Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zfs/dmu.c
48383 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
/*
23
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
27
* Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
28
* Copyright (c) 2015 by Chunwei Chen. All rights reserved.
29
* Copyright (c) 2019 Datto Inc.
30
* Copyright (c) 2019, 2023, Klara Inc.
31
* Copyright (c) 2019, Allan Jude
32
* Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
33
* Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
34
*/
35
36
#include <sys/dmu.h>
37
#include <sys/dmu_impl.h>
38
#include <sys/dmu_tx.h>
39
#include <sys/dbuf.h>
40
#include <sys/dnode.h>
41
#include <sys/zfs_context.h>
42
#include <sys/dmu_objset.h>
43
#include <sys/dmu_traverse.h>
44
#include <sys/dsl_dataset.h>
45
#include <sys/dsl_dir.h>
46
#include <sys/dsl_pool.h>
47
#include <sys/dsl_synctask.h>
48
#include <sys/dsl_prop.h>
49
#include <sys/dmu_zfetch.h>
50
#include <sys/zfs_ioctl.h>
51
#include <sys/zap.h>
52
#include <sys/zio_checksum.h>
53
#include <sys/zio_compress.h>
54
#include <sys/sa.h>
55
#include <sys/zfeature.h>
56
#include <sys/abd.h>
57
#include <sys/brt.h>
58
#include <sys/trace_zfs.h>
59
#include <sys/zfs_racct.h>
60
#include <sys/zfs_rlock.h>
61
#ifdef _KERNEL
62
#include <sys/vmsystm.h>
63
#include <sys/zfs_znode.h>
64
#endif
65
66
/*
67
* Enable/disable nopwrite feature.
68
*/
69
static int zfs_nopwrite_enabled = 1;
70
71
/*
72
* Tunable to control percentage of dirtied L1 blocks from frees allowed into
73
* one TXG. After this threshold is crossed, additional dirty blocks from frees
74
* will wait until the next TXG.
75
* A value of zero will disable this throttle.
76
*/
77
static uint_t zfs_per_txg_dirty_frees_percent = 30;
78
79
/*
80
* Enable/disable forcing txg sync when dirty checking for holes with lseek().
81
* By default this is enabled to ensure accurate hole reporting, it can result
82
* in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
83
* Disabling this option will result in holes never being reported in dirty
84
* files which is always safe.
85
*/
86
static int zfs_dmu_offset_next_sync = 1;
87
88
/*
89
* Limit the amount we can prefetch with one call to this amount. This
90
* helps to limit the amount of memory that can be used by prefetching.
91
* Larger objects should be prefetched a bit at a time.
92
*/
93
#ifdef _ILP32
94
uint_t dmu_prefetch_max = 8 * 1024 * 1024;
95
#else
96
uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
97
#endif
98
99
/*
100
* Override copies= for dedup state objects. 0 means the traditional behaviour
101
* (ie the default for the containing objset ie 3 for the MOS).
102
*/
103
uint_t dmu_ddt_copies = 0;
104
105
const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
106
{DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
107
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
108
{DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
109
{DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
110
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
111
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
112
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
113
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
114
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
115
{DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
116
{DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
117
{DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
118
{DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
119
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"},
120
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
121
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
122
{DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
123
{DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
124
{DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
125
{DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
126
{DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
127
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
128
{DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
129
{DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
130
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
131
{DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
132
{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
133
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
134
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
135
{DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
136
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
137
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
138
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
139
{DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
140
{DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
141
{DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
142
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
143
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"},
144
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
145
{DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" },
146
{DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"},
147
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"},
148
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
149
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
150
{DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
151
{DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
152
{DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
153
{DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
154
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
155
{DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
156
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
157
{DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
158
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
159
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
160
};
161
162
dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
163
{ byteswap_uint8_array, "uint8" },
164
{ byteswap_uint16_array, "uint16" },
165
{ byteswap_uint32_array, "uint32" },
166
{ byteswap_uint64_array, "uint64" },
167
{ zap_byteswap, "zap" },
168
{ dnode_buf_byteswap, "dnode" },
169
{ dmu_objset_byteswap, "objset" },
170
{ zfs_znode_byteswap, "znode" },
171
{ zfs_oldacl_byteswap, "oldacl" },
172
{ zfs_acl_byteswap, "acl" }
173
};
174
175
int
176
dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
177
const void *tag, dmu_buf_t **dbp)
178
{
179
uint64_t blkid;
180
dmu_buf_impl_t *db;
181
182
rw_enter(&dn->dn_struct_rwlock, RW_READER);
183
blkid = dbuf_whichblock(dn, 0, offset);
184
db = dbuf_hold(dn, blkid, tag);
185
rw_exit(&dn->dn_struct_rwlock);
186
187
if (db == NULL) {
188
*dbp = NULL;
189
return (SET_ERROR(EIO));
190
}
191
192
*dbp = &db->db;
193
return (0);
194
}
195
196
int
197
dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
198
const void *tag, dmu_buf_t **dbp)
199
{
200
dnode_t *dn;
201
uint64_t blkid;
202
dmu_buf_impl_t *db;
203
int err;
204
205
err = dnode_hold(os, object, FTAG, &dn);
206
if (err)
207
return (err);
208
rw_enter(&dn->dn_struct_rwlock, RW_READER);
209
blkid = dbuf_whichblock(dn, 0, offset);
210
db = dbuf_hold(dn, blkid, tag);
211
rw_exit(&dn->dn_struct_rwlock);
212
dnode_rele(dn, FTAG);
213
214
if (db == NULL) {
215
*dbp = NULL;
216
return (SET_ERROR(EIO));
217
}
218
219
*dbp = &db->db;
220
return (err);
221
}
222
223
int
224
dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
225
const void *tag, dmu_buf_t **dbp, dmu_flags_t flags)
226
{
227
int err;
228
229
err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
230
if (err == 0) {
231
dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
232
err = dbuf_read(db, NULL, flags | DB_RF_CANFAIL);
233
if (err != 0) {
234
dbuf_rele(db, tag);
235
*dbp = NULL;
236
}
237
}
238
239
return (err);
240
}
241
242
int
243
dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
244
const void *tag, dmu_buf_t **dbp, dmu_flags_t flags)
245
{
246
int err;
247
248
err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
249
if (err == 0) {
250
dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
251
err = dbuf_read(db, NULL, flags | DB_RF_CANFAIL);
252
if (err != 0) {
253
dbuf_rele(db, tag);
254
*dbp = NULL;
255
}
256
}
257
258
return (err);
259
}
260
261
int
262
dmu_bonus_max(void)
263
{
264
return (DN_OLD_MAX_BONUSLEN);
265
}
266
267
int
268
dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
269
{
270
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
271
dnode_t *dn;
272
int error;
273
274
if (newsize < 0 || newsize > db_fake->db_size)
275
return (SET_ERROR(EINVAL));
276
277
DB_DNODE_ENTER(db);
278
dn = DB_DNODE(db);
279
280
if (dn->dn_bonus != db) {
281
error = SET_ERROR(EINVAL);
282
} else {
283
dnode_setbonuslen(dn, newsize, tx);
284
error = 0;
285
}
286
287
DB_DNODE_EXIT(db);
288
return (error);
289
}
290
291
int
292
dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
293
{
294
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
295
dnode_t *dn;
296
int error;
297
298
if (!DMU_OT_IS_VALID(type))
299
return (SET_ERROR(EINVAL));
300
301
DB_DNODE_ENTER(db);
302
dn = DB_DNODE(db);
303
304
if (dn->dn_bonus != db) {
305
error = SET_ERROR(EINVAL);
306
} else {
307
dnode_setbonus_type(dn, type, tx);
308
error = 0;
309
}
310
311
DB_DNODE_EXIT(db);
312
return (error);
313
}
314
315
dmu_object_type_t
316
dmu_get_bonustype(dmu_buf_t *db_fake)
317
{
318
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
319
dmu_object_type_t type;
320
321
DB_DNODE_ENTER(db);
322
type = DB_DNODE(db)->dn_bonustype;
323
DB_DNODE_EXIT(db);
324
325
return (type);
326
}
327
328
int
329
dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
330
{
331
dnode_t *dn;
332
int error;
333
334
error = dnode_hold(os, object, FTAG, &dn);
335
dbuf_rm_spill(dn, tx);
336
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
337
dnode_rm_spill(dn, tx);
338
rw_exit(&dn->dn_struct_rwlock);
339
dnode_rele(dn, FTAG);
340
return (error);
341
}
342
343
/*
344
* Lookup and hold the bonus buffer for the provided dnode. If the dnode
345
* has not yet been allocated a new bonus dbuf a will be allocated.
