Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zfs/brt.c
48383 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
23
/*
24
* Copyright (c) 2020, 2021, 2022 by Pawel Jakub Dawidek
25
*/
26
27
#include <sys/zfs_context.h>
28
#include <sys/spa.h>
29
#include <sys/spa_impl.h>
30
#include <sys/zio.h>
31
#include <sys/brt.h>
32
#include <sys/brt_impl.h>
33
#include <sys/ddt.h>
34
#include <sys/bitmap.h>
35
#include <sys/zap.h>
36
#include <sys/dmu_tx.h>
37
#include <sys/arc.h>
38
#include <sys/dsl_pool.h>
39
#include <sys/dsl_scan.h>
40
#include <sys/vdev_impl.h>
41
#include <sys/kstat.h>
42
#include <sys/wmsum.h>
43
44
/*
45
* Block Cloning design.
46
*
47
* Block Cloning allows to manually clone a file (or a subset of its blocks)
48
* into another (or the same) file by just creating additional references to
49
* the data blocks without copying the data itself. Those references are kept
50
* in the Block Reference Tables (BRTs).
51
*
52
* In many ways this is similar to the existing deduplication, but there are
53
* some important differences:
54
*
55
* - Deduplication is automatic and Block Cloning is not - one has to use a
56
* dedicated system call(s) to clone the given file/blocks.
57
* - Deduplication keeps all data blocks in its table, even those referenced
58
* just once. Block Cloning creates an entry in its tables only when there
59
* are at least two references to the given data block. If the block was
60
* never explicitly cloned or the second to last reference was dropped,
61
* there will be neither space nor performance overhead.
62
* - Deduplication needs data to work - one needs to pass real data to the
63
* write(2) syscall, so hash can be calculated. Block Cloning doesn't require
64
* data, just block pointers to the data, so it is extremely fast, as we pay
65
* neither the cost of reading the data, nor the cost of writing the data -
66
* we operate exclusively on metadata.
67
* - If the D (dedup) bit is not set in the block pointer, it means that
68
* the block is not in the dedup table (DDT) and we won't consult the DDT
69
* when we need to free the block. Block Cloning must be consulted on every
70
* free, because we cannot modify the source BP (eg. by setting something
71
* similar to the D bit), thus we have no hint if the block is in the
72
* Block Reference Table (BRT), so we need to look into the BRT. There is
73
* an optimization in place that allows us to eliminate the majority of BRT
74
* lookups which is described below in the "Minimizing free penalty" section.
75
* - The BRT entry is much smaller than the DDT entry - for BRT we only store
76
* 64bit offset and 64bit reference counter.
77
* - Dedup keys are cryptographic hashes, so two blocks that are close to each
78
* other on disk are most likely in totally different parts of the DDT.
79
* The BRT entry keys are offsets into a single top-level VDEV, so data blocks
80
* from one file should have BRT entries close to each other.
81
* - Scrub will only do a single pass over a block that is referenced multiple
82
* times in the DDT. Unfortunately it is not currently (if at all) possible
83
* with Block Cloning and block referenced multiple times will be scrubbed
84
* multiple times. The new, sorted scrub should be able to eliminate
85
* duplicated reads given enough memory.
86
* - Deduplication requires cryptographically strong hash as a checksum or
87
* additional data verification. Block Cloning works with any checksum
88
* algorithm or even with checksumming disabled.
89
*
90
* As mentioned above, the BRT entries are much smaller than the DDT entries.
91
* To uniquely identify a block we just need its vdev id and offset. We also
92
* need to maintain a reference counter. The vdev id will often repeat, as there
93
* is a small number of top-level VDEVs and a large number of blocks stored in
94
* each VDEV. We take advantage of that to reduce the BRT entry size further by
95
* maintaining one BRT for each top-level VDEV, so we can then have only offset
96
* and counter as the BRT entry.
97
*
98
* Minimizing free penalty.
99
*
100
* Block Cloning allows creating additional references to any existing block.
101
* When we free a block there is no hint in the block pointer whether the block
102
* was cloned or not, so on each free we have to check if there is a
103
* corresponding entry in the BRT or not. If there is, we need to decrease
104
* the reference counter. Doing BRT lookup on every free can potentially be
105
* expensive by requiring additional I/Os if the BRT doesn't fit into memory.
106
* This is the main problem with deduplication, so we've learned our lesson and
107
* try not to repeat the same mistake here. How do we do that? We divide each
108
* top-level VDEV into 16MB regions. For each region we maintain a counter that
109
* is a sum of all the BRT entries that have offsets within the region. This
110
* creates the entries count array of 16bit numbers for each top-level VDEV.
111
* The entries count array is always kept in memory and updated on disk in the
112
* same transaction group as the BRT updates to keep everything in-sync. We can
113
* keep the array in memory, because it is very small. With 16MB regions and
114
* 1TB VDEV the array requires only 128kB of memory (we may decide to decrease
115
* the region size even further in the future). Now, when we want to free
116
* a block, we first consult the array. If the counter for the whole region is
117
* zero, there is no need to look for the BRT entry, as there isn't one for
118
* sure. If the counter for the region is greater than zero, only then we will
119
* do a BRT lookup and if an entry is found we will decrease the reference
120
* counter in the BRT entry and in the entry counters array.
121
*
122
* The entry counters array is small, but can potentially be larger for very
123
* large VDEVs or smaller regions. In this case we don't want to rewrite entire
124
* array on every change. We then divide the array into 32kB block and keep
125
* a bitmap of dirty blocks within a transaction group. When we sync the
126
* transaction group we can only update the parts of the entry counters array
127
* that were modified. Note: Keeping track of the dirty parts of the entry
128
* counters array is implemented, but updating only parts of the array on disk
129
* is not yet implemented - for now we will update entire array if there was
130
* any change.
131
*
132
* The implementation tries to be economic: if BRT is not used, or no longer
133
* used, there will be no entries in the MOS and no additional memory used (eg.
134
* the entry counters array is only allocated if needed).
135
*
136
* Interaction between Deduplication and Block Cloning.
137
*
138
* If both functionalities are in use, we could end up with a block that is
139
* referenced multiple times in both DDT and BRT. When we free one of the
140
* references we couldn't tell where it belongs, so we would have to decide
141
* what table takes the precedence: do we first clear DDT references or BRT
142
* references? To avoid this dilemma BRT cooperates with DDT - if a given block
143
* is being cloned using BRT and the BP has the D (dedup) bit set, BRT will
144
* lookup DDT entry instead and increase the counter there. No BRT entry
145
* will be created for a block which has the D (dedup) bit set.
146
* BRT may be more efficient for manual deduplication, but if the block is
147
* already in the DDT, then creating additional BRT entry would be less
148
* efficient. This clever idea was proposed by Allan Jude.
149
*
150
* Block Cloning across datasets.
151
*
152
* Block Cloning is not limited to cloning blocks within the same dataset.
153
* It is possible (and very useful) to clone blocks between different datasets.
154
* One use case is recovering files from snapshots. By cloning the files into
155
* dataset we need no additional storage. Without Block Cloning we would need
156
* additional space for those files.
157
* Another interesting use case is moving the files between datasets
158
* (copying the file content to the new dataset and removing the source file).
159
* In that case Block Cloning will only be used briefly, because the BRT entries
160
* will be removed when the source is removed.
161
* Block Cloning across encrypted datasets is supported as long as both
162
* datasets share the same master key (e.g. snapshots and clones)
163
*
164
* Block Cloning flow through ZFS layers.
165
*
166
* Note: Block Cloning can be used both for cloning file system blocks and ZVOL
167
* blocks. As of this writing no interface is implemented that allows for block
168
* cloning within a ZVOL.
169
* FreeBSD and Linux provides copy_file_range(2) system call and we will use it
170
* for blocking cloning.
171
*
172
* ssize_t
173
* copy_file_range(int infd, off_t *inoffp, int outfd, off_t *outoffp,
174
* size_t len, unsigned int flags);
175
*
176
* Even though offsets and length represent bytes, they have to be
177
* block-aligned or we will return an error so the upper layer can
178
* fallback to the generic mechanism that will just copy the data.
179
* Using copy_file_range(2) will call OS-independent zfs_clone_range() function.
