*
1072
* Quota accounting is async, so it is possible race case.
1073
* There is at least one object with the given project ID.
1074
*/
1075
sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1076
if (unlikely(zp->z_blksz == 0))
1077
blksize = zfsvfs->z_max_blksz;
1078
1079
used = blksize * nblocks;
1080
} else if (err) {
1081
return (err);
1082
}
1083
1084
statp->f_blocks = quota >> bshift;
1085
statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1086
statp->f_bavail = statp->f_bfree;
1087
1088
objs:
1089
1090
if (zfsvfs->z_projectobjquota_obj == 0) {
1091
if (zfsvfs->z_defaultprojectobjquota == 0)
1092
return (0);
1093
quota = zfsvfs->z_defaultprojectobjquota;
1094
} else {
1095
err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1096
buf + offset, 8, 1, &quota);
1097
if (err && (quota = zfsvfs->z_defaultprojectobjquota) == 0) {
1098
if (err == ENOENT)
1099
return (0);
1100
return (err);
1101
}
1102
}
1103
1104
1105
err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1106
buf, 8, 1, &used);
1107
if (unlikely(err == ENOENT)) {
1108
/*
1109
* Quota accounting is async, so it is possible race case.
1110
* There is at least one object with the given project ID.
1111
*/
1112
used = 1;
1113
} else if (err) {
1114
return (err);
1115
}
1116
1117
statp->f_files = quota;
1118
statp->f_ffree = (quota > used) ? (quota - used) : 0;
1119
1120
return (0);
1121
}
1122
1123
int
1124
zfs_statvfs(struct inode *ip, struct kstatfs *statp)
1125
{
1126
zfsvfs_t *zfsvfs = ITOZSB(ip);
1127
uint64_t refdbytes, availbytes, usedobjs, availobjs;
1128
int err = 0;
1129
1130
if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1131
return (err);
1132
1133
dmu_objset_space(zfsvfs->z_os,
1134
&refdbytes, &availbytes, &usedobjs, &availobjs);
1135
1136
uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1137
/*
1138
* The underlying storage pool actually uses multiple block
1139
* size. Under Solaris frsize (fragment size) is reported as
1140
* the smallest block size we support, and bsize (block size)
1141
* as the filesystem's maximum block size. Unfortunately,
1142
* under Linux the fragment size and block size are often used
1143
* interchangeably. Thus we are forced to report both of them
1144
* as the filesystem's maximum block size.
1145
*/
1146
statp->f_frsize = zfsvfs->z_max_blksz;
1147
statp->f_bsize = zfsvfs->z_max_blksz;
1148
uint32_t bshift = fls(statp->f_bsize) - 1;
1149
1150
/*
1151
* The following report "total" blocks of various kinds in
1152
* the file system, but reported in terms of f_bsize - the
1153
* "preferred" size.
1154
*/
1155
1156
/* Round up so we never have a filesystem using 0 blocks. */
1157
refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
1158
statp->f_blocks = (refdbytes + availbytes) >> bshift;
1159
statp->f_bfree = availbytes >> bshift;
1160
statp->f_bavail = statp->f_bfree; /* no root reservation */
1161
1162
/*
1163
* statvfs() should really be called statufs(), because it assumes
1164
* static metadata. ZFS doesn't preallocate files, so the best
1165
* we can do is report the max that could possibly fit in f_files,
1166
* and that minus the number actually used in f_ffree.
1167
* For f_ffree, report the smaller of the number of objects available
1168
* and the number of blocks (each object will take at least a block).
1169
*/
1170
statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1171
statp->f_files = statp->f_ffree + usedobjs;
1172
statp->f_fsid.val[0] = (uint32_t)fsid;
1173
statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1174
statp->f_type = ZFS_SUPER_MAGIC;
1175
statp->f_namelen =
1176
zfsvfs->z_longname ? (ZAP_MAXNAMELEN_NEW - 1) : (MAXNAMELEN - 1);
1177
1178
/*
1179
* We have all of 40 characters to stuff a string here.
1180
* Is there anything useful we could/should provide?
1181
*/
1182
memset(statp->f_spare, 0, sizeof (statp->f_spare));
1183
1184
if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
1185
dmu_objset_projectquota_present(zfsvfs->z_os)) {
1186
znode_t *zp = ITOZ(ip);
1187
1188
if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
1189
zpl_is_valid_projid(zp->z_projid))
1190
err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
1191
}
1192
1193
zfs_exit(zfsvfs, FTAG);
1194
return (err);
1195
}
1196
1197
static int
1198
zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1199
{
1200
znode_t *rootzp;
1201
int error;
1202
1203
if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1204
return (error);
1205
1206
error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1207
if (error == 0)
1208
*ipp = ZTOI(rootzp);
1209
1210
zfs_exit(zfsvfs, FTAG);
1211
return (error);
1212
}
1213
1214
/*
1215
* Dentry and inode caches referenced by a task in non-root memcg are
1216
* not going to be scanned by the kernel-provided shrinker. So, if
1217
* kernel prunes nothing, fall back to this manual walk to free dnodes.