346
* Returns ENOENT, EIO, or 0.
347
*/
348
int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
349
dmu_flags_t flags)
350
{
351
dmu_buf_impl_t *db;
352
int error;
353
354
rw_enter(&dn->dn_struct_rwlock, RW_READER);
355
if (dn->dn_bonus == NULL) {
356
if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
357
rw_exit(&dn->dn_struct_rwlock);
358
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
359
}
360
if (dn->dn_bonus == NULL)
361
dbuf_create_bonus(dn);
362
}
363
db = dn->dn_bonus;
364
365
/* as long as the bonus buf is held, the dnode will be held */
366
if (zfs_refcount_add(&db->db_holds, tag) == 1) {
367
VERIFY(dnode_add_ref(dn, db));
368
atomic_inc_32(&dn->dn_dbufs_count);
369
}
370
371
/*
372
* Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
373
* hold and incrementing the dbuf count to ensure that dnode_move() sees
374
* a dnode hold for every dbuf.
375
*/
376
rw_exit(&dn->dn_struct_rwlock);
377
378
error = dbuf_read(db, NULL, flags | DB_RF_CANFAIL);
379
if (error) {
380
dnode_evict_bonus(dn);
381
dbuf_rele(db, tag);
382
*dbp = NULL;
383
return (error);
384
}
385
386
*dbp = &db->db;
387
return (0);
388
}
389
390
int
391
dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
392
{
393
dnode_t *dn;
394
int error;
395
396
error = dnode_hold(os, object, FTAG, &dn);
397
if (error)
398
return (error);
399
400
error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
401
dnode_rele(dn, FTAG);
402
403
return (error);
404
}
405
406
/*
407
* returns ENOENT, EIO, or 0.
408
*
409
* This interface will allocate a blank spill dbuf when a spill blk
410
* doesn't already exist on the dnode.
411
*
412
* if you only want to find an already existing spill db, then
413
* dmu_spill_hold_existing() should be used.
414
*/
415
int
416
dmu_spill_hold_by_dnode(dnode_t *dn, dmu_flags_t flags, const void *tag,
417
dmu_buf_t **dbp)
418
{
419
dmu_buf_impl_t *db = NULL;
420
int err;
421
422
if ((flags & DB_RF_HAVESTRUCT) == 0)
423
rw_enter(&dn->dn_struct_rwlock, RW_READER);
424
425
db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
426
427
if ((flags & DB_RF_HAVESTRUCT) == 0)
428
rw_exit(&dn->dn_struct_rwlock);
429
430
if (db == NULL) {
431
*dbp = NULL;
432
return (SET_ERROR(EIO));
433
}
434
err = dbuf_read(db, NULL, flags);
435
if (err == 0)
436
*dbp = &db->db;
437
else {
438
dbuf_rele(db, tag);
439
*dbp = NULL;
440
}
441
return (err);
442
}
443
444
int
445
dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
446
{
447
dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
448
dnode_t *dn;
449
int err;
450
451
DB_DNODE_ENTER(db);
452
dn = DB_DNODE(db);
453
454
if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
455
err = SET_ERROR(EINVAL);
456
} else {
457
rw_enter(&dn->dn_struct_rwlock, RW_READER);
458
459
if (!dn->dn_have_spill) {
460
err = SET_ERROR(ENOENT);
461
} else {
462
err = dmu_spill_hold_by_dnode(dn,
463
DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
464
}
465
466
rw_exit(&dn->dn_struct_rwlock);
467
}
468
469
DB_DNODE_EXIT(db);
470
return (err);
471
}
472
473
int
474
dmu_spill_hold_by_bonus(dmu_buf_t *bonus, dmu_flags_t flags, const void *tag,
475
dmu_buf_t **dbp)
476
{
477
dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
478
int err;
479
480
DB_DNODE_ENTER(db);
481
err = dmu_spill_hold_by_dnode(DB_DNODE(db), flags, tag, dbp);
482
DB_DNODE_EXIT(db);
483
484
return (err);
485
}
486
487
/*
488
* Note: longer-term, we should modify all of the dmu_buf_*() interfaces
489
* to take a held dnode rather than <os, object> -- the lookup is wasteful,
490
* and can induce severe lock contention when writing to several files
491
* whose dnodes are in the same block.
492
*/
493
int
494
dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
495
boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
496
dmu_flags_t flags)
497
{
498
dmu_buf_t **dbp;
499
zstream_t *zs = NULL;
500
uint64_t blkid, nblks, i;
501
dmu_flags_t dbuf_flags;
502
int err;
503
zio_t *zio = NULL;
504
boolean_t missed = B_FALSE;
505
506
ASSERT(!read || length <= DMU_MAX_ACCESS);
507
508
/*
509
* Note: We directly notify the prefetch code of this read, so that
510
* we can tell it about the multi-block read. dbuf_read() only knows
511
* about the one block it is accessing.
512
*/
513
dbuf_flags = (flags & ~DMU_READ_PREFETCH) | DMU_READ_NO_PREFETCH |
514
DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
515
516
rw_enter(&dn->dn_struct_rwlock, RW_READER);
517
if (dn->dn_datablkshift) {
518
int blkshift = dn->dn_datablkshift;
519
nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
520
P2ALIGN_TYPED(offset, 1ULL << blkshift, uint64_t))
521
>> blkshift;
522
} else {
523
if (offset + length > dn->dn_datablksz) {
524
zfs_panic_recover("zfs: accessing past end of object "
525
"%llx/%llx (size=%u access=%llu+%llu)",
526
(longlong_t)dn->dn_objset->
527
os_dsl_dataset->ds_object,
528
(longlong_t)dn->dn_object, dn->dn_datablksz,
529
(longlong_t)offset, (longlong_t)length);
530
rw_exit(&dn->dn_struct_rwlock);
531
return (SET_ERROR(EIO));
532
}
533
nblks = 1;
534
}
535
dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
536
537
if (read)
538
zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
539
ZIO_FLAG_CANFAIL);
540
blkid = dbuf_whichblock(dn, 0, offset);
541
if ((flags & DMU_READ_NO_PREFETCH) == 0) {
542
/*
543
* Prepare the zfetch before initiating the demand reads, so
544
* that if multiple threads block on same indirect block, we
545
* base predictions on the original less racy request order.