180
* This function was implemented based on zfs_write(), but instead of writing
181
* the given data we first read block pointers using the new dmu_read_l0_bps()
182
* function from the source file. Once we have BPs from the source file we call
183
* the dmu_brt_clone() function on the destination file. This function
184
* allocates BPs for us. We iterate over all source BPs. If the given BP is
185
* a hole or an embedded block, we just copy BP as-is. If it points to a real
186
* data we place this BP on a BRT pending list using the brt_pending_add()
187
* function.
188
*
189
* We use this pending list to keep track of all BPs that got new references
190
* within this transaction group.
191
*
192
* Some special cases to consider and how we address them:
193
* - The block we want to clone may have been created within the same
194
* transaction group that we are trying to clone. Such block has no BP
195
* allocated yet, so cannot be immediately cloned. We return EAGAIN.
196
* - The block we want to clone may have been modified within the same
197
* transaction group. We return EAGAIN.
198
* - A block may be cloned multiple times during one transaction group (that's
199
* why pending list is actually a tree and not an append-only list - this
200
* way we can figure out faster if this block is cloned for the first time
201
* in this txg or consecutive time).
202
* - A block may be cloned and freed within the same transaction group
203
* (see dbuf_undirty()).
204
* - A block may be cloned and within the same transaction group the clone
205
* can be cloned again (see dmu_read_l0_bps()).
206
* - A file might have been deleted, but the caller still has a file descriptor
207
* open to this file and clones it.
208
*
209
* When we free a block we have an additional step in the ZIO pipeline where we
210
* call the zio_brt_free() function. We then call the brt_entry_decref()
211
* that loads the corresponding BRT entry (if one exists) and decreases
212
* reference counter. If this is not the last reference we will stop ZIO
213
* pipeline here. If this is the last reference or the block is not in the
214
* BRT, we continue the pipeline and free the block as usual.
215
*
216
* At the beginning of spa_sync() where there can be no more block cloning,
217
* but before issuing frees we call brt_pending_apply(). This function applies
218
* all the new clones to the BRT table - we load BRT entries and update
219
* reference counters. To sync new BRT entries to disk, we use brt_sync()
220
* function. This function will sync all dirty per-top-level-vdev BRTs,
221
* the entry counters arrays, etc.
222
*
223
* Block Cloning and ZIL.
224
*
225
* Every clone operation is divided into chunks (similar to write) and each
226
* chunk is cloned in a separate transaction. The chunk size is determined by
227
* how many BPs we can fit into a single ZIL entry.
228
* Replaying clone operation is different from the regular clone operation,
229
* as when we log clone operations we cannot use the source object - it may
230
* reside on a different dataset, so we log BPs we want to clone.
231
* The ZIL is replayed when we mount the given dataset, not when the pool is
232
* imported. Taking this into account it is possible that the pool is imported
233
* without mounting datasets and the source dataset is destroyed before the
234
* destination dataset is mounted and its ZIL replayed.
235
* To address this situation we leverage zil_claim() mechanism where ZFS will
236
* parse all the ZILs on pool import. When we come across TX_CLONE_RANGE
237
* entries, we will bump reference counters for their BPs in the BRT. Then
238
* on mount and ZIL replay we bump the reference counters once more, while the
239
* first references are dropped during ZIL destroy by zil_free_clone_range().
240
* It is possible that after zil_claim() we never mount the destination, so
241
* we never replay its ZIL and just destroy it. In this case the only taken
242
* references will be dropped by zil_free_clone_range(), since the cloning is
243
* not going to ever take place.
244
*/
245
246
static kmem_cache_t *brt_entry_cache;
247
248
/*
249
* Enable/disable prefetching of BRT entries that we are going to modify.
250
*/
251
static int brt_zap_prefetch = 1;
252
253
#ifdef ZFS_DEBUG
254
#define BRT_DEBUG(...) do { \
255
if ((zfs_flags & ZFS_DEBUG_BRT) != 0) { \
256
__dprintf(B_TRUE, __FILE__, __func__, __LINE__, __VA_ARGS__); \
257
} \
258
} while (0)
259
#else
260
#define BRT_DEBUG(...) do { } while (0)
261
#endif
262
263
static int brt_zap_default_bs = 12;
264
static int brt_zap_default_ibs = 12;
265
266
static kstat_t *brt_ksp;
267
268
typedef struct brt_stats {
269
kstat_named_t brt_addref_entry_not_on_disk;
270
kstat_named_t brt_addref_entry_on_disk;
271
kstat_named_t brt_decref_entry_in_memory;
272
kstat_named_t brt_decref_entry_loaded_from_disk;
273
kstat_named_t brt_decref_entry_not_in_memory;
274
kstat_named_t brt_decref_entry_read_lost_race;
275
kstat_named_t brt_decref_entry_still_referenced;
276
kstat_named_t brt_decref_free_data_later;
277
kstat_named_t brt_decref_free_data_now;
278
kstat_named_t brt_decref_no_entry;
279
} brt_stats_t;
280
281
static brt_stats_t brt_stats = {
282
{ "addref_entry_not_on_disk", KSTAT_DATA_UINT64 },
283
{ "addref_entry_on_disk", KSTAT_DATA_UINT64 },
284
{ "decref_entry_in_memory", KSTAT_DATA_UINT64 },
285
{ "decref_entry_loaded_from_disk", KSTAT_DATA_UINT64 },
286
{ "decref_entry_not_in_memory", KSTAT_DATA_UINT64 },
287
{ "decref_entry_read_lost_race", KSTAT_DATA_UINT64 },
288
{ "decref_entry_still_referenced", KSTAT_DATA_UINT64 },
289
{ "decref_free_data_later", KSTAT_DATA_UINT64 },
290
{ "decref_free_data_now", KSTAT_DATA_UINT64 },
291
{ "decref_no_entry", KSTAT_DATA_UINT64 }
292
};
293
294
struct {
295
wmsum_t brt_addref_entry_not_on_disk;
296
wmsum_t brt_addref_entry_on_disk;
297
wmsum_t brt_decref_entry_in_memory;
298
wmsum_t brt_decref_entry_loaded_from_disk;
299
wmsum_t brt_decref_entry_not_in_memory;
300
wmsum_t brt_decref_entry_read_lost_race;
301
wmsum_t brt_decref_entry_still_referenced;
302
wmsum_t brt_decref_free_data_later;
303
wmsum_t brt_decref_free_data_now;
304
wmsum_t brt_decref_no_entry;
305
} brt_sums;
306
307
#define BRTSTAT_BUMP(stat) wmsum_add(&brt_sums.stat, 1)
308
309
static int brt_entry_compare(const void *x1, const void *x2);
310
