Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zfs/dbuf.c
48383 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
/*
23
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25
* Copyright (c) 2012, 2020 by Delphix. All rights reserved.
26
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
27
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28
* Copyright (c) 2019, Klara Inc.
29
* Copyright (c) 2019, Allan Jude
30
* Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
31
*/
32
33
#include <sys/zfs_context.h>
34
#include <sys/arc.h>
35
#include <sys/dmu.h>
36
#include <sys/dmu_send.h>
37
#include <sys/dmu_impl.h>
38
#include <sys/dbuf.h>
39
#include <sys/dmu_objset.h>
40
#include <sys/dsl_dataset.h>
41
#include <sys/dsl_dir.h>
42
#include <sys/dmu_tx.h>
43
#include <sys/spa.h>
44
#include <sys/zio.h>
45
#include <sys/dmu_zfetch.h>
46
#include <sys/sa.h>
47
#include <sys/sa_impl.h>
48
#include <sys/zfeature.h>
49
#include <sys/blkptr.h>
50
#include <sys/range_tree.h>
51
#include <sys/trace_zfs.h>
52
#include <sys/callb.h>
53
#include <sys/abd.h>
54
#include <sys/brt.h>
55
#include <sys/vdev.h>
56
#include <cityhash.h>
57
#include <sys/spa_impl.h>
58
#include <sys/wmsum.h>
59
#include <sys/vdev_impl.h>
60
61
static kstat_t *dbuf_ksp;
62
63
typedef struct dbuf_stats {
64
/*
65
* Various statistics about the size of the dbuf cache.
66
*/
67
kstat_named_t cache_count;
68
kstat_named_t cache_size_bytes;
69
kstat_named_t cache_size_bytes_max;
70
/*
71
* Statistics regarding the bounds on the dbuf cache size.
72
*/
73
kstat_named_t cache_target_bytes;
74
kstat_named_t cache_lowater_bytes;
75
kstat_named_t cache_hiwater_bytes;
76
/*
77
* Total number of dbuf cache evictions that have occurred.
78
*/
79
kstat_named_t cache_total_evicts;
80
/*
81
* The distribution of dbuf levels in the dbuf cache and
82
* the total size of all dbufs at each level.
83
*/
84
kstat_named_t cache_levels[DN_MAX_LEVELS];
85
kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
86
/*
87
* Statistics about the dbuf hash table.
88
*/
89
kstat_named_t hash_hits;
90
kstat_named_t hash_misses;
91
kstat_named_t hash_collisions;
92
kstat_named_t hash_elements;
93
/*
94
* Number of sublists containing more than one dbuf in the dbuf
95
* hash table. Keep track of the longest hash chain.
96
*/
97
kstat_named_t hash_chains;
98
kstat_named_t hash_chain_max;
99
/*
100
* Number of times a dbuf_create() discovers that a dbuf was
101
* already created and in the dbuf hash table.
102
*/
103
kstat_named_t hash_insert_race;
104
/*
105
* Number of entries in the hash table dbuf and mutex arrays.
106
*/
107
kstat_named_t hash_table_count;
108
kstat_named_t hash_mutex_count;
109
/*
110
* Statistics about the size of the metadata dbuf cache.
111
*/
112
kstat_named_t metadata_cache_count;
113
kstat_named_t metadata_cache_size_bytes;
114
kstat_named_t metadata_cache_size_bytes_max;
115
/*
116
* For diagnostic purposes, this is incremented whenever we can't add
117
* something to the metadata cache because it's full, and instead put
118
* the data in the regular dbuf cache.
119
*/
120
kstat_named_t metadata_cache_overflow;
121
} dbuf_stats_t;
122
123
dbuf_stats_t dbuf_stats = {
124
{ "cache_count", KSTAT_DATA_UINT64 },
125
{ "cache_size_bytes", KSTAT_DATA_UINT64 },
126
{ "cache_size_bytes_max", KSTAT_DATA_UINT64 },
127
{ "cache_target_bytes", KSTAT_DATA_UINT64 },
128
{ "cache_lowater_bytes", KSTAT_DATA_UINT64 },
129
{ "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
130
{ "cache_total_evicts", KSTAT_DATA_UINT64 },
131
{ { "cache_levels_N", KSTAT_DATA_UINT64 } },
132
{ { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
133
{ "hash_hits", KSTAT_DATA_UINT64 },
134
{ "hash_misses", KSTAT_DATA_UINT64 },
135
{ "hash_collisions", KSTAT_DATA_UINT64 },
136
{ "hash_elements", KSTAT_DATA_UINT64 },
137
{ "hash_chains", KSTAT_DATA_UINT64 },
138
{ "hash_chain_max", KSTAT_DATA_UINT64 },
139
{ "hash_insert_race", KSTAT_DATA_UINT64 },
140
{ "hash_table_count", KSTAT_DATA_UINT64 },
141
{ "hash_mutex_count", KSTAT_DATA_UINT64 },
142
{ "metadata_cache_count", KSTAT_DATA_UINT64 },
143
{ "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
144
{ "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
145
{ "metadata_cache_overflow", KSTAT_DATA_UINT64 }
146
};
147
148
struct {
149
wmsum_t cache_count;
150
wmsum_t cache_total_evicts;
151
wmsum_t cache_levels[DN_MAX_LEVELS];
152
wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
153
wmsum_t hash_hits;
154
wmsum_t hash_misses;
155
wmsum_t hash_collisions;
156
wmsum_t hash_elements;
157
wmsum_t hash_chains;
158
wmsum_t hash_insert_race;
159
wmsum_t metadata_cache_count;
160
wmsum_t metadata_cache_overflow;
161
} dbuf_sums;
162
163
#define DBUF_STAT_INCR(stat, val) \
164
wmsum_add(&dbuf_sums.stat, val)
165
#define DBUF_STAT_DECR(stat, val) \
166
DBUF_STAT_INCR(stat, -(val))
167
#define DBUF_STAT_BUMP(stat) \
168
DBUF_STAT_INCR(stat, 1)
169
#define DBUF_STAT_BUMPDOWN(stat) \
170
DBUF_STAT_INCR(stat, -1)
171
#define DBUF_STAT_MAX(stat, v) { \
172
uint64_t _m; \
173
while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
174
(_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
175
continue; \
176
}
177
178
static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
179
static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
180
181
/*
182
* Global data structures and functions for the dbuf cache.
183
*/
184
static kmem_cache_t *dbuf_kmem_cache;
185
kmem_cache_t *dbuf_dirty_kmem_cache;
186
static taskq_t *dbu_evict_taskq;
187
188
static kthread_t *dbuf_cache_evict_thread;
189
static kmutex_t dbuf_evict_lock;
190
static kcondvar_t dbuf_evict_cv;
191
static boolean_t dbuf_evict_thread_exit;
192
193
/*
194
* There are two dbuf caches; each dbuf can only be in one of them at a time.
195
*
196
* 1. Cache of metadata dbufs, to help make read-heavy administrative commands
197
* from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
198
* that represent the metadata that describes filesystems/snapshots/
199
* bookmarks/properties/etc. We only evict from this cache when we export a
200
* pool, to short-circuit as much I/O as possible for all administrative
201
* commands that need the metadata. There is no eviction policy for this
202
* cache, because we try to only include types in it which would occupy a
203
* very small amount of space per object but create a large impact on the
204
* performance of these commands. Instead, after it reaches a maximum size
205
* (which should only happen on very small memory systems with a very large
206
* number of filesystem objects), we stop taking new dbufs into the
207
* metadata cache, instead putting them in the normal dbuf cache.
208
*
209
* 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
210
* are not currently held but have been recently released. These dbufs
211
* are not eligible for arc eviction until they are aged out of the cache.
212
* Dbufs that are aged out of the cache will be immediately destroyed and
213
* become eligible for arc eviction.
214
*
215
* Dbufs are added to these caches once the last hold is released. If a dbuf is
216
* later accessed and still exists in the dbuf cache, then it will be removed
217
* from the cache and later re-added to the head of the cache.
218
*
219
* If a given dbuf meets the requirements for the metadata cache, it will go
220
* there, otherwise it will be considered for the generic LRU dbuf cache. The
221
* caches and the refcounts tracking their sizes are stored in an array indexed
222
* by those caches' matching enum values (from dbuf_cached_state_t).
223
*/
224
typedef struct dbuf_cache {
225
multilist_t cache;
226
zfs_refcount_t size ____cacheline_aligned;
227
} dbuf_cache_t;
228
dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
229
230
/* Size limits for the caches */
231
static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
232
static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
233
234
/* Set the default sizes of the caches to log2 fraction of arc size */
235
static uint_t dbuf_cache_shift = 5;
236
static uint_t dbuf_metadata_cache_shift = 6;
237
238
/* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
239
static uint_t dbuf_mutex_cache_shift = 0;
240
241
static unsigned long dbuf_cache_target_bytes(void);
242
static unsigned long dbuf_metadata_cache_target_bytes(void);
243
244
/*
245
* The LRU dbuf cache uses a three-stage eviction policy:
246
* - A low water marker designates when the dbuf eviction thread
247
* should stop evicting from the dbuf cache.
248
* - When we reach the maximum size (aka mid water mark), we
249
* signal the eviction thread to run.
250
* - The high water mark indicates when the eviction thread
251
* is unable to keep up with the incoming load and eviction must
252
* happen in the context of the calling thread.
253
*
254
* The dbuf cache:
255
* (max size)
256
* low water mid water hi water
257
* +----------------------------------------+----------+----------+
258
* | | | |
259
* | | | |
260
* | | | |
261
* | | | |
262
* +----------------------------------------+----------+----------+
263
* stop signal evict
264
* evicting eviction directly
265
* thread
266
*
267
* The high and low water marks indicate the operating range for the eviction
268
* thread. The low water mark is, by default, 90% of the total size of the
269
* cache and the high water mark is at 110% (both of these percentages can be
270
* changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
271
* respectively). The eviction thread will try to ensure that the cache remains
272
* within this range by waking up every second and checking if the cache is
273
* above the low water mark. The thread can also be woken up by callers adding
274
* elements into the cache if the cache is larger than the mid water (i.e max
275
* cache size). Once the eviction thread is woken up and eviction is required,
276
* it will continue evicting buffers until it's able to reduce the cache size
277
* to the low water mark. If the cache size continues to grow and hits the high
278
* water mark, then callers adding elements to the cache will begin to evict
279
* directly from the cache until the cache is no longer above the high water
280
* mark.
281
*/
282
283
/*
284
* The percentage above and below the maximum cache size.
285
*/
286
static uint_t dbuf_cache_hiwater_pct = 10;
287
static uint_t dbuf_cache_lowater_pct = 10;
288
289
static int
290
dbuf_cons(void *vdb, void *unused, int kmflag)
291
{
292
(void) unused, (void) kmflag;
293
dmu_buf_impl_t *db = vdb;
294
memset(db, 0, sizeof (dmu_buf_impl_t));
295
296
mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
297
rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL);
298
cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
299
multilist_link_init(&db->db_cache_link);
300
zfs_refcount_create(&db->db_holds);
301
302
return (0);
303
}
304
305
static void
306
dbuf_dest(void *vdb, void *unused)
307
{
308
(void) unused;
309
dmu_buf_impl_t *db = vdb;
310
mutex_destroy(&db->db_mtx);
311
rw_destroy(&db->db_rwlock);
312
cv_destroy(&db->db_changed);
313
ASSERT(!multilist_link_active(&db->db_cache_link));
314
zfs_refcount_destroy(&db->db_holds);
315
}
316
317
/*
318
* dbuf hash table routines
319
*/
320
static dbuf_hash_table_t dbuf_hash_table;
321
322
/*
323
* We use Cityhash for this. It's fast, and has good hash properties without
324
* requiring any large static buffers.
325
*/
326
static uint64_t
327
dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
328
{
329
return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
330
}
331
332
#define DTRACE_SET_STATE(db, why) \
333
DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
334
const char *, why)
335
336
#define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
337
((dbuf)->db.db_object == (obj) && \
338
(dbuf)->db_objset == (os) && \
339
(dbuf)->db_level == (level) && \
340
(dbuf)->db_blkid == (blkid))
341
342
dmu_buf_impl_t *
343
dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
344
uint64_t *hash_out)
345
{
346
dbuf_hash_table_t *h = &dbuf_hash_table;
347
uint64_t hv;
348
uint64_t idx;
349
dmu_buf_impl_t *db;
350
351
hv = dbuf_hash(os, obj, level, blkid);
352
idx = hv & h->hash_table_mask;
353
354
mutex_enter(DBUF_HASH_MUTEX(h, idx));
355
for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
356
if (DBUF_EQUAL(db, os, obj, level, blkid)) {
357
mutex_enter(&db->db_mtx);
358
if (db->db_state != DB_EVICTING) {
359
mutex_exit(DBUF_HASH_MUTEX(h, idx));
360
return (db);
361
}
362
mutex_exit(&db->db_mtx);
363
}
364
}
365
mutex_exit(DBUF_HASH_MUTEX(h, idx));
366
if (hash_out != NULL)
367
*hash_out = hv;
368
return (NULL);
369
}
370
371
static dmu_buf_impl_t *
372
dbuf_find_bonus(objset_t *os, uint64_t object)
373
{
374
dnode_t *dn;
375
dmu_buf_impl_t *db = NULL;
376
377
if (dnode_hold(os, object, FTAG, &dn) == 0) {
378
rw_enter(&dn->dn_struct_rwlock, RW_READER);
379
if (dn->dn_bonus != NULL) {
380
db = dn->dn_bonus;
381
mutex_enter(&db->db_mtx);
382
}
383
rw_exit(&dn->dn_struct_rwlock);
384
dnode_rele(dn, FTAG);
385
}
386
return (db);
387
}
388
389
/*
390
* Insert an entry into the hash table. If there is already an element
391
* equal to elem in the hash table, then the already existing element
392
* will be returned and the new element will not be inserted.
393
* Otherwise returns NULL.
394
*/
395
static dmu_buf_impl_t *
396
dbuf_hash_insert(dmu_buf_impl_t *db)
397
{
398
dbuf_hash_table_t *h = &dbuf_hash_table;
399
objset_t *os = db->db_objset;
400
uint64_t obj = db->db.db_object;
401
int level = db->db_level;
402
uint64_t blkid, idx;
403
dmu_buf_impl_t *dbf;
404
uint32_t i;
405
406
blkid = db->db_blkid;
407
ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
408
idx = db->db_hash & h->hash_table_mask;
409
410
mutex_enter(DBUF_HASH_MUTEX(h, idx));
411
for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
412
dbf = dbf->db_hash_next, i++) {
413
if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
414
mutex_enter(&dbf->db_mtx);
415
if (dbf->db_state != DB_EVICTING) {
416
mutex_exit(DBUF_HASH_MUTEX(h, idx));
417
return (dbf);
418
}
419
mutex_exit(&dbf->db_mtx);
420
}
421
}
422
423
if (i > 0) {
424
DBUF_STAT_BUMP(hash_collisions);
425
if (i == 1)
426
DBUF_STAT_BUMP(hash_chains);
427
428
DBUF_STAT_MAX(hash_chain_max, i);
429
}
430
431
mutex_enter(&db->db_mtx);
432
db->db_hash_next = h->hash_table[idx];
433
h->hash_table[idx] = db;
434
mutex_exit(DBUF_HASH_MUTEX(h, idx));
435
DBUF_STAT_BUMP(hash_elements);
436
437
return (NULL);
438
}
439
440
/*
441
* This returns whether this dbuf should be stored in the metadata cache, which
442
* is based on whether it's from one of the dnode types that store data related
443
* to traversing dataset hierarchies.
444
*/
445
static boolean_t
446
dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
447
{
448
DB_DNODE_ENTER(db);
449
dmu_object_type_t type = DB_DNODE(db)->dn_type;
450
DB_DNODE_EXIT(db);
451
452
/* Check if this dbuf is one of the types we care about */
453
if (DMU_OT_IS_METADATA_CACHED(type)) {
454
/* If we hit this, then we set something up wrong in dmu_ot */
455
ASSERT(DMU_OT_IS_METADATA(type));
456
457
/*
458
* Sanity check for small-memory systems: don't allocate too
459
* much memory for this purpose.
460
*/
461
if (zfs_refcount_count(
462
&dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
463
dbuf_metadata_cache_target_bytes()) {
464
DBUF_STAT_BUMP(metadata_cache_overflow);
465
return (B_FALSE);
466
}
467
468
return (B_TRUE);
469
}
470
471
return (B_FALSE);
472
}
473
474
/*
475
* Remove an entry from the hash table. It must be in the EVICTING state.
476
*/
477
static void
478
dbuf_hash_remove(dmu_buf_impl_t *db)
479
{
480
dbuf_hash_table_t *h = &dbuf_hash_table;
481
uint64_t idx;
482
dmu_buf_impl_t *dbf, **dbp;
483
484
ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
485
db->db_blkid), ==, db->db_hash);
486
idx = db->db_hash & h->hash_table_mask;
487
488
/*
489
* We mustn't hold db_mtx to maintain lock ordering:
490
* DBUF_HASH_MUTEX > db_mtx.
491
*/
492
ASSERT(zfs_refcount_is_zero(&db->db_holds));
493
ASSERT(db->db_state == DB_EVICTING);
494
ASSERT(!MUTEX_HELD(&db->db_mtx));
495
496
mutex_enter(DBUF_HASH_MUTEX(h, idx));
497
dbp = &h->hash_table[idx];
498
while ((dbf = *dbp) != db) {
499
dbp = &dbf->db_hash_next;
500
ASSERT(dbf != NULL);
501
}
502
*dbp = db->db_hash_next;
503
db->db_hash_next = NULL;
504
if (h->hash_table[idx] &&
505
h->hash_table[idx]->db_hash_next == NULL)
506
DBUF_STAT_BUMPDOWN(hash_chains);
507
mutex_exit(DBUF_HASH_MUTEX(h, idx));
508
DBUF_STAT_BUMPDOWN(hash_elements);
509
}
510
511
typedef enum {
512
DBVU_EVICTING,
513
DBVU_NOT_EVICTING
514
} dbvu_verify_type_t;
515
516
static void
517
dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
518
{
519
#ifdef ZFS_DEBUG
520
int64_t holds;
521
522
if (db->db_user == NULL)
523
return;
524
525
/* Only data blocks support the attachment of user data. */
526
ASSERT0(db->db_level);
527
528
/* Clients must resolve a dbuf before attaching user data. */
529
ASSERT(db->db.db_data != NULL);
530
ASSERT3U(db->db_state, ==, DB_CACHED);
531
532
holds = zfs_refcount_count(&db->db_holds);
533
if (verify_type == DBVU_EVICTING) {
534
/*
535
* Immediate eviction occurs when holds == dirtycnt.
536
* For normal eviction buffers, holds is zero on
537
* eviction, except when dbuf_fix_old_data() calls
538
* dbuf_clear_data(). However, the hold count can grow
539
* during eviction even though db_mtx is held (see
540
* dmu_bonus_hold() for an example), so we can only
541
* test the generic invariant that holds >= dirtycnt.
542
*/
543
ASSERT3U(holds, >=, db->db_dirtycnt);
544
} else {
545
if (db->db_user_immediate_evict == TRUE)
546
ASSERT3U(holds, >=, db->db_dirtycnt);
547
else
548
ASSERT3U(holds, >, 0);
549
}
550
#endif
551
}
552
553
static void
554
dbuf_evict_user(dmu_buf_impl_t *db)
555
{
556
dmu_buf_user_t *dbu = db->db_user;
557
558
ASSERT(MUTEX_HELD(&db->db_mtx));
559
560
if (dbu == NULL)
561
return;
562
563
dbuf_verify_user(db, DBVU_EVICTING);
564
db->db_user = NULL;
565
566
#ifdef ZFS_DEBUG
567
if (dbu->dbu_clear_on_evict_dbufp != NULL)
568
*dbu->dbu_clear_on_evict_dbufp = NULL;
569
#endif
570
571
if (db->db_caching_status != DB_NO_CACHE) {
572
/*
573
* This is a cached dbuf, so the size of the user data is
574
* included in its cached amount. We adjust it here because the
575
* user data has already been detached from the dbuf, and the
576
* sync functions are not supposed to touch it (the dbuf might
577
* not exist anymore by the time the sync functions run.
578
*/
579
uint64_t size = dbu->dbu_size;
580
(void) zfs_refcount_remove_many(
581
&dbuf_caches[db->db_caching_status].size, size, dbu);
582
if (db->db_caching_status == DB_DBUF_CACHE)
583
DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
584
}
585
586
/*
587
* There are two eviction callbacks - one that we call synchronously
588
* and one that we invoke via a taskq. The async one is useful for
589
* avoiding lock order reversals and limiting stack depth.
590
*
591
* Note that if we have a sync callback but no async callback,
592
* it's likely that the sync callback will free the structure
593
* containing the dbu. In that case we need to take care to not
594
* dereference dbu after calling the sync evict func.
595
*/
596
boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
597
598
if (dbu->dbu_evict_func_sync != NULL)
599
dbu->dbu_evict_func_sync(dbu);
600
601
if (has_async) {
602
taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
603
dbu, 0, &dbu->dbu_tqent);
604
}
605
}
606
607
boolean_t
608
dbuf_is_metadata(dmu_buf_impl_t *db)
609
{
610
/*
611
* Consider indirect blocks and spill blocks to be meta data.
612
*/
613
if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
614
return (B_TRUE);
615
} else {
616
boolean_t is_metadata;
617
618
DB_DNODE_ENTER(db);
619
is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
620
DB_DNODE_EXIT(db);
621
622
return (is_metadata);
623
}
624
}
625
626
/*
627
* We want to exclude buffers that are on a special allocation class from
628
* L2ARC.
629
*/
630
boolean_t
631
dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp)
632
{
633
if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
634
(db->db_objset->os_secondary_cache ==
635
ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
636
if (l2arc_exclude_special == 0)
637
return (B_TRUE);
638
639
/*
640
* bp must be checked in the event it was passed from
641
* dbuf_read_impl() as the result of a the BP being set from
642
* a Direct I/O write in dbuf_read(). See comments in
643
* dbuf_read().
644
*/
645
blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp;
646
647
if (db_bp == NULL || BP_IS_HOLE(db_bp))
648
return (B_FALSE);
649
uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva);
650
vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
651
vdev_t *vd = NULL;
652
653
if (vdev < rvd->vdev_children)
654
vd = rvd->vdev_child[vdev];
655
656
if (vd == NULL)
657
return (B_TRUE);
658
659
if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
660
vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
661
return (B_TRUE);
662
}
663
return (B_FALSE);
664
}
665
666
static inline boolean_t
667
dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
668
{
669
if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
670
(dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
671
(level > 0 ||
672
DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
673
if (l2arc_exclude_special == 0)
674
return (B_TRUE);
675
676
if (bp == NULL || BP_IS_HOLE(bp))
677
return (B_FALSE);
678
uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
679
vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
680
vdev_t *vd = NULL;
681
682
if (vdev < rvd->vdev_children)
683
vd = rvd->vdev_child[vdev];
684
685
if (vd == NULL)
686
return (B_TRUE);
687
688
if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
689
vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
690
return (B_TRUE);
691
}
692
return (B_FALSE);
693
}
694
695
696
/*
697
* This function *must* return indices evenly distributed between all
698
* sublists of the multilist. This is needed due to how the dbuf eviction
699
* code is laid out; dbuf_evict_thread() assumes dbufs are evenly
700
* distributed between all sublists and uses this assumption when
701
* deciding which sublist to evict from and how much to evict from it.