546
*/
547
zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks,
548
read && !(flags & DMU_DIRECTIO), B_TRUE);
549
}
550
for (i = 0; i < nblks; i++) {
551
dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
552
if (db == NULL) {
553
if (zs) {
554
dmu_zfetch_run(&dn->dn_zfetch, zs, missed,
555
B_TRUE, (flags & DMU_UNCACHEDIO));
556
}
557
rw_exit(&dn->dn_struct_rwlock);
558
dmu_buf_rele_array(dbp, nblks, tag);
559
if (read)
560
zio_nowait(zio);
561
return (SET_ERROR(EIO));
562
}
563
564
/*
565
* Initiate async demand data read.
566
* We check the db_state after calling dbuf_read() because
567
* (1) dbuf_read() may change the state to CACHED due to a
568
* hit in the ARC, and (2) on a cache miss, a child will
569
* have been added to "zio" but not yet completed, so the
570
* state will not yet be CACHED.
571
*/
572
if (read) {
573
if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
574
offset + length < db->db.db_offset +
575
db->db.db_size) {
576
if (offset <= db->db.db_offset)
577
dbuf_flags |= DMU_PARTIAL_FIRST;
578
else
579
dbuf_flags |= DMU_PARTIAL_MORE;
580
}
581
(void) dbuf_read(db, zio, dbuf_flags);
582
if (db->db_state != DB_CACHED)
583
missed = B_TRUE;
584
}
585
dbp[i] = &db->db;
586
}
587
588
/*
589
* If we are doing O_DIRECT we still hold the dbufs, even for reads,
590
* but we do not issue any reads here. We do not want to account for
591
* writes in this case.
592
*
593
* O_DIRECT write/read accounting takes place in
594
* dmu_{write/read}_abd().
595
*/
596
if (!read && ((flags & DMU_DIRECTIO) == 0))
597
zfs_racct_write(dn->dn_objset->os_spa, length, nblks, flags);
598
599
if (zs) {
600
dmu_zfetch_run(&dn->dn_zfetch, zs, missed, B_TRUE,
601
(flags & DMU_UNCACHEDIO));
602
}
603
rw_exit(&dn->dn_struct_rwlock);
604
605
if (read) {
606
/* wait for async read i/o */
607
err = zio_wait(zio);
608
if (err) {
609
dmu_buf_rele_array(dbp, nblks, tag);
610
return (err);
611
}
612
613
/* wait for other io to complete */
614
for (i = 0; i < nblks; i++) {
615
dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
616
mutex_enter(&db->db_mtx);
617
while (db->db_state == DB_READ ||
618
db->db_state == DB_FILL)
619
cv_wait(&db->db_changed, &db->db_mtx);
620
if (db->db_state == DB_UNCACHED)
621
err = SET_ERROR(EIO);
622
mutex_exit(&db->db_mtx);
623
if (err) {
624
dmu_buf_rele_array(dbp, nblks, tag);
625
return (err);
626
}
627
}
628
}
629
630
*numbufsp = nblks;
631
*dbpp = dbp;
632
return (0);
633
}
634
635
int
636
dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
637
uint64_t length, int read, const void *tag, int *numbufsp,
638
dmu_buf_t ***dbpp)
639
{
640
dnode_t *dn;
641
int err;
642
643
err = dnode_hold(os, object, FTAG, &dn);
644
if (err)
645
return (err);
646
647
err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
648
numbufsp, dbpp, DMU_READ_PREFETCH);
649
650
dnode_rele(dn, FTAG);
651
652
return (err);
653
}
654
655
int
656
dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
657
uint64_t length, boolean_t read, const void *tag, int *numbufsp,
658
dmu_buf_t ***dbpp)
659
{
660
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
661
int err;
662
663
DB_DNODE_ENTER(db);
664
err = dmu_buf_hold_array_by_dnode(DB_DNODE(db), offset, length, read,
665
tag, numbufsp, dbpp, DMU_READ_PREFETCH);
666
DB_DNODE_EXIT(db);
667
668
return (err);
669
}
670
671
void
672
dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
673
{
674
int i;
675
dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
676
677
if (numbufs == 0)
678
return;
679
680
for (i = 0; i < numbufs; i++) {
681
if (dbp[i])
682
dbuf_rele(dbp[i], tag);
683
}
684
685
kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
686
}
687
688
/*
689
* Issue prefetch I/Os for the given blocks. If level is greater than 0, the
690
* indirect blocks prefetched will be those that point to the blocks containing
691
* the data starting at offset, and continuing to offset + len. If the range
692
* is too long, prefetch the first dmu_prefetch_max bytes as requested, while
693
* for the rest only a higher level, also fitting within dmu_prefetch_max. It
694
* should primarily help random reads, since for long sequential reads there is
695
* a speculative prefetcher.
696
*
697
* Note that if the indirect blocks above the blocks being prefetched are not
698
* in cache, they will be asynchronously read in. Dnode read by dnode_hold()
699
* is currently synchronous.
700
*/
701
void
702
dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
703
uint64_t len, zio_priority_t pri)
704
{
705
dnode_t *dn;
706
707
if (dmu_prefetch_max == 0 || len == 0) {
708
dmu_prefetch_dnode(os, object, pri);
709
return;
710
}
711
712
if (dnode_hold(os, object, FTAG, &dn) != 0)
713
return;
714
715
dmu_prefetch_by_dnode(dn, level, offset, len, pri);
716
717
dnode_rele(dn, FTAG);
718
}
719
720
void
721
dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset,
722
uint64_t len, zio_priority_t pri)
723
{
724
int64_t level2 = level;
725
uint64_t start, end, start2, end2;
726
727
/*
728
* Depending on len we may do two prefetches: blocks [start, end) at
729
* level, and following blocks [start2, end2) at higher level2.
730
*/
731
rw_enter(&dn->dn_struct_rwlock, RW_READER);
732
if (dn->dn_datablkshift != 0) {
733
734
/*
735
* Limit prefetch to present blocks.
736
*/
737
uint64_t size = (dn->dn_maxblkid + 1) << dn->dn_datablkshift;
738
if (offset >= size) {
739
rw_exit(&dn->dn_struct_rwlock);
740
return;
741
}
742
if (offset + len < offset || offset + len > size)
743
len = size - offset;
744
745
/*
746
* The object has multiple blocks. Calculate the full range
747
* of blocks [start, end2) and then split it into two parts,
748
* so that the first [start, end) fits into dmu_prefetch_max.
749
*/
750
start = dbuf_whichblock(dn, level, offset);
751
end2 = dbuf_whichblock(dn, level, offset + len - 1) + 1;
752
uint8_t ibs = dn->dn_indblkshift;
753
uint8_t bs = (level == 0) ? dn->dn_datablkshift : ibs;
754
uint_t limit = P2ROUNDUP(dmu_prefetch_max, 1 << bs) >> bs;
755
start2 = end = MIN(end2, start + limit);
756
757
/*
758
* Find level2 where [start2, end2) fits into dmu_prefetch_max.