static void brt_vdevs_expand(spa_t *spa, uint64_t nvdevs);
311
312
static void
313
brt_rlock(spa_t *spa)
314
{
315
rw_enter(&spa->spa_brt_lock, RW_READER);
316
}
317
318
static void
319
brt_wlock(spa_t *spa)
320
{
321
rw_enter(&spa->spa_brt_lock, RW_WRITER);
322
}
323
324
static void
325
brt_unlock(spa_t *spa)
326
{
327
rw_exit(&spa->spa_brt_lock);
328
}
329
330
static uint16_t
331
brt_vdev_entcount_get(const brt_vdev_t *brtvd, uint64_t idx)
332
{
333
334
ASSERT3U(idx, <, brtvd->bv_size);
335
336
if (unlikely(brtvd->bv_need_byteswap)) {
337
return (BSWAP_16(brtvd->bv_entcount[idx]));
338
} else {
339
return (brtvd->bv_entcount[idx]);
340
}
341
}
342
343
static void
344
brt_vdev_entcount_set(brt_vdev_t *brtvd, uint64_t idx, uint16_t entcnt)
345
{
346
347
ASSERT3U(idx, <, brtvd->bv_size);
348
349
if (unlikely(brtvd->bv_need_byteswap)) {
350
brtvd->bv_entcount[idx] = BSWAP_16(entcnt);
351
} else {
352
brtvd->bv_entcount[idx] = entcnt;
353
}
354
}
355
356
static void
357
brt_vdev_entcount_inc(brt_vdev_t *brtvd, uint64_t idx)
358
{
359
uint16_t entcnt;
360
361
ASSERT3U(idx, <, brtvd->bv_size);
362
363
entcnt = brt_vdev_entcount_get(brtvd, idx);
364
ASSERT(entcnt < UINT16_MAX);
365
366
brt_vdev_entcount_set(brtvd, idx, entcnt + 1);
367
}
368
369
static void
370
brt_vdev_entcount_dec(brt_vdev_t *brtvd, uint64_t idx)
371
{
372
uint16_t entcnt;
373
374
ASSERT3U(idx, <, brtvd->bv_size);
375
376
entcnt = brt_vdev_entcount_get(brtvd, idx);
377
ASSERT(entcnt > 0);
378
379
brt_vdev_entcount_set(brtvd, idx, entcnt - 1);
380
}
381
382
#ifdef ZFS_DEBUG
383
static void
384
brt_vdev_dump(brt_vdev_t *brtvd)
385
{
386
uint64_t idx;
387
388
uint64_t nblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
389
zfs_dbgmsg(" BRT vdevid=%llu meta_dirty=%d entcount_dirty=%d "
390
"size=%llu totalcount=%llu nblocks=%llu bitmapsize=%zu",
391
(u_longlong_t)brtvd->bv_vdevid,
392
brtvd->bv_meta_dirty, brtvd->bv_entcount_dirty,
393
(u_longlong_t)brtvd->bv_size,
394
(u_longlong_t)brtvd->bv_totalcount,
395
(u_longlong_t)nblocks,
396
(size_t)BT_SIZEOFMAP(nblocks));
397
if (brtvd->bv_totalcount > 0) {
398
zfs_dbgmsg(" entcounts:");
399
for (idx = 0; idx < brtvd->bv_size; idx++) {
400
uint16_t entcnt = brt_vdev_entcount_get(brtvd, idx);
401
if (entcnt > 0) {
402
zfs_dbgmsg(" [%04llu] %hu",
403
(u_longlong_t)idx, entcnt);
404
}
405
}
406
}
407
if (brtvd->bv_entcount_dirty) {
408
char *bitmap;
409
410
bitmap = kmem_alloc(nblocks + 1, KM_SLEEP);
411
for (idx = 0; idx < nblocks; idx++) {
412
bitmap[idx] =
413
BT_TEST(brtvd->bv_bitmap, idx) ? 'x' : '.';
414
}
415
bitmap[idx] = '\0';
416
zfs_dbgmsg(" dirty: %s", bitmap);
417
kmem_free(bitmap, nblocks + 1);
418
}
419
}
420
#endif
421
422
static brt_vdev_t *
423
brt_vdev(spa_t *spa, uint64_t vdevid, boolean_t alloc)
424
{
425
brt_vdev_t *brtvd = NULL;
426
427
brt_rlock(spa);
428
if (vdevid < spa->spa_brt_nvdevs) {
429
brtvd = spa->spa_brt_vdevs[vdevid];
430
} else if (alloc) {
431
/* New VDEV was added. */
432
brt_unlock(spa);
433
brt_wlock(spa);
434
if (vdevid >= spa->spa_brt_nvdevs)
435
brt_vdevs_expand(spa, vdevid + 1);
436
brtvd = spa->spa_brt_vdevs[vdevid];
437
}
438
brt_unlock(spa);
439
return (brtvd);
440
}
441
442
static void
443
brt_vdev_create(spa_t *spa, brt_vdev_t *brtvd, dmu_tx_t *tx)
444
{
445
char name[64];
446
447
ASSERT(brtvd->bv_initiated);
448
ASSERT0(brtvd->bv_mos_brtvdev);
449
ASSERT0(brtvd->bv_mos_entries);
450
451
uint64_t mos_entries = zap_create_flags(spa->spa_meta_objset, 0,
452
ZAP_FLAG_HASH64 | ZAP_FLAG_UINT64_KEY, DMU_OTN_ZAP_METADATA,
453
brt_zap_default_bs, brt_zap_default_ibs, DMU_OT_NONE, 0, tx);
454
VERIFY(mos_entries != 0);
455
VERIFY0(dnode_hold(spa->spa_meta_objset, mos_entries, brtvd,
456
&brtvd->bv_mos_entries_dnode));
457
rw_enter(&brtvd->bv_mos_entries_lock, RW_WRITER);
458
brtvd->bv_mos_entries = mos_entries;
459
rw_exit(&brtvd->bv_mos_entries_lock);
460
BRT_DEBUG("MOS entries created, object=%llu",
461
(u_longlong_t)brtvd->bv_mos_entries);
462
463
/*
464
* We allocate DMU buffer to store the bv_entcount[] array.
465
* We will keep array size (bv_size) and cummulative count for all
466
* bv_entcount[]s (bv_totalcount) in the bonus buffer.
467
*/
468
brtvd->bv_mos_brtvdev = dmu_object_alloc(spa->spa_meta_objset,
469
DMU_OTN_UINT64_METADATA, BRT_BLOCKSIZE,
470
DMU_OTN_UINT64_METADATA, sizeof (brt_vdev_phys_t), tx);
471
VERIFY(brtvd->bv_mos_brtvdev != 0);
472
BRT_DEBUG("MOS BRT VDEV created, object=%llu",
473
(u_longlong_t)brtvd->bv_mos_brtvdev);
474
475
snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
476
(u_longlong_t)brtvd->bv_vdevid);
477
VERIFY0(zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, name,
478
sizeof (uint64_t), 1, &brtvd->bv_mos_brtvdev, tx));
479
BRT_DEBUG("Pool directory object created, object=%s", name);
480
481
/*
482
* Activate the endian-fixed feature if this is the first BRT ZAP
483
* (i.e., BLOCK_CLONING is not yet active) and the feature is enabled.
484
*/
485
if (spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING_ENDIAN) &&
486
!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
487
spa_feature_incr(spa, SPA_FEATURE_BLOCK_CLONING_ENDIAN, tx);
488
} else if (spa_feature_is_active(spa,
489
SPA_FEATURE_BLOCK_CLONING_ENDIAN)) {
490
spa_feature_incr(spa, SPA_FEATURE_BLOCK_CLONING_ENDIAN, tx);
491
}
492
493
spa_feature_incr(spa, SPA_FEATURE_BLOCK_CLONING, tx);
494
}
495
496
static void
497
brt_vdev_realloc(spa_t *spa, brt_vdev_t *brtvd)
498
{
499
vdev_t *vd;
500
uint16_t *entcount;
501
ulong_t *bitmap;
502
uint64_t nblocks, onblocks, size;
503
504
ASSERT(RW_WRITE_HELD(&brtvd->bv_lock));
505
506
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
507
vd = vdev_lookup_top(spa, brtvd->bv_vdevid);
508
size = (vdev_get_min_asize(vd) - 1) / spa->spa_brt_rangesize + 1;
509
spa_config_exit(spa, SCL_VDEV, FTAG);
510
511
entcount = vmem_zalloc(sizeof (entcount[0]) * size, KM_SLEEP);
512
nblocks = BRT_RANGESIZE_TO_NBLOCKS(size);
513
bitmap = kmem_zalloc(BT_SIZEOFMAP(nblocks), KM_SLEEP);
514
515
if (!brtvd->bv_initiated) {
516
ASSERT0(brtvd->bv_size);
517
ASSERT0P(brtvd->bv_entcount);
518
ASSERT0P(brtvd->bv_bitmap);
519
} else {
520
ASSERT(brtvd->bv_size > 0);
521
ASSERT(brtvd->bv_entcount != NULL);
522
ASSERT(brtvd->bv_bitmap != NULL);
523
/*
524
* TODO: Allow vdev shrinking. We only need to implement
525
* shrinking the on-disk BRT VDEV object.