1218
* To avoid scanning the same znodes multiple times they are always rotated
1219
* to the end of the z_all_znodes list. New znodes are inserted at the
1220
* end of the list so we're always scanning the oldest znodes first.
1221
*/
1222
static int
1223
zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan)
1224
{
1225
znode_t **zp_array, *zp;
1226
int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
1227
int objects = 0;
1228
int i = 0, j = 0;
1229
1230
zp_array = vmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
1231
1232
mutex_enter(&zfsvfs->z_znodes_lock);
1233
while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) {
1234
1235
if ((i++ > nr_to_scan) || (j >= max_array))
1236
break;
1237
1238
ASSERT(list_link_active(&zp->z_link_node));
1239
list_remove(&zfsvfs->z_all_znodes, zp);
1240
list_insert_tail(&zfsvfs->z_all_znodes, zp);
1241
1242
/* Skip active znodes and .zfs entries */
1243
if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
1244
continue;
1245
1246
if (igrab(ZTOI(zp)) == NULL)
1247
continue;
1248
1249
zp_array[j] = zp;
1250
j++;
1251
}
1252
mutex_exit(&zfsvfs->z_znodes_lock);
1253
1254
for (i = 0; i < j; i++) {
1255
zp = zp_array[i];
1256
1257
ASSERT3P(zp, !=, NULL);
1258
d_prune_aliases(ZTOI(zp));
1259
1260
if (atomic_read(&ZTOI(zp)->i_count) == 1)
1261
objects++;
1262
1263
zrele(zp);
1264
}
1265
1266
vmem_free(zp_array, max_array * sizeof (znode_t *));
1267
1268
return (objects);
1269
}
1270
1271
/*
1272
* The ARC has requested that the filesystem drop entries from the dentry
1273
* and inode caches. This can occur when the ARC needs to free meta data
1274
* blocks but can't because they are all pinned by entries in these caches.
1275
*/
1276
#if defined(HAVE_SUPER_BLOCK_S_SHRINK)
1277
#define S_SHRINK(sb) (&(sb)->s_shrink)
1278
#elif defined(HAVE_SUPER_BLOCK_S_SHRINK_PTR)
1279
#define S_SHRINK(sb) ((sb)->s_shrink)
1280
#endif
1281
1282
int
1283
zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1284
{
1285
zfsvfs_t *zfsvfs = sb->s_fs_info;
1286
int error = 0;
1287
struct shrinker *shrinker = S_SHRINK(sb);
1288
struct shrink_control sc = {
1289
.nr_to_scan = nr_to_scan,
1290
.gfp_mask = GFP_KERNEL,
1291
};
1292
1293
if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1294
return (error);
1295
1296
#ifdef SHRINKER_NUMA_AWARE
1297
if (shrinker->flags & SHRINKER_NUMA_AWARE) {
1298
long tc = 1;
1299
for_each_online_node(sc.nid) {
1300
long c = shrinker->count_objects(shrinker, &sc);
1301
if (c == 0 || c == SHRINK_EMPTY)
1302
continue;
1303
tc += c;
1304
}
1305
*objects = 0;
1306
for_each_online_node(sc.nid) {
1307
long c = shrinker->count_objects(shrinker, &sc);
1308
if (c == 0 || c == SHRINK_EMPTY)
1309
continue;
1310
if (c > tc)
1311
tc = c;
1312
sc.nr_to_scan = mult_frac(nr_to_scan, c, tc) + 1;
1313
*objects += (*shrinker->scan_objects)(shrinker, &sc);
1314
}
1315
} else {
1316
*objects = (*shrinker->scan_objects)(shrinker, &sc);
1317
}
1318
#else
1319
*objects = (*shrinker->scan_objects)(shrinker, &sc);
1320
#endif
1321
1322
/*
1323
* Fall back to zfs_prune_aliases if kernel's shrinker did nothing
1324
* due to dentry and inode caches being referenced by a task running
1325
* in non-root memcg.
1326
*/
1327
if (*objects == 0)
1328
*objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1329
1330
zfs_exit(zfsvfs, FTAG);
1331
1332
dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1333
"pruning, nr_to_scan=%lu objects=%d error=%d\n",
1334
nr_to_scan, *objects, error);
1335
1336
return (error);
1337
}
1338
1339
/*
1340
* Teardown the zfsvfs_t.
1341
*
1342
* Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1343
* and 'z_teardown_inactive_lock' held.
1344
*/
1345
static int
1346
zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1347
{
1348
znode_t *zp;
1349
1350
zfs_unlinked_drain_stop_wait(zfsvfs);
1351
1352
/*
1353
* If someone has not already unmounted this file system,
1354
* drain the zrele_taskq to ensure all active references to the
1355
* zfsvfs_t have been handled only then can it be safely destroyed.
1356
*/
1357
if (zfsvfs->z_os) {
1358
/*
1359
* If we're unmounting we have to wait for the list to
1360
* drain completely.