702
*/
703
static unsigned int
704
dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
705
{
706
dmu_buf_impl_t *db = obj;
707
708
/*
709
* The assumption here, is the hash value for a given
710
* dmu_buf_impl_t will remain constant throughout it's lifetime
711
* (i.e. it's objset, object, level and blkid fields don't change).
712
* Thus, we don't need to store the dbuf's sublist index
713
* on insertion, as this index can be recalculated on removal.
714
*
715
* Also, the low order bits of the hash value are thought to be
716
* distributed evenly. Otherwise, in the case that the multilist
717
* has a power of two number of sublists, each sublists' usage
718
* would not be evenly distributed. In this context full 64bit
719
* division would be a waste of time, so limit it to 32 bits.
720
*/
721
return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
722
db->db_level, db->db_blkid) %
723
multilist_get_num_sublists(ml));
724
}
725
726
/*
727
* The target size of the dbuf cache can grow with the ARC target,
728
* unless limited by the tunable dbuf_cache_max_bytes.
729
*/
730
static inline unsigned long
731
dbuf_cache_target_bytes(void)
732
{
733
return (MIN(dbuf_cache_max_bytes,
734
arc_target_bytes() >> dbuf_cache_shift));
735
}
736
737
/*
738
* The target size of the dbuf metadata cache can grow with the ARC target,
739
* unless limited by the tunable dbuf_metadata_cache_max_bytes.
740
*/
741
static inline unsigned long
742
dbuf_metadata_cache_target_bytes(void)
743
{
744
return (MIN(dbuf_metadata_cache_max_bytes,
745
arc_target_bytes() >> dbuf_metadata_cache_shift));
746
}
747
748
static inline uint64_t
749
dbuf_cache_hiwater_bytes(void)
750
{
751
uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
752
return (dbuf_cache_target +
753
(dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
754
}
755
756
static inline uint64_t
757
dbuf_cache_lowater_bytes(void)
758
{
759
uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
760
return (dbuf_cache_target -
761
(dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
762
}
763
764
static inline boolean_t
765
dbuf_cache_above_lowater(void)
766
{
767
return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
768
dbuf_cache_lowater_bytes());
769
}
770
771
/*
772
* Evict the oldest eligible dbuf from the dbuf cache.
773
*/
774
static void
775
dbuf_evict_one(void)
776
{
777
int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
778
multilist_sublist_t *mls = multilist_sublist_lock_idx(
779
&dbuf_caches[DB_DBUF_CACHE].cache, idx);
780
781
ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
782
783
dmu_buf_impl_t *db = multilist_sublist_tail(mls);
784
while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
785
db = multilist_sublist_prev(mls, db);
786
}
787
788
DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
789
multilist_sublist_t *, mls);
790
791
if (db != NULL) {
792
multilist_sublist_remove(mls, db);
793
multilist_sublist_unlock(mls);
794
uint64_t size = db->db.db_size;
795
uint64_t usize = dmu_buf_user_size(&db->db);
796
(void) zfs_refcount_remove_many(
797
&dbuf_caches[DB_DBUF_CACHE].size, size, db);
798
(void) zfs_refcount_remove_many(
799
&dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user);
800
DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
801
DBUF_STAT_BUMPDOWN(cache_count);
802
DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize);
803
ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
804
db->db_caching_status = DB_NO_CACHE;
805
dbuf_destroy(db);
806
DBUF_STAT_BUMP(cache_total_evicts);
807
} else {
808
multilist_sublist_unlock(mls);
809
}
810
}
811
812
/*
813
* The dbuf evict thread is responsible for aging out dbufs from the
814
* cache. Once the cache has reached it's maximum size, dbufs are removed
815
* and destroyed. The eviction thread will continue running until the size
816
* of the dbuf cache is at or below the maximum size. Once the dbuf is aged
817
* out of the cache it is destroyed and becomes eligible for arc eviction.
818
*/
819
static __attribute__((noreturn)) void
820
dbuf_evict_thread(void *unused)
821
{
822
(void) unused;
823
callb_cpr_t cpr;
824
825
CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
826
827
mutex_enter(&dbuf_evict_lock);
828
while (!dbuf_evict_thread_exit) {
829
while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
830
CALLB_CPR_SAFE_BEGIN(&cpr);
831
(void) cv_timedwait_idle_hires(&dbuf_evict_cv,
832
&dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
833
CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
834
}
835
mutex_exit(&dbuf_evict_lock);
836
837
/*
838
* Keep evicting as long as we're above the low water mark
839
* for the cache. We do this without holding the locks to
840
* minimize lock contention.
841
*/
842
while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
843
dbuf_evict_one();
844
}
845
846
mutex_enter(&dbuf_evict_lock);
847
}
848
849
dbuf_evict_thread_exit = B_FALSE;
850
cv_broadcast(&dbuf_evict_cv);
851
CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
852
thread_exit();
853
}
854
855
/*
856
* Wake up the dbuf eviction thread if the dbuf cache is at its max size.
857
* If the dbuf cache is at its high water mark, then evict a dbuf from the
858
* dbuf cache using the caller's context.
859
*/
860
static void
861
dbuf_evict_notify(uint64_t size)
862
{
863
/*
864
* We check if we should evict without holding the dbuf_evict_lock,
865
* because it's OK to occasionally make the wrong decision here,
866
* and grabbing the lock results in massive lock contention.
867
*/
868
if (size > dbuf_cache_target_bytes()) {
869
/*
870
* Avoid calling dbuf_evict_one() from memory reclaim context
871
* (e.g. Linux kswapd, FreeBSD pagedaemon) to prevent deadlocks.
872
* Memory reclaim threads can get stuck waiting for the dbuf
873
* hash lock.
874
*/
875
if (size > dbuf_cache_hiwater_bytes() &&
876
!current_is_reclaim_thread()) {
877
dbuf_evict_one();
878
}
879
cv_signal(&dbuf_evict_cv);
880
}
881
}
882
883
/*
884
* Since dbuf cache size is a fraction of target ARC size, ARC calls this when
885
* its target size is reduced due to memory pressure.
886
*/
887
void
888
dbuf_cache_reduce_target_size(void)
889
{
890
uint64_t size = zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
891
892
if (size > dbuf_cache_target_bytes())
893
cv_signal(&dbuf_evict_cv);
894
}
895
896
static int
897
dbuf_kstat_update(kstat_t *ksp, int rw)
898
{
899
dbuf_stats_t *ds = ksp->ks_data;
900
dbuf_hash_table_t *h = &dbuf_hash_table;
901
902
if (rw == KSTAT_WRITE)
903
return (SET_ERROR(EACCES));
904
905
ds->cache_count.value.ui64 =
906
wmsum_value(&dbuf_sums.cache_count);
907
ds->cache_size_bytes.value.ui64 =
908
zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
909
ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
910
ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
911
ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
912
ds->cache_total_evicts.value.ui64 =
913
wmsum_value(&dbuf_sums.cache_total_evicts);
914
for (int i = 0; i < DN_MAX_LEVELS; i++) {
915
ds->cache_levels[i].value.ui64 =
916
wmsum_value(&dbuf_sums.cache_levels[i]);
917
ds->cache_levels_bytes[i].value.ui64 =
918
wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
919
}
920
ds->hash_hits.value.ui64 =
921
wmsum_value(&dbuf_sums.hash_hits);
922
ds->hash_misses.value.ui64 =
923
wmsum_value(&dbuf_sums.hash_misses);
924
ds->hash_collisions.value.ui64 =
925
wmsum_value(&dbuf_sums.hash_collisions);
926
ds->hash_elements.value.ui64 =
927
wmsum_value(&dbuf_sums.hash_elements);
928
ds->hash_chains.value.ui64 =
929
wmsum_value(&dbuf_sums.hash_chains);
930
ds->hash_insert_race.value.ui64 =
931
wmsum_value(&dbuf_sums.hash_insert_race);
932
ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
933
ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
934
ds->metadata_cache_count.value.ui64 =
935
wmsum_value(&dbuf_sums.metadata_cache_count);
936
ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
937
&dbuf_caches[DB_DBUF_METADATA_CACHE].size);
938
ds->metadata_cache_overflow.value.ui64 =
939
wmsum_value(&dbuf_sums.metadata_cache_overflow);
940
return (0);
941
}
942
943
void
944
dbuf_init(void)
945
{
946
uint64_t hmsize, hsize = 1ULL << 16;
947
dbuf_hash_table_t *h = &dbuf_hash_table;
948
949
/*
950
* The hash table is big enough to fill one eighth of physical memory
951
* with an average block size of zfs_arc_average_blocksize (default 8K).
952
* By default, the table will take up
953
* totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
954
*/
955
while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
956
hsize <<= 1;
957
958
h->hash_table = NULL;
959
while (h->hash_table == NULL) {
960
h->hash_table_mask = hsize - 1;
961
962
h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
963
if (h->hash_table == NULL)
964
hsize >>= 1;
965
966
ASSERT3U(hsize, >=, 1ULL << 10);
967
}
968
969
/*
970
* The hash table buckets are protected by an array of mutexes where
971
* each mutex is reponsible for protecting 128 buckets. A minimum
972
* array size of 8192 is targeted to avoid contention.
973
*/
974
if (dbuf_mutex_cache_shift == 0)
975
hmsize = MAX(hsize >> 7, 1ULL << 13);
976
else
977
hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
978
979
h->hash_mutexes = NULL;
980
while (h->hash_mutexes == NULL) {
981
h->hash_mutex_mask = hmsize - 1;
982
983
h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
984
KM_SLEEP);
985
if (h->hash_mutexes == NULL)
986
hmsize >>= 1;
987
}
988
989
dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
990
sizeof (dmu_buf_impl_t),
991
0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
992
dbuf_dirty_kmem_cache = kmem_cache_create("dbuf_dirty_record_t",
993
sizeof (dbuf_dirty_record_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
994
995
for (int i = 0; i < hmsize; i++)
996
mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL);
997
998
dbuf_stats_init(h);
999
1000
/*
1001
* All entries are queued via taskq_dispatch_ent(), so min/maxalloc
1002
* configuration is not required.
1003
*/
1004
dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
1005
1006
for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1007
multilist_create(&dbuf_caches[dcs].cache,
1008
sizeof (dmu_buf_impl_t),
1009
offsetof(dmu_buf_impl_t, db_cache_link),
1010
dbuf_cache_multilist_index_func);
1011
zfs_refcount_create(&dbuf_caches[dcs].size);
1012
}
1013
1014
dbuf_evict_thread_exit = B_FALSE;
1015
mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1016
cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
1017
dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
1018
NULL, 0, &p0, TS_RUN, minclsyspri);
1019
1020
wmsum_init(&dbuf_sums.cache_count, 0);
1021
wmsum_init(&dbuf_sums.cache_total_evicts, 0);
1022
for (int i = 0; i < DN_MAX_LEVELS; i++) {
1023
wmsum_init(&dbuf_sums.cache_levels[i], 0);
1024
wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
1025
}
1026
wmsum_init(&dbuf_sums.hash_hits, 0);
1027
wmsum_init(&dbuf_sums.hash_misses, 0);
1028
wmsum_init(&dbuf_sums.hash_collisions, 0);
1029
wmsum_init(&dbuf_sums.hash_elements, 0);
1030
wmsum_init(&dbuf_sums.hash_chains, 0);
1031
wmsum_init(&dbuf_sums.hash_insert_race, 0);
1032
wmsum_init(&dbuf_sums.metadata_cache_count, 0);
1033
wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
1034
1035
dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
1036
KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
1037
KSTAT_FLAG_VIRTUAL);
1038
if (dbuf_ksp != NULL) {
1039
for (int i = 0; i < DN_MAX_LEVELS; i++) {
1040
snprintf(dbuf_stats.cache_levels[i].name,
1041
KSTAT_STRLEN, "cache_level_%d", i);
1042
dbuf_stats.cache_levels[i].data_type =
1043
KSTAT_DATA_UINT64;
1044
snprintf(dbuf_stats.cache_levels_bytes[i].name,
1045
KSTAT_STRLEN, "cache_level_%d_bytes", i);
1046
dbuf_stats.cache_levels_bytes[i].data_type =
1047
KSTAT_DATA_UINT64;
1048
}
1049
dbuf_ksp->ks_data = &dbuf_stats;
1050
dbuf_ksp->ks_update = dbuf_kstat_update;
1051
kstat_install(dbuf_ksp);
1052
}
1053
}
1054
1055
void
1056
dbuf_fini(void)
1057
{
1058
dbuf_hash_table_t *h = &dbuf_hash_table;
1059
1060
dbuf_stats_destroy();
1061
1062
for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1063
mutex_destroy(&h->hash_mutexes[i]);
1064
1065
vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1066
vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1067
sizeof (kmutex_t));
1068
1069
kmem_cache_destroy(dbuf_kmem_cache);
1070
kmem_cache_destroy(dbuf_dirty_kmem_cache);
1071
taskq_destroy(dbu_evict_taskq);
1072
1073
mutex_enter(&dbuf_evict_lock);
1074
dbuf_evict_thread_exit = B_TRUE;
1075
while (dbuf_evict_thread_exit) {
1076
cv_signal(&dbuf_evict_cv);
1077
cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1078
}
1079
mutex_exit(&dbuf_evict_lock);
1080
1081
mutex_destroy(&dbuf_evict_lock);
1082
cv_destroy(&dbuf_evict_cv);
1083
1084
for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1085
zfs_refcount_destroy(&dbuf_caches[dcs].size);
1086
multilist_destroy(&dbuf_caches[dcs].cache);
1087
}
1088
1089
if (dbuf_ksp != NULL) {
1090
kstat_delete(dbuf_ksp);
1091
dbuf_ksp = NULL;
1092
}
1093
1094
wmsum_fini(&dbuf_sums.cache_count);
1095
wmsum_fini(&dbuf_sums.cache_total_evicts);
1096
for (int i = 0; i < DN_MAX_LEVELS; i++) {
1097
wmsum_fini(&dbuf_sums.cache_levels[i]);
1098
wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1099
}
1100
wmsum_fini(&dbuf_sums.hash_hits);
1101
wmsum_fini(&dbuf_sums.hash_misses);
1102
wmsum_fini(&dbuf_sums.hash_collisions);
1103
wmsum_fini(&dbuf_sums.hash_elements);
1104
wmsum_fini(&dbuf_sums.hash_chains);
1105
wmsum_fini(&dbuf_sums.hash_insert_race);
1106
wmsum_fini(&dbuf_sums.metadata_cache_count);
1107
wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1108
}
1109
1110
/*
1111
* Other stuff.
1112
*/
1113
1114
#ifdef ZFS_DEBUG
1115
static void
1116
dbuf_verify(dmu_buf_impl_t *db)
1117
{
1118
dnode_t *dn;
1119
dbuf_dirty_record_t *dr;
1120
uint32_t txg_prev;
1121
1122
ASSERT(MUTEX_HELD(&db->db_mtx));
1123
1124
if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1125
return;
1126
1127
ASSERT(db->db_objset != NULL);
1128
DB_DNODE_ENTER(db);
1129
dn = DB_DNODE(db);
1130
if (dn == NULL) {
1131
ASSERT0P(db->db_parent);
1132
ASSERT0P(db->db_blkptr);
1133
} else {
1134
ASSERT3U(db->db.db_object, ==, dn->dn_object);
1135
ASSERT3P(db->db_objset, ==, dn->dn_objset);
1136
ASSERT3U(db->db_level, <, dn->dn_nlevels);
1137
ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1138
db->db_blkid == DMU_SPILL_BLKID ||
1139
!avl_is_empty(&dn->dn_dbufs));
1140
}
1141
if (db->db_blkid == DMU_BONUS_BLKID) {
1142
ASSERT(dn != NULL);
1143
ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1144
ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1145
} else if (db->db_blkid == DMU_SPILL_BLKID) {
1146
ASSERT(dn != NULL);
1147
ASSERT0(db->db.db_offset);
1148
} else {
1149
ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1150
}
1151
1152
if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1153
ASSERT(dr->dr_dbuf == db);
1154
txg_prev = dr->dr_txg;
1155
for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1156
dr = list_next(&db->db_dirty_records, dr)) {
1157
ASSERT(dr->dr_dbuf == db);
1158
ASSERT(txg_prev > dr->dr_txg);
1159
txg_prev = dr->dr_txg;
1160
}
1161
}
1162
1163
/*
1164
* We can't assert that db_size matches dn_datablksz because it
1165
* can be momentarily different when another thread is doing
1166
* dnode_set_blksz().
1167
*/
1168
if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1169
dr = db->db_data_pending;
1170
/*
1171
* It should only be modified in syncing context, so
1172
* make sure we only have one copy of the data.
1173
*/
1174
ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1175
}
1176
1177
/* verify db->db_blkptr */
1178
if (db->db_blkptr) {
1179
if (db->db_parent == dn->dn_dbuf) {
1180
/* db is pointed to by the dnode */
1181
/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1182
if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1183
ASSERT0P(db->db_parent);
1184
else
1185
ASSERT(db->db_parent != NULL);
1186
if (db->db_blkid != DMU_SPILL_BLKID)
1187
ASSERT3P(db->db_blkptr, ==,
1188
&dn->dn_phys->dn_blkptr[db->db_blkid]);
1189
} else {
1190
/* db is pointed to by an indirect block */
1191
int epb __maybe_unused = db->db_parent->db.db_size >>
1192
SPA_BLKPTRSHIFT;
1193
ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1194
ASSERT3U(db->db_parent->db.db_object, ==,
1195
db->db.db_object);
1196
ASSERT3P(db->db_blkptr, ==,
1197
((blkptr_t *)db->db_parent->db.db_data +
1198
db->db_blkid % epb));
1199
}
1200
}
1201
if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1202
(db->db_buf == NULL || db->db_buf->b_data) &&
1203
db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1204
db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1205
/*
1206
* If the blkptr isn't set but they have nonzero data,
1207
* it had better be dirty, otherwise we'll lose that
1208
* data when we evict this buffer.
1209
*
1210
* There is an exception to this rule for indirect blocks; in
1211
* this case, if the indirect block is a hole, we fill in a few
1212
* fields on each of the child blocks (importantly, birth time)
1213
* to prevent hole birth times from being lost when you
1214
* partially fill in a hole.
1215
*/
1216
if (db->db_dirtycnt == 0) {
1217
if (db->db_level == 0) {
1218
uint64_t *buf = db->db.db_data;
1219
int i;
1220
1221
for (i = 0; i < db->db.db_size >> 3; i++) {
1222
ASSERT0(buf[i]);
1223
}
1224
} else {
1225
blkptr_t *bps = db->db.db_data;
1226
ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1227
db->db.db_size);
1228
/*
1229
* We want to verify that all the blkptrs in the
1230
* indirect block are holes, but we may have
1231
* automatically set up a few fields for them.
1232
* We iterate through each blkptr and verify
1233
* they only have those fields set.
1234
*/
1235
for (int i = 0;
1236
i < db->db.db_size / sizeof (blkptr_t);
1237
i++) {
1238
blkptr_t *bp = &bps[i];
1239
ASSERT(ZIO_CHECKSUM_IS_ZERO(
1240
&bp->blk_cksum));
1241
ASSERT(
1242
DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1243
DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1244
DVA_IS_EMPTY(&bp->blk_dva[2]));
1245
ASSERT0(bp->blk_fill);
1246
ASSERT(!BP_IS_EMBEDDED(bp));
1247
ASSERT(BP_IS_HOLE(bp));
1248
ASSERT0(BP_GET_RAW_PHYSICAL_BIRTH(bp));
1249
}
1250
}
1251
}
1252
}
1253
DB_DNODE_EXIT(db);
1254
}
1255
#endif
1256
1257
static void
1258
dbuf_clear_data(dmu_buf_impl_t *db)
1259
{
1260
ASSERT(MUTEX_HELD(&db->db_mtx));
1261
dbuf_evict_user(db);
1262
ASSERT0P(db->db_buf);
1263
db->db.db_data = NULL;
1264
if (db->db_state != DB_NOFILL) {
1265
db->db_state = DB_UNCACHED;
1266
DTRACE_SET_STATE(db, "clear data");
1267
}
1268
}
1269
1270
static void
1271
dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1272
{
1273
ASSERT(MUTEX_HELD(&db->db_mtx));
1274
ASSERT(buf != NULL);
1275
1276
db->db_buf = buf;
1277
ASSERT(buf->b_data != NULL);
1278
db->db.db_data = buf->b_data;
1279
}
1280
1281
static arc_buf_t *
1282
dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1283
{
1284
spa_t *spa = db->db_objset->os_spa;
1285
1286
return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1287
}
1288
1289
/*
1290
* Calculate which level n block references the data at the level 0 offset
1291
* provided.
1292
*/
1293
uint64_t
1294
dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1295
{
1296
if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1297
/*
1298
* The level n blkid is equal to the level 0 blkid divided by
1299
* the number of level 0s in a level n block.
1300
*
1301
* The level 0 blkid is offset >> datablkshift =
1302
* offset / 2^datablkshift.
1303
*
1304
* The number of level 0s in a level n is the number of block
1305
* pointers in an indirect block, raised to the power of level.
1306
* This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1307
* 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1308
*
1309
* Thus, the level n blkid is: offset /
1310
* ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1311
* = offset / 2^(datablkshift + level *
1312
* (indblkshift - SPA_BLKPTRSHIFT))
1313
* = offset >> (datablkshift + level *
1314
* (indblkshift - SPA_BLKPTRSHIFT))
1315
*/
1316
1317
const unsigned exp = dn->dn_datablkshift +
1318
level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1319
1320
if (exp >= 8 * sizeof (offset)) {
1321
/* This only happens on the highest indirection level */
1322
ASSERT3U(level, ==, dn->dn_nlevels - 1);
1323
return (0);
1324
}
1325
1326
ASSERT3U(exp, <, 8 * sizeof (offset));
1327
1328
return (offset >> exp);
1329
} else {
1330
ASSERT3U(offset, <, dn->dn_datablksz);
1331
return (0);
1332
}
1333
}
1334
1335
/*
1336
* This function is used to lock the parent of the provided dbuf. This should be
1337
* used when modifying or reading db_blkptr.
1338
*/
1339
db_lock_type_t
1340
dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1341
{
1342
enum db_lock_type ret = DLT_NONE;
1343
if (db->db_parent != NULL) {
1344
rw_enter(&db->db_parent->db_rwlock, rw);
1345
ret = DLT_PARENT;
1346
} else if (dmu_objset_ds(db->db_objset) != NULL) {
1347
rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1348
tag);
1349
ret = DLT_OBJSET;
1350
}
1351
/*
1352
* We only return a DLT_NONE lock when it's the top-most indirect block
1353
* of the meta-dnode of the MOS.
1354
*/
1355
return (ret);
1356
}
1357
1358
/*
1359
* We need to pass the lock type in because it's possible that the block will
1360
* move from being the topmost indirect block in a dnode (and thus, have no
1361
* parent) to not the top-most via an indirection increase. This would cause a
1362
* panic if we didn't pass the lock type in.
