Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zcommon/zfs_fletcher_sse.c
48383 views
1
// SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0-only
2
/*
3
* Implement fast Fletcher4 with SSE2,SSSE3 instructions. (x86)
4
*
5
* Use the 128-bit SSE2/SSSE3 SIMD instructions and registers to compute
6
* Fletcher4 in two incremental 64-bit parallel accumulator streams,
7
* and then combine the streams to form the final four checksum words.
8
* This implementation is a derivative of the AVX SIMD implementation by
9
* James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
10
*
11
* Copyright (C) 2016 Tyler J. Stachecki.
12
*
13
* Authors:
14
* Tyler J. Stachecki <[email protected]>
15
*
16
* This software is available to you under a choice of one of two
17
* licenses. You may choose to be licensed under the terms of the GNU
18
* General Public License (GPL) Version 2, available from the file
19
* COPYING in the main directory of this source tree, or the
20
* OpenIB.org BSD license below:
21
*
22
* Redistribution and use in source and binary forms, with or
23
* without modification, are permitted provided that the following
24
* conditions are met:
25
*
26
* - Redistributions of source code must retain the above
27
* copyright notice, this list of conditions and the following
28
* disclaimer.
29
*
30
* - Redistributions in binary form must reproduce the above
31
* copyright notice, this list of conditions and the following
32
* disclaimer in the documentation and/or other materials
33
* provided with the distribution.
34
*
35
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
36
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
37
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
38
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
39
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
40
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
41
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
42
* SOFTWARE.
43
*/
44
45
#if defined(HAVE_SSE2)
46
47
#include <sys/simd.h>
48
#include <sys/spa_checksum.h>
49
#include <sys/string.h>
50
#include <sys/byteorder.h>
51
#include <zfs_fletcher.h>
52
53
static void
54
fletcher_4_sse2_init(fletcher_4_ctx_t *ctx)
55
{
56
memset(ctx->sse, 0, 4 * sizeof (zfs_fletcher_sse_t));
57
}
58
59
static void
60
fletcher_4_sse2_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
61
{
62
uint64_t A, B, C, D;
63
64
/*
65
* The mixing matrix for checksum calculation is:
66
* a = a0 + a1
67
* b = 2b0 + 2b1 - a1
68
* c = 4c0 - b0 + 4c1 -3b1
69
* d = 8d0 - 4c0 + 8d1 - 8c1 + b1;
70
*
71
* c and d are multiplied by 4 and 8, respectively,
72
* before spilling the vectors out to memory.
73
*/
74
A = ctx->sse[0].v[0] + ctx->sse[0].v[1];
75
B = 2 * ctx->sse[1].v[0] + 2 * ctx->sse[1].v[1] - ctx->sse[0].v[1];
76
C = 4 * ctx->sse[2].v[0] - ctx->sse[1].v[0] + 4 * ctx->sse[2].v[1] -
77
3 * ctx->sse[1].v[1];
78
D = 8 * ctx->sse[3].v[0] - 4 * ctx->sse[2].v[0] + 8 * ctx->sse[3].v[1] -
79
8 * ctx->sse[2].v[1] + ctx->sse[1].v[1];
80
81
ZIO_SET_CHECKSUM(zcp, A, B, C, D);
82
}
83
84
#define FLETCHER_4_SSE_RESTORE_CTX(ctx) \
85
{ \
86
asm volatile("movdqu %0, %%xmm0" :: "m" ((ctx)->sse[0])); \
87
asm volatile("movdqu %0, %%xmm1" :: "m" ((ctx)->sse[1])); \
88
asm volatile("movdqu %0, %%xmm2" :: "m" ((ctx)->sse[2])); \
89
asm volatile("movdqu %0, %%xmm3" :: "m" ((ctx)->sse[3])); \
90
}
91
92
#define FLETCHER_4_SSE_SAVE_CTX(ctx) \
93
{ \
94
asm volatile("movdqu %%xmm0, %0" : "=m" ((ctx)->sse[0])); \
95
asm volatile("movdqu %%xmm1, %0" : "=m" ((ctx)->sse[1])); \
96
asm volatile("movdqu %%xmm2, %0" : "=m" ((ctx)->sse[2])); \
97
asm volatile("movdqu %%xmm3, %0" : "=m" ((ctx)->sse[3])); \
98
}
99
100
static void
101
fletcher_4_sse2_native(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
102
{
103