1361
*
1362
* If we're not unmounting there's no guarantee the list
1363
* will drain completely, but iputs run from the taskq
1364
* may add the parents of dir-based xattrs to the taskq
1365
* so we want to wait for these.
1366
*
1367
* We can safely check z_all_znodes for being empty because the
1368
* VFS has already blocked operations which add to it.
1369
*/
1370
int round = 0;
1371
while (!list_is_empty(&zfsvfs->z_all_znodes)) {
1372
taskq_wait_outstanding(dsl_pool_zrele_taskq(
1373
dmu_objset_pool(zfsvfs->z_os)), 0);
1374
if (++round > 1 && !unmounting)
1375
break;
1376
}
1377
}
1378
1379
ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1380
1381
if (!unmounting) {
1382
/*
1383
* We purge the parent filesystem's super block as the
1384
* parent filesystem and all of its snapshots have their
1385
* inode's super block set to the parent's filesystem's
1386
* super block. Note, 'z_parent' is self referential
1387
* for non-snapshots.
1388
*/
1389
shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1390
}
1391
1392
/*
1393
* Close the zil. NB: Can't close the zil while zfs_inactive
1394
* threads are blocked as zil_close can call zfs_inactive.
1395
*/
1396
if (zfsvfs->z_log) {
1397
zil_close(zfsvfs->z_log);
1398
zfsvfs->z_log = NULL;
1399
}
1400
1401
rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1402
1403
/*
1404
* If we are not unmounting (ie: online recv) and someone already
1405
* unmounted this file system while we were doing the switcheroo,
1406
* or a reopen of z_os failed then just bail out now.
1407
*/
1408
if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1409
rw_exit(&zfsvfs->z_teardown_inactive_lock);
1410
ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1411
return (SET_ERROR(EIO));
1412
}
1413
1414
/*
1415
* At this point there are no VFS ops active, and any new VFS ops
1416
* will fail with EIO since we have z_teardown_lock for writer (only
1417
* relevant for forced unmount).
1418
*
1419
* Release all holds on dbufs. We also grab an extra reference to all
1420
* the remaining inodes so that the kernel does not attempt to free
1421
* any inodes of a suspended fs. This can cause deadlocks since the
1422
* zfs_resume_fs() process may involve starting threads, which might
1423
* attempt to free unreferenced inodes to free up memory for the new
1424
* thread.
1425
*/
1426
if (!unmounting) {
1427
mutex_enter(&zfsvfs->z_znodes_lock);
1428
for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1429
zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1430
if (zp->z_sa_hdl)
1431
zfs_znode_dmu_fini(zp);
1432
if (igrab(ZTOI(zp)) != NULL)
1433
zp->z_suspended = B_TRUE;
1434
1435
}
1436
mutex_exit(&zfsvfs->z_znodes_lock);
1437
}
1438
1439
/*
1440
* If we are unmounting, set the unmounted flag and let new VFS ops
1441
* unblock. zfs_inactive will have the unmounted behavior, and all
1442
* other VFS ops will fail with EIO.
1443
*/
1444
if (unmounting) {
1445
zfsvfs->z_unmounted = B_TRUE;
1446
rw_exit(&zfsvfs->z_teardown_inactive_lock);
1447
ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1448
}
1449
1450
/*
1451
* z_os will be NULL if there was an error in attempting to reopen
1452
* zfsvfs, so just return as the properties had already been
1453
*
1454
* unregistered and cached data had been evicted before.
1455
*/
1456
if (zfsvfs->z_os == NULL)
1457
return (0);
1458
1459
/*
1460
* Unregister properties.
1461
*/
1462
zfs_unregister_callbacks(zfsvfs);
1463
1464
/*
1465
* Evict cached data. We must write out any dirty data before
1466
* disowning the dataset.
1467
*/
1468
objset_t *os = zfsvfs->z_os;
1469
boolean_t os_dirty = B_FALSE;
1470
for (int t = 0; t < TXG_SIZE; t++) {
1471
if (dmu_objset_is_dirty(os, t)) {
1472
os_dirty = B_TRUE;
1473
break;
1474
}
1475
}
1476
if (!zfs_is_readonly(zfsvfs) && os_dirty) {
1477
txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1478
}
1479
dmu_objset_evict_dbufs(zfsvfs->z_os);
1480
dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
1481
dsl_dir_cancel_waiters(dd);
1482
1483
return (0);
1484
}
1485
1486
static atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1487
1488
int
1489
zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1490
{
1491
const char *osname = zm->mnt_osname;
1492
struct inode *root_inode = NULL;
1493
uint64_t recordsize;
1494
int error = 0;
1495
zfsvfs_t *zfsvfs = NULL;
1496
vfs_t *vfs = NULL;
1497
int canwrite;
1498
int dataset_visible_zone;
1499
1500
ASSERT(zm);
1501
ASSERT(osname);
1502
1503
dataset_visible_zone = zone_dataset_visible(osname, &canwrite);
1504
1505
/*
1506
* Refuse to mount a filesystem if we are in a namespace and the
1507
* dataset is not visible or writable in that namespace.