1363
*/
1364
void
1365
dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1366
{
1367
if (type == DLT_PARENT)
1368
rw_exit(&db->db_parent->db_rwlock);
1369
else if (type == DLT_OBJSET)
1370
rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1371
}
1372
1373
static void
1374
dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1375
arc_buf_t *buf, void *vdb)
1376
{
1377
(void) zb, (void) bp;
1378
dmu_buf_impl_t *db = vdb;
1379
1380
mutex_enter(&db->db_mtx);
1381
ASSERT3U(db->db_state, ==, DB_READ);
1382
1383
/*
1384
* All reads are synchronous, so we must have a hold on the dbuf
1385
*/
1386
ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1387
ASSERT0P(db->db_buf);
1388
ASSERT0P(db->db.db_data);
1389
if (buf == NULL) {
1390
/* i/o error */
1391
ASSERT(zio == NULL || zio->io_error != 0);
1392
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1393
ASSERT0P(db->db_buf);
1394
db->db_state = DB_UNCACHED;
1395
DTRACE_SET_STATE(db, "i/o error");
1396
} else if (db->db_level == 0 && db->db_freed_in_flight) {
1397
/* freed in flight */
1398
ASSERT(zio == NULL || zio->io_error == 0);
1399
arc_release(buf, db);
1400
memset(buf->b_data, 0, db->db.db_size);
1401
arc_buf_freeze(buf);
1402
db->db_freed_in_flight = FALSE;
1403
dbuf_set_data(db, buf);
1404
db->db_state = DB_CACHED;
1405
DTRACE_SET_STATE(db, "freed in flight");
1406
} else {
1407
/* success */
1408
ASSERT(zio == NULL || zio->io_error == 0);
1409
dbuf_set_data(db, buf);
1410
db->db_state = DB_CACHED;
1411
DTRACE_SET_STATE(db, "successful read");
1412
}
1413
cv_broadcast(&db->db_changed);
1414
dbuf_rele_and_unlock(db, NULL, B_FALSE);
1415
}
1416
1417
/*
1418
* Shortcut for performing reads on bonus dbufs. Returns
1419
* an error if we fail to verify the dnode associated with
1420
* a decrypted block. Otherwise success.
1421
*/
1422
static int
1423
dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn)
1424
{
1425
void* db_data;
1426
int bonuslen, max_bonuslen;
1427
1428
bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1429
max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1430
ASSERT(MUTEX_HELD(&db->db_mtx));
1431
ASSERT(DB_DNODE_HELD(db));
1432
ASSERT3U(bonuslen, <=, db->db.db_size);
1433
db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1434
arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1435
if (bonuslen < max_bonuslen)
1436
memset(db_data, 0, max_bonuslen);
1437
if (bonuslen)
1438
memcpy(db_data, DN_BONUS(dn->dn_phys), bonuslen);
1439
db->db.db_data = db_data;
1440
db->db_state = DB_CACHED;
1441
DTRACE_SET_STATE(db, "bonus buffer filled");
1442
return (0);
1443
}
1444
1445
static void
1446
dbuf_handle_indirect_hole(void *data, dnode_t *dn, blkptr_t *dbbp)
1447
{
1448
blkptr_t *bps = data;
1449
uint32_t indbs = 1ULL << dn->dn_indblkshift;
1450
int n_bps = indbs >> SPA_BLKPTRSHIFT;
1451
1452
for (int i = 0; i < n_bps; i++) {
1453
blkptr_t *bp = &bps[i];
1454
1455
ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1456
BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1457
dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1458
BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1459
BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1460
BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0);
1461
}
1462
}
1463
1464
/*
1465
* Handle reads on dbufs that are holes, if necessary. This function
1466
* requires that the dbuf's mutex is held. Returns success (0) if action
1467
* was taken, ENOENT if no action was taken.
1468
*/
1469
static int
1470
dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1471
{
1472
ASSERT(MUTEX_HELD(&db->db_mtx));
1473
arc_buf_t *db_data;
1474
1475
int is_hole = bp == NULL || BP_IS_HOLE(bp);
1476
/*
1477
* For level 0 blocks only, if the above check fails:
1478
* Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1479
* processes the delete record and clears the bp while we are waiting
1480
* for the dn_mtx (resulting in a "no" from block_freed).
1481
*/
1482
if (!is_hole && db->db_level == 0)
1483
is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1484
1485
if (is_hole) {
1486
db_data = dbuf_alloc_arcbuf(db);
1487
memset(db_data->b_data, 0, db->db.db_size);
1488
1489
if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1490
BP_GET_LOGICAL_BIRTH(bp) != 0) {
1491
dbuf_handle_indirect_hole(db_data->b_data, dn, bp);
1492
}
1493
dbuf_set_data(db, db_data);
1494
db->db_state = DB_CACHED;
1495
DTRACE_SET_STATE(db, "hole read satisfied");
1496
return (0);
1497
}
1498
return (ENOENT);
1499
}
1500
1501
/*
1502
* This function ensures that, when doing a decrypting read of a block,
1503
* we make sure we have decrypted the dnode associated with it. We must do
1504
* this so that we ensure we are fully authenticating the checksum-of-MACs
1505
* tree from the root of the objset down to this block. Indirect blocks are
1506
* always verified against their secure checksum-of-MACs assuming that the
1507
* dnode containing them is correct. Now that we are doing a decrypting read,
1508
* we can be sure that the key is loaded and verify that assumption. This is
1509
* especially important considering that we always read encrypted dnode
1510
* blocks as raw data (without verifying their MACs) to start, and
1511
* decrypt / authenticate them when we need to read an encrypted bonus buffer.
1512
*/
1513
static int
1514
dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn,
1515
dmu_flags_t flags)
1516
{
1517
objset_t *os = db->db_objset;
1518
dmu_buf_impl_t *dndb;
1519
arc_buf_t *dnbuf;
1520
zbookmark_phys_t zb;
1521
int err;
1522
1523
if ((flags & DMU_READ_NO_DECRYPT) != 0 ||
1524
!os->os_encrypted || os->os_raw_receive ||
1525
(dndb = dn->dn_dbuf) == NULL)
1526
return (0);
1527
1528
dnbuf = dndb->db_buf;
1529
if (!arc_is_encrypted(dnbuf))
1530
return (0);
1531
1532
mutex_enter(&dndb->db_mtx);
1533
1534
/*
1535
* Since dnode buffer is modified by sync process, there can be only
1536
* one copy of it. It means we can not modify (decrypt) it while it
1537
* is being written. I don't see how this may happen now, since
1538
* encrypted dnode writes by receive should be completed before any
1539
* plain-text reads due to txg wait, but better be safe than sorry.
1540
*/
1541
while (1) {
1542
if (!arc_is_encrypted(dnbuf)) {
1543
mutex_exit(&dndb->db_mtx);
1544
return (0);
1545
}
1546
dbuf_dirty_record_t *dr = dndb->db_data_pending;
1547
if (dr == NULL || dr->dt.dl.dr_data != dnbuf)
1548
break;
1549
cv_wait(&dndb->db_changed, &dndb->db_mtx);
1550
};
1551
1552
SET_BOOKMARK(&zb, dmu_objset_id(os),
1553
DMU_META_DNODE_OBJECT, 0, dndb->db_blkid);
1554
err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE);
1555
1556
/*
1557
* An error code of EACCES tells us that the key is still not
1558
* available. This is ok if we are only reading authenticated
1559
* (and therefore non-encrypted) blocks.
1560
*/
1561
if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1562
!DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1563
(db->db_blkid == DMU_BONUS_BLKID &&
1564
!DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1565
err = 0;
1566
1567
mutex_exit(&dndb->db_mtx);
1568
1569
return (err);
1570
}
1571
1572
/*
1573
* Drops db_mtx and the parent lock specified by dblt and tag before
1574
* returning.
1575
*/
1576
static int
1577
dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, dmu_flags_t flags,
1578
db_lock_type_t dblt, blkptr_t *bp, const void *tag)
1579
{
1580
zbookmark_phys_t zb;
1581
uint32_t aflags = ARC_FLAG_NOWAIT;
1582
int err, zio_flags;
1583
1584
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1585
ASSERT(MUTEX_HELD(&db->db_mtx));
1586
ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1587
ASSERT0P(db->db_buf);
1588
ASSERT(db->db_parent == NULL ||
1589
RW_LOCK_HELD(&db->db_parent->db_rwlock));
1590
1591
if (db->db_blkid == DMU_BONUS_BLKID) {
1592
err = dbuf_read_bonus(db, dn);
1593
goto early_unlock;
1594
}
1595
1596
err = dbuf_read_hole(db, dn, bp);
1597
if (err == 0)
1598
goto early_unlock;
1599
1600
ASSERT(bp != NULL);
1601
1602
/*
1603
* Any attempt to read a redacted block should result in an error. This
1604
* will never happen under normal conditions, but can be useful for
1605
* debugging purposes.
1606
*/
1607
if (BP_IS_REDACTED(bp)) {
1608
ASSERT(dsl_dataset_feature_is_active(
1609
db->db_objset->os_dsl_dataset,
1610
SPA_FEATURE_REDACTED_DATASETS));
1611
err = SET_ERROR(EIO);
1612
goto early_unlock;
1613
}
1614
1615
SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1616
db->db.db_object, db->db_level, db->db_blkid);
1617
1618
/*
1619
* All bps of an encrypted os should have the encryption bit set.
1620
* If this is not true it indicates tampering and we report an error.
1621
*/
1622
if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) {
1623
spa_log_error(db->db_objset->os_spa, &zb,
1624
BP_GET_PHYSICAL_BIRTH(bp));
1625
err = SET_ERROR(EIO);
1626
goto early_unlock;
1627
}
1628
1629
db->db_state = DB_READ;
1630
DTRACE_SET_STATE(db, "read issued");
1631
mutex_exit(&db->db_mtx);
1632
1633
if (!DBUF_IS_CACHEABLE(db))
1634
aflags |= ARC_FLAG_UNCACHED;
1635
else if (dbuf_is_l2cacheable(db, bp))
1636
aflags |= ARC_FLAG_L2CACHE;
1637
1638
dbuf_add_ref(db, NULL);
1639
1640
zio_flags = (flags & DB_RF_CANFAIL) ?
1641
ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1642
1643
if ((flags & DMU_READ_NO_DECRYPT) && BP_IS_PROTECTED(bp))
1644
zio_flags |= ZIO_FLAG_RAW;
1645
1646
/*
1647
* The zio layer will copy the provided blkptr later, but we need to
1648
* do this now so that we can release the parent's rwlock. We have to
1649
* do that now so that if dbuf_read_done is called synchronously (on
1650
* an l1 cache hit) we don't acquire the db_mtx while holding the
1651
* parent's rwlock, which would be a lock ordering violation.
1652
*/
1653
blkptr_t copy = *bp;
1654
dmu_buf_unlock_parent(db, dblt, tag);
1655
return (arc_read(zio, db->db_objset->os_spa, &copy,
1656
dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1657
&aflags, &zb));
1658
1659
early_unlock:
1660
mutex_exit(&db->db_mtx);
1661
dmu_buf_unlock_parent(db, dblt, tag);
1662
return (err);
1663
}
1664
1665
/*
1666
* This is our just-in-time copy function. It makes a copy of buffers that
1667
* have been modified in a previous transaction group before we access them in
1668
* the current active group.
1669
*
1670
* This function is used in three places: when we are dirtying a buffer for the
1671
* first time in a txg, when we are freeing a range in a dnode that includes
1672
* this buffer, and when we are accessing a buffer which was received compressed
1673
* and later referenced in a WRITE_BYREF record.
1674
*
1675
* Note that when we are called from dbuf_free_range() we do not put a hold on
1676
* the buffer, we just traverse the active dbuf list for the dnode.
1677
*/
1678
static void
1679
dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1680
{
1681
dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1682
1683
ASSERT(MUTEX_HELD(&db->db_mtx));
1684
ASSERT(db->db.db_data != NULL);
1685
ASSERT0(db->db_level);
1686
ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1687
1688
if (dr == NULL ||
1689
(dr->dt.dl.dr_data !=
1690
((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1691
return;
1692
1693
/*
1694
* If the last dirty record for this dbuf has not yet synced
1695
* and its referencing the dbuf data, either:
1696
* reset the reference to point to a new copy,
1697
* or (if there a no active holders)
1698
* just null out the current db_data pointer.
1699
*/
1700
ASSERT3U(dr->dr_txg, >=, txg - 2);
1701
if (db->db_blkid == DMU_BONUS_BLKID) {
1702
dnode_t *dn = DB_DNODE(db);
1703
int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1704
dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1705
arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1706
memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1707
} else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1708
dnode_t *dn = DB_DNODE(db);
1709
int size = arc_buf_size(db->db_buf);
1710
arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1711
spa_t *spa = db->db_objset->os_spa;
1712
enum zio_compress compress_type =
1713
arc_get_compression(db->db_buf);
1714
uint8_t complevel = arc_get_complevel(db->db_buf);
1715
1716
if (arc_is_encrypted(db->db_buf)) {
1717
boolean_t byteorder;
1718
uint8_t salt[ZIO_DATA_SALT_LEN];
1719
uint8_t iv[ZIO_DATA_IV_LEN];
1720
uint8_t mac[ZIO_DATA_MAC_LEN];
1721
1722
arc_get_raw_params(db->db_buf, &byteorder, salt,
1723
iv, mac);
1724
dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1725
dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1726
mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1727
compress_type, complevel);
1728
} else if (compress_type != ZIO_COMPRESS_OFF) {
1729
ASSERT3U(type, ==, ARC_BUFC_DATA);
1730
dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1731
size, arc_buf_lsize(db->db_buf), compress_type,
1732
complevel);
1733
} else {
1734
dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1735
}
1736
memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1737
} else {
1738
db->db_buf = NULL;
1739
dbuf_clear_data(db);
1740
}
1741
}
1742
1743
int
1744
dbuf_read(dmu_buf_impl_t *db, zio_t *pio, dmu_flags_t flags)
1745
{
1746
dnode_t *dn;
1747
boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch;
1748
int err;
1749
1750
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1751
1752
DB_DNODE_ENTER(db);
1753
dn = DB_DNODE(db);
1754
1755
/*
1756
* Ensure that this block's dnode has been decrypted if the caller
1757
* has requested decrypted data.
1758
*/
1759
err = dbuf_read_verify_dnode_crypt(db, dn, flags);
1760
if (err != 0)
1761
goto done;
1762
1763
prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1764
(flags & DMU_READ_NO_PREFETCH) == 0;
1765
1766
mutex_enter(&db->db_mtx);
1767
if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
1768
db->db_pending_evict = B_FALSE;
1769
if (flags & DMU_PARTIAL_FIRST)
1770
db->db_partial_read = B_TRUE;
1771
else if (!(flags & (DMU_PARTIAL_MORE | DMU_KEEP_CACHING)))
1772
db->db_partial_read = B_FALSE;
1773
miss = (db->db_state != DB_CACHED);
1774
1775
if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1776
/*
1777
* Another reader came in while the dbuf was in flight between
1778
* UNCACHED and CACHED. Either a writer will finish filling
1779
* the buffer, sending the dbuf to CACHED, or the first reader's
1780
* request will reach the read_done callback and send the dbuf
1781
* to CACHED. Otherwise, a failure occurred and the dbuf will
1782
* be sent to UNCACHED.
1783
*/
1784
if (flags & DB_RF_NEVERWAIT) {
1785
mutex_exit(&db->db_mtx);
1786
DB_DNODE_EXIT(db);
1787
goto done;
1788
}
1789
do {
1790
ASSERT(db->db_state == DB_READ ||
1791
(flags & DB_RF_HAVESTRUCT) == 0);
1792
DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db,
1793
zio_t *, pio);
1794
cv_wait(&db->db_changed, &db->db_mtx);
1795
} while (db->db_state == DB_READ || db->db_state == DB_FILL);
1796
if (db->db_state == DB_UNCACHED) {
1797
err = SET_ERROR(EIO);
1798
mutex_exit(&db->db_mtx);
1799
DB_DNODE_EXIT(db);
1800
goto done;
1801
}
1802
}
1803
1804
if (db->db_state == DB_CACHED) {
1805
/*
1806
* If the arc buf is compressed or encrypted and the caller
1807
* requested uncompressed data, we need to untransform it
1808
* before returning. We also call arc_untransform() on any
1809
* unauthenticated blocks, which will verify their MAC if
1810
* the key is now available.
1811
*/
1812
if ((flags & DMU_READ_NO_DECRYPT) == 0 && db->db_buf != NULL &&
1813
(arc_is_encrypted(db->db_buf) ||
1814
arc_is_unauthenticated(db->db_buf) ||
1815
arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1816
spa_t *spa = dn->dn_objset->os_spa;
1817
zbookmark_phys_t zb;
1818
1819
SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1820
db->db.db_object, db->db_level, db->db_blkid);
1821
dbuf_fix_old_data(db, spa_syncing_txg(spa));
1822
err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1823
dbuf_set_data(db, db->db_buf);
1824
}
1825
mutex_exit(&db->db_mtx);
1826
} else {
1827
ASSERT(db->db_state == DB_UNCACHED ||
1828
db->db_state == DB_NOFILL);
1829
db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1830
blkptr_t *bp;
1831
1832
/*
1833
* If a block clone or Direct I/O write has occurred we will
1834
* get the dirty records overridden BP so we get the most
1835
* recent data.
1836
*/
1837
err = dmu_buf_get_bp_from_dbuf(db, &bp);
1838
1839
if (!err) {
1840
if (pio == NULL && (db->db_state == DB_NOFILL ||
1841
(bp != NULL && !BP_IS_HOLE(bp)))) {
1842
spa_t *spa = dn->dn_objset->os_spa;
1843
pio =
1844
zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1845
need_wait = B_TRUE;
1846
}
1847
1848
err =
1849
dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG);
1850
} else {
1851
mutex_exit(&db->db_mtx);
1852
dmu_buf_unlock_parent(db, dblt, FTAG);
1853
}
1854
/* dbuf_read_impl drops db_mtx and parent's rwlock. */
1855
miss = (db->db_state != DB_CACHED);
1856
}
1857
1858
if (err == 0 && prefetch) {
1859
dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss,
1860
flags & DB_RF_HAVESTRUCT, (flags & DMU_UNCACHEDIO) ||
1861
db->db_pending_evict);
1862
}
1863
DB_DNODE_EXIT(db);
1864
1865
/*
1866
* If we created a zio we must execute it to avoid leaking it, even if
1867
* it isn't attached to any work due to an error in dbuf_read_impl().
1868
*/
1869
if (need_wait) {
1870
if (err == 0)
1871
err = zio_wait(pio);
1872
else
1873
(void) zio_wait(pio);
1874
pio = NULL;
1875
}
1876
1877
done:
1878
if (miss)
1879
DBUF_STAT_BUMP(hash_misses);
1880
else
1881
DBUF_STAT_BUMP(hash_hits);
1882
if (pio && err != 0) {
1883
zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL,
1884
ZIO_FLAG_CANFAIL);
1885
zio->io_error = err;
1886
zio_nowait(zio);
1887
}
1888
1889
return (err);
1890
}
1891
1892
static void
1893
dbuf_noread(dmu_buf_impl_t *db, dmu_flags_t flags)
1894
{
1895
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1896
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1897
mutex_enter(&db->db_mtx);
1898
if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
1899
db->db_pending_evict = B_FALSE;
1900
db->db_partial_read = B_FALSE;
1901
while (db->db_state == DB_READ || db->db_state == DB_FILL)
1902
cv_wait(&db->db_changed, &db->db_mtx);
1903
if (db->db_state == DB_UNCACHED) {
1904
ASSERT0P(db->db_buf);
1905
ASSERT0P(db->db.db_data);
1906
dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1907
db->db_state = DB_FILL;
1908
DTRACE_SET_STATE(db, "assigning filled buffer");
1909
} else if (db->db_state == DB_NOFILL) {
1910
dbuf_clear_data(db);
1911
} else {
1912
ASSERT3U(db->db_state, ==, DB_CACHED);
1913
}
1914
mutex_exit(&db->db_mtx);
1915
}
1916
1917
void
1918
dbuf_unoverride(dbuf_dirty_record_t *dr)
1919
{
1920
dmu_buf_impl_t *db = dr->dr_dbuf;
1921
blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1922
uint64_t txg = dr->dr_txg;
1923
1924
ASSERT(MUTEX_HELD(&db->db_mtx));
1925
1926
/*
1927
* This assert is valid because dmu_sync() expects to be called by
1928
* a zilog's get_data while holding a range lock. This call only
1929
* comes from dbuf_dirty() callers who must also hold a range lock.
1930
*/
1931
ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1932
ASSERT0(db->db_level);
1933
1934
if (db->db_blkid == DMU_BONUS_BLKID ||
1935
dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1936
return;
1937
1938
ASSERT(db->db_data_pending != dr);
1939
1940
/* free this block */
1941
if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1942
zio_free(db->db_objset->os_spa, txg, bp);
1943
1944
if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) {
1945
ASSERT0P(dr->dt.dl.dr_data);
1946
dr->dt.dl.dr_data = db->db_buf;
1947
}
1948
dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1949
dr->dt.dl.dr_nopwrite = B_FALSE;
1950
dr->dt.dl.dr_brtwrite = B_FALSE;
1951
dr->dt.dl.dr_diowrite = B_FALSE;
1952
dr->dt.dl.dr_has_raw_params = B_FALSE;
1953
1954
/*
1955
* In the event that Direct I/O was used, we do not
1956
* need to release the buffer from the ARC.
1957
*
1958
* Release the already-written buffer, so we leave it in
1959
* a consistent dirty state. Note that all callers are
1960
* modifying the buffer, so they will immediately do
1961
* another (redundant) arc_release(). Therefore, leave
1962
* the buf thawed to save the effort of freezing &
1963
* immediately re-thawing it.
1964
*/
1965
if (dr->dt.dl.dr_data)
1966
arc_release(dr->dt.dl.dr_data, db);
1967
}
1968
1969
/*
1970
* Evict (if its unreferenced) or clear (if its referenced) any level-0
1971
* data blocks in the free range, so that any future readers will find
1972
* empty blocks.
1973
*/
1974
void
1975
dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1976
dmu_tx_t *tx)
1977
{
1978
dmu_buf_impl_t *db_search;
1979
dmu_buf_impl_t *db, *db_next;
1980
uint64_t txg = tx->tx_txg;
1981
avl_index_t where;
1982
dbuf_dirty_record_t *dr;
1983
1984
if (end_blkid > dn->dn_maxblkid &&
1985
!(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1986
end_blkid = dn->dn_maxblkid;
1987
dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1988
(u_longlong_t)end_blkid);
1989
1990
db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1991
db_search->db_level = 0;
1992
db_search->db_blkid = start_blkid;
1993
db_search->db_state = DB_SEARCH;
1994
1995
mutex_enter(&dn->dn_dbufs_mtx);
1996
db = avl_find(&dn->dn_dbufs, db_search, &where);
1997
ASSERT0P(db);
1998
1999
db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2000
2001
for (; db != NULL; db = db_next) {
2002
db_next = AVL_NEXT(&dn->dn_dbufs, db);
2003
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2004
2005
if (db->db_level != 0 || db->db_blkid > end_blkid) {
2006
break;
2007
}
2008
ASSERT3U(db->db_blkid, >=, start_blkid);
2009
2010
/* found a level 0 buffer in the range */
2011
mutex_enter(&db->db_mtx);
2012
if (dbuf_undirty(db, tx)) {
2013
/* mutex has been dropped and dbuf destroyed */
2014
continue;
2015
}
2016
2017
if (db->db_state == DB_UNCACHED ||
2018
db->db_state == DB_NOFILL ||
2019
db->db_state == DB_EVICTING) {
2020
ASSERT0P(db->db.db_data);
2021
mutex_exit(&db->db_mtx);
2022
continue;
2023
}
2024
if (db->db_state == DB_READ || db->db_state == DB_FILL) {
2025
/* will be handled in dbuf_read_done or dbuf_rele */
2026
db->db_freed_in_flight = TRUE;
2027
mutex_exit(&db->db_mtx);
2028
continue;
2029
}
2030
if (zfs_refcount_count(&db->db_holds) == 0) {
2031
ASSERT(db->db_buf);
2032
dbuf_destroy(db);
2033
continue;
2034
}
2035
/* The dbuf is referenced */
2036
2037
dr = list_head(&db->db_dirty_records);
2038
if (dr != NULL) {
2039
if (dr->dr_txg == txg) {
2040
/*
2041
* This buffer is "in-use", re-adjust the file
2042
* size to reflect that this buffer may
2043
* contain new data when we sync.