526
* dmu_free_range(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
527
* offset, size, tx);
528
*/
529
ASSERT3U(brtvd->bv_size, <=, size);
530
531
memcpy(entcount, brtvd->bv_entcount,
532
sizeof (entcount[0]) * MIN(size, brtvd->bv_size));
533
vmem_free(brtvd->bv_entcount,
534
sizeof (entcount[0]) * brtvd->bv_size);
535
onblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
536
memcpy(bitmap, brtvd->bv_bitmap, MIN(BT_SIZEOFMAP(nblocks),
537
BT_SIZEOFMAP(onblocks)));
538
kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(onblocks));
539
}
540
541
brtvd->bv_size = size;
542
brtvd->bv_entcount = entcount;
543
brtvd->bv_bitmap = bitmap;
544
if (!brtvd->bv_initiated) {
545
brtvd->bv_need_byteswap = FALSE;
546
brtvd->bv_initiated = TRUE;
547
BRT_DEBUG("BRT VDEV %llu initiated.",
548
(u_longlong_t)brtvd->bv_vdevid);
549
}
550
}
551
552
static int
553
brt_vdev_load(spa_t *spa, brt_vdev_t *brtvd)
554
{
555
dmu_buf_t *db;
556
brt_vdev_phys_t *bvphys;
557
int error;
558
559
ASSERT(!brtvd->bv_initiated);
560
ASSERT(brtvd->bv_mos_brtvdev != 0);
561
562
error = dmu_bonus_hold(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
563
FTAG, &db);
564
if (error != 0)
565
return (error);
566
567
bvphys = db->db_data;
568
if (spa->spa_brt_rangesize == 0) {
569
spa->spa_brt_rangesize = bvphys->bvp_rangesize;
570
} else {
571
ASSERT3U(spa->spa_brt_rangesize, ==, bvphys->bvp_rangesize);
572
}
573
574
brt_vdev_realloc(spa, brtvd);
575
576
/* TODO: We don't support VDEV shrinking. */
577
ASSERT3U(bvphys->bvp_size, <=, brtvd->bv_size);
578
579
/*
580
* If VDEV grew, we will leave new bv_entcount[] entries zeroed out.
581
*/
582
error = dmu_read(spa->spa_meta_objset, brtvd->bv_mos_brtvdev, 0,
583
MIN(brtvd->bv_size, bvphys->bvp_size) * sizeof (uint16_t),
584
brtvd->bv_entcount, DMU_READ_NO_PREFETCH);
585
if (error != 0)
586
return (error);
587
588
ASSERT(bvphys->bvp_mos_entries != 0);
589
VERIFY0(dnode_hold(spa->spa_meta_objset, bvphys->bvp_mos_entries, brtvd,
590
&brtvd->bv_mos_entries_dnode));
591
rw_enter(&brtvd->bv_mos_entries_lock, RW_WRITER);
592
brtvd->bv_mos_entries = bvphys->bvp_mos_entries;
593
rw_exit(&brtvd->bv_mos_entries_lock);
594
brtvd->bv_need_byteswap =
595
(bvphys->bvp_byteorder != BRT_NATIVE_BYTEORDER);
596
brtvd->bv_totalcount = bvphys->bvp_totalcount;
597
brtvd->bv_usedspace = bvphys->bvp_usedspace;
598
brtvd->bv_savedspace = bvphys->bvp_savedspace;
599
600
dmu_buf_rele(db, FTAG);
601
602
BRT_DEBUG("BRT VDEV %llu loaded: mos_brtvdev=%llu, mos_entries=%llu",
603
(u_longlong_t)brtvd->bv_vdevid,
604
(u_longlong_t)brtvd->bv_mos_brtvdev,
605
(u_longlong_t)brtvd->bv_mos_entries);
606
return (0);
607
}
608
609
static void
610
brt_vdev_dealloc(brt_vdev_t *brtvd)
611
{
612
ASSERT(RW_WRITE_HELD(&brtvd->bv_lock));
613
ASSERT(brtvd->bv_initiated);
614
ASSERT0(avl_numnodes(&brtvd->bv_tree));
615
616
vmem_free(brtvd->bv_entcount, sizeof (uint16_t) * brtvd->bv_size);
617
brtvd->bv_entcount = NULL;
618
uint64_t nblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
619
kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(nblocks));
620
brtvd->bv_bitmap = NULL;
621
622
brtvd->bv_size = 0;
623
624
brtvd->bv_initiated = FALSE;
625
BRT_DEBUG("BRT VDEV %llu deallocated.", (u_longlong_t)brtvd->bv_vdevid);
626
}
627
628
static void
629
brt_vdev_destroy(spa_t *spa, brt_vdev_t *brtvd, dmu_tx_t *tx)
630
{
631
char name[64];
632
uint64_t count;
633
634
ASSERT(brtvd->bv_initiated);
635
ASSERT(brtvd->bv_mos_brtvdev != 0);
636
ASSERT(brtvd->bv_mos_entries != 0);
637
ASSERT0(brtvd->bv_totalcount);
638
ASSERT0(brtvd->bv_usedspace);
639
ASSERT0(brtvd->bv_savedspace);
640
641
uint64_t mos_entries = brtvd->bv_mos_entries;
642
rw_enter(&brtvd->bv_mos_entries_lock, RW_WRITER);
643
brtvd->bv_mos_entries = 0;
644
rw_exit(&brtvd->bv_mos_entries_lock);
645
dnode_rele(brtvd->bv_mos_entries_dnode, brtvd);
646
brtvd->bv_mos_entries_dnode = NULL;
647
ASSERT0(zap_count(spa->spa_meta_objset, mos_entries, &count));
648
ASSERT0(count);
649
VERIFY0(zap_destroy(spa->spa_meta_objset, mos_entries, tx));
650
BRT_DEBUG("MOS entries destroyed, object=%llu",
651
(u_longlong_t)mos_entries);
652
653
VERIFY0(dmu_object_free(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
654
tx));
655
BRT_DEBUG("MOS BRT VDEV destroyed, object=%llu",
656
(u_longlong_t)brtvd->bv_mos_brtvdev);
657
brtvd->bv_mos_brtvdev = 0;
658
brtvd->bv_entcount_dirty = FALSE;
659
660
snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
661
(u_longlong_t)brtvd->bv_vdevid);
662
VERIFY0(zap_remove(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
663
name, tx));
664
BRT_DEBUG("Pool directory object removed, object=%s", name);
665
666
brtvd->bv_meta_dirty = FALSE;
667
668
rw_enter(&brtvd->bv_lock, RW_WRITER);
669
brt_vdev_dealloc(brtvd);
670
rw_exit(&brtvd->bv_lock);
671
672
spa_feature_decr(spa, SPA_FEATURE_BLOCK_CLONING, tx);
673
if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING_ENDIAN))
674
spa_feature_decr(spa, SPA_FEATURE_BLOCK_CLONING_ENDIAN, tx);
675
}
676
677
static void
678
brt_vdevs_expand(spa_t *spa, uint64_t nvdevs)
679
{
680
brt_vdev_t **vdevs;
681
682
ASSERT(RW_WRITE_HELD(&spa->spa_brt_lock));
683
ASSERT3U(nvdevs, >=, spa->spa_brt_nvdevs);
684
685
if (nvdevs == spa->spa_brt_nvdevs)
686
return;
687
688
vdevs = kmem_zalloc(sizeof (*spa->spa_brt_vdevs) * nvdevs, KM_SLEEP);
689
if (spa->spa_brt_nvdevs > 0) {
690
ASSERT(spa->spa_brt_vdevs != NULL);
691
692
memcpy(vdevs, spa->spa_brt_vdevs,
693
sizeof (*spa->spa_brt_vdevs) * spa->spa_brt_nvdevs);
694
kmem_free(spa->spa_brt_vdevs,
695
sizeof (*spa->spa_brt_vdevs) * spa->spa_brt_nvdevs);
696
}
697
spa->spa_brt_vdevs = vdevs;
698
699
for (uint64_t vdevid = spa->spa_brt_nvdevs; vdevid < nvdevs; vdevid++) {
700
brt_vdev_t *brtvd = kmem_zalloc(sizeof (*brtvd), KM_SLEEP);
701
rw_init(&brtvd->bv_lock, NULL, RW_DEFAULT, NULL);
702