759
*/
760
uint8_t ibps = ibs - SPA_BLKPTRSHIFT;
761
limit = P2ROUNDUP(dmu_prefetch_max, 1 << ibs) >> ibs;
762
if (limit == 0)
763
end2 = start2;
764
do {
765
level2++;
766
start2 = P2ROUNDUP(start2, 1 << ibps) >> ibps;
767
end2 = P2ROUNDUP(end2, 1 << ibps) >> ibps;
768
} while (end2 - start2 > limit);
769
} else {
770
/* There is only one block. Prefetch it or nothing. */
771
start = start2 = end2 = 0;
772
end = start + (level == 0 && offset < dn->dn_datablksz);
773
}
774
775
for (uint64_t i = start; i < end; i++)
776
dbuf_prefetch(dn, level, i, pri, 0);
777
for (uint64_t i = start2; i < end2; i++)
778
dbuf_prefetch(dn, level2, i, pri, 0);
779
rw_exit(&dn->dn_struct_rwlock);
780
}
781
782
typedef struct {
783
kmutex_t dpa_lock;
784
kcondvar_t dpa_cv;
785
uint64_t dpa_pending_io;
786
} dmu_prefetch_arg_t;
787
788
static void
789
dmu_prefetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t issued)
790
{
791
(void) level; (void) blkid; (void)issued;
792
dmu_prefetch_arg_t *dpa = arg;
793
794
ASSERT0(level);
795
796
mutex_enter(&dpa->dpa_lock);
797
ASSERT3U(dpa->dpa_pending_io, >, 0);
798
if (--dpa->dpa_pending_io == 0)
799
cv_broadcast(&dpa->dpa_cv);
800
mutex_exit(&dpa->dpa_lock);
801
}
802
803
static void
804
dmu_prefetch_wait_by_dnode(dnode_t *dn, uint64_t offset, uint64_t len)
805
{
806
dmu_prefetch_arg_t dpa;
807
808
mutex_init(&dpa.dpa_lock, NULL, MUTEX_DEFAULT, NULL);
809
cv_init(&dpa.dpa_cv, NULL, CV_DEFAULT, NULL);
810
811
rw_enter(&dn->dn_struct_rwlock, RW_READER);
812
813
uint64_t start = dbuf_whichblock(dn, 0, offset);
814
uint64_t end = dbuf_whichblock(dn, 0, offset + len - 1) + 1;
815
dpa.dpa_pending_io = end - start;
816
817
for (uint64_t blk = start; blk < end; blk++) {
818
(void) dbuf_prefetch_impl(dn, 0, blk, ZIO_PRIORITY_ASYNC_READ,
819
0, dmu_prefetch_done, &dpa);
820
}
821
822
rw_exit(&dn->dn_struct_rwlock);
823
824
/* wait for prefetch L0 reads to finish */
825
mutex_enter(&dpa.dpa_lock);
826
while (dpa.dpa_pending_io > 0) {
827
cv_wait(&dpa.dpa_cv, &dpa.dpa_lock);
828
829
}
830
mutex_exit(&dpa.dpa_lock);
831
832
mutex_destroy(&dpa.dpa_lock);
833
cv_destroy(&dpa.dpa_cv);
834
}
835
836
/*
837
* Issue prefetch I/Os for the given L0 block range and wait for the I/O
838
* to complete. This does not enforce dmu_prefetch_max and will prefetch
839
* the entire range. The blocks are read from disk into the ARC but no
840
* decompression occurs (i.e., the dbuf cache is not required).
841
*/
842
int
843
dmu_prefetch_wait(objset_t *os, uint64_t object, uint64_t offset, uint64_t size)
844
{
845
dnode_t *dn;
846
int err = 0;
847
848
err = dnode_hold(os, object, FTAG, &dn);
849
if (err != 0)
850
return (err);
851
852
/*
853
* Chunk the requests (16 indirects worth) so that we can be interrupted
854
*/
855
uint64_t chunksize;
856
if (dn->dn_indblkshift) {
857
uint64_t nbps = bp_span_in_blocks(dn->dn_indblkshift, 1);
858
chunksize = (nbps * 16) << dn->dn_datablkshift;
859
} else {
860
chunksize = dn->dn_datablksz;
861
}
862
863
while (size > 0) {
864
uint64_t mylen = MIN(size, chunksize);
865
866
dmu_prefetch_wait_by_dnode(dn, offset, mylen);
867
868
offset += mylen;
869
size -= mylen;
870
871
if (issig()) {
872
err = SET_ERROR(EINTR);
873
break;
874
}
875
}
876
877
dnode_rele(dn, FTAG);
878
879
return (err);
880
}
881
882
/*
883
* Issue prefetch I/Os for the given object's dnode.
884
*/
885
void
886
dmu_prefetch_dnode(objset_t *os, uint64_t object, zio_priority_t pri)
887
{
888
if (object == 0 || object >= DN_MAX_OBJECT)
889
return;
890
891
dnode_t *dn = DMU_META_DNODE(os);
892
rw_enter(&dn->dn_struct_rwlock, RW_READER);
893
uint64_t blkid = dbuf_whichblock(dn, 0, object * sizeof (dnode_phys_t));
894
dbuf_prefetch(dn, 0, blkid, pri, 0);
895
rw_exit(&dn->dn_struct_rwlock);
896
}
897
898
/*
899
* Get the next "chunk" of file data to free. We traverse the file from
900
* the end so that the file gets shorter over time (if we crash in the
901
* middle, this will leave us in a better state). We find allocated file
902
* data by simply searching the allocated level 1 indirects.
903
*
904
* On input, *start should be the first offset that does not need to be
905
* freed (e.g. "offset + length"). On return, *start will be the first
906
* offset that should be freed and l1blks is set to the number of level 1
907
* indirect blocks found within the chunk.
908
*/
909
static int
910
get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
911
{
912
uint64_t blks;
913
uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
914
/* bytes of data covered by a level-1 indirect block */
915
uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
916
EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
917
918
ASSERT3U(minimum, <=, *start);
919
920
/* dn_nlevels == 1 means we don't have any L1 blocks */
921
if (dn->dn_nlevels <= 1) {
922
*l1blks = 0;
923
*start = minimum;
924
return (0);
925
}
926
927
/*
928
* Check if we can free the entire range assuming that all of the
929
* L1 blocks in this range have data. If we can, we use this
930
* worst case value as an estimate so we can avoid having to look
931
* at the object's actual data.
932
*/
933
uint64_t total_l1blks =
934
(roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
935
iblkrange;
936
if (total_l1blks <= maxblks) {
937
*l1blks = total_l1blks;
938
*start = minimum;
939
return (0);
940
}
941
ASSERT(ISP2(iblkrange));
942
943
for (blks = 0; *start > minimum && blks < maxblks; blks++) {
944
int err;
945
946
/*
947
* dnode_next_offset(BACKWARDS) will find an allocated L1
948
* indirect block at or before the input offset. We must
949
* decrement *start so that it is at the end of the region
950
* to search.
951
*/
952
(*start)--;
953
954
err = dnode_next_offset(dn,
955
DNODE_FIND_BACKWARDS, start, 2, 1, 0);
956
957
/* if there are no indirect blocks before start, we are done */
958
if (err == ESRCH) {
959
*start = minimum;
960
break;
961
} else if (err != 0) {
962
*l1blks = blks;
963
return (err);
964
}
965
966
/* set start to the beginning of this L1 indirect */
967
*start = P2ALIGN_TYPED(*start, iblkrange, uint64_t);
968
}
969
if (*start < minimum)
970
*start = minimum;
971
*l1blks = blks;
972
973
return (0);
974
}
975
976
/*
977
* If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
978
* otherwise return false.