2044
*/
2045
if (db->db_blkid != DMU_SPILL_BLKID &&
2046
db->db_blkid > dn->dn_maxblkid)
2047
dn->dn_maxblkid = db->db_blkid;
2048
dbuf_unoverride(dr);
2049
} else {
2050
/*
2051
* This dbuf is not dirty in the open context.
2052
* Either uncache it (if its not referenced in
2053
* the open context) or reset its contents to
2054
* empty.
2055
*/
2056
dbuf_fix_old_data(db, txg);
2057
}
2058
}
2059
/* clear the contents if its cached */
2060
if (db->db_state == DB_CACHED) {
2061
ASSERT(db->db.db_data != NULL);
2062
arc_release(db->db_buf, db);
2063
rw_enter(&db->db_rwlock, RW_WRITER);
2064
memset(db->db.db_data, 0, db->db.db_size);
2065
rw_exit(&db->db_rwlock);
2066
arc_buf_freeze(db->db_buf);
2067
}
2068
2069
mutex_exit(&db->db_mtx);
2070
}
2071
2072
mutex_exit(&dn->dn_dbufs_mtx);
2073
kmem_free(db_search, sizeof (dmu_buf_impl_t));
2074
}
2075
2076
void
2077
dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2078
{
2079
arc_buf_t *buf, *old_buf;
2080
dbuf_dirty_record_t *dr;
2081
int osize = db->db.db_size;
2082
arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2083
dnode_t *dn;
2084
2085
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2086
2087
DB_DNODE_ENTER(db);
2088
dn = DB_DNODE(db);
2089
2090
/*
2091
* XXX we should be doing a dbuf_read, checking the return
2092
* value and returning that up to our callers
2093
*/
2094
dmu_buf_will_dirty(&db->db, tx);
2095
2096
VERIFY3P(db->db_buf, !=, NULL);
2097
2098
/* create the data buffer for the new block */
2099
buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2100
2101
/* copy old block data to the new block */
2102
old_buf = db->db_buf;
2103
memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2104
/* zero the remainder */
2105
if (size > osize)
2106
memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2107
2108
mutex_enter(&db->db_mtx);
2109
dbuf_set_data(db, buf);
2110
arc_buf_destroy(old_buf, db);
2111
db->db.db_size = size;
2112
2113
dr = list_head(&db->db_dirty_records);
2114
/* dirty record added by dmu_buf_will_dirty() */
2115
VERIFY(dr != NULL);
2116
if (db->db_level == 0)
2117
dr->dt.dl.dr_data = buf;
2118
ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2119
ASSERT3U(dr->dr_accounted, ==, osize);
2120
dr->dr_accounted = size;
2121
mutex_exit(&db->db_mtx);
2122
2123
dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2124
DB_DNODE_EXIT(db);
2125
}
2126
2127
void
2128
dbuf_release_bp(dmu_buf_impl_t *db)
2129
{
2130
objset_t *os __maybe_unused = db->db_objset;
2131
2132
ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2133
ASSERT(arc_released(os->os_phys_buf) ||
2134
list_link_active(&os->os_dsl_dataset->ds_synced_link));
2135
ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2136
2137
(void) arc_release(db->db_buf, db);
2138
}
2139
2140
/*
2141
* We already have a dirty record for this TXG, and we are being
2142
* dirtied again.
2143
*/
2144
static void
2145
dbuf_redirty(dbuf_dirty_record_t *dr)
2146
{
2147
dmu_buf_impl_t *db = dr->dr_dbuf;
2148
2149
ASSERT(MUTEX_HELD(&db->db_mtx));
2150
2151
if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2152
/*
2153
* If this buffer has already been written out,
2154
* we now need to reset its state.
2155
*/
2156
dbuf_unoverride(dr);
2157
if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2158
db->db_state != DB_NOFILL) {
2159
/* Already released on initial dirty, so just thaw. */
2160
ASSERT(arc_released(db->db_buf));
2161
arc_buf_thaw(db->db_buf);
2162
}
2163
2164
/*
2165
* Clear the rewrite flag since this is now a logical
2166
* modification.
2167
*/
2168
dr->dt.dl.dr_rewrite = B_FALSE;
2169
}
2170
}
2171
2172
dbuf_dirty_record_t *
2173
dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2174
{
2175
rw_enter(&dn->dn_struct_rwlock, RW_READER);
2176
IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2177
dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2178
ASSERT(dn->dn_maxblkid >= blkid);
2179
2180
dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2181
list_link_init(&dr->dr_dirty_node);
2182
list_link_init(&dr->dr_dbuf_node);
2183
dr->dr_dnode = dn;
2184
dr->dr_txg = tx->tx_txg;
2185
dr->dt.dll.dr_blkid = blkid;
2186
dr->dr_accounted = dn->dn_datablksz;
2187
2188
/*
2189
* There should not be any dbuf for the block that we're dirtying.
2190
* Otherwise the buffer contents could be inconsistent between the
2191
* dbuf and the lightweight dirty record.
2192
*/
2193
ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2194
NULL));
2195
2196
mutex_enter(&dn->dn_mtx);
2197
int txgoff = tx->tx_txg & TXG_MASK;
2198
if (dn->dn_free_ranges[txgoff] != NULL) {
2199
zfs_range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2200
}
2201
2202
if (dn->dn_nlevels == 1) {
2203
ASSERT3U(blkid, <, dn->dn_nblkptr);
2204
list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2205
mutex_exit(&dn->dn_mtx);
2206
rw_exit(&dn->dn_struct_rwlock);
2207
dnode_setdirty(dn, tx);
2208
} else {
2209
mutex_exit(&dn->dn_mtx);
2210
2211
int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2212
dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2213
1, blkid >> epbs, FTAG);
2214
rw_exit(&dn->dn_struct_rwlock);
2215
if (parent_db == NULL) {
2216
kmem_free(dr, sizeof (*dr));
2217
return (NULL);
2218
}
2219
int err = dbuf_read(parent_db, NULL, DB_RF_CANFAIL |
2220
DMU_READ_NO_PREFETCH);
2221
if (err != 0) {
2222
dbuf_rele(parent_db, FTAG);
2223
kmem_free(dr, sizeof (*dr));
2224
return (NULL);
2225
}
2226
2227
dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2228
dbuf_rele(parent_db, FTAG);
2229
mutex_enter(&parent_dr->dt.di.dr_mtx);
2230
ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2231
list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2232
mutex_exit(&parent_dr->dt.di.dr_mtx);
2233
dr->dr_parent = parent_dr;
2234
}
2235
2236
dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2237
2238
return (dr);
2239
}
2240
2241
dbuf_dirty_record_t *
2242
dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2243
{
2244
dnode_t *dn;
2245
objset_t *os;
2246
dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2247
int txgoff = tx->tx_txg & TXG_MASK;
2248
boolean_t drop_struct_rwlock = B_FALSE;
2249
2250
ASSERT(tx->tx_txg != 0);
2251
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2252
DMU_TX_DIRTY_BUF(tx, db);
2253
2254
DB_DNODE_ENTER(db);
2255
dn = DB_DNODE(db);
2256
/*
2257
* Shouldn't dirty a regular buffer in syncing context. Private
2258
* objects may be dirtied in syncing context, but only if they
2259
* were already pre-dirtied in open context.
2260
*/
2261
#ifdef ZFS_DEBUG
2262
if (dn->dn_objset->os_dsl_dataset != NULL) {
2263
rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2264
RW_READER, FTAG);
2265
}
2266
ASSERT(!dmu_tx_is_syncing(tx) ||
2267
BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2268
DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2269
dn->dn_objset->os_dsl_dataset == NULL);
2270
if (dn->dn_objset->os_dsl_dataset != NULL)
2271
rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2272
#endif
2273
2274
mutex_enter(&db->db_mtx);
2275
/*
2276
* XXX make this true for indirects too? The problem is that
2277
* transactions created with dmu_tx_create_assigned() from
2278
* syncing context don't bother holding ahead.
2279
*/
2280
ASSERT(db->db_level != 0 ||
2281
db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2282
db->db_state == DB_NOFILL);
2283
2284
if (db->db_blkid == DMU_SPILL_BLKID)
2285
dn->dn_have_spill = B_TRUE;
2286
2287
/*
2288
* If this buffer is already dirty, we're done.
2289
*/
2290
dr_head = list_head(&db->db_dirty_records);
2291
ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2292
db->db.db_object == DMU_META_DNODE_OBJECT);
2293
dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2294
if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2295
DB_DNODE_EXIT(db);
2296
2297
dbuf_redirty(dr_next);
2298
mutex_exit(&db->db_mtx);
2299
return (dr_next);
2300
}
2301
2302
ASSERT3U(dn->dn_nlevels, >, db->db_level);
2303
2304
/*
2305
* We should only be dirtying in syncing context if it's the
2306
* mos or we're initializing the os or it's a special object.
2307
* However, we are allowed to dirty in syncing context provided
2308
* we already dirtied it in open context. Hence we must make
2309
* this assertion only if we're not already dirty.
2310
*/
2311
os = dn->dn_objset;
2312
VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2313
#ifdef ZFS_DEBUG
2314
if (dn->dn_objset->os_dsl_dataset != NULL)
2315
rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2316
ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2317
os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2318
if (dn->dn_objset->os_dsl_dataset != NULL)
2319
rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2320
#endif
2321
ASSERT(db->db.db_size != 0);
2322
2323
dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2324
2325
if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2326
dmu_objset_willuse_space(os, db->db.db_size, tx);
2327
}
2328
2329
/*
2330
* If this buffer is dirty in an old transaction group we need
2331
* to make a copy of it so that the changes we make in this
2332
* transaction group won't leak out when we sync the older txg.
2333
*/
2334
dr = kmem_cache_alloc(dbuf_dirty_kmem_cache, KM_SLEEP);
2335
memset(dr, 0, sizeof (*dr));
2336
list_link_init(&dr->dr_dirty_node);
2337
list_link_init(&dr->dr_dbuf_node);
2338
dr->dr_dnode = dn;
2339
if (db->db_level == 0) {
2340
void *data_old = db->db_buf;
2341
2342
if (db->db_state != DB_NOFILL) {
2343
if (db->db_blkid == DMU_BONUS_BLKID) {
2344
dbuf_fix_old_data(db, tx->tx_txg);
2345
data_old = db->db.db_data;
2346
} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2347
/*
2348
* Release the data buffer from the cache so
2349
* that we can modify it without impacting
2350
* possible other users of this cached data
2351
* block. Note that indirect blocks and
2352
* private objects are not released until the
2353
* syncing state (since they are only modified
2354
* then).
2355
*/
2356
arc_release(db->db_buf, db);
2357
dbuf_fix_old_data(db, tx->tx_txg);
2358
data_old = db->db_buf;
2359
}
2360
ASSERT(data_old != NULL);
2361
}
2362
dr->dt.dl.dr_data = data_old;
2363
} else {
2364
mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2365
list_create(&dr->dt.di.dr_children,
2366
sizeof (dbuf_dirty_record_t),
2367
offsetof(dbuf_dirty_record_t, dr_dirty_node));
2368
}
2369
if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2370
dr->dr_accounted = db->db.db_size;
2371
}
2372
dr->dr_dbuf = db;
2373
dr->dr_txg = tx->tx_txg;
2374
list_insert_before(&db->db_dirty_records, dr_next, dr);
2375
2376
/*
2377
* We could have been freed_in_flight between the dbuf_noread
2378
* and dbuf_dirty. We win, as though the dbuf_noread() had
2379
* happened after the free.
2380
*/
2381
if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2382
db->db_blkid != DMU_SPILL_BLKID) {
2383
mutex_enter(&dn->dn_mtx);
2384
if (dn->dn_free_ranges[txgoff] != NULL) {
2385
zfs_range_tree_clear(dn->dn_free_ranges[txgoff],
2386
db->db_blkid, 1);
2387
}
2388
mutex_exit(&dn->dn_mtx);
2389
db->db_freed_in_flight = FALSE;
2390
}
2391
2392
/*
2393
* This buffer is now part of this txg
2394
*/
2395
dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2396
db->db_dirtycnt += 1;
2397
ASSERT3U(db->db_dirtycnt, <=, 3);
2398
2399
mutex_exit(&db->db_mtx);
2400
2401
if (db->db_blkid == DMU_BONUS_BLKID ||
2402
db->db_blkid == DMU_SPILL_BLKID) {
2403
mutex_enter(&dn->dn_mtx);
2404
ASSERT(!list_link_active(&dr->dr_dirty_node));
2405
list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2406
mutex_exit(&dn->dn_mtx);
2407
dnode_setdirty(dn, tx);
2408
DB_DNODE_EXIT(db);
2409
return (dr);
2410
}
2411
2412
if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2413
rw_enter(&dn->dn_struct_rwlock, RW_READER);
2414
drop_struct_rwlock = B_TRUE;
2415
}
2416
2417
/*
2418
* If we are overwriting a dedup BP, then unless it is snapshotted,
2419
* when we get to syncing context we will need to decrement its
2420
* refcount in the DDT. Prefetch the relevant DDT block so that
2421
* syncing context won't have to wait for the i/o.
2422
*/
2423
if (db->db_blkptr != NULL) {
2424
db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2425
ddt_prefetch(os->os_spa, db->db_blkptr);
2426
dmu_buf_unlock_parent(db, dblt, FTAG);
2427
}
2428
2429
/*
2430
* We need to hold the dn_struct_rwlock to make this assertion,
2431
* because it protects dn_phys / dn_next_nlevels from changing.
2432
*/
2433
ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2434
dn->dn_phys->dn_nlevels > db->db_level ||
2435
dn->dn_next_nlevels[txgoff] > db->db_level ||
2436
dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2437
dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2438
2439
2440
if (db->db_level == 0) {
2441
ASSERT(!db->db_objset->os_raw_receive ||
2442
dn->dn_maxblkid >= db->db_blkid);
2443
dnode_new_blkid(dn, db->db_blkid, tx,
2444
drop_struct_rwlock, B_FALSE);
2445
ASSERT(dn->dn_maxblkid >= db->db_blkid);
2446
}
2447
2448
if (db->db_level+1 < dn->dn_nlevels) {
2449
dmu_buf_impl_t *parent = db->db_parent;
2450
dbuf_dirty_record_t *di;
2451
int parent_held = FALSE;
2452
2453
if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2454
int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2455
parent = dbuf_hold_level(dn, db->db_level + 1,
2456
db->db_blkid >> epbs, FTAG);
2457
ASSERT(parent != NULL);
2458
parent_held = TRUE;
2459
}
2460
if (drop_struct_rwlock)
2461
rw_exit(&dn->dn_struct_rwlock);
2462
ASSERT3U(db->db_level + 1, ==, parent->db_level);
2463
di = dbuf_dirty(parent, tx);
2464
if (parent_held)
2465
dbuf_rele(parent, FTAG);
2466
2467
mutex_enter(&db->db_mtx);
2468
/*
2469
* Since we've dropped the mutex, it's possible that
2470
* dbuf_undirty() might have changed this out from under us.
2471
*/
2472
if (list_head(&db->db_dirty_records) == dr ||
2473
dn->dn_object == DMU_META_DNODE_OBJECT) {
2474
mutex_enter(&di->dt.di.dr_mtx);
2475
ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2476
ASSERT(!list_link_active(&dr->dr_dirty_node));
2477
list_insert_tail(&di->dt.di.dr_children, dr);
2478
mutex_exit(&di->dt.di.dr_mtx);
2479
dr->dr_parent = di;
2480
}
2481
mutex_exit(&db->db_mtx);
2482
} else {
2483
ASSERT(db->db_level + 1 == dn->dn_nlevels);
2484
ASSERT(db->db_blkid < dn->dn_nblkptr);
2485
ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2486
mutex_enter(&dn->dn_mtx);
2487
ASSERT(!list_link_active(&dr->dr_dirty_node));
2488
list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2489
mutex_exit(&dn->dn_mtx);
2490
if (drop_struct_rwlock)
2491
rw_exit(&dn->dn_struct_rwlock);
2492
}
2493
2494
dnode_setdirty(dn, tx);
2495
DB_DNODE_EXIT(db);
2496
return (dr);
2497
}
2498
2499
static void
2500
dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2501
{
2502
dmu_buf_impl_t *db = dr->dr_dbuf;
2503
2504
ASSERT(MUTEX_HELD(&db->db_mtx));
2505
if (dr->dt.dl.dr_data != db->db.db_data) {
2506
struct dnode *dn = dr->dr_dnode;
2507
int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2508
2509
kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2510
arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2511
}
2512
db->db_data_pending = NULL;
2513
ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2514
list_remove(&db->db_dirty_records, dr);
2515
if (dr->dr_dbuf->db_level != 0) {
2516
mutex_destroy(&dr->dt.di.dr_mtx);
2517
list_destroy(&dr->dt.di.dr_children);
2518
}
2519
kmem_cache_free(dbuf_dirty_kmem_cache, dr);
2520
ASSERT3U(db->db_dirtycnt, >, 0);
2521
db->db_dirtycnt -= 1;
2522
}
2523
2524
/*
2525
* Undirty a buffer in the transaction group referenced by the given
2526
* transaction. Return whether this evicted the dbuf.
2527
*/
2528
boolean_t
2529
dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2530
{
2531
uint64_t txg = tx->tx_txg;
2532
boolean_t brtwrite;
2533
boolean_t diowrite;
2534
2535
ASSERT(txg != 0);
2536
2537
/*
2538
* Due to our use of dn_nlevels below, this can only be called
2539
* in open context, unless we are operating on the MOS or it's
2540
* a special object. From syncing context, dn_nlevels may be
2541
* different from the dn_nlevels used when dbuf was dirtied.
2542
*/
2543
ASSERT(db->db_objset ==
2544
dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2545
DMU_OBJECT_IS_SPECIAL(db->db.db_object) ||
2546
txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2547
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2548
ASSERT0(db->db_level);
2549
ASSERT(MUTEX_HELD(&db->db_mtx));
2550
2551
/*
2552
* If this buffer is not dirty, we're done.
2553
*/
2554
dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2555
if (dr == NULL)
2556
return (B_FALSE);
2557
ASSERT(dr->dr_dbuf == db);
2558
2559
brtwrite = dr->dt.dl.dr_brtwrite;
2560
diowrite = dr->dt.dl.dr_diowrite;
2561
if (brtwrite) {
2562
ASSERT3B(diowrite, ==, B_FALSE);
2563
/*
2564
* We are freeing a block that we cloned in the same
2565
* transaction group.
2566
*/
2567
blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
2568
if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2569
brt_pending_remove(dmu_objset_spa(db->db_objset),
2570
bp, tx);
2571
}
2572
}
2573
2574
dnode_t *dn = dr->dr_dnode;
2575
2576
dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2577
2578
ASSERT(db->db.db_size != 0);
2579
2580
dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2581
dr->dr_accounted, txg);
2582
2583
list_remove(&db->db_dirty_records, dr);
2584
2585
/*
2586
* Note that there are three places in dbuf_dirty()
2587
* where this dirty record may be put on a list.
2588
* Make sure to do a list_remove corresponding to
2589
* every one of those list_insert calls.
2590
*/
2591
if (dr->dr_parent) {
2592
mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2593
list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2594
mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2595
} else if (db->db_blkid == DMU_SPILL_BLKID ||
2596
db->db_level + 1 == dn->dn_nlevels) {
2597
ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2598
mutex_enter(&dn->dn_mtx);
2599
list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2600
mutex_exit(&dn->dn_mtx);
2601
}
2602
2603
if (db->db_state != DB_NOFILL && !brtwrite) {
2604
dbuf_unoverride(dr);
2605
2606
if (dr->dt.dl.dr_data != db->db_buf) {
2607
ASSERT(db->db_buf != NULL);
2608
ASSERT(dr->dt.dl.dr_data != NULL);
2609
arc_buf_destroy(dr->dt.dl.dr_data, db);
2610
}
2611
}
2612
2613
kmem_cache_free(dbuf_dirty_kmem_cache, dr);
2614
2615
ASSERT(db->db_dirtycnt > 0);
2616
db->db_dirtycnt -= 1;
2617
2618
if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2619
ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite ||
2620
arc_released(db->db_buf));
2621
dbuf_destroy(db);
2622
return (B_TRUE);
2623
}
2624
2625
return (B_FALSE);
2626
}
2627
2628
void
2629
dmu_buf_will_dirty_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, dmu_flags_t flags)
2630
{
2631
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2632
boolean_t undirty = B_FALSE;
2633
2634
ASSERT(tx->tx_txg != 0);
2635
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2636
2637
/*
2638
* Quick check for dirtiness to improve performance for some workloads
2639
* (e.g. file deletion with indirect blocks cached).
2640
*/
2641
mutex_enter(&db->db_mtx);
2642
if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
2643
/*
2644
* It's possible that the dbuf is already dirty but not cached,
2645
* because there are some calls to dbuf_dirty() that don't
2646
* go through dmu_buf_will_dirty().
2647
*/
2648
dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2649
if (dr != NULL) {
2650
if (db->db_level == 0 &&
2651
dr->dt.dl.dr_brtwrite) {
2652
/*
2653
* Block cloning: If we are dirtying a cloned
2654
* level 0 block, we cannot simply redirty it,
2655
* because this dr has no associated data.
2656
* We will go through a full undirtying below,
2657
* before dirtying it again.
2658
*/
2659
undirty = B_TRUE;
2660
} else {
2661
/* This dbuf is already dirty and cached. */
2662
dbuf_redirty(dr);
2663
mutex_exit(&db->db_mtx);
2664
return;
2665
}
2666
}
2667
}
2668
mutex_exit(&db->db_mtx);
2669
2670
DB_DNODE_ENTER(db);
2671
if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2672
flags |= DB_RF_HAVESTRUCT;
2673
DB_DNODE_EXIT(db);
2674
2675
/*
2676
* Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2677
* want to make sure dbuf_read() will read the pending cloned block and
2678
* not the uderlying block that is being replaced. dbuf_undirty() will
2679
* do brt_pending_remove() before removing the dirty record.
2680
*/
2681
(void) dbuf_read(db, NULL, flags | DB_RF_MUST_SUCCEED);
2682
if (undirty) {
2683
mutex_enter(&db->db_mtx);
2684
VERIFY(!dbuf_undirty(db, tx));
2685
mutex_exit(&db->db_mtx);
2686
}
2687
(void) dbuf_dirty(db, tx);
2688
}
2689
2690
void
2691
dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2692
{
2693
dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH);
2694
}
2695
2696
void
2697
dmu_buf_will_rewrite(dmu_buf_t *db_fake, dmu_tx_t *tx)
2698
{
2699
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2700
2701
ASSERT(tx->tx_txg != 0);
2702
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2703
2704
/*
2705
* If the dbuf is already dirty in this txg, it will be written
2706
* anyway, so there's nothing to do.