brtvd->bv_vdevid = vdevid;
703
brtvd->bv_initiated = FALSE;
704
rw_init(&brtvd->bv_mos_entries_lock, NULL, RW_DEFAULT, NULL);
705
avl_create(&brtvd->bv_tree, brt_entry_compare,
706
sizeof (brt_entry_t), offsetof(brt_entry_t, bre_node));
707
for (int i = 0; i < TXG_SIZE; i++) {
708
avl_create(&brtvd->bv_pending_tree[i],
709
brt_entry_compare, sizeof (brt_entry_t),
710
offsetof(brt_entry_t, bre_node));
711
}
712
mutex_init(&brtvd->bv_pending_lock, NULL, MUTEX_DEFAULT, NULL);
713
spa->spa_brt_vdevs[vdevid] = brtvd;
714
}
715
716
BRT_DEBUG("BRT VDEVs expanded from %llu to %llu.",
717
(u_longlong_t)spa->spa_brt_nvdevs, (u_longlong_t)nvdevs);
718
spa->spa_brt_nvdevs = nvdevs;
719
}
720
721
static boolean_t
722
brt_vdev_lookup(spa_t *spa, brt_vdev_t *brtvd, uint64_t offset)
723
{
724
uint64_t idx = offset / spa->spa_brt_rangesize;
725
if (idx < brtvd->bv_size) {
726
/* VDEV wasn't expanded. */
727
return (brt_vdev_entcount_get(brtvd, idx) > 0);
728
}
729
return (FALSE);
730
}
731
732
static void
733
brt_vdev_addref(spa_t *spa, brt_vdev_t *brtvd, const brt_entry_t *bre,
734
uint64_t dsize, uint64_t count)
735
{
736
uint64_t idx;
737
738
ASSERT(brtvd->bv_initiated);
739
740
brtvd->bv_savedspace += dsize * count;
741
brtvd->bv_meta_dirty = TRUE;
742
743
if (bre->bre_count > 0)
744
return;
745
746
brtvd->bv_usedspace += dsize;
747
748
idx = BRE_OFFSET(bre) / spa->spa_brt_rangesize;
749
if (idx >= brtvd->bv_size) {
750
/* VDEV has been expanded. */
751
rw_enter(&brtvd->bv_lock, RW_WRITER);
752
brt_vdev_realloc(spa, brtvd);
753
rw_exit(&brtvd->bv_lock);
754
}
755
756
ASSERT3U(idx, <, brtvd->bv_size);
757
758
brtvd->bv_totalcount++;
759
brt_vdev_entcount_inc(brtvd, idx);
760
brtvd->bv_entcount_dirty = TRUE;
761
idx = idx / BRT_BLOCKSIZE / 8;
762
BT_SET(brtvd->bv_bitmap, idx);
763
}
764
765
static void
766
brt_vdev_decref(spa_t *spa, brt_vdev_t *brtvd, const brt_entry_t *bre,
767
uint64_t dsize)
768
{
769
uint64_t idx;
770
771
ASSERT(RW_WRITE_HELD(&brtvd->bv_lock));
772
ASSERT(brtvd->bv_initiated);
773
774
brtvd->bv_savedspace -= dsize;
775
brtvd->bv_meta_dirty = TRUE;
776
777
if (bre->bre_count > 0)
778
return;
779
780
brtvd->bv_usedspace -= dsize;
781
782
idx = BRE_OFFSET(bre) / spa->spa_brt_rangesize;
783
ASSERT3U(idx, <, brtvd->bv_size);
784
785
ASSERT(brtvd->bv_totalcount > 0);
786
brtvd->bv_totalcount--;
787
brt_vdev_entcount_dec(brtvd, idx);
788
brtvd->bv_entcount_dirty = TRUE;
789
idx = idx / BRT_BLOCKSIZE / 8;
790
BT_SET(brtvd->bv_bitmap, idx);
791
}
792
793
static void
794
brt_vdev_sync(spa_t *spa, brt_vdev_t *brtvd, dmu_tx_t *tx)
795
{
796
dmu_buf_t *db;
797
brt_vdev_phys_t *bvphys;
798
799
ASSERT(brtvd->bv_meta_dirty);
800
ASSERT(brtvd->bv_mos_brtvdev != 0);
801
ASSERT(dmu_tx_is_syncing(tx));
802
803
VERIFY0(dmu_bonus_hold(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
804
FTAG, &db));
805
806
if (brtvd->bv_entcount_dirty) {
807
/*
808
* TODO: Walk brtvd->bv_bitmap and write only the dirty blocks.
809
*/
810
dmu_write(spa->spa_meta_objset, brtvd->bv_mos_brtvdev, 0,
811
brtvd->bv_size * sizeof (brtvd->bv_entcount[0]),
812
brtvd->bv_entcount, tx);
813
uint64_t nblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
814
memset(brtvd->bv_bitmap, 0, BT_SIZEOFMAP(nblocks));
815
brtvd->bv_entcount_dirty = FALSE;
816
}
817
818
dmu_buf_will_dirty(db, tx);
819
bvphys = db->db_data;
820
bvphys->bvp_mos_entries = brtvd->bv_mos_entries;
821
bvphys->bvp_size = brtvd->bv_size;
822
if (brtvd->bv_need_byteswap) {
823
bvphys->bvp_byteorder = BRT_NON_NATIVE_BYTEORDER;
824
} else {
825
bvphys->bvp_byteorder = BRT_NATIVE_BYTEORDER;
826
}
827
bvphys->bvp_totalcount = brtvd->bv_totalcount;
828
bvphys->bvp_rangesize = spa->spa_brt_rangesize;
829
bvphys->bvp_usedspace = brtvd->bv_usedspace;
830
bvphys->bvp_savedspace = brtvd->bv_savedspace;
831
dmu_buf_rele(db, FTAG);
832
833
brtvd->bv_meta_dirty = FALSE;
834
}
835
836
static void
837
brt_vdevs_free(spa_t *spa)
838
{
839
if (spa->spa_brt_vdevs == 0)
840
return;
841
for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
842
brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
843
rw_enter(&brtvd->bv_lock, RW_WRITER);
844
if (brtvd->bv_initiated)
845
brt_vdev_dealloc(brtvd);
846
rw_exit(&brtvd->bv_lock);
847
rw_destroy(&brtvd->bv_lock);
848
if (brtvd->bv_mos_entries != 0)
849
dnode_rele(brtvd->bv_mos_entries_dnode, brtvd);
850
rw_destroy(&brtvd->bv_mos_entries_lock);
851
avl_destroy(&brtvd->bv_tree);
852
for (int i = 0; i < TXG_SIZE; i++)
853
avl_destroy(&brtvd->bv_pending_tree[i]);
854
mutex_destroy(&brtvd->bv_pending_lock);
855
kmem_free(brtvd, sizeof (*brtvd));
856
}
857
kmem_free(spa->spa_brt_vdevs, sizeof (*spa->spa_brt_vdevs) *
858
spa->spa_brt_nvdevs);
859
}
860
861
static void
862
brt_entry_fill(const blkptr_t *bp, brt_entry_t *bre, uint64_t *vdevidp)
863
{
864
865
bre->bre_bp = *bp;
866
bre->bre_count = 0;
867
bre->bre_pcount = 0;
868
869
*vdevidp = DVA_GET_VDEV(&bp->blk_dva[0]);
870
}
871
872
static boolean_t
873
brt_has_endian_fixed(spa_t *spa)
874
{
875
return (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING_ENDIAN));
876
}
877
878
static int
879
brt_entry_lookup(spa_t *spa, brt_vdev_t *brtvd, brt_entry_t *bre)
880
{
881
uint64_t off = BRE_OFFSET(bre);
882
883
if (brtvd->bv_mos_entries == 0)
884
return (SET_ERROR(ENOENT));
885
886
if (brt_has_endian_fixed(spa)) {
887
return (zap_lookup_uint64_by_dnode(brtvd->bv_mos_entries_dnode,
888
&off, BRT_KEY_WORDS, sizeof (bre->bre_count), 1,
889
&bre->bre_count));
890
} else {
891
return (zap_lookup_uint64_by_dnode(brtvd->bv_mos_entries_dnode,
892
&off, BRT_KEY_WORDS, 1, sizeof (bre->bre_count),
893
&bre->bre_count));
894
}
895
}
896
897
/*
898
* Return TRUE if we _can_ have BRT entry for this bp. It might be false
899
* positive, but gives us quick answer if we should look into BRT, which
900
* may require reads and thus will be more expensive.