979
* Used below in dmu_free_long_range_impl() to enable abort when unmounting
980
*/
981
static boolean_t
982
dmu_objset_zfs_unmounting(objset_t *os)
983
{
984
#ifdef _KERNEL
985
if (dmu_objset_type(os) == DMU_OST_ZFS)
986
return (zfs_get_vfs_flag_unmounted(os));
987
#else
988
(void) os;
989
#endif
990
return (B_FALSE);
991
}
992
993
static int
994
dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
995
uint64_t length)
996
{
997
uint64_t object_size;
998
int err;
999
uint64_t dirty_frees_threshold;
1000
dsl_pool_t *dp = dmu_objset_pool(os);
1001
1002
if (dn == NULL)
1003
return (SET_ERROR(EINVAL));
1004
1005
object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1006
if (offset >= object_size)
1007
return (0);
1008
1009
if (zfs_per_txg_dirty_frees_percent <= 100)
1010
dirty_frees_threshold =
1011
zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
1012
else
1013
dirty_frees_threshold = zfs_dirty_data_max / 20;
1014
1015
if (length == DMU_OBJECT_END || offset + length > object_size)
1016
length = object_size - offset;
1017
1018
while (length != 0) {
1019
uint64_t chunk_end, chunk_begin, chunk_len;
1020
uint64_t l1blks;
1021
dmu_tx_t *tx;
1022
1023
if (dmu_objset_zfs_unmounting(dn->dn_objset))
1024
return (SET_ERROR(EINTR));
1025
1026
chunk_end = chunk_begin = offset + length;
1027
1028
/* move chunk_begin backwards to the beginning of this chunk */
1029
err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
1030
if (err)
1031
return (err);
1032
ASSERT3U(chunk_begin, >=, offset);
1033
ASSERT3U(chunk_begin, <=, chunk_end);
1034
1035
chunk_len = chunk_end - chunk_begin;
1036
1037
tx = dmu_tx_create(os);
1038
dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
1039
1040
/*
1041
* Mark this transaction as typically resulting in a net
1042
* reduction in space used.
1043
*/
1044
dmu_tx_mark_netfree(tx);
1045
err = dmu_tx_assign(tx, DMU_TX_WAIT);
1046
if (err) {
1047
dmu_tx_abort(tx);
1048
return (err);
1049
}
1050
1051
uint64_t txg = dmu_tx_get_txg(tx);
1052
1053
mutex_enter(&dp->dp_lock);
1054
uint64_t long_free_dirty =
1055
dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
1056
mutex_exit(&dp->dp_lock);
1057
1058
/*
1059
* To avoid filling up a TXG with just frees, wait for
1060
* the next TXG to open before freeing more chunks if
1061
* we have reached the threshold of frees.
1062
*/
1063
if (dirty_frees_threshold != 0 &&
1064
long_free_dirty >= dirty_frees_threshold) {
1065
DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
1066
dmu_tx_commit(tx);
1067
txg_wait_open(dp, 0, B_TRUE);
1068
continue;
1069
}
1070
1071
/*
1072
* In order to prevent unnecessary write throttling, for each
1073
* TXG, we track the cumulative size of L1 blocks being dirtied
1074
* in dnode_free_range() below. We compare this number to a
1075
* tunable threshold, past which we prevent new L1 dirty freeing
1076
* blocks from being added into the open TXG. See
1077
* dmu_free_long_range_impl() for details. The threshold
1078
* prevents write throttle activation due to dirty freeing L1
1079
* blocks taking up a large percentage of zfs_dirty_data_max.
1080
*/
1081
mutex_enter(&dp->dp_lock);
1082
dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
1083
l1blks << dn->dn_indblkshift;
1084
mutex_exit(&dp->dp_lock);
1085
DTRACE_PROBE3(free__long__range,
1086
uint64_t, long_free_dirty, uint64_t, chunk_len,
1087
uint64_t, txg);
1088
dnode_free_range(dn, chunk_begin, chunk_len, tx);
1089
1090
dmu_tx_commit(tx);
1091
1092
length -= chunk_len;
1093
}
1094
return (0);
1095
}
1096
1097
int
1098
dmu_free_long_range(objset_t *os, uint64_t object,
1099
uint64_t offset, uint64_t length)
1100
{
1101
dnode_t *dn;
1102
int err;
1103
1104
err = dnode_hold(os, object, FTAG, &dn);
1105
if (err != 0)
1106
return (err);
1107
err = dmu_free_long_range_impl(os, dn, offset, length);
1108
1109
/*
1110
* It is important to zero out the maxblkid when freeing the entire
1111
* file, so that (a) subsequent calls to dmu_free_long_range_impl()
1112
* will take the fast path, and (b) dnode_reallocate() can verify
1113
* that the entire file has been freed.
1114
*/
1115
if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
1116
dn->dn_maxblkid = 0;
1117
1118
dnode_rele(dn, FTAG);
1119
return (err);
1120
}
1121
1122
int
1123
dmu_free_long_object(objset_t *os, uint64_t object)
1124
{
1125
dmu_tx_t *tx;
1126
int err;
1127
1128
err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
1129
if (err != 0)
1130
return (err);
1131
1132
tx = dmu_tx_create(os);
1133
dmu_tx_hold_bonus(tx, object);
1134
dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1135
dmu_tx_mark_netfree(tx);
1136
err = dmu_tx_assign(tx, DMU_TX_WAIT);
1137
if (err == 0) {
1138
err = dmu_object_free(os, object, tx);
1139
dmu_tx_commit(tx);
1140
} else {
1141
dmu_tx_abort(tx);
1142
}
1143
1144
return (err);
1145
}
1146
1147
int
1148
dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
1149
uint64_t size, dmu_tx_t *tx)
1150
{
1151
dnode_t *dn;
1152
int err = dnode_hold(os, object, FTAG, &dn);
1153
if (err)
1154
return (err);
1155
ASSERT(offset < UINT64_MAX);
1156
ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
1157
dnode_free_range(dn, offset, size, tx);
1158
dnode_rele(dn, FTAG);
1159
return (0);
1160
}
1161
1162
static int
1163
dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1164
void *buf, dmu_flags_t flags)
1165
{
1166
dmu_buf_t **dbp;
1167
int numbufs, err = 0;
1168
1169
/*
1170
* Deal with odd block sizes, where there can't be data past the first
1171
* block. If we ever do the tail block optimization, we will need to
1172
* handle that here as well.
1173
*/
1174
if (dn->dn_maxblkid == 0) {
1175
uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1176
MIN(size, dn->dn_datablksz - offset);
1177
memset((char *)buf + newsz, 0, size - newsz);
1178
size = newsz;
1179
}
1180
1181
if (size == 0)
1182
return (0);
1183
1184
/* Allow Direct I/O when requested and properly aligned */
1185
if ((flags & DMU_DIRECTIO) && zfs_dio_page_aligned(buf) &&
1186
zfs_dio_aligned(offset, size, PAGESIZE)) {
1187
abd_t *data = abd_get_from_buf(buf, size);
1188
err = dmu_read_abd(dn, offset, size, data, flags);
1189
abd_free(data);
1190
return (err);
1191
}
1192
flags &= ~DMU_DIRECTIO;
1193
1194
while (size > 0) {
1195
uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1196
int i;
1197
1198
/*
1199
* NB: we could do this block-at-a-time, but it's nice
1200
* to be reading in parallel.