2707
*/
2708
mutex_enter(&db->db_mtx);
2709
if (dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) {
2710
mutex_exit(&db->db_mtx);
2711
return;
2712
}
2713
mutex_exit(&db->db_mtx);
2714
2715
/*
2716
* The dbuf is not dirty, so we need to make it dirty and
2717
* mark it for rewrite (preserve logical birth time).
2718
*/
2719
dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH);
2720
2721
mutex_enter(&db->db_mtx);
2722
dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2723
if (dr != NULL && db->db_level == 0)
2724
dr->dt.dl.dr_rewrite = B_TRUE;
2725
mutex_exit(&db->db_mtx);
2726
}
2727
2728
boolean_t
2729
dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2730
{
2731
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2732
dbuf_dirty_record_t *dr;
2733
2734
mutex_enter(&db->db_mtx);
2735
dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2736
mutex_exit(&db->db_mtx);
2737
return (dr != NULL);
2738
}
2739
2740
/*
2741
* Normally the db_blkptr points to the most recent on-disk content for the
2742
* dbuf (and anything newer will be cached in the dbuf). However, a pending
2743
* block clone or not yet synced Direct I/O write will have a dirty record BP
2744
* pointing to the most recent data.
2745
*/
2746
int
2747
dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp)
2748
{
2749
ASSERT(MUTEX_HELD(&db->db_mtx));
2750
int error = 0;
2751
2752
if (db->db_level != 0) {
2753
*bp = db->db_blkptr;
2754
return (0);
2755
}
2756
2757
*bp = db->db_blkptr;
2758
dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2759
if (dr && db->db_state == DB_NOFILL) {
2760
/* Block clone */
2761
if (!dr->dt.dl.dr_brtwrite)
2762
error = EIO;
2763
else
2764
*bp = &dr->dt.dl.dr_overridden_by;
2765
} else if (dr && db->db_state == DB_UNCACHED) {
2766
/* Direct I/O write */
2767
if (dr->dt.dl.dr_diowrite)
2768
*bp = &dr->dt.dl.dr_overridden_by;
2769
}
2770
2771
return (error);
2772
}
2773
2774
/*
2775
* Direct I/O reads can read directly from the ARC, but the data has
2776
* to be untransformed in order to copy it over into user pages.
2777
*/
2778
int
2779
dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa)
2780
{
2781
int err = 0;
2782
DB_DNODE_ENTER(db);
2783
dnode_t *dn = DB_DNODE(db);
2784
2785
ASSERT3S(db->db_state, ==, DB_CACHED);
2786
ASSERT(MUTEX_HELD(&db->db_mtx));
2787
2788
/*
2789
* Ensure that this block's dnode has been decrypted if
2790
* the caller has requested decrypted data.
2791
*/
2792
err = dbuf_read_verify_dnode_crypt(db, dn, 0);
2793
2794
/*
2795
* If the arc buf is compressed or encrypted and the caller
2796
* requested uncompressed data, we need to untransform it
2797
* before returning. We also call arc_untransform() on any
2798
* unauthenticated blocks, which will verify their MAC if
2799
* the key is now available.
2800
*/
2801
if (err == 0 && db->db_buf != NULL &&
2802
(arc_is_encrypted(db->db_buf) ||
2803
arc_is_unauthenticated(db->db_buf) ||
2804
arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
2805
zbookmark_phys_t zb;
2806
2807
SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
2808
db->db.db_object, db->db_level, db->db_blkid);
2809
dbuf_fix_old_data(db, spa_syncing_txg(spa));
2810
err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
2811
dbuf_set_data(db, db->db_buf);
2812
}
2813
DB_DNODE_EXIT(db);
2814
DBUF_STAT_BUMP(hash_hits);
2815
2816
return (err);
2817
}
2818
2819
void
2820
dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx)
2821
{
2822
/*
2823
* Block clones and Direct I/O writes always happen in open-context.
2824
*/
2825
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2826
ASSERT0(db->db_level);
2827
ASSERT(!dmu_tx_is_syncing(tx));
2828
ASSERT0(db->db_level);
2829
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2830
ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
2831
2832
mutex_enter(&db->db_mtx);
2833
DBUF_VERIFY(db);
2834
2835
/*
2836
* We are going to clone or issue a Direct I/O write on this block, so
2837
* undirty modifications done to this block so far in this txg. This
2838
* includes writes and clones into this block.
2839
*
2840
* If there dirty record associated with this txg from a previous Direct
2841
* I/O write then space accounting cleanup takes place. It is important
2842
* to go ahead free up the space accounting through dbuf_undirty() ->
2843
* dbuf_unoverride() -> zio_free(). Space accountiung for determining
2844
* if a write can occur in zfs_write() happens through dmu_tx_assign().
2845
* This can cause an issue with Direct I/O writes in the case of
2846
* overwriting the same block, because all DVA allocations are being
2847
* done in open-context. Constantly allowing Direct I/O overwrites to
2848
* the same block can exhaust the pools available space leading to
2849
* ENOSPC errors at the DVA allocation part of the ZIO pipeline, which
2850
* will eventually suspend the pool. By cleaning up sapce acccounting
2851
* now, the ENOSPC error can be avoided.
2852
*
2853
* Since we are undirtying the record in open-context, we must have a
2854
* hold on the db, so it should never be evicted after calling
2855
* dbuf_undirty().
2856
*/
2857
VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE);
2858
ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
2859
2860
if (db->db_buf != NULL) {
2861
/*
2862
* If there is an associated ARC buffer with this dbuf we can
2863
* only destroy it if the previous dirty record does not
2864
* reference it.
2865
*/
2866
dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2867
if (dr == NULL || dr->dt.dl.dr_data != db->db_buf)
2868
arc_buf_destroy(db->db_buf, db);
2869
2870
/*
2871
* Setting the dbuf's data pointers to NULL will force all
2872
* future reads down to the devices to get the most up to date
2873
* version of the data after a Direct I/O write has completed.
2874
*/
2875
db->db_buf = NULL;
2876
dbuf_clear_data(db);
2877
}
2878
2879
ASSERT0P(db->db_buf);
2880
ASSERT0P(db->db.db_data);
2881
2882
db->db_state = DB_NOFILL;
2883
DTRACE_SET_STATE(db,
2884
"allocating NOFILL buffer for clone or direct I/O write");
2885
2886
DBUF_VERIFY(db);
2887
mutex_exit(&db->db_mtx);
2888
2889
dbuf_noread(db, DMU_KEEP_CACHING);
2890
(void) dbuf_dirty(db, tx);
2891
}
2892
2893
void
2894
dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2895
{
2896
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2897
2898
mutex_enter(&db->db_mtx);
2899
db->db_state = DB_NOFILL;
2900
DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2901
mutex_exit(&db->db_mtx);
2902
2903
dbuf_noread(db, DMU_KEEP_CACHING);
2904
(void) dbuf_dirty(db, tx);
2905
}
2906
2907
void
2908
dmu_buf_will_fill_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail,
2909
dmu_flags_t flags)
2910
{
2911
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2912
2913
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2914
ASSERT(tx->tx_txg != 0);
2915
ASSERT0(db->db_level);
2916
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2917
2918
ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2919
dmu_tx_private_ok(tx));
2920
2921
mutex_enter(&db->db_mtx);
2922
dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2923
if (db->db_state == DB_NOFILL ||
2924
(db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) {
2925
/*
2926
* If the fill can fail we should have a way to return back to
2927
* the cloned or Direct I/O write data.
2928
*/
2929
if (canfail && dr) {
2930
mutex_exit(&db->db_mtx);
2931
dmu_buf_will_dirty_flags(db_fake, tx, flags);
2932
return;
2933
}
2934
/*
2935
* Block cloning: We will be completely overwriting a block
2936
* cloned in this transaction group, so let's undirty the
2937
* pending clone and mark the block as uncached. This will be
2938
* as if the clone was never done.
2939
*/
2940
if (db->db_state == DB_NOFILL) {
2941
VERIFY(!dbuf_undirty(db, tx));
2942
db->db_state = DB_UNCACHED;
2943
}
2944
}
2945
mutex_exit(&db->db_mtx);
2946
2947
dbuf_noread(db, flags);
2948
(void) dbuf_dirty(db, tx);
2949
}
2950
2951
void
2952
dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail)
2953
{
2954
dmu_buf_will_fill_flags(db_fake, tx, canfail, DMU_READ_NO_PREFETCH);
2955
}
2956
2957
/*
2958
* This function is effectively the same as dmu_buf_will_dirty(), but
2959
* indicates the caller expects raw encrypted data in the db, and provides
2960
* the crypt params (byteorder, salt, iv, mac) which should be stored in the
2961
* blkptr_t when this dbuf is written. This is only used for blocks of
2962
* dnodes, during raw receive.
2963
*/
2964
void
2965
dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2966
const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2967
{
2968
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2969
dbuf_dirty_record_t *dr;
2970
2971
/*
2972
* dr_has_raw_params is only processed for blocks of dnodes
2973
* (see dbuf_sync_dnode_leaf_crypt()).
2974
*/
2975
ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2976
ASSERT0(db->db_level);
2977
ASSERT(db->db_objset->os_raw_receive);
2978
2979
dmu_buf_will_dirty_flags(db_fake, tx,
2980
DMU_READ_NO_PREFETCH | DMU_READ_NO_DECRYPT);
2981
2982
dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2983
2984
ASSERT3P(dr, !=, NULL);
2985
ASSERT3U(dr->dt.dl.dr_override_state, ==, DR_NOT_OVERRIDDEN);
2986
2987
dr->dt.dl.dr_has_raw_params = B_TRUE;
2988
dr->dt.dl.dr_byteorder = byteorder;
2989
memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2990
memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2991
memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2992
}
2993
2994
static void
2995
dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2996
{
2997
struct dirty_leaf *dl;
2998
dbuf_dirty_record_t *dr;
2999
3000
ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT);
3001
ASSERT0(db->db_level);
3002
3003
dr = list_head(&db->db_dirty_records);
3004
ASSERT3P(dr, !=, NULL);
3005
ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
3006
dl = &dr->dt.dl;
3007
ASSERT0(dl->dr_has_raw_params);
3008
dl->dr_overridden_by = *bp;
3009
dl->dr_override_state = DR_OVERRIDDEN;
3010
BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
3011
}
3012
3013
boolean_t
3014
dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed)
3015
{
3016
(void) tx;
3017
dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3018
mutex_enter(&db->db_mtx);
3019
DBUF_VERIFY(db);
3020
3021
if (db->db_state == DB_FILL) {
3022
if (db->db_level == 0 && db->db_freed_in_flight) {
3023
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3024
/* we were freed while filling */
3025
/* XXX dbuf_undirty? */
3026
memset(db->db.db_data, 0, db->db.db_size);
3027
db->db_freed_in_flight = FALSE;
3028
db->db_state = DB_CACHED;
3029
DTRACE_SET_STATE(db,
3030
"fill done handling freed in flight");
3031
failed = B_FALSE;
3032
} else if (failed) {
3033
VERIFY(!dbuf_undirty(db, tx));
3034
arc_buf_destroy(db->db_buf, db);
3035
db->db_buf = NULL;
3036
dbuf_clear_data(db);
3037
DTRACE_SET_STATE(db, "fill failed");
3038
} else {
3039
db->db_state = DB_CACHED;
3040
DTRACE_SET_STATE(db, "fill done");
3041
}
3042
cv_broadcast(&db->db_changed);
3043
} else {
3044
db->db_state = DB_CACHED;
3045
failed = B_FALSE;
3046
}
3047
mutex_exit(&db->db_mtx);
3048
return (failed);
3049
}
3050
3051
void
3052
dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
3053
bp_embedded_type_t etype, enum zio_compress comp,
3054
int uncompressed_size, int compressed_size, int byteorder,
3055
dmu_tx_t *tx)
3056
{
3057
dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3058
struct dirty_leaf *dl;
3059
dmu_object_type_t type;
3060
dbuf_dirty_record_t *dr;
3061
3062
if (etype == BP_EMBEDDED_TYPE_DATA) {
3063
ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
3064
SPA_FEATURE_EMBEDDED_DATA));
3065
}
3066
3067
DB_DNODE_ENTER(db);
3068
type = DB_DNODE(db)->dn_type;
3069
DB_DNODE_EXIT(db);
3070
3071
ASSERT0(db->db_level);
3072
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3073
3074
dmu_buf_will_not_fill(dbuf, tx);
3075
3076
dr = list_head(&db->db_dirty_records);
3077
ASSERT3P(dr, !=, NULL);
3078
ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
3079
dl = &dr->dt.dl;
3080
ASSERT0(dl->dr_has_raw_params);
3081
encode_embedded_bp_compressed(&dl->dr_overridden_by,
3082
data, comp, uncompressed_size, compressed_size);
3083
BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
3084
BP_SET_TYPE(&dl->dr_overridden_by, type);
3085
BP_SET_LEVEL(&dl->dr_overridden_by, 0);
3086
BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
3087
3088
dl->dr_override_state = DR_OVERRIDDEN;
3089
BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
3090
}
3091
3092
void
3093
dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
3094
{
3095
dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3096
dmu_object_type_t type;
3097
ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
3098
SPA_FEATURE_REDACTED_DATASETS));
3099
3100
DB_DNODE_ENTER(db);
3101
type = DB_DNODE(db)->dn_type;
3102
DB_DNODE_EXIT(db);
3103
3104
ASSERT0(db->db_level);
3105
dmu_buf_will_not_fill(dbuf, tx);
3106
3107
blkptr_t bp = { { { {0} } } };
3108
BP_SET_TYPE(&bp, type);
3109
BP_SET_LEVEL(&bp, 0);
3110
BP_SET_BIRTH(&bp, tx->tx_txg, 0);
3111
BP_SET_REDACTED(&bp);
3112
BPE_SET_LSIZE(&bp, dbuf->db_size);
3113
3114
dbuf_override_impl(db, &bp, tx);
3115
}
3116
3117
/*
3118
* Directly assign a provided arc buf to a given dbuf if it's not referenced
3119
* by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
3120
*/
3121
void
3122
dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx,
3123
dmu_flags_t flags)
3124
{
3125
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
3126
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3127
ASSERT0(db->db_level);
3128
ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
3129
ASSERT(buf != NULL);
3130
ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
3131
ASSERT(tx->tx_txg != 0);
3132
3133
arc_return_buf(buf, db);
3134
ASSERT(arc_released(buf));
3135
3136
mutex_enter(&db->db_mtx);
3137
if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
3138
db->db_pending_evict = B_FALSE;
3139
db->db_partial_read = B_FALSE;
3140
3141
while (db->db_state == DB_READ || db->db_state == DB_FILL)
3142
cv_wait(&db->db_changed, &db->db_mtx);
3143
3144
ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
3145
db->db_state == DB_NOFILL);
3146
3147
if (db->db_state == DB_CACHED &&
3148
zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
3149
/*
3150
* In practice, we will never have a case where we have an
3151
* encrypted arc buffer while additional holds exist on the
3152
* dbuf. We don't handle this here so we simply assert that
3153
* fact instead.
3154
*/
3155
ASSERT(!arc_is_encrypted(buf));
3156
mutex_exit(&db->db_mtx);
3157
(void) dbuf_dirty(db, tx);
3158
memcpy(db->db.db_data, buf->b_data, db->db.db_size);
3159
arc_buf_destroy(buf, db);
3160
return;
3161
}
3162
3163
if (db->db_state == DB_CACHED) {
3164
dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
3165
3166
ASSERT(db->db_buf != NULL);
3167
if (dr != NULL && dr->dr_txg == tx->tx_txg) {
3168
ASSERT(dr->dt.dl.dr_data == db->db_buf);
3169
3170
if (!arc_released(db->db_buf)) {
3171
ASSERT(dr->dt.dl.dr_override_state ==
3172
DR_OVERRIDDEN);
3173
arc_release(db->db_buf, db);
3174
}
3175
dr->dt.dl.dr_data = buf;
3176
arc_buf_destroy(db->db_buf, db);
3177
} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
3178
arc_release(db->db_buf, db);
3179
arc_buf_destroy(db->db_buf, db);
3180
}
3181
db->db_buf = NULL;
3182
} else if (db->db_state == DB_NOFILL) {
3183
/*
3184
* We will be completely replacing the cloned block. In case
3185
* it was cloned in this transaction group, let's undirty the
3186
* pending clone and mark the block as uncached. This will be
3187
* as if the clone was never done.
3188
*/
3189
VERIFY(!dbuf_undirty(db, tx));
3190
db->db_state = DB_UNCACHED;
3191
}
3192
ASSERT0P(db->db_buf);
3193
dbuf_set_data(db, buf);
3194
db->db_state = DB_FILL;
3195
DTRACE_SET_STATE(db, "filling assigned arcbuf");
3196
mutex_exit(&db->db_mtx);
3197
(void) dbuf_dirty(db, tx);
3198
dmu_buf_fill_done(&db->db, tx, B_FALSE);
3199
}
3200
3201
void
3202
dbuf_destroy(dmu_buf_impl_t *db)
3203
{
3204
dnode_t *dn;
3205
dmu_buf_impl_t *parent = db->db_parent;
3206
dmu_buf_impl_t *dndb;
3207
3208
ASSERT(MUTEX_HELD(&db->db_mtx));
3209
ASSERT(zfs_refcount_is_zero(&db->db_holds));
3210
3211
if (db->db_buf != NULL) {
3212
arc_buf_destroy(db->db_buf, db);
3213
db->db_buf = NULL;
3214
}
3215
3216
if (db->db_blkid == DMU_BONUS_BLKID) {
3217
int slots = DB_DNODE(db)->dn_num_slots;
3218
int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3219
if (db->db.db_data != NULL) {
3220
kmem_free(db->db.db_data, bonuslen);
3221
arc_space_return(bonuslen, ARC_SPACE_BONUS);
3222
db->db_state = DB_UNCACHED;
3223
DTRACE_SET_STATE(db, "buffer cleared");
3224
}
3225
}
3226
3227
dbuf_clear_data(db);
3228
3229
if (multilist_link_active(&db->db_cache_link)) {
3230
ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3231
db->db_caching_status == DB_DBUF_METADATA_CACHE);
3232
3233
multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3234
3235
ASSERT0(dmu_buf_user_size(&db->db));
3236
(void) zfs_refcount_remove_many(
3237
&dbuf_caches[db->db_caching_status].size,
3238
db->db.db_size, db);
3239
3240
if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3241
DBUF_STAT_BUMPDOWN(metadata_cache_count);
3242
} else {
3243
DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3244
DBUF_STAT_BUMPDOWN(cache_count);
3245
DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3246
db->db.db_size);
3247
}
3248
db->db_caching_status = DB_NO_CACHE;
3249
}
3250
3251
ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
3252
ASSERT0P(db->db_data_pending);
3253
ASSERT(list_is_empty(&db->db_dirty_records));
3254
3255
db->db_state = DB_EVICTING;
3256
DTRACE_SET_STATE(db, "buffer eviction started");
3257
db->db_blkptr = NULL;
3258
3259
/*
3260
* Now that db_state is DB_EVICTING, nobody else can find this via
3261
* the hash table. We can now drop db_mtx, which allows us to
3262
* acquire the dn_dbufs_mtx.
3263
*/
3264
mutex_exit(&db->db_mtx);
3265
3266
DB_DNODE_ENTER(db);
3267
dn = DB_DNODE(db);
3268
dndb = dn->dn_dbuf;
3269
if (db->db_blkid != DMU_BONUS_BLKID) {
3270
boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
3271
if (needlock)
3272
mutex_enter_nested(&dn->dn_dbufs_mtx,
3273
NESTED_SINGLE);
3274
avl_remove(&dn->dn_dbufs, db);
3275
membar_producer();
3276
DB_DNODE_EXIT(db);
3277
if (needlock)
3278
mutex_exit(&dn->dn_dbufs_mtx);
3279
/*
3280
* Decrementing the dbuf count means that the hold corresponding
3281
* to the removed dbuf is no longer discounted in dnode_move(),
3282
* so the dnode cannot be moved until after we release the hold.
3283
* The membar_producer() ensures visibility of the decremented
3284
* value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3285
* release any lock.
3286
*/
3287
mutex_enter(&dn->dn_mtx);
3288
dnode_rele_and_unlock(dn, db, B_TRUE);
3289
#ifdef USE_DNODE_HANDLE
3290
db->db_dnode_handle = NULL;
3291
#else
3292
db->db_dnode = NULL;
3293
#endif
3294
3295
dbuf_hash_remove(db);
3296
} else {
3297
DB_DNODE_EXIT(db);
3298
}
3299
3300
ASSERT(zfs_refcount_is_zero(&db->db_holds));
3301
3302
db->db_parent = NULL;
3303
3304
ASSERT0P(db->db_buf);
3305
ASSERT0P(db->db.db_data);
3306
ASSERT0P(db->db_hash_next);
3307
ASSERT0P(db->db_blkptr);
3308
ASSERT0P(db->db_data_pending);
3309
ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3310
ASSERT(!multilist_link_active(&db->db_cache_link));
3311
3312
/*
3313
* If this dbuf is referenced from an indirect dbuf,
3314
* decrement the ref count on the indirect dbuf.
3315
*/
3316
if (parent && parent != dndb) {
3317
mutex_enter(&parent->db_mtx);
3318
dbuf_rele_and_unlock(parent, db, B_TRUE);
3319
}
3320
3321
kmem_cache_free(dbuf_kmem_cache, db);
3322
arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3323
}
3324
3325
/*
3326
* Note: While bpp will always be updated if the function returns success,
3327
* parentp will not be updated if the dnode does not have dn_dbuf filled in;
3328
* this happens when the dnode is the meta-dnode, or {user|group|project}used
3329
* object.
3330
*/
3331
__attribute__((always_inline))
3332
static inline int
3333
dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3334
dmu_buf_impl_t **parentp, blkptr_t **bpp)
3335
{
3336
*parentp = NULL;
3337
*bpp = NULL;
3338
3339
ASSERT(blkid != DMU_BONUS_BLKID);
3340
3341
if (blkid == DMU_SPILL_BLKID) {
3342
mutex_enter(&dn->dn_mtx);
3343
if (dn->dn_have_spill &&
3344
(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3345
*bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3346
else
3347
*bpp = NULL;
3348
dbuf_add_ref(dn->dn_dbuf, NULL);
3349
*parentp = dn->dn_dbuf;
3350
mutex_exit(&dn->dn_mtx);
3351
return (0);
3352
}
3353
3354
int nlevels =
3355
(dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3356
int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3357
3358
ASSERT3U(level * epbs, <, 64);
3359
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3360
/*
3361
* This assertion shouldn't trip as long as the max indirect block size
3362
* is less than 1M. The reason for this is that up to that point,
3363
* the number of levels required to address an entire object with blocks
3364
* of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
3365
* other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3366
* (i.e. we can address the entire object), objects will all use at most
3367
* N-1 levels and the assertion won't overflow. However, once epbs is
3368
* 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3369
* enough to address an entire object, so objects will have 5 levels,
3370
* but then this assertion will overflow.
3371
*
3372
* All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3373
* need to redo this logic to handle overflows.