1508
*/
1509
if (!INGLOBALZONE(curproc) &&
1510
(!dataset_visible_zone || !canwrite)) {
1511
return (SET_ERROR(EPERM));
1512
}
1513
1514
error = zfsvfs_parse_options(zm->mnt_data, &vfs);
1515
if (error)
1516
return (error);
1517
1518
/*
1519
* If a non-writable filesystem is being mounted without the
1520
* read-only flag, pretend it was set, as done for snapshots.
1521
*/
1522
if (!canwrite)
1523
vfs->vfs_readonly = B_TRUE;
1524
1525
error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
1526
if (error) {
1527
zfsvfs_vfs_free(vfs);
1528
goto out;
1529
}
1530
1531
if ((error = dsl_prop_get_integer(osname, "recordsize",
1532
&recordsize, NULL))) {
1533
zfsvfs_vfs_free(vfs);
1534
goto out;
1535
}
1536
1537
vfs->vfs_data = zfsvfs;
1538
zfsvfs->z_vfs = vfs;
1539
zfsvfs->z_sb = sb;
1540
sb->s_fs_info = zfsvfs;
1541
sb->s_magic = ZFS_SUPER_MAGIC;
1542
sb->s_maxbytes = MAX_LFS_FILESIZE;
1543
sb->s_time_gran = 1;
1544
sb->s_blocksize = recordsize;
1545
sb->s_blocksize_bits = ilog2(recordsize);
1546
1547
error = -super_setup_bdi_name(sb, "%.28s-%ld", "zfs",
1548
atomic_long_inc_return(&zfs_bdi_seq));
1549
if (error)
1550
goto out;
1551
1552
sb->s_bdi->ra_pages = 0;
1553
1554
/* Set callback operations for the file system. */
1555
sb->s_op = &zpl_super_operations;
1556
sb->s_xattr = zpl_xattr_handlers;
1557
sb->s_export_op = &zpl_export_operations;
1558
1559
#ifdef HAVE_SET_DEFAULT_D_OP
1560
set_default_d_op(sb, &zpl_dentry_operations);
1561
#else
1562
sb->s_d_op = &zpl_dentry_operations;
1563
#endif
1564
1565
/* Set features for file system. */
1566
zfs_set_fuid_feature(zfsvfs);
1567
1568
if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1569
uint64_t pval;
1570
1571
atime_changed_cb(zfsvfs, B_FALSE);
1572
readonly_changed_cb(zfsvfs, B_TRUE);
1573
if ((error = dsl_prop_get_integer(osname,
1574
"xattr", &pval, NULL)))
1575
goto out;
1576
xattr_changed_cb(zfsvfs, pval);
1577
if ((error = dsl_prop_get_integer(osname,
1578
"acltype", &pval, NULL)))
1579
goto out;
1580
acltype_changed_cb(zfsvfs, pval);
1581
zfsvfs->z_issnap = B_TRUE;
1582
zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1583
zfsvfs->z_snap_defer_time = jiffies;
1584
1585
mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1586
dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1587
mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1588
} else {
1589
if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1590
goto out;
1591
}
1592
1593
/* Allocate a root inode for the filesystem. */
1594
error = zfs_root(zfsvfs, &root_inode);
1595
if (error) {
1596
(void) zfs_umount(sb);
1597
zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1598
goto out;
1599
}
1600
1601
/* Allocate a root dentry for the filesystem */
1602
sb->s_root = d_make_root(root_inode);
1603
if (sb->s_root == NULL) {
1604
(void) zfs_umount(sb);
1605
zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1606
error = SET_ERROR(ENOMEM);
1607
goto out;
1608
}
1609
1610
if (!zfsvfs->z_issnap)
1611
zfsctl_create(zfsvfs);
1612
1613
zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1614
out:
1615
if (error) {
1616
if (zfsvfs != NULL) {
1617
dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1618
zfsvfs_free(zfsvfs);
1619
}
1620
/*
1621
* make sure we don't have dangling sb->s_fs_info which
1622
* zfs_preumount will use.
1623
*/
1624
sb->s_fs_info = NULL;
1625
}
1626
1627
return (error);
1628
}
1629
1630
/*
1631
* Called when an unmount is requested and certain sanity checks have
1632
* already passed. At this point no dentries or inodes have been reclaimed
1633
* from their respective caches. We drop the extra reference on the .zfs
1634
* control directory to allow everything to be reclaimed. All snapshots
1635
* must already have been unmounted to reach this point.