1201
*/
1202
err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1203
TRUE, FTAG, &numbufs, &dbp, flags);
1204
if (err)
1205
break;
1206
1207
for (i = 0; i < numbufs; i++) {
1208
uint64_t tocpy;
1209
int64_t bufoff;
1210
dmu_buf_t *db = dbp[i];
1211
1212
ASSERT(size > 0);
1213
1214
bufoff = offset - db->db_offset;
1215
tocpy = MIN(db->db_size - bufoff, size);
1216
1217
ASSERT(db->db_data != NULL);
1218
(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1219
1220
offset += tocpy;
1221
size -= tocpy;
1222
buf = (char *)buf + tocpy;
1223
}
1224
dmu_buf_rele_array(dbp, numbufs, FTAG);
1225
}
1226
return (err);
1227
}
1228
1229
int
1230
dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1231
void *buf, dmu_flags_t flags)
1232
{
1233
dnode_t *dn;
1234
int err;
1235
1236
err = dnode_hold(os, object, FTAG, &dn);
1237
if (err != 0)
1238
return (err);
1239
1240
err = dmu_read_impl(dn, offset, size, buf, flags);
1241
dnode_rele(dn, FTAG);
1242
return (err);
1243
}
1244
1245
int
1246
dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1247
dmu_flags_t flags)
1248
{
1249
return (dmu_read_impl(dn, offset, size, buf, flags));
1250
}
1251
1252
static void
1253
dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1254
const void *buf, dmu_tx_t *tx, dmu_flags_t flags)
1255
{
1256
int i;
1257
1258
for (i = 0; i < numbufs; i++) {
1259
uint64_t tocpy;
1260
int64_t bufoff;
1261
dmu_buf_t *db = dbp[i];
1262
1263
ASSERT(size > 0);
1264
1265
bufoff = offset - db->db_offset;
1266
tocpy = MIN(db->db_size - bufoff, size);
1267
1268
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1269
1270
if (tocpy == db->db_size) {
1271
dmu_buf_will_fill_flags(db, tx, B_FALSE, flags);
1272
} else {
1273
if (i == numbufs - 1 && bufoff + tocpy < db->db_size) {
1274
if (bufoff == 0)
1275
flags |= DMU_PARTIAL_FIRST;
1276
else
1277
flags |= DMU_PARTIAL_MORE;
1278
}
1279
dmu_buf_will_dirty_flags(db, tx, flags);
1280
}
1281
1282
ASSERT(db->db_data != NULL);
1283
(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1284
1285
if (tocpy == db->db_size)
1286
dmu_buf_fill_done(db, tx, B_FALSE);
1287
1288
offset += tocpy;
1289
size -= tocpy;
1290
buf = (char *)buf + tocpy;
1291
}
1292
}
1293
1294
void
1295
dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1296
const void *buf, dmu_tx_t *tx)
1297
{
1298
dmu_buf_t **dbp;
1299
int numbufs;
1300
1301
if (size == 0)
1302
return;
1303
1304
VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1305
FALSE, FTAG, &numbufs, &dbp));
1306
dmu_write_impl(dbp, numbufs, offset, size, buf, tx, DMU_READ_PREFETCH);
1307
dmu_buf_rele_array(dbp, numbufs, FTAG);
1308
}
1309
1310
int
1311
dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1312
const void *buf, dmu_tx_t *tx, dmu_flags_t flags)
1313
{
1314
dmu_buf_t **dbp;
1315
int numbufs;
1316
int error;
1317
1318
if (size == 0)
1319
return (0);
1320
1321
/* Allow Direct I/O when requested and properly aligned */
1322
if ((flags & DMU_DIRECTIO) && zfs_dio_page_aligned((void *)buf) &&
1323
zfs_dio_aligned(offset, size, dn->dn_datablksz)) {
1324
abd_t *data = abd_get_from_buf((void *)buf, size);
1325
error = dmu_write_abd(dn, offset, size, data, flags, tx);
1326
abd_free(data);
1327
return (error);
1328
}
1329
flags &= ~DMU_DIRECTIO;
1330
1331
VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1332
FALSE, FTAG, &numbufs, &dbp, flags));
1333
dmu_write_impl(dbp, numbufs, offset, size, buf, tx, flags);
1334
dmu_buf_rele_array(dbp, numbufs, FTAG);
1335
return (0);
1336
}
1337
1338
void
1339
dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1340
dmu_tx_t *tx)
1341
{
1342
dmu_buf_t **dbp;
1343
int numbufs, i;
1344
1345
if (size == 0)
1346
return;
1347
1348
VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1349
FALSE, FTAG, &numbufs, &dbp));
1350
1351
for (i = 0; i < numbufs; i++) {
1352
dmu_buf_t *db = dbp[i];
1353
1354
dmu_buf_will_not_fill(db, tx);
1355
}
1356
dmu_buf_rele_array(dbp, numbufs, FTAG);
1357
}
1358
1359
void
1360
dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1361
void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1362
int compressed_size, int byteorder, dmu_tx_t *tx)
1363
{
1364
dmu_buf_t *db;
1365
1366
ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1367
ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1368
VERIFY0(dmu_buf_hold_noread(os, object, offset,
1369
FTAG, &db));
1370
1371
dmu_buf_write_embedded(db,
1372
data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1373
uncompressed_size, compressed_size, byteorder, tx);
1374
1375
dmu_buf_rele(db, FTAG);
1376
}
1377
1378
void
1379
dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1380
dmu_tx_t *tx)
1381
{
1382
int numbufs, i;
1383
dmu_buf_t **dbp;
1384
1385
VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1386
&numbufs, &dbp));
1387
for (i = 0; i < numbufs; i++)
1388
dmu_buf_redact(dbp[i], tx);
1389
dmu_buf_rele_array(dbp, numbufs, FTAG);
1390
}
1391
1392
#ifdef _KERNEL
1393
int
1394
dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size,
1395
dmu_flags_t flags)
1396
{
1397
dmu_buf_t **dbp;
1398
int numbufs, i, err;
1399
1400
if ((flags & DMU_DIRECTIO) && (uio->uio_extflg & UIO_DIRECT))
1401
return (dmu_read_uio_direct(dn, uio, size, flags));
1402
flags &= ~DMU_DIRECTIO;
1403
1404
/*
1405
* NB: we could do this block-at-a-time, but it's nice
1406
* to be reading in parallel.
1407
*/
1408
err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1409
TRUE, FTAG, &numbufs, &dbp, flags);
1410
if (err)
1411
return (err);
1412
1413
for (i = 0; i < numbufs; i++) {
1414
uint64_t tocpy;
1415
int64_t bufoff;
1416
dmu_buf_t *db = dbp[i];
1417
1418
ASSERT(size > 0);
1419
1420
bufoff = zfs_uio_offset(uio) - db->db_offset;
1421
tocpy = MIN(db->db_size - bufoff, size);
1422
1423
ASSERT(db->db_data != NULL);
1424
err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1425
UIO_READ, uio);
1426
1427
if (err)
1428
break;
1429
1430
size -= tocpy;
1431
}
1432
dmu_buf_rele_array(dbp, numbufs, FTAG);
1433
1434
return (err);
1435
}
1436
1437
/*
1438
* Read 'size' bytes into the uio buffer.
1439
* From object zdb->db_object.
1440
* Starting at zfs_uio_offset(uio).
1441
*
1442
* If the caller already has a dbuf in the target object
1443
* (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1444
* because we don't have to find the dnode_t for the object.