3374
*/
3375
ASSERT(level >= nlevels ||
3376
((nlevels - level - 1) * epbs) +
3377
highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3378
if (level >= nlevels ||
3379
blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3380
((nlevels - level - 1) * epbs)) ||
3381
(fail_sparse &&
3382
blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3383
/* the buffer has no parent yet */
3384
return (SET_ERROR(ENOENT));
3385
} else if (level < nlevels-1) {
3386
/* this block is referenced from an indirect block */
3387
int err;
3388
3389
err = dbuf_hold_impl(dn, level + 1,
3390
blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3391
3392
if (err)
3393
return (err);
3394
err = dbuf_read(*parentp, NULL, DB_RF_CANFAIL |
3395
DB_RF_HAVESTRUCT | DMU_READ_NO_PREFETCH);
3396
if (err) {
3397
dbuf_rele(*parentp, NULL);
3398
*parentp = NULL;
3399
return (err);
3400
}
3401
*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3402
(blkid & ((1ULL << epbs) - 1));
3403
return (0);
3404
} else {
3405
/* the block is referenced from the dnode */
3406
ASSERT3U(level, ==, nlevels-1);
3407
ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3408
blkid < dn->dn_phys->dn_nblkptr);
3409
if (dn->dn_dbuf) {
3410
dbuf_add_ref(dn->dn_dbuf, NULL);
3411
*parentp = dn->dn_dbuf;
3412
}
3413
*bpp = &dn->dn_phys->dn_blkptr[blkid];
3414
return (0);
3415
}
3416
}
3417
3418
static dmu_buf_impl_t *
3419
dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3420
dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3421
{
3422
objset_t *os = dn->dn_objset;
3423
dmu_buf_impl_t *db, *odb;
3424
3425
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3426
ASSERT(dn->dn_type != DMU_OT_NONE);
3427
3428
db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3429
3430
list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3431
offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3432
3433
db->db_objset = os;
3434
db->db.db_object = dn->dn_object;
3435
db->db_level = level;
3436
db->db_blkid = blkid;
3437
db->db_dirtycnt = 0;
3438
#ifdef USE_DNODE_HANDLE
3439
db->db_dnode_handle = dn->dn_handle;
3440
#else
3441
db->db_dnode = dn;
3442
#endif
3443
db->db_parent = parent;
3444
db->db_blkptr = blkptr;
3445
db->db_hash = hash;
3446
3447
db->db_user = NULL;
3448
db->db_user_immediate_evict = FALSE;
3449
db->db_freed_in_flight = FALSE;
3450
db->db_pending_evict = TRUE;
3451
db->db_partial_read = FALSE;
3452
3453
if (blkid == DMU_BONUS_BLKID) {
3454
ASSERT3P(parent, ==, dn->dn_dbuf);
3455
db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3456
(dn->dn_nblkptr-1) * sizeof (blkptr_t);
3457
ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3458
db->db.db_offset = DMU_BONUS_BLKID;
3459
db->db_state = DB_UNCACHED;
3460
DTRACE_SET_STATE(db, "bonus buffer created");
3461
db->db_caching_status = DB_NO_CACHE;
3462
/* the bonus dbuf is not placed in the hash table */
3463
arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3464
return (db);
3465
} else if (blkid == DMU_SPILL_BLKID) {
3466
db->db.db_size = (blkptr != NULL) ?
3467
BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3468
db->db.db_offset = 0;
3469
} else {
3470
int blocksize =
3471
db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3472
db->db.db_size = blocksize;
3473
db->db.db_offset = db->db_blkid * blocksize;
3474
}
3475
3476
/*
3477
* Hold the dn_dbufs_mtx while we get the new dbuf
3478
* in the hash table *and* added to the dbufs list.
3479
* This prevents a possible deadlock with someone
3480
* trying to look up this dbuf before it's added to the
3481
* dn_dbufs list.
3482
*/
3483
mutex_enter(&dn->dn_dbufs_mtx);
3484
db->db_state = DB_EVICTING; /* not worth logging this state change */
3485
if ((odb = dbuf_hash_insert(db)) != NULL) {
3486
/* someone else inserted it first */
3487
mutex_exit(&dn->dn_dbufs_mtx);
3488
kmem_cache_free(dbuf_kmem_cache, db);
3489
DBUF_STAT_BUMP(hash_insert_race);
3490
return (odb);
3491
}
3492
avl_add(&dn->dn_dbufs, db);
3493
3494
db->db_state = DB_UNCACHED;
3495
DTRACE_SET_STATE(db, "regular buffer created");
3496
db->db_caching_status = DB_NO_CACHE;
3497
mutex_exit(&dn->dn_dbufs_mtx);
3498
arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3499
3500
if (parent && parent != dn->dn_dbuf)
3501
dbuf_add_ref(parent, db);
3502
3503
ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3504
zfs_refcount_count(&dn->dn_holds) > 0);
3505
(void) zfs_refcount_add(&dn->dn_holds, db);
3506
3507
dprintf_dbuf(db, "db=%p\n", db);
3508
3509
return (db);
3510
}
3511
3512
/*
3513
* This function returns a block pointer and information about the object,
3514
* given a dnode and a block. This is a publicly accessible version of
3515
* dbuf_findbp that only returns some information, rather than the
3516
* dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3517
* should be locked as (at least) a reader.
3518
*/
3519
int
3520
dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3521
blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3522
{
3523
dmu_buf_impl_t *dbp = NULL;
3524
blkptr_t *bp2;
3525
int err = 0;
3526
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3527
3528
err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3529
if (err == 0) {
3530
ASSERT3P(bp2, !=, NULL);
3531
*bp = *bp2;
3532
if (dbp != NULL)
3533
dbuf_rele(dbp, NULL);
3534
if (datablkszsec != NULL)
3535
*datablkszsec = dn->dn_phys->dn_datablkszsec;
3536
if (indblkshift != NULL)
3537
*indblkshift = dn->dn_phys->dn_indblkshift;
3538
}
3539
3540
return (err);
3541
}
3542
3543
typedef struct dbuf_prefetch_arg {
3544
spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3545
zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3546
int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3547
int dpa_curlevel; /* The current level that we're reading */
3548
dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3549
zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3550
zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3551
arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3552
dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3553
void *dpa_arg; /* prefetch completion arg */
3554
} dbuf_prefetch_arg_t;
3555
3556
static void
3557
dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3558
{
3559
if (dpa->dpa_cb != NULL) {
3560
dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3561
dpa->dpa_zb.zb_blkid, io_done);
3562
}
3563
kmem_free(dpa, sizeof (*dpa));
3564
}
3565
3566
static void
3567
dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3568
const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3569
{
3570
(void) zio, (void) zb, (void) iobp;
3571
dbuf_prefetch_arg_t *dpa = private;
3572
3573
if (abuf != NULL)
3574
arc_buf_destroy(abuf, private);
3575
3576
dbuf_prefetch_fini(dpa, B_TRUE);
3577
}
3578
3579
/*
3580
* Actually issue the prefetch read for the block given.
3581
*/
3582
static void
3583
dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3584
{
3585
ASSERT(!BP_IS_HOLE(bp));
3586
ASSERT(!BP_IS_REDACTED(bp));
3587
if (BP_IS_EMBEDDED(bp))
3588
return (dbuf_prefetch_fini(dpa, B_FALSE));
3589
3590
int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3591
arc_flags_t aflags =
3592
dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3593
ARC_FLAG_NO_BUF;
3594
3595
/* dnodes are always read as raw and then converted later */
3596
if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3597
dpa->dpa_curlevel == 0)
3598
zio_flags |= ZIO_FLAG_RAW;
3599
3600
ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3601
ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3602
ASSERT(dpa->dpa_zio != NULL);
3603
(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3604
dbuf_issue_final_prefetch_done, dpa,
3605
dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3606
}
3607
3608
/*
3609
* Called when an indirect block above our prefetch target is read in. This
3610
* will either read in the next indirect block down the tree or issue the actual
3611
* prefetch if the next block down is our target.
3612
*/
3613
static void
3614
dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3615
const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3616
{
3617
(void) zb, (void) iobp;
3618
dbuf_prefetch_arg_t *dpa = private;
3619
3620
ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3621
ASSERT3S(dpa->dpa_curlevel, >, 0);
3622
3623
if (abuf == NULL) {
3624
ASSERT(zio == NULL || zio->io_error != 0);
3625
dbuf_prefetch_fini(dpa, B_TRUE);
3626
return;
3627
}
3628
ASSERT(zio == NULL || zio->io_error == 0);
3629
3630
/*
3631
* The dpa_dnode is only valid if we are called with a NULL
3632
* zio. This indicates that the arc_read() returned without
3633
* first calling zio_read() to issue a physical read. Once
3634
* a physical read is made the dpa_dnode must be invalidated
3635
* as the locks guarding it may have been dropped. If the
3636
* dpa_dnode is still valid, then we want to add it to the dbuf
3637
* cache. To do so, we must hold the dbuf associated with the block
3638
* we just prefetched, read its contents so that we associate it
3639
* with an arc_buf_t, and then release it.
3640
*/
3641
if (zio != NULL) {
3642
ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3643
if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3644
ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3645
} else {
3646
ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3647
}
3648
ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3649
3650
dpa->dpa_dnode = NULL;
3651
} else if (dpa->dpa_dnode != NULL) {
3652
uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3653
(dpa->dpa_epbs * (dpa->dpa_curlevel -
3654
dpa->dpa_zb.zb_level));
3655
dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3656
dpa->dpa_curlevel, curblkid, FTAG);
3657
if (db == NULL) {
3658
arc_buf_destroy(abuf, private);
3659
dbuf_prefetch_fini(dpa, B_TRUE);
3660
return;
3661
}
3662
(void) dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT |
3663
DMU_READ_NO_PREFETCH);
3664
dbuf_rele(db, FTAG);
3665
}
3666
3667
dpa->dpa_curlevel--;
3668
uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3669
(dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3670
blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3671
P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3672
3673
ASSERT(!BP_IS_REDACTED(bp) || dpa->dpa_dnode == NULL ||
3674
dsl_dataset_feature_is_active(
3675
dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3676
SPA_FEATURE_REDACTED_DATASETS));
3677
if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3678
arc_buf_destroy(abuf, private);
3679
dbuf_prefetch_fini(dpa, B_TRUE);
3680
return;
3681
} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3682
ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3683
dbuf_issue_final_prefetch(dpa, bp);
3684
} else {
3685
arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3686
zbookmark_phys_t zb;
3687
3688
/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3689
if (dpa->dpa_dnode) {
3690
if (dnode_level_is_l2cacheable(bp, dpa->dpa_dnode,
3691
dpa->dpa_curlevel))
3692
iter_aflags |= ARC_FLAG_L2CACHE;
3693
} else {
3694
if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3695
iter_aflags |= ARC_FLAG_L2CACHE;
3696
}
3697
3698
ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3699
3700
SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3701
dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3702
3703
(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3704
bp, dbuf_prefetch_indirect_done, dpa,
3705
ZIO_PRIORITY_SYNC_READ,
3706
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3707
&iter_aflags, &zb);
3708
}
3709
3710
arc_buf_destroy(abuf, private);
3711
}
3712
3713
/*
3714
* Issue prefetch reads for the given block on the given level. If the indirect
3715
* blocks above that block are not in memory, we will read them in
3716
* asynchronously. As a result, this call never blocks waiting for a read to
3717
* complete. Note that the prefetch might fail if the dataset is encrypted and
3718
* the encryption key is unmapped before the IO completes.
3719
*/
3720
int
3721
dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3722
zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3723
void *arg)
3724
{
3725
blkptr_t bp;
3726
int epbs, nlevels, curlevel;
3727
uint64_t curblkid;
3728
3729
ASSERT(blkid != DMU_BONUS_BLKID);
3730
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3731
3732
if (blkid > dn->dn_maxblkid)
3733
goto no_issue;
3734
3735
if (level == 0 && dnode_block_freed(dn, blkid))
3736
goto no_issue;
3737
3738
/*
3739
* This dnode hasn't been written to disk yet, so there's nothing to
3740
* prefetch.
3741
*/
3742
nlevels = dn->dn_phys->dn_nlevels;
3743
if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3744
goto no_issue;
3745
3746
epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3747
if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3748
goto no_issue;
3749
3750
dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3751
level, blkid, NULL);
3752
if (db != NULL) {
3753
mutex_exit(&db->db_mtx);
3754
/*
3755
* This dbuf already exists. It is either CACHED, or
3756
* (we assume) about to be read or filled.
3757
*/
3758
goto no_issue;
3759
}
3760
3761
/*
3762
* Find the closest ancestor (indirect block) of the target block
3763
* that is present in the cache. In this indirect block, we will
3764
* find the bp that is at curlevel, curblkid.
3765
*/
3766
curlevel = level;
3767
curblkid = blkid;
3768
while (curlevel < nlevels - 1) {
3769
int parent_level = curlevel + 1;
3770
uint64_t parent_blkid = curblkid >> epbs;
3771
dmu_buf_impl_t *db;
3772
3773
if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3774
FALSE, TRUE, FTAG, &db) == 0) {
3775
blkptr_t *bpp = db->db_buf->b_data;
3776
bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3777
dbuf_rele(db, FTAG);
3778
break;
3779
}
3780
3781
curlevel = parent_level;
3782
curblkid = parent_blkid;
3783
}
3784
3785
if (curlevel == nlevels - 1) {
3786
/* No cached indirect blocks found. */
3787
ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3788
bp = dn->dn_phys->dn_blkptr[curblkid];
3789
}
3790
ASSERT(!BP_IS_REDACTED(&bp) ||
3791
dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3792
SPA_FEATURE_REDACTED_DATASETS));
3793
if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3794
goto no_issue;
3795
3796
ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3797
3798
zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3799
ZIO_FLAG_CANFAIL);
3800
3801
dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3802
dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3803
SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3804
dn->dn_object, level, blkid);
3805
dpa->dpa_curlevel = curlevel;
3806
dpa->dpa_prio = prio;
3807
dpa->dpa_aflags = aflags;
3808
dpa->dpa_spa = dn->dn_objset->os_spa;
3809
dpa->dpa_dnode = dn;
3810
dpa->dpa_epbs = epbs;
3811
dpa->dpa_zio = pio;
3812
dpa->dpa_cb = cb;
3813
dpa->dpa_arg = arg;
3814
3815
if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3816
dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3817
else if (dnode_level_is_l2cacheable(&bp, dn, level))
3818
dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3819
3820
/*
3821
* If we have the indirect just above us, no need to do the asynchronous
3822
* prefetch chain; we'll just run the last step ourselves. If we're at
3823
* a higher level, though, we want to issue the prefetches for all the
3824
* indirect blocks asynchronously, so we can go on with whatever we were
3825
* doing.
3826
*/
3827
if (curlevel == level) {
3828
ASSERT3U(curblkid, ==, blkid);
3829
dbuf_issue_final_prefetch(dpa, &bp);
3830
} else {
3831
arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3832
zbookmark_phys_t zb;
3833
3834
/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3835
if (dnode_level_is_l2cacheable(&bp, dn, curlevel))
3836
iter_aflags |= ARC_FLAG_L2CACHE;
3837
3838
SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3839
dn->dn_object, curlevel, curblkid);
3840
(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3841
&bp, dbuf_prefetch_indirect_done, dpa,
3842
ZIO_PRIORITY_SYNC_READ,
3843
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3844
&iter_aflags, &zb);
3845
}
3846
/*
3847
* We use pio here instead of dpa_zio since it's possible that
3848
* dpa may have already been freed.
3849
*/
3850
zio_nowait(pio);
3851
return (1);
3852
no_issue:
3853
if (cb != NULL)
3854
cb(arg, level, blkid, B_FALSE);
3855
return (0);
3856
}
3857
3858
int
3859
dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3860
arc_flags_t aflags)
3861
{
3862
3863
return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3864
}
3865
3866
/*
3867
* Helper function for dbuf_hold_impl() to copy a buffer. Handles
3868
* the case of encrypted, compressed and uncompressed buffers by
3869
* allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3870
* arc_alloc_compressed_buf() or arc_alloc_buf().*
3871
*
3872
* NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3873
*/
3874
noinline static void
3875
dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3876
{
3877
dbuf_dirty_record_t *dr = db->db_data_pending;
3878
arc_buf_t *data = dr->dt.dl.dr_data;
3879
arc_buf_t *db_data;
3880
enum zio_compress compress_type = arc_get_compression(data);
3881
uint8_t complevel = arc_get_complevel(data);
3882
3883
if (arc_is_encrypted(data)) {
3884
boolean_t byteorder;
3885
uint8_t salt[ZIO_DATA_SALT_LEN];
3886
uint8_t iv[ZIO_DATA_IV_LEN];
3887
uint8_t mac[ZIO_DATA_MAC_LEN];
3888
3889
arc_get_raw_params(data, &byteorder, salt, iv, mac);
3890
db_data = arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3891
dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3892
dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3893
compress_type, complevel);
3894
} else if (compress_type != ZIO_COMPRESS_OFF) {
3895
db_data = arc_alloc_compressed_buf(
3896
dn->dn_objset->os_spa, db, arc_buf_size(data),
3897
arc_buf_lsize(data), compress_type, complevel);
3898
} else {
3899
db_data = arc_alloc_buf(dn->dn_objset->os_spa, db,
3900
DBUF_GET_BUFC_TYPE(db), db->db.db_size);
3901
}
3902
memcpy(db_data->b_data, data->b_data, arc_buf_size(data));
3903
3904
dbuf_set_data(db, db_data);
3905
}
3906
3907
/*
3908
* Returns with db_holds incremented, and db_mtx not held.
3909
* Note: dn_struct_rwlock must be held.
3910
*/
3911
int
3912
dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3913
boolean_t fail_sparse, boolean_t fail_uncached,
3914
const void *tag, dmu_buf_impl_t **dbp)
3915
{
3916
dmu_buf_impl_t *db, *parent = NULL;
3917
uint64_t hv;
3918
3919
/* If the pool has been created, verify the tx_sync_lock is not held */
3920
spa_t *spa = dn->dn_objset->os_spa;
3921
dsl_pool_t *dp = spa->spa_dsl_pool;
3922
if (dp != NULL) {
3923
ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3924
}
3925
3926
ASSERT(blkid != DMU_BONUS_BLKID);
3927
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3928
if (!fail_sparse)
3929
ASSERT3U(dn->dn_nlevels, >, level);
3930
3931
*dbp = NULL;
3932
3933
/* dbuf_find() returns with db_mtx held */
3934
db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3935
3936
if (db == NULL) {
3937
blkptr_t *bp = NULL;
3938
int err;
3939
3940
if (fail_uncached)
3941
return (SET_ERROR(ENOENT));
3942
3943
ASSERT0P(parent);
3944
err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3945
if (fail_sparse) {
3946
if (err == 0 && bp && BP_IS_HOLE(bp))
3947
err = SET_ERROR(ENOENT);
3948
if (err) {
3949
if (parent)
3950
dbuf_rele(parent, NULL);
3951
return (err);
3952
}
3953
}
3954
if (err && err != ENOENT)
3955
return (err);
3956
db = dbuf_create(dn, level, blkid, parent, bp, hv);
3957
}
3958
3959
if (fail_uncached && db->db_state != DB_CACHED) {
3960
mutex_exit(&db->db_mtx);
3961
return (SET_ERROR(ENOENT));
3962
}
3963
3964
if (db->db_buf != NULL) {
3965
arc_buf_access(db->db_buf);
3966
ASSERT(MUTEX_HELD(&db->db_mtx));
3967
ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3968
}
3969
3970
ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3971
3972
/*
3973
* If this buffer is currently syncing out, and we are
3974
* still referencing it from db_data, we need to make a copy
3975
* of it in case we decide we want to dirty it again in this txg.
3976
*/
3977
if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3978
dn->dn_object != DMU_META_DNODE_OBJECT &&
3979
db->db_state == DB_CACHED && db->db_data_pending) {
3980
dbuf_dirty_record_t *dr = db->db_data_pending;
3981
if (dr->dt.dl.dr_data == db->db_buf) {
3982
ASSERT3P(db->db_buf, !=, NULL);
3983
dbuf_hold_copy(dn, db);
3984
}
3985
}
3986
3987
if (multilist_link_active(&db->db_cache_link)) {
3988
ASSERT(zfs_refcount_is_zero(&db->db_holds));
3989
ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3990
db->db_caching_status == DB_DBUF_METADATA_CACHE);
3991
3992
multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3993
3994
uint64_t size = db->db.db_size;
3995
uint64_t usize = dmu_buf_user_size(&db->db);
3996
(void) zfs_refcount_remove_many(
3997
&dbuf_caches[db->db_caching_status].size, size, db);
3998
(void) zfs_refcount_remove_many(
3999
&dbuf_caches[db->db_caching_status].size, usize,
4000
db->db_user);
4001
4002
if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
4003
DBUF_STAT_BUMPDOWN(metadata_cache_count);
4004
} else {
4005
DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
4006
DBUF_STAT_BUMPDOWN(cache_count);
4007
DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
4008
size + usize);
4009
}
4010
db->db_caching_status = DB_NO_CACHE;
4011
}
4012
(void) zfs_refcount_add(&db->db_holds, tag);
4013
DBUF_VERIFY(db);
4014
mutex_exit(&db->db_mtx);
4015
4016
/* NOTE: we can't rele the parent until after we drop the db_mtx */
4017
if (parent)
4018
dbuf_rele(parent, NULL);
4019
4020
ASSERT3P(DB_DNODE(db), ==, dn);
4021
ASSERT3U(db->db_blkid, ==, blkid);
4022
ASSERT3U(db->db_level, ==, level);
4023
*dbp = db;
4024
4025
return (0);
4026
}
4027
4028
dmu_buf_impl_t *
4029
dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
4030
{
4031
return (dbuf_hold_level(dn, 0, blkid, tag));
4032
}
4033
4034
dmu_buf_impl_t *
4035
dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
4036
{
4037
dmu_buf_impl_t *db;
4038
int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
4039
return (err ? NULL : db);
4040
}
4041
4042
void
4043
dbuf_create_bonus(dnode_t *dn)
4044
{
4045
ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
4046
4047
ASSERT0P(dn->dn_bonus);
4048
dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
4049
dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
4050
dn->dn_bonus->db_pending_evict = FALSE;
4051
}
4052
4053
int
4054
dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
4055
{
4056
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4057
4058
if (db->db_blkid != DMU_SPILL_BLKID)
4059
return (SET_ERROR(ENOTSUP));
4060
if (blksz == 0)
4061
blksz = SPA_MINBLOCKSIZE;
4062
ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
4063
blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
4064
4065
dbuf_new_size(db, blksz, tx);
4066
4067
return (0);
4068
}
4069
4070
void
4071
dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
4072
{
4073
dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
4074
}
4075
4076
#pragma weak dmu_buf_add_ref = dbuf_add_ref
4077
void
4078
dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
4079
{
4080
int64_t holds = zfs_refcount_add(&db->db_holds, tag);
4081
VERIFY3S(holds, >, 1);
4082
}
4083
4084
#pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
4085
boolean_t
4086
dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
4087
const void *tag)
4088
{
4089
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4090
dmu_buf_impl_t *found_db;
4091
boolean_t result = B_FALSE;
4092
4093
if (blkid == DMU_BONUS_BLKID)
4094
found_db = dbuf_find_bonus(os, obj);
4095
else
4096
found_db = dbuf_find(os, obj, 0, blkid, NULL);
4097
4098
if (found_db != NULL) {
4099
if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
4100
(void) zfs_refcount_add(&db->db_holds, tag);
4101
result = B_TRUE;
4102
}
4103
mutex_exit(&found_db->db_mtx);
4104
}
4105
return (result);
4106
}
4107
4108
/*
4109
* If you call dbuf_rele() you had better not be referencing the dnode handle
4110
* unless you have some other direct or indirect hold on the dnode. (An indirect
4111
* hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
4112
* Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
4113
* dnode's parent dbuf evicting its dnode handles.