1636
*/
1637
void
1638
zfs_preumount(struct super_block *sb)
1639
{
1640
zfsvfs_t *zfsvfs = sb->s_fs_info;
1641
1642
/* zfsvfs is NULL when zfs_domount fails during mount */
1643
if (zfsvfs) {
1644
zfs_unlinked_drain_stop_wait(zfsvfs);
1645
zfsctl_destroy(sb->s_fs_info);
1646
/*
1647
* Wait for zrele_async before entering evict_inodes in
1648
* generic_shutdown_super. The reason we must finish before
1649
* evict_inodes is when lazytime is on, or when zfs_purgedir
1650
* calls zfs_zget, zrele would bump i_count from 0 to 1. This
1651
* would race with the i_count check in evict_inodes. This means
1652
* it could destroy the inode while we are still using it.
1653
*
1654
* We wait for two passes. xattr directories in the first pass
1655
* may add xattr entries in zfs_purgedir, so in the second pass
1656
* we wait for them. We don't use taskq_wait here because it is
1657
* a pool wide taskq. Other mounted filesystems can constantly
1658
* do zrele_async and there's no guarantee when taskq will be
1659
* empty.
1660
*/
1661
taskq_wait_outstanding(dsl_pool_zrele_taskq(
1662
dmu_objset_pool(zfsvfs->z_os)), 0);
1663
taskq_wait_outstanding(dsl_pool_zrele_taskq(
1664
dmu_objset_pool(zfsvfs->z_os)), 0);
1665
}
1666
}
1667
1668
/*
1669
* Called once all other unmount released tear down has occurred.
1670
* It is our responsibility to release any remaining infrastructure.
1671
*/
1672
int
1673
zfs_umount(struct super_block *sb)
1674
{
1675
zfsvfs_t *zfsvfs = sb->s_fs_info;
1676
objset_t *os;
1677
1678
if (zfsvfs->z_arc_prune != NULL)
1679
arc_remove_prune_callback(zfsvfs->z_arc_prune);
1680
VERIFY0(zfsvfs_teardown(zfsvfs, B_TRUE));
1681
os = zfsvfs->z_os;
1682
1683
/*
1684
* z_os will be NULL if there was an error in
1685
* attempting to reopen zfsvfs.
1686
*/
1687
if (os != NULL) {
1688
/*
1689
* Unset the objset user_ptr.
1690
*/
1691
mutex_enter(&os->os_user_ptr_lock);
1692
dmu_objset_set_user(os, NULL);
1693
mutex_exit(&os->os_user_ptr_lock);
1694
1695
/*
1696
* Finally release the objset
1697
*/
1698
dmu_objset_disown(os, B_TRUE, zfsvfs);
1699
}
1700
1701
zfsvfs_free(zfsvfs);
1702
sb->s_fs_info = NULL;
1703
return (0);
1704
}
1705
1706
int
1707
zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1708
{
1709
zfsvfs_t *zfsvfs = sb->s_fs_info;
1710
vfs_t *vfsp;
1711
boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
1712
int error;
1713
1714
if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
1715
!(*flags & SB_RDONLY)) {
1716
*flags |= SB_RDONLY;
1717
return (EROFS);
1718
}
1719
1720
error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
1721
if (error)
1722
return (error);
1723
1724
if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
1725
txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1726
1727
zfs_unregister_callbacks(zfsvfs);
1728
zfsvfs_vfs_free(zfsvfs->z_vfs);
1729
1730
vfsp->vfs_data = zfsvfs;
1731
zfsvfs->z_vfs = vfsp;
1732
if (!issnap)
1733
(void) zfs_register_callbacks(vfsp);
1734
1735
return (error);
1736
}
1737
1738
int
1739
zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1740
{
1741
zfsvfs_t *zfsvfs = sb->s_fs_info;
1742
znode_t *zp;
1743
uint64_t object = 0;
1744
uint64_t fid_gen = 0;
1745
uint64_t gen_mask;
1746
uint64_t zp_gen;
1747
int i, err;
1748
1749
*ipp = NULL;
1750
1751
if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1752
zfid_short_t *zfid = (zfid_short_t *)fidp;
1753
1754
for (i = 0; i < sizeof (zfid->zf_object); i++)
1755
object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1756
1757
for (i = 0; i < sizeof (zfid->zf_gen); i++)
1758
fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1759
} else {
1760
return (SET_ERROR(EINVAL));
1761
}
1762
1763
/* LONG_FID_LEN means snapdirs */
1764
if (fidp->fid_len == LONG_FID_LEN) {
1765
zfid_long_t *zlfid = (zfid_long_t *)fidp;
1766
uint64_t objsetid = 0;
1767
uint64_t setgen = 0;
1768
1769
for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1770
objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1771
1772
for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1773
setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1774
1775
if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
1776
dprintf("snapdir fid: objsetid (%llu) != "
1777
"ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1778