1445
*/
1446
int
1447
dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1448
dmu_flags_t flags)
1449
{
1450
dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1451
int err;
1452
1453
if (size == 0)
1454
return (0);
1455
1456
DB_DNODE_ENTER(db);
1457
err = dmu_read_uio_dnode(DB_DNODE(db), uio, size, flags);
1458
DB_DNODE_EXIT(db);
1459
1460
return (err);
1461
}
1462
1463
/*
1464
* Read 'size' bytes into the uio buffer.
1465
* From the specified object
1466
* Starting at offset zfs_uio_offset(uio).
1467
*/
1468
int
1469
dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1470
dmu_flags_t flags)
1471
{
1472
dnode_t *dn;
1473
int err;
1474
1475
if (size == 0)
1476
return (0);
1477
1478
err = dnode_hold(os, object, FTAG, &dn);
1479
if (err)
1480
return (err);
1481
1482
err = dmu_read_uio_dnode(dn, uio, size, flags);
1483
1484
dnode_rele(dn, FTAG);
1485
1486
return (err);
1487
}
1488
1489
int
1490
dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx,
1491
dmu_flags_t flags)
1492
{
1493
dmu_buf_t **dbp;
1494
int numbufs;
1495
int err = 0;
1496
uint64_t write_size;
1497
dmu_flags_t oflags = flags;
1498
1499
top:
1500
write_size = size;
1501
1502
/*
1503
* We only allow Direct I/O writes to happen if we are block
1504
* sized aligned. Otherwise, we pass the write off to the ARC.
1505
*/
1506
if ((flags & DMU_DIRECTIO) && (uio->uio_extflg & UIO_DIRECT) &&
1507
(write_size >= dn->dn_datablksz)) {
1508
if (zfs_dio_aligned(zfs_uio_offset(uio), write_size,
1509
dn->dn_datablksz)) {
1510
return (dmu_write_uio_direct(dn, uio, size, flags, tx));
1511
} else if (write_size > dn->dn_datablksz &&
1512
zfs_dio_offset_aligned(zfs_uio_offset(uio),
1513
dn->dn_datablksz)) {
1514
write_size =
1515
dn->dn_datablksz * (write_size / dn->dn_datablksz);
1516
err = dmu_write_uio_direct(dn, uio, write_size, flags,
1517
tx);
1518
if (err == 0) {
1519
size -= write_size;
1520
goto top;
1521
} else {
1522
return (err);
1523
}
1524
} else {
1525
write_size =
1526
P2PHASE(zfs_uio_offset(uio), dn->dn_datablksz);
1527
}
1528
}
1529
flags &= ~DMU_DIRECTIO;
1530
1531
err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), write_size,
1532
FALSE, FTAG, &numbufs, &dbp, flags);
1533
if (err)
1534
return (err);
1535
1536
for (int i = 0; i < numbufs; i++) {
1537
uint64_t tocpy;
1538
int64_t bufoff;
1539
dmu_buf_t *db = dbp[i];
1540
1541
ASSERT(write_size > 0);
1542
1543
offset_t off = zfs_uio_offset(uio);
1544
bufoff = off - db->db_offset;
1545
tocpy = MIN(db->db_size - bufoff, write_size);
1546
1547
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1548
1549
if (tocpy == db->db_size) {
1550
dmu_buf_will_fill_flags(db, tx, B_TRUE, flags);
1551
} else {
1552
if (i == numbufs - 1 && bufoff + tocpy < db->db_size) {
1553
if (bufoff == 0)
1554
flags |= DMU_PARTIAL_FIRST;
1555
else
1556
flags |= DMU_PARTIAL_MORE;
1557
}
1558
dmu_buf_will_dirty_flags(db, tx, flags);
1559
}
1560
1561
ASSERT(db->db_data != NULL);
1562
err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1563
tocpy, UIO_WRITE, uio);
1564
1565
if (tocpy == db->db_size && dmu_buf_fill_done(db, tx, err)) {
1566
/* The fill was reverted. Undo any uio progress. */
1567
zfs_uio_advance(uio, off - zfs_uio_offset(uio));
1568
}
1569
1570
if (err)
1571
break;
1572
1573
write_size -= tocpy;
1574
size -= tocpy;
1575
}
1576
1577
IMPLY(err == 0, write_size == 0);
1578
1579
dmu_buf_rele_array(dbp, numbufs, FTAG);
1580
1581
if ((oflags & DMU_DIRECTIO) && (uio->uio_extflg & UIO_DIRECT) &&
1582
err == 0 && size > 0) {
1583
flags = oflags;
1584
goto top;
1585
}
1586
IMPLY(err == 0, size == 0);
1587
1588
return (err);
1589
}
1590
1591
/*
1592
* Write 'size' bytes from the uio buffer.
1593
* To object zdb->db_object.
1594
* Starting at offset zfs_uio_offset(uio).
1595
*
1596
* If the caller already has a dbuf in the target object
1597
* (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1598
* because we don't have to find the dnode_t for the object.
1599
*/
1600
int
1601
dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1602
dmu_tx_t *tx, dmu_flags_t flags)
1603
{
1604
dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1605
int err;
1606
1607
if (size == 0)
1608
return (0);
1609
1610
DB_DNODE_ENTER(db);
1611
err = dmu_write_uio_dnode(DB_DNODE(db), uio, size, tx, flags);
1612
DB_DNODE_EXIT(db);
1613
1614
return (err);
1615
}
1616
1617
/*
1618
* Write 'size' bytes from the uio buffer.
1619
* To the specified object.
1620
* Starting at offset zfs_uio_offset(uio).
1621
*/
1622
int
1623
dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1624
dmu_tx_t *tx, dmu_flags_t flags)
1625
{
1626
dnode_t *dn;
1627
int err;
1628
1629
if (size == 0)
1630
return (0);
1631
1632
err = dnode_hold(os, object, FTAG, &dn);
1633
if (err)
1634
return (err);
1635
1636
err = dmu_write_uio_dnode(dn, uio, size, tx, flags);
1637
1638
dnode_rele(dn, FTAG);
1639
1640
return (err);
1641
}
1642
#endif /* _KERNEL */
1643
1644
static void
1645
dmu_cached_bps(spa_t *spa, blkptr_t *bps, uint_t nbps,
1646
uint64_t *l1sz, uint64_t *l2sz)
1647
{
1648
int cached_flags;
1649
1650
if (bps == NULL)
1651
return;
1652
1653
for (size_t blk_off = 0; blk_off < nbps; blk_off++) {
1654
blkptr_t *bp = &bps[blk_off];
1655
1656
if (BP_IS_HOLE(bp))
1657
continue;
1658
1659
cached_flags = arc_cached(spa, bp);
1660
if (cached_flags == 0)
1661
continue;
1662
1663
if ((cached_flags & (ARC_CACHED_IN_L1 | ARC_CACHED_IN_L2)) ==
1664
ARC_CACHED_IN_L2)
1665
*l2sz += BP_GET_LSIZE(bp);
1666
else
1667
*l1sz += BP_GET_LSIZE(bp);
1668
}
1669
}
1670
1671
/*
1672
* Estimate DMU object cached size.