4114
*/
4115
void
4116
dbuf_rele(dmu_buf_impl_t *db, const void *tag)
4117
{
4118
mutex_enter(&db->db_mtx);
4119
dbuf_rele_and_unlock(db, tag, B_FALSE);
4120
}
4121
4122
void
4123
dmu_buf_rele(dmu_buf_t *db, const void *tag)
4124
{
4125
dbuf_rele((dmu_buf_impl_t *)db, tag);
4126
}
4127
4128
/*
4129
* dbuf_rele() for an already-locked dbuf. This is necessary to allow
4130
* db_dirtycnt and db_holds to be updated atomically. The 'evicting'
4131
* argument should be set if we are already in the dbuf-evicting code
4132
* path, in which case we don't want to recursively evict. This allows us to
4133
* avoid deeply nested stacks that would have a call flow similar to this:
4134
*
4135
* dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
4136
* ^ |
4137
* | |
4138
* +-----dbuf_destroy()<--dbuf_evict_one()<--------+
4139
*
4140
*/
4141
void
4142
dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
4143
{
4144
int64_t holds;
4145
uint64_t size;
4146
4147
ASSERT(MUTEX_HELD(&db->db_mtx));
4148
DBUF_VERIFY(db);
4149
4150
/*
4151
* Remove the reference to the dbuf before removing its hold on the
4152
* dnode so we can guarantee in dnode_move() that a referenced bonus
4153
* buffer has a corresponding dnode hold.
4154
*/
4155
holds = zfs_refcount_remove(&db->db_holds, tag);
4156
ASSERT(holds >= 0);
4157
4158
/*
4159
* We can't freeze indirects if there is a possibility that they
4160
* may be modified in the current syncing context.
4161
*/
4162
if (db->db_buf != NULL &&
4163
holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
4164
arc_buf_freeze(db->db_buf);
4165
}
4166
4167
if (holds == db->db_dirtycnt &&
4168
db->db_level == 0 && db->db_user_immediate_evict)
4169
dbuf_evict_user(db);
4170
4171
if (holds == 0) {
4172
if (db->db_blkid == DMU_BONUS_BLKID) {
4173
dnode_t *dn;
4174
boolean_t evict_dbuf = db->db_pending_evict;
4175
4176
/*
4177
* If the dnode moves here, we cannot cross this
4178
* barrier until the move completes.
4179
*/
4180
DB_DNODE_ENTER(db);
4181
4182
dn = DB_DNODE(db);
4183
atomic_dec_32(&dn->dn_dbufs_count);
4184
4185
/*
4186
* Decrementing the dbuf count means that the bonus
4187
* buffer's dnode hold is no longer discounted in
4188
* dnode_move(). The dnode cannot move until after
4189
* the dnode_rele() below.
4190
*/
4191
DB_DNODE_EXIT(db);
4192
4193
/*
4194
* Do not reference db after its lock is dropped.
4195
* Another thread may evict it.
4196
*/
4197
mutex_exit(&db->db_mtx);
4198
4199
if (evict_dbuf)
4200
dnode_evict_bonus(dn);
4201
4202
dnode_rele(dn, db);
4203
} else if (db->db_buf == NULL) {
4204
/*
4205
* This is a special case: we never associated this
4206
* dbuf with any data allocated from the ARC.
4207
*/
4208
ASSERT(db->db_state == DB_UNCACHED ||
4209
db->db_state == DB_NOFILL);
4210
dbuf_destroy(db);
4211
} else if (arc_released(db->db_buf)) {
4212
/*
4213
* This dbuf has anonymous data associated with it.
4214
*/
4215
dbuf_destroy(db);
4216
} else if (!db->db_partial_read && !DBUF_IS_CACHEABLE(db)) {
4217
/*
4218
* We don't expect more accesses to the dbuf, and it
4219
* is either not cacheable or was marked for eviction.
4220
*/
4221
dbuf_destroy(db);
4222
} else if (!multilist_link_active(&db->db_cache_link)) {
4223
ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4224
4225
dbuf_cached_state_t dcs =
4226
dbuf_include_in_metadata_cache(db) ?
4227
DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
4228
db->db_caching_status = dcs;
4229
4230
multilist_insert(&dbuf_caches[dcs].cache, db);
4231
uint64_t db_size = db->db.db_size;
4232
uint64_t dbu_size = dmu_buf_user_size(&db->db);
4233
(void) zfs_refcount_add_many(
4234
&dbuf_caches[dcs].size, db_size, db);
4235
size = zfs_refcount_add_many(
4236
&dbuf_caches[dcs].size, dbu_size, db->db_user);
4237
uint8_t db_level = db->db_level;
4238
mutex_exit(&db->db_mtx);
4239
4240
if (dcs == DB_DBUF_METADATA_CACHE) {
4241
DBUF_STAT_BUMP(metadata_cache_count);
4242
DBUF_STAT_MAX(metadata_cache_size_bytes_max,
4243
size);
4244
} else {
4245
DBUF_STAT_BUMP(cache_count);
4246
DBUF_STAT_MAX(cache_size_bytes_max, size);
4247
DBUF_STAT_BUMP(cache_levels[db_level]);
4248
DBUF_STAT_INCR(cache_levels_bytes[db_level],
4249
db_size + dbu_size);
4250
}
4251
4252
if (dcs == DB_DBUF_CACHE && !evicting)
4253
dbuf_evict_notify(size);
4254
}
4255
} else {
4256
mutex_exit(&db->db_mtx);
4257
}
4258
}
4259
4260
#pragma weak dmu_buf_refcount = dbuf_refcount
4261
uint64_t
4262
dbuf_refcount(dmu_buf_impl_t *db)
4263
{
4264
return (zfs_refcount_count(&db->db_holds));
4265
}
4266
4267
uint64_t
4268
dmu_buf_user_refcount(dmu_buf_t *db_fake)
4269
{
4270
uint64_t holds;
4271
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4272
4273
mutex_enter(&db->db_mtx);
4274
ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
4275
holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
4276
mutex_exit(&db->db_mtx);
4277
4278
return (holds);
4279
}
4280
4281
void *
4282
dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
4283
dmu_buf_user_t *new_user)
4284
{
4285
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4286
4287
mutex_enter(&db->db_mtx);
4288
dbuf_verify_user(db, DBVU_NOT_EVICTING);
4289
if (db->db_user == old_user)
4290
db->db_user = new_user;
4291
else
4292
old_user = db->db_user;
4293
dbuf_verify_user(db, DBVU_NOT_EVICTING);
4294
mutex_exit(&db->db_mtx);
4295
4296
return (old_user);
4297
}
4298
4299
void *
4300
dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4301
{
4302
return (dmu_buf_replace_user(db_fake, NULL, user));
4303
}
4304
4305
void *
4306
dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4307
{
4308
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4309
4310
db->db_user_immediate_evict = TRUE;
4311
return (dmu_buf_set_user(db_fake, user));
4312
}
4313
4314
void *
4315
dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4316
{
4317
return (dmu_buf_replace_user(db_fake, user, NULL));
4318
}
4319
4320
void *
4321
dmu_buf_get_user(dmu_buf_t *db_fake)
4322
{
4323
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4324
4325
dbuf_verify_user(db, DBVU_NOT_EVICTING);
4326
return (db->db_user);
4327
}
4328
4329
uint64_t
4330
dmu_buf_user_size(dmu_buf_t *db_fake)
4331
{
4332
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4333
if (db->db_user == NULL)
4334
return (0);
4335
return (atomic_load_64(&db->db_user->dbu_size));
4336
}
4337
4338
void
4339
dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd)
4340
{
4341
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4342
ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4343
ASSERT3P(db->db_user, !=, NULL);
4344
ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd);
4345
atomic_add_64(&db->db_user->dbu_size, nadd);
4346
}
4347
4348
void
4349
dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub)
4350
{
4351
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4352
ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4353
ASSERT3P(db->db_user, !=, NULL);
4354
ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub);
4355
atomic_sub_64(&db->db_user->dbu_size, nsub);
4356
}
4357
4358
void
4359
dmu_buf_user_evict_wait(void)
4360
{
4361
taskq_wait(dbu_evict_taskq);
4362
}
4363
4364
blkptr_t *
4365
dmu_buf_get_blkptr(dmu_buf_t *db)
4366
{
4367
dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4368
return (dbi->db_blkptr);
4369
}
4370
4371
objset_t *
4372
dmu_buf_get_objset(dmu_buf_t *db)
4373
{
4374
dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4375
return (dbi->db_objset);
4376
}
4377
4378
static void
4379
dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4380
{
4381
/* ASSERT(dmu_tx_is_syncing(tx) */
4382
ASSERT(MUTEX_HELD(&db->db_mtx));
4383
4384
if (db->db_blkptr != NULL)
4385
return;
4386
4387
if (db->db_blkid == DMU_SPILL_BLKID) {
4388
db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4389
BP_ZERO(db->db_blkptr);
4390
return;
4391
}
4392
if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4393
/*
4394
* This buffer was allocated at a time when there was
4395
* no available blkptrs from the dnode, or it was
4396
* inappropriate to hook it in (i.e., nlevels mismatch).
4397
*/
4398
ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4399
ASSERT0P(db->db_parent);
4400
db->db_parent = dn->dn_dbuf;
4401
db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4402
DBUF_VERIFY(db);
4403
} else {
4404
dmu_buf_impl_t *parent = db->db_parent;
4405
int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4406
4407
ASSERT(dn->dn_phys->dn_nlevels > 1);
4408
if (parent == NULL) {
4409
mutex_exit(&db->db_mtx);
4410
rw_enter(&dn->dn_struct_rwlock, RW_READER);
4411
parent = dbuf_hold_level(dn, db->db_level + 1,
4412
db->db_blkid >> epbs, db);
4413
rw_exit(&dn->dn_struct_rwlock);
4414
mutex_enter(&db->db_mtx);
4415
db->db_parent = parent;
4416
}
4417
db->db_blkptr = (blkptr_t *)parent->db.db_data +
4418
(db->db_blkid & ((1ULL << epbs) - 1));
4419
DBUF_VERIFY(db);
4420
}
4421
}
4422
4423
static void
4424
dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4425
{
4426
dmu_buf_impl_t *db = dr->dr_dbuf;
4427
void *data = dr->dt.dl.dr_data;
4428
4429
ASSERT0(db->db_level);
4430
ASSERT(MUTEX_HELD(&db->db_mtx));
4431
ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4432
ASSERT(data != NULL);
4433
4434
dnode_t *dn = dr->dr_dnode;
4435
ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4436
DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4437
memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4438
4439
dbuf_sync_leaf_verify_bonus_dnode(dr);
4440
4441
dbuf_undirty_bonus(dr);
4442
dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4443
}
4444
4445
/*
4446
* When syncing out a blocks of dnodes, adjust the block to deal with
4447
* encryption. Normally, we make sure the block is decrypted before writing
4448
* it. If we have crypt params, then we are writing a raw (encrypted) block,
4449
* from a raw receive. In this case, set the ARC buf's crypt params so
4450
* that the BP will be filled with the correct byteorder, salt, iv, and mac.
4451
*/
4452
static void
4453
dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4454
{
4455
int err;
4456
dmu_buf_impl_t *db = dr->dr_dbuf;
4457
4458
ASSERT(MUTEX_HELD(&db->db_mtx));
4459
ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4460
ASSERT0(db->db_level);
4461
4462
if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4463
zbookmark_phys_t zb;
4464
4465
/*
4466
* Unfortunately, there is currently no mechanism for
4467
* syncing context to handle decryption errors. An error
4468
* here is only possible if an attacker maliciously
4469
* changed a dnode block and updated the associated
4470
* checksums going up the block tree.
4471
*/
4472
SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4473
db->db.db_object, db->db_level, db->db_blkid);
4474
err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4475
&zb, B_TRUE);
4476
if (err)
4477
panic("Invalid dnode block MAC");
4478
} else if (dr->dt.dl.dr_has_raw_params) {
4479
(void) arc_release(dr->dt.dl.dr_data, db);
4480
arc_convert_to_raw(dr->dt.dl.dr_data,
4481
dmu_objset_id(db->db_objset),
4482
dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4483
dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4484
}
4485
}
4486
4487
/*
4488
* dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4489
* is critical the we not allow the compiler to inline this function in to
4490
* dbuf_sync_list() thereby drastically bloating the stack usage.
4491
*/
4492
noinline static void
4493
dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4494
{
4495
dmu_buf_impl_t *db = dr->dr_dbuf;
4496
dnode_t *dn = dr->dr_dnode;
4497
4498
ASSERT(dmu_tx_is_syncing(tx));
4499
4500
dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4501
4502
mutex_enter(&db->db_mtx);
4503
4504
ASSERT(db->db_level > 0);
4505
DBUF_VERIFY(db);
4506
4507
/* Read the block if it hasn't been read yet. */
4508
if (db->db_buf == NULL) {
4509
mutex_exit(&db->db_mtx);
4510
(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4511
mutex_enter(&db->db_mtx);
4512
}
4513
ASSERT3U(db->db_state, ==, DB_CACHED);
4514
ASSERT(db->db_buf != NULL);
4515
4516
/* Indirect block size must match what the dnode thinks it is. */
4517
ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4518
dbuf_check_blkptr(dn, db);
4519
4520
/* Provide the pending dirty record to child dbufs */
4521
db->db_data_pending = dr;
4522
4523
mutex_exit(&db->db_mtx);
4524
4525
dbuf_write(dr, db->db_buf, tx);
4526
4527
zio_t *zio = dr->dr_zio;
4528
mutex_enter(&dr->dt.di.dr_mtx);
4529
dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4530
ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4531
mutex_exit(&dr->dt.di.dr_mtx);
4532
zio_nowait(zio);
4533
}
4534
4535
/*
4536
* Verify that the size of the data in our bonus buffer does not exceed
4537
* its recorded size.
4538
*
4539
* The purpose of this verification is to catch any cases in development
4540
* where the size of a phys structure (i.e space_map_phys_t) grows and,
4541
* due to incorrect feature management, older pools expect to read more
4542
* data even though they didn't actually write it to begin with.
4543
*
4544
* For a example, this would catch an error in the feature logic where we
4545
* open an older pool and we expect to write the space map histogram of
4546
* a space map with size SPACE_MAP_SIZE_V0.
4547
*/
4548
static void
4549
dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4550
{
4551
#ifdef ZFS_DEBUG
4552
dnode_t *dn = dr->dr_dnode;
4553
4554
/*
4555
* Encrypted bonus buffers can have data past their bonuslen.
4556
* Skip the verification of these blocks.
4557
*/
4558
if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4559
return;
4560
4561
uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4562
uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4563
ASSERT3U(bonuslen, <=, maxbonuslen);
4564
4565
arc_buf_t *datap = dr->dt.dl.dr_data;
4566
char *datap_end = ((char *)datap) + bonuslen;
4567
char *datap_max = ((char *)datap) + maxbonuslen;
4568
4569
/* ensure that everything is zero after our data */
4570
for (; datap_end < datap_max; datap_end++)
4571
ASSERT0(*datap_end);
4572
#endif
4573
}
4574
4575
static blkptr_t *
4576
dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4577
{
4578
/* This must be a lightweight dirty record. */
4579
ASSERT0P(dr->dr_dbuf);
4580
dnode_t *dn = dr->dr_dnode;
4581
4582
if (dn->dn_phys->dn_nlevels == 1) {
4583
VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4584
return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4585
} else {
4586
dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4587
int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4588
VERIFY3U(parent_db->db_level, ==, 1);
4589
VERIFY3P(DB_DNODE(parent_db), ==, dn);
4590
VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4591
blkptr_t *bp = parent_db->db.db_data;
4592
return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4593
}
4594
}
4595
4596
static void
4597
dbuf_lightweight_ready(zio_t *zio)
4598
{
4599
dbuf_dirty_record_t *dr = zio->io_private;
4600
blkptr_t *bp = zio->io_bp;
4601
4602
if (zio->io_error != 0)
4603
return;
4604
4605
dnode_t *dn = dr->dr_dnode;
4606
4607
blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4608
spa_t *spa = dmu_objset_spa(dn->dn_objset);
4609
int64_t delta = bp_get_dsize_sync(spa, bp) -
4610
bp_get_dsize_sync(spa, bp_orig);
4611
dnode_diduse_space(dn, delta);
4612
4613
uint64_t blkid = dr->dt.dll.dr_blkid;
4614
mutex_enter(&dn->dn_mtx);
4615
if (blkid > dn->dn_phys->dn_maxblkid) {
4616
ASSERT0(dn->dn_objset->os_raw_receive);
4617
dn->dn_phys->dn_maxblkid = blkid;
4618
}
4619
mutex_exit(&dn->dn_mtx);
4620
4621
if (!BP_IS_EMBEDDED(bp)) {
4622
uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4623
BP_SET_FILL(bp, fill);
4624
}
4625
4626
dmu_buf_impl_t *parent_db;
4627
EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4628
if (dr->dr_parent == NULL) {
4629
parent_db = dn->dn_dbuf;
4630
} else {
4631
parent_db = dr->dr_parent->dr_dbuf;
4632
}
4633
rw_enter(&parent_db->db_rwlock, RW_WRITER);
4634
*bp_orig = *bp;
4635
rw_exit(&parent_db->db_rwlock);
4636
}
4637
4638
static void
4639
dbuf_lightweight_done(zio_t *zio)
4640
{
4641
dbuf_dirty_record_t *dr = zio->io_private;
4642
4643
VERIFY0(zio->io_error);
4644
4645
objset_t *os = dr->dr_dnode->dn_objset;
4646
dmu_tx_t *tx = os->os_synctx;
4647
4648
if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4649
ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4650
} else {
4651
dsl_dataset_t *ds = os->os_dsl_dataset;
4652
(void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4653
dsl_dataset_block_born(ds, zio->io_bp, tx);
4654
}
4655
4656
dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4657
zio->io_txg);
4658
4659
abd_free(dr->dt.dll.dr_abd);
4660
kmem_free(dr, sizeof (*dr));
4661
}
4662
4663
noinline static void
4664
dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4665
{
4666
dnode_t *dn = dr->dr_dnode;
4667
zio_t *pio;
4668
if (dn->dn_phys->dn_nlevels == 1) {
4669
pio = dn->dn_zio;
4670
} else {
4671
pio = dr->dr_parent->dr_zio;
4672
}
4673
4674
zbookmark_phys_t zb = {
4675
.zb_objset = dmu_objset_id(dn->dn_objset),
4676
.zb_object = dn->dn_object,
4677
.zb_level = 0,
4678
.zb_blkid = dr->dt.dll.dr_blkid,
4679
};
4680
4681
/*
4682
* See comment in dbuf_write(). This is so that zio->io_bp_orig
4683
* will have the old BP in dbuf_lightweight_done().
4684
*/
4685
dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4686
4687
dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4688
dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4689
dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4690
&dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4691
dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
4692
ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4693
4694
zio_nowait(dr->dr_zio);
4695
}
4696
4697
/*
4698
* dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4699
* critical the we not allow the compiler to inline this function in to
4700
* dbuf_sync_list() thereby drastically bloating the stack usage.
4701
*/
4702
noinline static void
4703
dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4704
{
4705
arc_buf_t **datap = &dr->dt.dl.dr_data;
4706
dmu_buf_impl_t *db = dr->dr_dbuf;
4707
dnode_t *dn = dr->dr_dnode;
4708
objset_t *os;
4709
uint64_t txg = tx->tx_txg;
4710
4711
ASSERT(dmu_tx_is_syncing(tx));
4712
4713
dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4714
4715
mutex_enter(&db->db_mtx);
4716
/*
4717
* To be synced, we must be dirtied. But we might have been freed
4718
* after the dirty.
4719
*/
4720
if (db->db_state == DB_UNCACHED) {
4721
/* This buffer has been freed since it was dirtied */
4722
ASSERT0P(db->db.db_data);
4723
} else if (db->db_state == DB_FILL) {
4724
/* This buffer was freed and is now being re-filled */
4725
ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4726
} else if (db->db_state == DB_READ) {
4727
/*
4728
* This buffer was either cloned or had a Direct I/O write
4729
* occur and has an in-flgiht read on the BP. It is safe to
4730
* issue the write here, because the read has already been
4731
* issued and the contents won't change.
4732
*
4733
* We can verify the case of both the clone and Direct I/O
4734
* write by making sure the first dirty record for the dbuf
4735
* has no ARC buffer associated with it.
4736
*/
4737
dbuf_dirty_record_t *dr_head =
4738
list_head(&db->db_dirty_records);
4739
ASSERT0P(db->db_buf);
4740
ASSERT0P(db->db.db_data);
4741
ASSERT0P(dr_head->dt.dl.dr_data);
4742
ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN);
4743
} else {
4744
ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4745
}
4746
DBUF_VERIFY(db);
4747
4748
if (db->db_blkid == DMU_SPILL_BLKID) {
4749
mutex_enter(&dn->dn_mtx);
4750
if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4751
/*
4752
* In the previous transaction group, the bonus buffer
4753
* was entirely used to store the attributes for the
4754
* dnode which overrode the dn_spill field. However,
4755
* when adding more attributes to the file a spill
4756
* block was required to hold the extra attributes.
4757
*
4758
* Make sure to clear the garbage left in the dn_spill
4759
* field from the previous attributes in the bonus
4760
* buffer. Otherwise, after writing out the spill
4761
* block to the new allocated dva, it will free
4762
* the old block pointed to by the invalid dn_spill.
4763
*/
4764
db->db_blkptr = NULL;
4765
}
4766
dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4767
mutex_exit(&dn->dn_mtx);
4768
}
4769
4770
/*
4771
* If this is a bonus buffer, simply copy the bonus data into the
4772
* dnode. It will be written out when the dnode is synced (and it
4773
* will be synced, since it must have been dirty for dbuf_sync to
4774
* be called).
4775
*/
4776
if (db->db_blkid == DMU_BONUS_BLKID) {
4777
ASSERT(dr->dr_dbuf == db);
4778
dbuf_sync_bonus(dr, tx);
4779
return;
4780
}
4781
4782
os = dn->dn_objset;
4783
4784
/*
4785
* This function may have dropped the db_mtx lock allowing a dmu_sync
4786
* operation to sneak in. As a result, we need to ensure that we
4787
* don't check the dr_override_state until we have returned from
4788
* dbuf_check_blkptr.
4789
*/
4790
dbuf_check_blkptr(dn, db);
4791
4792
/*
4793
* If this buffer is in the middle of an immediate write, wait for the
4794
* synchronous IO to complete.
4795
*
4796
* This is also valid even with Direct I/O writes setting a dirty
4797
* records override state into DR_IN_DMU_SYNC, because all
4798
* Direct I/O writes happen in open-context.
4799
*/
4800
while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4801
ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4802
cv_wait(&db->db_changed, &db->db_mtx);
4803
}
4804
4805
/*
4806
* If this is a dnode block, ensure it is appropriately encrypted
4807
* or decrypted, depending on what we are writing to it this txg.
4808
*/
4809
if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4810
dbuf_prepare_encrypted_dnode_leaf(dr);
4811
4812
if (*datap != NULL && *datap == db->db_buf &&
4813
dn->dn_object != DMU_META_DNODE_OBJECT &&
4814
zfs_refcount_count(&db->db_holds) > 1) {
4815
/*
4816
* If this buffer is currently "in use" (i.e., there
4817
* are active holds and db_data still references it),
4818
* then make a copy before we start the write so that
4819
* any modifications from the open txg will not leak
4820
* into this write.
4821
*
4822
* NOTE: this copy does not need to be made for
4823
* objects only modified in the syncing context (e.g.
4824
* DNONE_DNODE blocks).