901
*/
902
boolean_t
903
brt_maybe_exists(spa_t *spa, const blkptr_t *bp)
904
{
905
906
if (spa->spa_brt_nvdevs == 0)
907
return (B_FALSE);
908
909
uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[0]);
910
brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
911
if (brtvd == NULL || !brtvd->bv_initiated)
912
return (FALSE);
913
914
/*
915
* We don't need locks here, since bv_entcount pointer must be
916
* stable at this point, and we don't care about false positive
917
* races here, while false negative should be impossible, since
918
* all brt_vdev_addref() have already completed by this point.
919
*/
920
uint64_t off = DVA_GET_OFFSET(&bp->blk_dva[0]);
921
return (brt_vdev_lookup(spa, brtvd, off));
922
}
923
924
uint64_t
925
brt_get_dspace(spa_t *spa)
926
{
927
if (spa->spa_brt_nvdevs == 0)
928
return (0);
929
930
brt_rlock(spa);
931
uint64_t s = 0;
932
for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++)
933
s += spa->spa_brt_vdevs[vdevid]->bv_savedspace;
934
brt_unlock(spa);
935
return (s);
936
}
937
938
uint64_t
939
brt_get_used(spa_t *spa)
940
{
941
if (spa->spa_brt_nvdevs == 0)
942
return (0);
943
944
brt_rlock(spa);
945
uint64_t s = 0;
946
for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++)
947
s += spa->spa_brt_vdevs[vdevid]->bv_usedspace;
948
brt_unlock(spa);
949
return (s);
950
}
951
952
uint64_t
953
brt_get_saved(spa_t *spa)
954
{
955
return (brt_get_dspace(spa));
956
}
957
958
uint64_t
959
brt_get_ratio(spa_t *spa)
960
{
961
uint64_t used = brt_get_used(spa);
962
if (used == 0)
963
return (100);
964
return ((used + brt_get_saved(spa)) * 100 / used);
965
}
966
967
static int
968
brt_kstats_update(kstat_t *ksp, int rw)
969
{
970
brt_stats_t *bs = ksp->ks_data;
971
972
if (rw == KSTAT_WRITE)
973
return (EACCES);
974
975
bs->brt_addref_entry_not_on_disk.value.ui64 =
976
wmsum_value(&brt_sums.brt_addref_entry_not_on_disk);
977
bs->brt_addref_entry_on_disk.value.ui64 =
978
wmsum_value(&brt_sums.brt_addref_entry_on_disk);
979
bs->brt_decref_entry_in_memory.value.ui64 =
980
wmsum_value(&brt_sums.brt_decref_entry_in_memory);
981
bs->brt_decref_entry_loaded_from_disk.value.ui64 =
982
wmsum_value(&brt_sums.brt_decref_entry_loaded_from_disk);
983
bs->brt_decref_entry_not_in_memory.value.ui64 =
984
wmsum_value(&brt_sums.brt_decref_entry_not_in_memory);
985
bs->brt_decref_entry_read_lost_race.value.ui64 =
986
wmsum_value(&brt_sums.brt_decref_entry_read_lost_race);
987
bs->brt_decref_entry_still_referenced.value.ui64 =
988
wmsum_value(&brt_sums.brt_decref_entry_still_referenced);
989
bs->brt_decref_free_data_later.value.ui64 =
990
wmsum_value(&brt_sums.brt_decref_free_data_later);
991
bs->brt_decref_free_data_now.value.ui64 =
992
wmsum_value(&brt_sums.brt_decref_free_data_now);
993
bs->brt_decref_no_entry.value.ui64 =
994
wmsum_value(&brt_sums.brt_decref_no_entry);
995
996
return (0);
997
}
998
999
static void
1000
brt_stat_init(void)
1001
{
1002
1003
wmsum_init(&brt_sums.brt_addref_entry_not_on_disk, 0);
1004
wmsum_init(&brt_sums.brt_addref_entry_on_disk, 0);
1005
wmsum_init(&brt_sums.brt_decref_entry_in_memory, 0);
1006
wmsum_init(&brt_sums.brt_decref_entry_loaded_from_disk, 0);
1007
wmsum_init(&brt_sums.brt_decref_entry_not_in_memory, 0);
1008
wmsum_init(&brt_sums.brt_decref_entry_read_lost_race, 0);
1009
wmsum_init(&brt_sums.brt_decref_entry_still_referenced, 0);
1010
wmsum_init(&brt_sums.brt_decref_free_data_later, 0);
1011
wmsum_init(&brt_sums.brt_decref_free_data_now, 0);
1012
wmsum_init(&brt_sums.brt_decref_no_entry, 0);
1013
1014
brt_ksp = kstat_create("zfs", 0, "brtstats", "misc", KSTAT_TYPE_NAMED,
1015
sizeof (brt_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
1016
if (brt_ksp != NULL) {
1017
brt_ksp->ks_data = &brt_stats;
1018
brt_ksp->ks_update = brt_kstats_update;
1019
kstat_install(brt_ksp);
1020
}
1021
}
1022
1023
static void
1024
brt_stat_fini(void)
1025
{
1026
if (brt_ksp != NULL) {
1027
kstat_delete(brt_ksp);
1028
brt_ksp = NULL;
1029
}
1030
1031
wmsum_fini(&brt_sums.brt_addref_entry_not_on_disk);
1032
wmsum_fini(&brt_sums.brt_addref_entry_on_disk);
1033
wmsum_fini(&brt_sums.brt_decref_entry_in_memory);
1034
wmsum_fini(&brt_sums.brt_decref_entry_loaded_from_disk);
1035
wmsum_fini(&brt_sums.brt_decref_entry_not_in_memory);
1036
wmsum_fini(&brt_sums.brt_decref_entry_read_lost_race);
1037
wmsum_fini(&brt_sums.brt_decref_entry_still_referenced);
1038
wmsum_fini(&brt_sums.brt_decref_free_data_later);
1039
wmsum_fini(&brt_sums.brt_decref_free_data_now);
1040
wmsum_fini(&brt_sums.brt_decref_no_entry);
1041
}
1042
1043
void
1044
brt_init(void)
1045
{
1046
brt_entry_cache = kmem_cache_create("brt_entry_cache",
1047
sizeof (brt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
1048
1049
brt_stat_init();
1050
}
1051
1052
void
1053
brt_fini(void)
1054
{
1055
brt_stat_fini();
1056
1057
kmem_cache_destroy(brt_entry_cache);
1058
}
1059
1060
/* Return TRUE if block should be freed immediately. */
1061
boolean_t
1062
brt_entry_decref(spa_t *spa, const blkptr_t *bp)
1063
{
1064
brt_entry_t *bre, *racebre;
1065
brt_entry_t bre_search;
1066
avl_index_t where;
1067
uint64_t vdevid;
1068
int error;
1069
1070
brt_entry_fill(bp, &bre_search, &vdevid);
1071
1072
brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
1073
ASSERT(brtvd != NULL);
1074
1075
rw_enter(&brtvd->bv_lock, RW_WRITER);
1076
ASSERT(brtvd->bv_initiated);
1077
bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
1078
if (bre != NULL) {
1079
BRTSTAT_BUMP(brt_decref_entry_in_memory);
1080
goto out;
1081
} else {
1082
BRTSTAT_BUMP(brt_decref_entry_not_in_memory);
1083
}
1084
rw_exit(&brtvd->bv_lock);
1085
1086
error = brt_entry_lookup(spa, brtvd, &bre_search);
1087
/* bre_search now contains correct bre_count */
1088
if (error == ENOENT) {
1089
BRTSTAT_BUMP(brt_decref_no_entry);
1090
return (B_TRUE);
1091
}
1092
ASSERT0(error);
1093
1094
rw_enter(&brtvd->bv_lock, RW_WRITER);
1095
racebre = avl_find(&brtvd->bv_tree, &bre_search, &where);
1096
if (racebre != NULL) {
1097
/* The entry was added when the lock was dropped. */
1098
BRTSTAT_BUMP(brt_decref_entry_read_lost_race);
1099
bre = racebre;
1100
goto out;
1101
}
1102
1103
BRTSTAT_BUMP(brt_decref_entry_loaded_from_disk);
1104
bre = kmem_cache_alloc(brt_entry_cache, KM_SLEEP);