objsetid, ZFSCTL_INO_SNAPDIRS, object);
1779
1780
return (SET_ERROR(EINVAL));
1781
}
1782
1783
if (fid_gen > 1 || setgen != 0) {
1784
dprintf("snapdir fid: fid_gen (%llu) and setgen "
1785
"(%llu)\n", fid_gen, setgen);
1786
return (SET_ERROR(EINVAL));
1787
}
1788
1789
return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
1790
}
1791
1792
if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1793
return (err);
1794
/* A zero fid_gen means we are in the .zfs control directories */
1795
if (fid_gen == 0 &&
1796
(object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1797
if (zfsvfs->z_show_ctldir == ZFS_SNAPDIR_DISABLED) {
1798
zfs_exit(zfsvfs, FTAG);
1799
return (SET_ERROR(ENOENT));
1800
}
1801
1802
*ipp = zfsvfs->z_ctldir;
1803
ASSERT(*ipp != NULL);
1804
1805
if (object == ZFSCTL_INO_SNAPDIR) {
1806
VERIFY0(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1807
0, kcred, NULL, NULL));
1808
} else {
1809
/*
1810
* Must have an existing ref, so igrab()
1811
* cannot return NULL
1812
*/
1813
VERIFY3P(igrab(*ipp), !=, NULL);
1814
}
1815
zfs_exit(zfsvfs, FTAG);
1816
return (0);
1817
}
1818
1819
gen_mask = -1ULL >> (64 - 8 * i);
1820
1821
dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1822
if ((err = zfs_zget(zfsvfs, object, &zp))) {
1823
zfs_exit(zfsvfs, FTAG);
1824
return (err);
1825
}
1826
1827
/* Don't export xattr stuff */
1828
if (zp->z_pflags & ZFS_XATTR) {
1829
zrele(zp);
1830
zfs_exit(zfsvfs, FTAG);
1831
return (SET_ERROR(ENOENT));
1832
}
1833
1834
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1835
sizeof (uint64_t));
1836
zp_gen = zp_gen & gen_mask;
1837
if (zp_gen == 0)
1838
zp_gen = 1;
1839
if ((fid_gen == 0) && (zfsvfs->z_root == object))
1840
fid_gen = zp_gen;
1841
if (zp->z_unlinked || zp_gen != fid_gen) {
1842
dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1843
fid_gen);
1844
zrele(zp);
1845
zfs_exit(zfsvfs, FTAG);
1846
return (SET_ERROR(ENOENT));
1847
}
1848
1849
*ipp = ZTOI(zp);
1850
if (*ipp)
1851
zfs_znode_update_vfs(ITOZ(*ipp));
1852
1853
zfs_exit(zfsvfs, FTAG);
1854
return (0);
1855
}
1856
1857
/*
1858
* Block out VFS ops and close zfsvfs_t
1859
*
1860
* Note, if successful, then we return with the 'z_teardown_lock' and
1861
* 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1862
* dataset and objset intact so that they can be atomically handed off during
1863
* a subsequent rollback or recv operation and the resume thereafter.
1864
*/
1865
int
1866
zfs_suspend_fs(zfsvfs_t *zfsvfs)
1867
{
1868
int error;
1869
1870
if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1871
return (error);
1872
1873
return (0);
1874
}
1875
1876
/*
1877
* Rebuild SA and release VOPs. Note that ownership of the underlying dataset
1878
* is an invariant across any of the operations that can be performed while the
1879
* filesystem was suspended. Whether it succeeded or failed, the preconditions
1880
* are the same: the relevant objset and associated dataset are owned by
1881
* zfsvfs, held, and long held on entry.
1882
*/
1883
int
1884
zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1885
{
1886
int err, err2;
1887
znode_t *zp;
1888
1889
ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1890
ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1891
1892
/*
1893
* We already own this, so just update the objset_t, as the one we
1894
* had before may have been evicted.
1895
*/
1896
objset_t *os;
1897
VERIFY3P(ds->ds_owner, ==, zfsvfs);
1898
VERIFY(dsl_dataset_long_held(ds));
1899
dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1900
dsl_pool_config_enter(dp, FTAG);
1901
VERIFY0(dmu_objset_from_ds(ds, &os));
1902
dsl_pool_config_exit(dp, FTAG);
1903
1904
err = zfsvfs_init(zfsvfs, os);
1905
if (err != 0)
1906
goto bail;
1907
1908
ds->ds_dir->dd_activity_cancelled = B_FALSE;
1909
VERIFY0(zfsvfs_setup(zfsvfs, B_FALSE));
1910
1911
zfs_set_fuid_feature(zfsvfs);
1912
zfsvfs->z_rollback_time = jiffies;
1913
1914
/*
1915
* Attempt to re-establish all the active inodes with their
1916
* dbufs. If a zfs_rezget() fails, then we unhash the inode
1917
* and mark it stale. This prevents a collision if a new
1918
* inode/object is created which must use the same inode
1919
* number. The stale inode will be be released when the
1920
* VFS prunes the dentry holding the remaining references
1921
* on the stale inode.