const uint64_t *ip = buf;
104
const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
105
106
FLETCHER_4_SSE_RESTORE_CTX(ctx);
107
108
asm volatile("pxor %xmm4, %xmm4");
109
110
do {
111
asm volatile("movdqu %0, %%xmm5" :: "m"(*ip));
112
asm volatile("movdqa %xmm5, %xmm6");
113
asm volatile("punpckldq %xmm4, %xmm5");
114
asm volatile("punpckhdq %xmm4, %xmm6");
115
asm volatile("paddq %xmm5, %xmm0");
116
asm volatile("paddq %xmm0, %xmm1");
117
asm volatile("paddq %xmm1, %xmm2");
118
asm volatile("paddq %xmm2, %xmm3");
119
asm volatile("paddq %xmm6, %xmm0");
120
asm volatile("paddq %xmm0, %xmm1");
121
asm volatile("paddq %xmm1, %xmm2");
122
asm volatile("paddq %xmm2, %xmm3");
123
} while ((ip += 2) < ipend);
124
125
FLETCHER_4_SSE_SAVE_CTX(ctx);
126
}
127
128
static void
129
fletcher_4_sse2_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
130
{
131
const uint32_t *ip = buf;
132
const uint32_t *ipend = (uint32_t *)((uint8_t *)ip + size);
133
134
FLETCHER_4_SSE_RESTORE_CTX(ctx);
135
136
do {
137
uint32_t scratch1 = BSWAP_32(ip[0]);
138
uint32_t scratch2 = BSWAP_32(ip[1]);
139
asm volatile("movd %0, %%xmm5" :: "r"(scratch1));
140
asm volatile("movd %0, %%xmm6" :: "r"(scratch2));
141
asm volatile("punpcklqdq %xmm6, %xmm5");
142
asm volatile("paddq %xmm5, %xmm0");
143
asm volatile("paddq %xmm0, %xmm1");
144
asm volatile("paddq %xmm1, %xmm2");
145
asm volatile("paddq %xmm2, %xmm3");
146
} while ((ip += 2) < ipend);
147
148
FLETCHER_4_SSE_SAVE_CTX(ctx);
149
}
150
151
static boolean_t fletcher_4_sse2_valid(void)
152
{
153
return (kfpu_allowed() && zfs_sse2_available());
154
}
155
156
const fletcher_4_ops_t fletcher_4_sse2_ops = {
157
.init_native = fletcher_4_sse2_init,
158
.fini_native = fletcher_4_sse2_fini,
159
.compute_native = fletcher_4_sse2_native,
160
.init_byteswap = fletcher_4_sse2_init,
161
.fini_byteswap = fletcher_4_sse2_fini,
162
.compute_byteswap = fletcher_4_sse2_byteswap,
163
.valid = fletcher_4_sse2_valid,
164
.uses_fpu = B_TRUE,
165
.name = "sse2"
166
};
167
168
#endif /* defined(HAVE_SSE2) */
169
170
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
171
static void
172
fletcher_4_ssse3_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
173
{
174
static const zfs_fletcher_sse_t mask = {
175
.v = { 0x0405060700010203, 0x0C0D0E0F08090A0B }
176
};
177
178
const uint64_t *ip = buf;
179
const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
180
181
FLETCHER_4_SSE_RESTORE_CTX(ctx);
182
183
asm volatile("movdqu %0, %%xmm7"::"m" (mask));
184
asm volatile("pxor %xmm4, %xmm4");
185
186
do {
187
asm volatile("movdqu %0, %%xmm5"::"m" (*ip));
188
asm volatile("pshufb %xmm7, %xmm5");
189
asm volatile("movdqa %xmm5, %xmm6");
190
asm volatile("punpckldq %xmm4, %xmm5");
191
asm volatile("punpckhdq %xmm4, %xmm6");
192
asm volatile("paddq %xmm5, %xmm0");
193
asm volatile("paddq %xmm0, %xmm1");
194
asm volatile("paddq %xmm1, %xmm2");
195
asm volatile("paddq %xmm2, %xmm3");
196
asm volatile("paddq %xmm6, %xmm0");
197
asm volatile("paddq %xmm0, %xmm1");
198
asm volatile("paddq %xmm1, %xmm2");
199
asm volatile("paddq %xmm2, %xmm3");
200
} while ((ip += 2) < ipend);
201
202
FLETCHER_4_SSE_SAVE_CTX(ctx);
203
}
204
205
static boolean_t fletcher_4_ssse3_valid(void)
206
{
207
return (kfpu_allowed() && zfs_sse2_available() &&
208
zfs_ssse3_available());
209
}
210
211
const fletcher_4_ops_t fletcher_4_ssse3_ops = {
212
.init_native = fletcher_4_sse2_init,
213
.fini_native = fletcher_4_sse2_fini,
214
.compute_native = fletcher_4_sse2_native,
215
.init_byteswap = fletcher_4_sse2_init,
216
.fini_byteswap = fletcher_4_sse2_fini,
217
.compute_byteswap = fletcher_4_ssse3_byteswap,
218
.valid = fletcher_4_ssse3_valid,
219
.uses_fpu = B_TRUE,
220
.name = "ssse3"
221
};
222
223
#endif /* defined(HAVE_SSE2) && defined(HAVE_SSSE3) */
224
225