1105
bre->bre_bp = bre_search.bre_bp;
1106
bre->bre_count = bre_search.bre_count;
1107
bre->bre_pcount = 0;
1108
avl_insert(&brtvd->bv_tree, bre, where);
1109
1110
out:
1111
if (bre->bre_count == 0) {
1112
rw_exit(&brtvd->bv_lock);
1113
BRTSTAT_BUMP(brt_decref_free_data_now);
1114
return (B_TRUE);
1115
}
1116
1117
bre->bre_pcount--;
1118
ASSERT(bre->bre_count > 0);
1119
bre->bre_count--;
1120
if (bre->bre_count == 0)
1121
BRTSTAT_BUMP(brt_decref_free_data_later);
1122
else
1123
BRTSTAT_BUMP(brt_decref_entry_still_referenced);
1124
brt_vdev_decref(spa, brtvd, bre, bp_get_dsize_sync(spa, bp));
1125
1126
rw_exit(&brtvd->bv_lock);
1127
1128
return (B_FALSE);
1129
}
1130
1131
uint64_t
1132
brt_entry_get_refcount(spa_t *spa, const blkptr_t *bp)
1133
{
1134
brt_entry_t bre_search, *bre;
1135
uint64_t vdevid, refcnt;
1136
int error;
1137
1138
brt_entry_fill(bp, &bre_search, &vdevid);
1139
1140
brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
1141
ASSERT(brtvd != NULL);
1142
1143
rw_enter(&brtvd->bv_lock, RW_READER);
1144
ASSERT(brtvd->bv_initiated);
1145
bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
1146
if (bre == NULL) {
1147
rw_exit(&brtvd->bv_lock);
1148
error = brt_entry_lookup(spa, brtvd, &bre_search);
1149
if (error == ENOENT) {
1150
refcnt = 0;
1151
} else {
1152
ASSERT0(error);
1153
refcnt = bre_search.bre_count;
1154
}
1155
} else {
1156
refcnt = bre->bre_count;
1157
rw_exit(&brtvd->bv_lock);
1158
}
1159
1160
return (refcnt);
1161
}
1162
1163
static void
1164
brt_prefetch(brt_vdev_t *brtvd, const blkptr_t *bp)
1165
{
1166
if (!brt_zap_prefetch || brtvd->bv_mos_entries == 0)
1167
return;
1168
1169
uint64_t off = DVA_GET_OFFSET(&bp->blk_dva[0]);
1170
rw_enter(&brtvd->bv_mos_entries_lock, RW_READER);
1171
if (brtvd->bv_mos_entries != 0) {
1172
(void) zap_prefetch_uint64_by_dnode(brtvd->bv_mos_entries_dnode,
1173
&off, BRT_KEY_WORDS);
1174
}
1175
rw_exit(&brtvd->bv_mos_entries_lock);
1176
}
1177
1178
static int
1179
brt_entry_compare(const void *x1, const void *x2)
1180
{
1181
const brt_entry_t *bre1 = x1, *bre2 = x2;
1182
const blkptr_t *bp1 = &bre1->bre_bp, *bp2 = &bre2->bre_bp;
1183
1184
return (TREE_CMP(DVA_GET_OFFSET(&bp1->blk_dva[0]),
1185
DVA_GET_OFFSET(&bp2->blk_dva[0])));
1186
}
1187
1188
void
1189
brt_pending_add(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
1190
{
1191
brt_entry_t *bre, *newbre;
1192
avl_index_t where;
1193
uint64_t txg;
1194
1195
txg = dmu_tx_get_txg(tx);
1196
ASSERT3U(txg, !=, 0);
1197
1198
uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[0]);
1199
brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_TRUE);
1200
avl_tree_t *pending_tree = &brtvd->bv_pending_tree[txg & TXG_MASK];
1201
1202
newbre = kmem_cache_alloc(brt_entry_cache, KM_SLEEP);
1203
newbre->bre_bp = *bp;
1204
newbre->bre_count = 0;
1205
newbre->bre_pcount = 1;
1206
1207
mutex_enter(&brtvd->bv_pending_lock);
1208
bre = avl_find(pending_tree, newbre, &where);
1209
if (bre == NULL) {
1210
avl_insert(pending_tree, newbre, where);
1211
newbre = NULL;
1212
} else {
1213
bre->bre_pcount++;
1214
}
1215
mutex_exit(&brtvd->bv_pending_lock);
1216
1217
if (newbre != NULL) {
1218
ASSERT(bre != NULL);
1219
ASSERT(bre != newbre);
1220
kmem_cache_free(brt_entry_cache, newbre);
1221
} else {
1222
ASSERT0P(bre);
1223
1224
/* Prefetch BRT entry for the syncing context. */
1225
brt_prefetch(brtvd, bp);
1226
}
1227
}
1228
1229
void
1230
brt_pending_remove(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
1231
{
1232
brt_entry_t *bre, bre_search;
1233
uint64_t txg;
1234
1235
txg = dmu_tx_get_txg(tx);
1236
ASSERT3U(txg, !=, 0);
1237
1238
uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[0]);
1239
brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
1240
ASSERT(brtvd != NULL);
1241
avl_tree_t *pending_tree = &brtvd->bv_pending_tree[txg & TXG_MASK];
1242
1243
bre_search.bre_bp = *bp;
1244
1245
mutex_enter(&brtvd->bv_pending_lock);
1246
bre = avl_find(pending_tree, &bre_search, NULL);
1247
ASSERT(bre != NULL);
1248
ASSERT(bre->bre_pcount > 0);
1249
bre->bre_pcount--;
1250
if (bre->bre_pcount == 0)
1251
avl_remove(pending_tree, bre);
1252
else
1253
bre = NULL;
1254
mutex_exit(&brtvd->bv_pending_lock);
1255
1256
if (bre)
1257
kmem_cache_free(brt_entry_cache, bre);
1258
}
1259
1260
static void
1261
brt_pending_apply_vdev(spa_t *spa, brt_vdev_t *brtvd, uint64_t txg)
1262
{
1263
brt_entry_t *bre, *nbre;
1264
1265
/*
1266
* We are in syncing context, so no other bv_pending_tree accesses
1267
* are possible for the TXG. So we don't need bv_pending_lock.
1268
*/
1269
ASSERT(avl_is_empty(&brtvd->bv_tree));
1270
avl_swap(&brtvd->bv_tree, &brtvd->bv_pending_tree[txg & TXG_MASK]);
1271
1272
for (bre = avl_first(&brtvd->bv_tree); bre; bre = nbre) {
1273
nbre = AVL_NEXT(&brtvd->bv_tree, bre);
1274
1275
/*
1276
* If the block has DEDUP bit set, it means that it
1277
* already exists in the DEDUP table, so we can just
1278
* use that instead of creating new entry in the BRT.
1279
*/
1280
if (BP_GET_DEDUP(&bre->bre_bp)) {
1281
while (bre->bre_pcount > 0) {
1282
if (!ddt_addref(spa, &bre->bre_bp))
1283
break;
1284
bre->bre_pcount--;
1285
}
1286
if (bre->bre_pcount == 0) {
1287
avl_remove(&brtvd->bv_tree, bre);
1288
kmem_cache_free(brt_entry_cache, bre);
1289
continue;
1290
}
1291
}
1292
1293
/*
1294
* Unless we know that the block is definitely not in ZAP,
1295
* try to get its reference count from there.
1296
*/
1297
uint64_t off = BRE_OFFSET(bre);
1298
if (brtvd->bv_mos_entries != 0 &&
1299
brt_vdev_lookup(spa, brtvd, off)) {
1300
int error;
1301
if (brt_has_endian_fixed(spa)) {
1302
error = zap_lookup_uint64_by_dnode(
1303
brtvd->bv_mos_entries_dnode, &off,
1304
BRT_KEY_WORDS, sizeof (bre->bre_count), 1,
1305
&bre->bre_count);
1306
} else {
1307
error = zap_lookup_uint64_by_dnode(
1308
brtvd->bv_mos_entries_dnode, &off,
1309
BRT_KEY_WORDS, 1, sizeof (bre->bre_count),
1310
&bre->bre_count);
1311
}
1312
if (error == 0) {
1313
BRTSTAT_BUMP(brt_addref_entry_on_disk);
1314
} else {
1315
ASSERT3U(error, ==, ENOENT);
1316
BRTSTAT_BUMP(brt_addref_entry_not_on_disk);
1317
}
1318
}
1319
}
1320
1321
/*
1322
* If all the cloned blocks we had were handled by DDT, we don't need
1323
* to initiate the vdev.