1922
*/
1923
mutex_enter(&zfsvfs->z_znodes_lock);
1924
for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1925
zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1926
err2 = zfs_rezget(zp);
1927
if (err2) {
1928
zpl_d_drop_aliases(ZTOI(zp));
1929
remove_inode_hash(ZTOI(zp));
1930
}
1931
1932
/* see comment in zfs_suspend_fs() */
1933
if (zp->z_suspended) {
1934
zfs_zrele_async(zp);
1935
zp->z_suspended = B_FALSE;
1936
}
1937
}
1938
mutex_exit(&zfsvfs->z_znodes_lock);
1939
1940
if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
1941
/*
1942
* zfs_suspend_fs() could have interrupted freeing
1943
* of dnodes. We need to restart this freeing so
1944
* that we don't "leak" the space.
1945
*/
1946
zfs_unlinked_drain(zfsvfs);
1947
}
1948
1949
/*
1950
* Most of the time zfs_suspend_fs is used for changing the contents
1951
* of the underlying dataset. ZFS rollback and receive operations
1952
* might create files for which negative dentries are present in
1953
* the cache. Since walking the dcache would require a lot of GPL-only
1954
* code duplication, it's much easier on these rather rare occasions
1955
* just to flush the whole dcache for the given dataset/filesystem.
1956
*/
1957
shrink_dcache_sb(zfsvfs->z_sb);
1958
1959
bail:
1960
if (err != 0)
1961
zfsvfs->z_unmounted = B_TRUE;
1962
1963
/* release the VFS ops */
1964
rw_exit(&zfsvfs->z_teardown_inactive_lock);
1965
ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1966
1967
if (err != 0) {
1968
/*
1969
* Since we couldn't setup the sa framework, try to force
1970
* unmount this file system.
1971
*/
1972
if (zfsvfs->z_os)
1973
(void) zfs_umount(zfsvfs->z_sb);
1974
}
1975
return (err);
1976
}
1977
1978
/*
1979
* Release VOPs and unmount a suspended filesystem.
1980
*/
1981
int
1982
zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1983
{
1984
ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1985
ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1986
1987
/*
1988
* We already own this, so just hold and rele it to update the
1989
* objset_t, as the one we had before may have been evicted.
1990
*/
1991
objset_t *os;
1992
VERIFY3P(ds->ds_owner, ==, zfsvfs);
1993
VERIFY(dsl_dataset_long_held(ds));
1994
dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1995
dsl_pool_config_enter(dp, FTAG);
1996
VERIFY0(dmu_objset_from_ds(ds, &os));
1997
dsl_pool_config_exit(dp, FTAG);
1998
zfsvfs->z_os = os;
1999
2000
/* release the VOPs */
2001
rw_exit(&zfsvfs->z_teardown_inactive_lock);
2002
ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
2003
2004
/*
2005
* Try to force unmount this file system.
2006
*/
2007
(void) zfs_umount(zfsvfs->z_sb);
2008
zfsvfs->z_unmounted = B_TRUE;
2009
return (0);
2010
}
2011
2012
/*
2013
* Automounted snapshots rely on periodic revalidation
2014
* to defer snapshots from being automatically unmounted.
2015
*/
2016
2017
inline void
2018
zfs_exit_fs(zfsvfs_t *zfsvfs)
2019
{
2020
if (!zfsvfs->z_issnap)
2021
return;
2022
2023
if (time_after(jiffies, zfsvfs->z_snap_defer_time +
2024
MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
2025
zfsvfs->z_snap_defer_time = jiffies;
2026
zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
2027
dmu_objset_id(zfsvfs->z_os),
2028
zfs_expire_snapshot);
2029
}
2030
}
2031
2032
int
2033
zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2034
{
2035
int error;
2036
objset_t *os = zfsvfs->z_os;
2037
dmu_tx_t *tx;
2038
2039
if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2040
return (SET_ERROR(EINVAL));
2041
2042
if (newvers < zfsvfs->z_version)
2043
return (SET_ERROR(EINVAL));
2044
2045
if (zfs_spa_version_map(newvers) >
2046
spa_version(dmu_objset_spa(zfsvfs->z_os)))
2047
return (SET_ERROR(ENOTSUP));
2048
2049
tx = dmu_tx_create(os);
2050
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2051
if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2052
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2053
ZFS_SA_ATTRS);
2054
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2055
}
2056
error = dmu_tx_assign(tx, DMU_TX_WAIT);
2057
if (error) {
2058
dmu_tx_abort(tx);
2059
return (error);
2060
}
2061
2062
error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2063