4825
*/
4826
int psize = arc_buf_size(*datap);
4827
int lsize = arc_buf_lsize(*datap);
4828
arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4829
enum zio_compress compress_type = arc_get_compression(*datap);
4830
uint8_t complevel = arc_get_complevel(*datap);
4831
4832
if (arc_is_encrypted(*datap)) {
4833
boolean_t byteorder;
4834
uint8_t salt[ZIO_DATA_SALT_LEN];
4835
uint8_t iv[ZIO_DATA_IV_LEN];
4836
uint8_t mac[ZIO_DATA_MAC_LEN];
4837
4838
arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4839
*datap = arc_alloc_raw_buf(os->os_spa, db,
4840
dmu_objset_id(os), byteorder, salt, iv, mac,
4841
dn->dn_type, psize, lsize, compress_type,
4842
complevel);
4843
} else if (compress_type != ZIO_COMPRESS_OFF) {
4844
ASSERT3U(type, ==, ARC_BUFC_DATA);
4845
*datap = arc_alloc_compressed_buf(os->os_spa, db,
4846
psize, lsize, compress_type, complevel);
4847
} else {
4848
*datap = arc_alloc_buf(os->os_spa, db, type, psize);
4849
}
4850
memcpy((*datap)->b_data, db->db.db_data, psize);
4851
}
4852
db->db_data_pending = dr;
4853
4854
mutex_exit(&db->db_mtx);
4855
4856
dbuf_write(dr, *datap, tx);
4857
4858
ASSERT(!list_link_active(&dr->dr_dirty_node));
4859
if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4860
list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4861
} else {
4862
zio_nowait(dr->dr_zio);
4863
}
4864
}
4865
4866
/*
4867
* Syncs out a range of dirty records for indirect or leaf dbufs. May be
4868
* called recursively from dbuf_sync_indirect().
4869
*/
4870
void
4871
dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4872
{
4873
dbuf_dirty_record_t *dr;
4874
4875
while ((dr = list_head(list))) {
4876
if (dr->dr_zio != NULL) {
4877
/*
4878
* If we find an already initialized zio then we
4879
* are processing the meta-dnode, and we have finished.
4880
* The dbufs for all dnodes are put back on the list
4881
* during processing, so that we can zio_wait()
4882
* these IOs after initiating all child IOs.
4883
*/
4884
ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4885
DMU_META_DNODE_OBJECT);
4886
break;
4887
}
4888
list_remove(list, dr);
4889
if (dr->dr_dbuf == NULL) {
4890
dbuf_sync_lightweight(dr, tx);
4891
} else {
4892
if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4893
dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4894
VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4895
}
4896
if (dr->dr_dbuf->db_level > 0)
4897
dbuf_sync_indirect(dr, tx);
4898
else
4899
dbuf_sync_leaf(dr, tx);
4900
}
4901
}
4902
}
4903
4904
static void
4905
dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4906
{
4907
(void) buf;
4908
dmu_buf_impl_t *db = vdb;
4909
dnode_t *dn;
4910
blkptr_t *bp = zio->io_bp;
4911
blkptr_t *bp_orig = &zio->io_bp_orig;
4912
spa_t *spa = zio->io_spa;
4913
int64_t delta;
4914
uint64_t fill = 0;
4915
int i;
4916
4917
ASSERT3P(db->db_blkptr, !=, NULL);
4918
ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4919
4920
DB_DNODE_ENTER(db);
4921
dn = DB_DNODE(db);
4922
delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4923
dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4924
zio->io_prev_space_delta = delta;
4925
4926
if (BP_GET_BIRTH(bp) != 0) {
4927
ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4928
BP_GET_TYPE(bp) == dn->dn_type) ||
4929
(db->db_blkid == DMU_SPILL_BLKID &&
4930
BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4931
BP_IS_EMBEDDED(bp));
4932
ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4933
}
4934
4935
mutex_enter(&db->db_mtx);
4936
4937
#ifdef ZFS_DEBUG
4938
if (db->db_blkid == DMU_SPILL_BLKID) {
4939
ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4940
ASSERT(!(BP_IS_HOLE(bp)) &&
4941
db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4942
}
4943
#endif
4944
4945
if (db->db_level == 0) {
4946
mutex_enter(&dn->dn_mtx);
4947
if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4948
db->db_blkid != DMU_SPILL_BLKID) {
4949
ASSERT0(db->db_objset->os_raw_receive);
4950
dn->dn_phys->dn_maxblkid = db->db_blkid;
4951
}
4952
mutex_exit(&dn->dn_mtx);
4953
4954
if (dn->dn_type == DMU_OT_DNODE) {
4955
i = 0;
4956
while (i < db->db.db_size) {
4957
dnode_phys_t *dnp =
4958
(void *)(((char *)db->db.db_data) + i);
4959
4960
i += DNODE_MIN_SIZE;
4961
if (dnp->dn_type != DMU_OT_NONE) {
4962
fill++;
4963
for (int j = 0; j < dnp->dn_nblkptr;
4964
j++) {
4965
(void) zfs_blkptr_verify(spa,
4966
&dnp->dn_blkptr[j],
4967
BLK_CONFIG_SKIP,
4968
BLK_VERIFY_HALT);
4969
}
4970
if (dnp->dn_flags &
4971
DNODE_FLAG_SPILL_BLKPTR) {
4972
(void) zfs_blkptr_verify(spa,
4973
DN_SPILL_BLKPTR(dnp),
4974
BLK_CONFIG_SKIP,
4975
BLK_VERIFY_HALT);
4976
}
4977
i += dnp->dn_extra_slots *
4978
DNODE_MIN_SIZE;
4979
}
4980
}
4981
} else {
4982
if (BP_IS_HOLE(bp)) {
4983
fill = 0;
4984
} else {
4985
fill = 1;
4986
}
4987
}
4988
} else {
4989
blkptr_t *ibp = db->db.db_data;
4990
ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4991
for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4992
if (BP_IS_HOLE(ibp))
4993
continue;
4994
(void) zfs_blkptr_verify(spa, ibp,
4995
BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
4996
fill += BP_GET_FILL(ibp);
4997
}
4998
}
4999
DB_DNODE_EXIT(db);
5000
5001
if (!BP_IS_EMBEDDED(bp))
5002
BP_SET_FILL(bp, fill);
5003
5004
mutex_exit(&db->db_mtx);
5005
5006
db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
5007
*db->db_blkptr = *bp;
5008
dmu_buf_unlock_parent(db, dblt, FTAG);
5009
}
5010
5011
/*
5012
* This function gets called just prior to running through the compression
5013
* stage of the zio pipeline. If we're an indirect block comprised of only
5014
* holes, then we want this indirect to be compressed away to a hole. In
5015
* order to do that we must zero out any information about the holes that
5016
* this indirect points to prior to before we try to compress it.
5017
*/
5018
static void
5019
dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
5020
{
5021
(void) zio, (void) buf;
5022
dmu_buf_impl_t *db = vdb;
5023
blkptr_t *bp;
5024
unsigned int epbs, i;
5025
5026
ASSERT3U(db->db_level, >, 0);
5027
DB_DNODE_ENTER(db);
5028
epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
5029
DB_DNODE_EXIT(db);
5030
ASSERT3U(epbs, <, 31);
5031
5032
/* Determine if all our children are holes */
5033
for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
5034
if (!BP_IS_HOLE(bp))
5035
break;
5036
}
5037
5038
/*
5039
* If all the children are holes, then zero them all out so that
5040
* we may get compressed away.
5041
*/
5042
if (i == 1ULL << epbs) {
5043
/*
5044
* We only found holes. Grab the rwlock to prevent
5045
* anybody from reading the blocks we're about to
5046
* zero out.
5047
*/
5048
rw_enter(&db->db_rwlock, RW_WRITER);
5049
memset(db->db.db_data, 0, db->db.db_size);
5050
rw_exit(&db->db_rwlock);
5051
}
5052
}
5053
5054
static void
5055
dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
5056
{
5057
(void) buf;
5058
dmu_buf_impl_t *db = vdb;
5059
blkptr_t *bp_orig = &zio->io_bp_orig;
5060
blkptr_t *bp = db->db_blkptr;
5061
objset_t *os = db->db_objset;
5062
dmu_tx_t *tx = os->os_synctx;
5063
5064
ASSERT0(zio->io_error);
5065
ASSERT(db->db_blkptr == bp);
5066
5067
/*
5068
* For nopwrites and rewrites we ensure that the bp matches our
5069
* original and bypass all the accounting.
5070
*/
5071
if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
5072
ASSERT(BP_EQUAL(bp, bp_orig));
5073
} else {
5074
dsl_dataset_t *ds = os->os_dsl_dataset;
5075
(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
5076
dsl_dataset_block_born(ds, bp, tx);
5077
}
5078
5079
mutex_enter(&db->db_mtx);
5080
5081
DBUF_VERIFY(db);
5082
5083
dbuf_dirty_record_t *dr = db->db_data_pending;
5084
dnode_t *dn = dr->dr_dnode;
5085
ASSERT(!list_link_active(&dr->dr_dirty_node));
5086
ASSERT(dr->dr_dbuf == db);
5087
ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
5088
list_remove(&db->db_dirty_records, dr);
5089
5090
#ifdef ZFS_DEBUG
5091
if (db->db_blkid == DMU_SPILL_BLKID) {
5092
ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
5093
ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
5094
db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
5095
}
5096
#endif
5097
5098
if (db->db_level == 0) {
5099
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
5100
ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
5101
5102
/* no dr_data if this is a NO_FILL or Direct I/O */
5103
if (dr->dt.dl.dr_data != NULL &&
5104
dr->dt.dl.dr_data != db->db_buf) {
5105
ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE);
5106
ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE);
5107
arc_buf_destroy(dr->dt.dl.dr_data, db);
5108
}
5109
} else {
5110
ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
5111
ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
5112
if (!BP_IS_HOLE(db->db_blkptr)) {
5113
int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
5114
SPA_BLKPTRSHIFT;
5115
ASSERT3U(db->db_blkid, <=,
5116
dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
5117
ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
5118
db->db.db_size);
5119
}
5120
mutex_destroy(&dr->dt.di.dr_mtx);
5121
list_destroy(&dr->dt.di.dr_children);
5122
}
5123
5124
cv_broadcast(&db->db_changed);
5125
ASSERT(db->db_dirtycnt > 0);
5126
db->db_dirtycnt -= 1;
5127
db->db_data_pending = NULL;
5128
dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
5129
5130
dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
5131
zio->io_txg);
5132
5133
kmem_cache_free(dbuf_dirty_kmem_cache, dr);
5134
}
5135
5136
static void
5137
dbuf_write_nofill_ready(zio_t *zio)
5138
{
5139
dbuf_write_ready(zio, NULL, zio->io_private);
5140
}
5141
5142
static void
5143
dbuf_write_nofill_done(zio_t *zio)
5144
{
5145
dbuf_write_done(zio, NULL, zio->io_private);
5146
}
5147
5148
static void
5149
dbuf_write_override_ready(zio_t *zio)
5150
{
5151
dbuf_dirty_record_t *dr = zio->io_private;
5152
dmu_buf_impl_t *db = dr->dr_dbuf;
5153
5154
dbuf_write_ready(zio, NULL, db);
5155
}
5156
5157
static void
5158
dbuf_write_override_done(zio_t *zio)
5159
{
5160
dbuf_dirty_record_t *dr = zio->io_private;
5161
dmu_buf_impl_t *db = dr->dr_dbuf;
5162
blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
5163
5164
mutex_enter(&db->db_mtx);
5165
if (!BP_EQUAL(zio->io_bp, obp)) {
5166
if (!BP_IS_HOLE(obp))
5167
dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
5168
arc_release(dr->dt.dl.dr_data, db);
5169
}
5170
mutex_exit(&db->db_mtx);
5171
5172
dbuf_write_done(zio, NULL, db);
5173
5174
if (zio->io_abd != NULL)
5175
abd_free(zio->io_abd);
5176
}
5177
5178
typedef struct dbuf_remap_impl_callback_arg {
5179
objset_t *drica_os;
5180
uint64_t drica_blk_birth;
5181
dmu_tx_t *drica_tx;
5182
} dbuf_remap_impl_callback_arg_t;
5183
5184
static void
5185
dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
5186
void *arg)
5187
{
5188
dbuf_remap_impl_callback_arg_t *drica = arg;
5189
objset_t *os = drica->drica_os;
5190
spa_t *spa = dmu_objset_spa(os);
5191
dmu_tx_t *tx = drica->drica_tx;
5192
5193
ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5194
5195
if (os == spa_meta_objset(spa)) {
5196
spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
5197
} else {
5198
dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
5199
size, drica->drica_blk_birth, tx);
5200
}
5201
}
5202
5203
static void
5204
dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
5205
{
5206
blkptr_t bp_copy = *bp;
5207
spa_t *spa = dmu_objset_spa(dn->dn_objset);
5208
dbuf_remap_impl_callback_arg_t drica;
5209
5210
ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5211
5212
drica.drica_os = dn->dn_objset;
5213
drica.drica_blk_birth = BP_GET_BIRTH(bp);
5214
drica.drica_tx = tx;
5215
if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
5216
&drica)) {
5217
/*
5218
* If the blkptr being remapped is tracked by a livelist,
5219
* then we need to make sure the livelist reflects the update.
5220
* First, cancel out the old blkptr by appending a 'FREE'
5221
* entry. Next, add an 'ALLOC' to track the new version. This
5222
* way we avoid trying to free an inaccurate blkptr at delete.
5223
* Note that embedded blkptrs are not tracked in livelists.
5224
*/
5225
if (dn->dn_objset != spa_meta_objset(spa)) {
5226
dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
5227
if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
5228
BP_GET_BIRTH(bp) > ds->ds_dir->dd_origin_txg) {
5229
ASSERT(!BP_IS_EMBEDDED(bp));
5230
ASSERT(dsl_dir_is_clone(ds->ds_dir));
5231
ASSERT(spa_feature_is_enabled(spa,
5232
SPA_FEATURE_LIVELIST));
5233
bplist_append(&ds->ds_dir->dd_pending_frees,
5234
bp);
5235
bplist_append(&ds->ds_dir->dd_pending_allocs,
5236
&bp_copy);
5237
}
5238
}
5239
5240
/*
5241
* The db_rwlock prevents dbuf_read_impl() from
5242
* dereferencing the BP while we are changing it. To
5243
* avoid lock contention, only grab it when we are actually
5244
* changing the BP.
5245
*/
5246
if (rw != NULL)
5247
rw_enter(rw, RW_WRITER);
5248
*bp = bp_copy;
5249
if (rw != NULL)
5250
rw_exit(rw);
5251
}
5252
}
5253
5254
/*
5255
* Remap any existing BP's to concrete vdevs, if possible.
5256
*/
5257
static void
5258
dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
5259
{
5260
spa_t *spa = dmu_objset_spa(db->db_objset);
5261
ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5262
5263
if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
5264
return;
5265
5266
if (db->db_level > 0) {
5267
blkptr_t *bp = db->db.db_data;
5268
for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
5269
dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
5270
}
5271
} else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
5272
dnode_phys_t *dnp = db->db.db_data;
5273
ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE);
5274
for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
5275
i += dnp[i].dn_extra_slots + 1) {
5276
for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
5277
krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
5278
&dn->dn_dbuf->db_rwlock);
5279
dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
5280
tx);
5281
}
5282
}
5283
}
5284
}
5285
5286
5287
/*
5288
* Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
5289
* Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
5290
*/
5291
static void
5292
dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5293
{
5294
dmu_buf_impl_t *db = dr->dr_dbuf;
5295
dnode_t *dn = dr->dr_dnode;
5296
objset_t *os;
5297
dmu_buf_impl_t *parent = db->db_parent;
5298
uint64_t txg = tx->tx_txg;
5299
zbookmark_phys_t zb;
5300
zio_prop_t zp;
5301
zio_t *pio; /* parent I/O */
5302
int wp_flag = 0;
5303
5304
ASSERT(dmu_tx_is_syncing(tx));
5305
5306
os = dn->dn_objset;
5307
5308
if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5309
/*
5310
* Private object buffers are released here rather than in
5311
* dbuf_dirty() since they are only modified in the syncing
5312
* context and we don't want the overhead of making multiple
5313
* copies of the data.
5314
*/
5315
if (BP_IS_HOLE(db->db_blkptr))
5316
arc_buf_thaw(data);
5317
else
5318
dbuf_release_bp(db);
5319
dbuf_remap(dn, db, tx);
5320
}
5321
5322
if (parent != dn->dn_dbuf) {
5323
/* Our parent is an indirect block. */
5324
/* We have a dirty parent that has been scheduled for write. */
5325
ASSERT(parent && parent->db_data_pending);
5326
/* Our parent's buffer is one level closer to the dnode. */
5327
ASSERT(db->db_level == parent->db_level-1);
5328
/*
5329
* We're about to modify our parent's db_data by modifying
5330
* our block pointer, so the parent must be released.
5331
*/
5332
ASSERT(arc_released(parent->db_buf));
5333
pio = parent->db_data_pending->dr_zio;
5334
} else {
5335
/* Our parent is the dnode itself. */
5336
ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5337
db->db_blkid != DMU_SPILL_BLKID) ||
5338
(db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5339
if (db->db_blkid != DMU_SPILL_BLKID)
5340
ASSERT3P(db->db_blkptr, ==,
5341
&dn->dn_phys->dn_blkptr[db->db_blkid]);
5342
pio = dn->dn_zio;
5343
}
5344
5345
ASSERT(db->db_level == 0 || data == db->db_buf);
5346
ASSERT3U(BP_GET_BIRTH(db->db_blkptr), <=, txg);
5347
ASSERT(pio);
5348
5349
SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5350
os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5351
db->db.db_object, db->db_level, db->db_blkid);
5352
5353
if (db->db_blkid == DMU_SPILL_BLKID)
5354
wp_flag = WP_SPILL;
5355
wp_flag |= (data == NULL) ? WP_NOFILL : 0;
5356
5357
dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5358
5359
/*
5360
* Set rewrite properties for zfs_rewrite() operations.
5361
*/
5362
if (db->db_level == 0 && dr->dt.dl.dr_rewrite) {
5363
zp.zp_rewrite = B_TRUE;
5364
5365
/*
5366
* Mark physical rewrite feature for activation.
5367
* This will be activated automatically during dataset sync.
5368
*/
5369
dsl_dataset_t *ds = os->os_dsl_dataset;
5370
if (!dsl_dataset_feature_is_active(ds,
5371
SPA_FEATURE_PHYSICAL_REWRITE)) {
5372
ds->ds_feature_activation[
5373
SPA_FEATURE_PHYSICAL_REWRITE] = (void *)B_TRUE;
5374
}
5375
}
5376
5377
/*
5378
* We copy the blkptr now (rather than when we instantiate the dirty
5379
* record), because its value can change between open context and
5380
* syncing context. We do not need to hold dn_struct_rwlock to read
5381
* db_blkptr because we are in syncing context.
5382
*/
5383
dr->dr_bp_copy = *db->db_blkptr;
5384
5385
if (db->db_level == 0 &&
5386
dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5387
/*
5388
* The BP for this block has been provided by open context
5389
* (by dmu_sync(), dmu_write_direct(),
5390
* or dmu_buf_write_embedded()).
5391
*/
5392
abd_t *contents = (data != NULL) ?
5393
abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5394
5395
dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5396
contents, db->db.db_size, db->db.db_size, &zp,
5397
dbuf_write_override_ready, NULL,
5398
dbuf_write_override_done,
5399
dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5400
mutex_enter(&db->db_mtx);
5401
dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5402
zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5403
dr->dt.dl.dr_copies, dr->dt.dl.dr_gang_copies,
5404
dr->dt.dl.dr_nopwrite, dr->dt.dl.dr_brtwrite);
5405
mutex_exit(&db->db_mtx);
5406
} else if (data == NULL) {
5407
ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5408
zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5409
dr->dr_zio = zio_write(pio, os->os_spa, txg,
5410
&dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5411
dbuf_write_nofill_ready, NULL,
5412
dbuf_write_nofill_done, db,
5413
ZIO_PRIORITY_ASYNC_WRITE,
5414
ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5415
} else {
5416
ASSERT(arc_released(data));
5417
5418
/*
5419
* For indirect blocks, we want to setup the children
5420
* ready callback so that we can properly handle an indirect
5421
* block that only contains holes.
5422
*/
5423
arc_write_done_func_t *children_ready_cb = NULL;
5424
if (db->db_level != 0)
5425
children_ready_cb = dbuf_write_children_ready;
5426
5427
dr->dr_zio = arc_write(pio, os->os_spa, txg,
5428
&dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5429
dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready,
5430
children_ready_cb, dbuf_write_done, db,
5431
ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5432
}
5433
}
5434
5435
EXPORT_SYMBOL(dbuf_find);
5436
EXPORT_SYMBOL(dbuf_is_metadata);
5437
EXPORT_SYMBOL(dbuf_destroy);
5438
EXPORT_SYMBOL(dbuf_whichblock);
5439
EXPORT_SYMBOL(dbuf_read);
5440
EXPORT_SYMBOL(dbuf_unoverride);
5441
EXPORT_SYMBOL(dbuf_free_range);
5442
EXPORT_SYMBOL(dbuf_new_size);
5443
EXPORT_SYMBOL(dbuf_release_bp);
5444
EXPORT_SYMBOL(dbuf_dirty);
5445
EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5446
EXPORT_SYMBOL(dmu_buf_will_dirty);
5447
EXPORT_SYMBOL(dmu_buf_will_rewrite);
5448
EXPORT_SYMBOL(dmu_buf_is_dirty);
5449
EXPORT_SYMBOL(dmu_buf_will_clone_or_dio);
5450
EXPORT_SYMBOL(dmu_buf_will_not_fill);
5451
EXPORT_SYMBOL(dmu_buf_will_fill);
5452
EXPORT_SYMBOL(dmu_buf_fill_done);
5453
EXPORT_SYMBOL(dmu_buf_rele);
5454
EXPORT_SYMBOL(dbuf_assign_arcbuf);
5455
EXPORT_SYMBOL(dbuf_prefetch);
5456
EXPORT_SYMBOL(dbuf_hold_impl);
5457
EXPORT_SYMBOL(dbuf_hold);
5458
EXPORT_SYMBOL(dbuf_hold_level);
5459
EXPORT_SYMBOL(dbuf_create_bonus);
5460
EXPORT_SYMBOL(dbuf_spill_set_blksz);
5461
EXPORT_SYMBOL(dbuf_rm_spill);
5462
EXPORT_SYMBOL(dbuf_add_ref);
5463
EXPORT_SYMBOL(dbuf_rele);
5464
EXPORT_SYMBOL(dbuf_rele_and_unlock);
5465
EXPORT_SYMBOL(dbuf_refcount);
5466
EXPORT_SYMBOL(dbuf_sync_list);
5467
EXPORT_SYMBOL(dmu_buf_set_user);
5468
EXPORT_SYMBOL(dmu_buf_set_user_ie);
5469
EXPORT_SYMBOL(dmu_buf_get_user);
5470
EXPORT_SYMBOL(dmu_buf_get_blkptr);
5471
5472
ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5473
"Maximum size in bytes of the dbuf cache.");
5474
5475
ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5476
"Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5477
5478
ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5479
"Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5480
5481
ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5482
"Maximum size in bytes of dbuf metadata cache.");
5483
5484
ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5485
"Set size of dbuf cache to log2 fraction of arc size.");
5486
5487
ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5488
"Set size of dbuf metadata cache to log2 fraction of arc size.");
5489
5490
ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5491
"Set size of dbuf cache mutex array as log2 shift.");
5492
5493