1324
*/
1325
if (avl_is_empty(&brtvd->bv_tree))
1326
return;
1327
1328
if (!brtvd->bv_initiated) {
1329
rw_enter(&brtvd->bv_lock, RW_WRITER);
1330
brt_vdev_realloc(spa, brtvd);
1331
rw_exit(&brtvd->bv_lock);
1332
}
1333
1334
/*
1335
* Convert pending references into proper ones. This has to be a
1336
* separate loop, since entcount modifications would cause false
1337
* positives for brt_vdev_lookup() on following iterations.
1338
*/
1339
for (bre = avl_first(&brtvd->bv_tree); bre;
1340
bre = AVL_NEXT(&brtvd->bv_tree, bre)) {
1341
brt_vdev_addref(spa, brtvd, bre,
1342
bp_get_dsize(spa, &bre->bre_bp), bre->bre_pcount);
1343
bre->bre_count += bre->bre_pcount;
1344
}
1345
}
1346
1347
void
1348
brt_pending_apply(spa_t *spa, uint64_t txg)
1349
{
1350
1351
brt_rlock(spa);
1352
for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
1353
brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
1354
brt_unlock(spa);
1355
1356
brt_pending_apply_vdev(spa, brtvd, txg);
1357
1358
brt_rlock(spa);
1359
}
1360
brt_unlock(spa);
1361
}
1362
1363
static void
1364
brt_sync_entry(spa_t *spa, dnode_t *dn, brt_entry_t *bre, dmu_tx_t *tx)
1365
{
1366
uint64_t off = BRE_OFFSET(bre);
1367
1368
if (bre->bre_pcount == 0) {
1369
/* The net change is zero, nothing to do in ZAP. */
1370
} else if (bre->bre_count == 0) {
1371
int error = zap_remove_uint64_by_dnode(dn, &off,
1372
BRT_KEY_WORDS, tx);
1373
VERIFY(error == 0 || error == ENOENT);
1374
} else {
1375
if (brt_has_endian_fixed(spa)) {
1376
VERIFY0(zap_update_uint64_by_dnode(dn, &off,
1377
BRT_KEY_WORDS, sizeof (bre->bre_count), 1,
1378
&bre->bre_count, tx));
1379
} else {
1380
VERIFY0(zap_update_uint64_by_dnode(dn, &off,
1381
BRT_KEY_WORDS, 1, sizeof (bre->bre_count),
1382
&bre->bre_count, tx));
1383
}
1384
}
1385
}
1386
1387
static void
1388
brt_sync_table(spa_t *spa, dmu_tx_t *tx)
1389
{
1390
brt_entry_t *bre;
1391
1392
brt_rlock(spa);
1393
for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
1394
brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
1395
brt_unlock(spa);
1396
1397
if (!brtvd->bv_meta_dirty) {
1398
ASSERT(!brtvd->bv_entcount_dirty);
1399
ASSERT0(avl_numnodes(&brtvd->bv_tree));
1400
brt_rlock(spa);
1401
continue;
1402
}
1403
1404
ASSERT(!brtvd->bv_entcount_dirty ||
1405
avl_numnodes(&brtvd->bv_tree) != 0);
1406
1407
if (brtvd->bv_mos_brtvdev == 0)
1408
brt_vdev_create(spa, brtvd, tx);
1409
1410
void *c = NULL;
1411
while ((bre = avl_destroy_nodes(&brtvd->bv_tree, &c)) != NULL) {
1412
brt_sync_entry(spa, brtvd->bv_mos_entries_dnode, bre,
1413
tx);
1414
kmem_cache_free(brt_entry_cache, bre);
1415
}
1416
1417
#ifdef ZFS_DEBUG
1418
if (zfs_flags & ZFS_DEBUG_BRT)
1419
brt_vdev_dump(brtvd);
1420
#endif
1421
if (brtvd->bv_totalcount == 0)
1422
brt_vdev_destroy(spa, brtvd, tx);
1423
else
1424
brt_vdev_sync(spa, brtvd, tx);
1425
brt_rlock(spa);
1426
}
1427
brt_unlock(spa);
1428
}
1429
1430
void
1431
brt_sync(spa_t *spa, uint64_t txg)
1432
{
1433
dmu_tx_t *tx;
1434
uint64_t vdevid;
1435
1436
ASSERT3U(spa_syncing_txg(spa), ==, txg);
1437
1438
brt_rlock(spa);
1439
for (vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
1440
if (spa->spa_brt_vdevs[vdevid]->bv_meta_dirty)
1441
break;
1442
}
1443
if (vdevid >= spa->spa_brt_nvdevs) {
1444
brt_unlock(spa);
1445
return;
1446
}
1447
brt_unlock(spa);
1448
1449
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1450
brt_sync_table(spa, tx);
1451
dmu_tx_commit(tx);
1452
}
1453
1454
static void
1455
brt_alloc(spa_t *spa)
1456
{
1457
rw_init(&spa->spa_brt_lock, NULL, RW_DEFAULT, NULL);
1458
spa->spa_brt_vdevs = NULL;
1459
spa->spa_brt_nvdevs = 0;
1460
spa->spa_brt_rangesize = 0;
1461
}
1462
1463
void
1464
brt_create(spa_t *spa)
1465
{
1466
brt_alloc(spa);
1467
spa->spa_brt_rangesize = BRT_RANGESIZE;
1468
}
1469
1470
int
1471
brt_load(spa_t *spa)
1472
{
1473
int error = 0;
1474
1475
brt_alloc(spa);
1476
brt_wlock(spa);
1477
for (uint64_t vdevid = 0; vdevid < spa->spa_root_vdev->vdev_children;
1478
vdevid++) {
1479
char name[64];
1480
uint64_t mos_brtvdev;
1481
1482
/* Look if this vdev had active block cloning. */
1483
snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
1484
(u_longlong_t)vdevid);
1485
error = zap_lookup(spa->spa_meta_objset,
1486
DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1,
1487
&mos_brtvdev);
1488
if (error == ENOENT) {
1489
error = 0;
1490
continue;
1491
}
1492
if (error != 0)
1493
break;
1494
1495
/* If it did, then allocate them all and load this one. */
1496
brt_vdevs_expand(spa, spa->spa_root_vdev->vdev_children);
1497
brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
1498
rw_enter(&brtvd->bv_lock, RW_WRITER);
1499
brtvd->bv_mos_brtvdev = mos_brtvdev;
1500
error = brt_vdev_load(spa, brtvd);
1501
rw_exit(&brtvd->bv_lock);
1502
if (error != 0)
1503
break;
1504
}
1505
1506
if (spa->spa_brt_rangesize == 0)
1507
spa->spa_brt_rangesize = BRT_RANGESIZE;
1508
brt_unlock(spa);
1509
return (error);
1510
}
1511
1512
void
1513
brt_unload(spa_t *spa)
1514
{
1515
if (spa->spa_brt_rangesize == 0)
1516
return;
1517
brt_vdevs_free(spa);
1518
rw_destroy(&spa->spa_brt_lock);
1519
spa->spa_brt_rangesize = 0;
1520
}
1521
1522
ZFS_MODULE_PARAM(zfs_brt, , brt_zap_prefetch, INT, ZMOD_RW,
1523
"Enable prefetching of BRT ZAP entries");
1524
ZFS_MODULE_PARAM(zfs_brt, , brt_zap_default_bs, UINT, ZMOD_RW,
1525
"BRT ZAP leaf blockshift");
1526
ZFS_MODULE_PARAM(zfs_brt, , brt_zap_default_ibs, UINT, ZMOD_RW,
1527
"BRT ZAP indirect blockshift");
1528
1529