8, 1, &newvers, tx);
2064
2065
if (error) {
2066
dmu_tx_commit(tx);
2067
return (error);
2068
}
2069
2070
if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2071
uint64_t sa_obj;
2072
2073
ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2074
SPA_VERSION_SA);
2075
sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2076
DMU_OT_NONE, 0, tx);
2077
2078
error = zap_add(os, MASTER_NODE_OBJ,
2079
ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2080
ASSERT0(error);
2081
2082
VERIFY0(sa_set_sa_object(os, sa_obj));
2083
sa_register_update_callback(os, zfs_sa_upgrade);
2084
}
2085
2086
spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2087
"from %llu to %llu", zfsvfs->z_version, newvers);
2088
2089
dmu_tx_commit(tx);
2090
2091
zfsvfs->z_version = newvers;
2092
os->os_version = newvers;
2093
2094
zfs_set_fuid_feature(zfsvfs);
2095
2096
return (0);
2097
}
2098
2099
int
2100
zfs_set_default_quota(zfsvfs_t *zfsvfs, zfs_prop_t prop, uint64_t quota)
2101
{
2102
int error;
2103
objset_t *os = zfsvfs->z_os;
2104
const char *propstr = zfs_prop_to_name(prop);
2105
dmu_tx_t *tx;
2106
2107
tx = dmu_tx_create(os);
2108
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, propstr);
2109
error = dmu_tx_assign(tx, DMU_TX_WAIT);
2110
if (error) {
2111
dmu_tx_abort(tx);
2112
return (error);
2113
}
2114
2115
if (quota == 0) {
2116
error = zap_remove(os, MASTER_NODE_OBJ, propstr, tx);
2117
if (error == ENOENT)
2118
error = 0;
2119
} else {
2120
error = zap_update(os, MASTER_NODE_OBJ, propstr, 8, 1,
2121
&quota, tx);
2122
}
2123
2124
if (error)
2125
goto out;
2126
2127
switch (prop) {
2128
case ZFS_PROP_DEFAULTUSERQUOTA:
2129
zfsvfs->z_defaultuserquota = quota;
2130
break;
2131
case ZFS_PROP_DEFAULTGROUPQUOTA:
2132
zfsvfs->z_defaultgroupquota = quota;
2133
break;
2134
case ZFS_PROP_DEFAULTPROJECTQUOTA:
2135
zfsvfs->z_defaultprojectquota = quota;
2136
break;
2137
case ZFS_PROP_DEFAULTUSEROBJQUOTA:
2138
zfsvfs->z_defaultuserobjquota = quota;
2139
break;
2140
case ZFS_PROP_DEFAULTGROUPOBJQUOTA:
2141
zfsvfs->z_defaultgroupobjquota = quota;
2142
break;
2143
case ZFS_PROP_DEFAULTPROJECTOBJQUOTA:
2144
zfsvfs->z_defaultprojectobjquota = quota;
2145
break;
2146
default:
2147
break;
2148
}
2149
2150
out:
2151
dmu_tx_commit(tx);
2152
return (error);
2153
}
2154
2155
/*
2156
* Return true if the corresponding vfs's unmounted flag is set.
2157
* Otherwise return false.
2158
* If this function returns true we know VFS unmount has been initiated.
2159
*/
2160
boolean_t
2161
zfs_get_vfs_flag_unmounted(objset_t *os)
2162
{
2163
zfsvfs_t *zfvp;
2164
boolean_t unmounted = B_FALSE;
2165
2166
ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2167
2168
mutex_enter(&os->os_user_ptr_lock);
2169
zfvp = dmu_objset_get_user(os);
2170
if (zfvp != NULL && zfvp->z_unmounted)
2171
unmounted = B_TRUE;
2172
mutex_exit(&os->os_user_ptr_lock);
2173
2174
return (unmounted);
2175
}
2176
2177
void
2178
zfsvfs_update_fromname(const char *oldname, const char *newname)
2179
{
2180
/*
2181
* We don't need to do anything here, the devname is always current by
2182
* virtue of zfsvfs->z_sb->s_op->show_devname.
2183
*/
2184
(void) oldname, (void) newname;
2185
}
2186
2187
void
2188
zfs_init(void)
2189
{
2190
zfsctl_init();
2191
zfs_znode_init();
2192
dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2193
register_filesystem(&zpl_fs_type);
2194
}
2195
2196
void
2197
zfs_fini(void)
2198
{
2199
/*
2200
* we don't use outstanding because zpl_posix_acl_free might add more.
2201
*/
2202
taskq_wait(system_delay_taskq);
2203
taskq_wait(system_taskq);
2204
unregister_filesystem(&zpl_fs_type);
2205
zfs_znode_fini();
2206
zfsctl_fini();
2207
}
2208
2209
#if defined(_KERNEL)
2210
EXPORT_SYMBOL(zfs_suspend_fs);
2211
EXPORT_SYMBOL(zfs_resume_fs);
2212
EXPORT_SYMBOL(zfs_set_version);
2213
EXPORT_SYMBOL(zfsvfs_create);
2214
EXPORT_SYMBOL(zfsvfs_free);
2215
EXPORT_SYMBOL(zfs_is_readonly);
2216
EXPORT_SYMBOL(zfs_domount);
2217
EXPORT_SYMBOL(zfs_preumount);
2218
EXPORT_SYMBOL(zfs_umount);
2219
EXPORT_SYMBOL(zfs_remount);
2220
EXPORT_SYMBOL(zfs_statvfs);
2221
EXPORT_SYMBOL(zfs_vget);
2222
EXPORT_SYMBOL(zfs_prune);
2223
EXPORT_SYMBOL(zfs_set_default_quota);
2224
#endif
2225
2226