1673
*/
1674
int
1675
dmu_object_cached_size(objset_t *os, uint64_t object,
1676
uint64_t *l1sz, uint64_t *l2sz)
1677
{
1678
dnode_t *dn;
1679
dmu_object_info_t doi;
1680
int err = 0;
1681
1682
*l1sz = *l2sz = 0;
1683
1684
if (dnode_hold(os, object, FTAG, &dn) != 0)
1685
return (0);
1686
1687
if (dn->dn_nlevels < 2) {
1688
dnode_rele(dn, FTAG);
1689
return (0);
1690
}
1691
1692
dmu_object_info_from_dnode(dn, &doi);
1693
1694
for (uint64_t off = 0; off < doi.doi_max_offset &&
1695
dmu_prefetch_max > 0; off += dmu_prefetch_max) {
1696
/* dbuf_read doesn't prefetch L1 blocks. */
1697
dmu_prefetch_by_dnode(dn, 1, off,
1698
dmu_prefetch_max, ZIO_PRIORITY_SYNC_READ);
1699
}
1700
1701
/*
1702
* Hold all valid L1 blocks, asking ARC the status of each BP
1703
* contained in each such L1 block.
1704
*/
1705
uint_t nbps = bp_span_in_blocks(dn->dn_indblkshift, 1);
1706
uint64_t l1blks = 1 + (dn->dn_maxblkid / nbps);
1707
1708
rw_enter(&dn->dn_struct_rwlock, RW_READER);
1709
for (uint64_t blk = 0; blk < l1blks; blk++) {
1710
dmu_buf_impl_t *db = NULL;
1711
1712
if (issig()) {
1713
/*
1714
* On interrupt, get out, and bubble up EINTR
1715
*/
1716
err = EINTR;
1717
break;
1718
}
1719
1720
/*
1721
* If we get an i/o error here, the L1 can't be read,
1722
* and nothing under it could be cached, so we just
1723
* continue. Ignoring the error from dbuf_hold_impl
1724
* or from dbuf_read is then a reasonable choice.
1725
*/
1726
err = dbuf_hold_impl(dn, 1, blk, B_TRUE, B_FALSE, FTAG, &db);
1727
if (err != 0) {
1728
/*
1729
* ignore error and continue
1730
*/
1731
err = 0;
1732
continue;
1733
}
1734
1735
err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1736
if (err == 0) {
1737
dmu_cached_bps(dmu_objset_spa(os), db->db.db_data,
1738
nbps, l1sz, l2sz);
1739
}
1740
/*
1741
* error may be ignored, and we continue
1742
*/
1743
err = 0;
1744
dbuf_rele(db, FTAG);
1745
}
1746
rw_exit(&dn->dn_struct_rwlock);
1747
1748
dnode_rele(dn, FTAG);
1749
return (err);
1750
}
1751
1752
/*
1753
* Allocate a loaned anonymous arc buffer.
1754
*/
1755
arc_buf_t *
1756
dmu_request_arcbuf(dmu_buf_t *handle, int size)
1757
{
1758
dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1759
1760
return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1761
}
1762
1763
/*
1764
* Free a loaned arc buffer.
1765
*/
1766
void
1767
dmu_return_arcbuf(arc_buf_t *buf)
1768
{
1769
arc_return_buf(buf, FTAG);
1770
arc_buf_destroy(buf, FTAG);
1771
}
1772
1773
/*
1774
* A "lightweight" write is faster than a regular write (e.g.
1775
* dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1776
* CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the
1777
* data can not be read or overwritten until the transaction's txg has been
1778
* synced. This makes it appropriate for workloads that are known to be
1779
* (temporarily) write-only, like "zfs receive".
1780
*
1781
* A single block is written, starting at the specified offset in bytes. If
1782
* the call is successful, it returns 0 and the provided abd has been
1783
* consumed (the caller should not free it).
1784
*/
1785
int
1786
dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1787
const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
1788
{
1789
dbuf_dirty_record_t *dr =
1790
dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1791
if (dr == NULL)
1792
return (SET_ERROR(EIO));
1793
dr->dt.dll.dr_abd = abd;
1794
dr->dt.dll.dr_props = *zp;
1795
dr->dt.dll.dr_flags = flags;
1796
return (0);
1797
}
1798
1799
/*
1800
* When possible directly assign passed loaned arc buffer to a dbuf.
1801
* If this is not possible copy the contents of passed arc buf via
1802
* dmu_write().
1803
*/
1804
int
1805
dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1806
dmu_tx_t *tx, dmu_flags_t flags)
1807
{
1808
dmu_buf_impl_t *db;
1809
objset_t *os = dn->dn_objset;
1810
uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1811
uint64_t blkid;
1812
1813
rw_enter(&dn->dn_struct_rwlock, RW_READER);
1814
blkid = dbuf_whichblock(dn, 0, offset);
1815
db = dbuf_hold(dn, blkid, FTAG);
1816
rw_exit(&dn->dn_struct_rwlock);
1817
if (db == NULL)
1818
return (SET_ERROR(EIO));
1819
1820
/*
1821
* We can only assign if the offset is aligned and the arc buf is the
1822
* same size as the dbuf.
1823
*/
1824
if (offset == db->db.db_offset && blksz == db->db.db_size) {
1825
zfs_racct_write(os->os_spa, blksz, 1, flags);
1826
dbuf_assign_arcbuf(db, buf, tx, flags);
1827
dbuf_rele(db, FTAG);
1828
} else {
1829
/* compressed bufs must always be assignable to their dbuf */
1830
ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1831
ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1832
1833
dbuf_rele(db, FTAG);
1834
dmu_write_by_dnode(dn, offset, blksz, buf->b_data, tx, flags);
1835
dmu_return_arcbuf(buf);
1836
}
1837
1838
return (0);
1839
}
1840
1841
int
1842
dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1843
dmu_tx_t *tx, dmu_flags_t flags)
1844
{
1845
int err;
1846
dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1847
1848
DB_DNODE_ENTER(db);
1849
err = dmu_assign_arcbuf_by_dnode(DB_DNODE(db), offset, buf, tx, flags);
1850
DB_DNODE_EXIT(db);
1851
1852
return (err);
1853
}
1854
1855
void
1856
dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1857
{
1858
(void) buf;
1859
dmu_sync_arg_t *dsa = varg;
1860
1861
if (zio->io_error == 0) {
1862
dbuf_dirty_record_t *dr = dsa->dsa_dr;
1863
blkptr_t *bp = zio->io_bp;
1864
1865
if (BP_IS_HOLE(bp)) {
1866
dmu_buf_t *db = NULL;
1867
if (dr)
1868
db = &(dr->dr_dbuf->db);
1869
else
1870
db = dsa->dsa_zgd->zgd_db;
1871
/*
1872
* A block of zeros may compress to a hole, but the
1873
* block size still needs to be known for replay.
1874
*/
1875
BP_SET_LSIZE(bp, db->db_size);
1876
} else if (!BP_IS_EMBEDDED(bp)) {
1877
ASSERT0(BP_GET_LEVEL(bp));
1878
BP_SET_FILL(bp, 1);
1879
}
1880
}
1881
}
1882
1883
static void
1884
dmu_sync_late_arrival_ready(zio_t *zio)
1885
{
1886
dmu_sync_ready(zio, NULL, zio->io_private);
1887
}
1888
1889
void
1890
dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1891
{
1892
(void) buf;
1893
dmu_sync_arg_t *dsa = varg;
1894
dbuf_dirty_record_t *dr = dsa->dsa_dr;
1895
dmu_buf_impl_t *db = dr->dr_dbuf;
1896
zgd_t *zgd = dsa->dsa_zgd;
1897
1898
/*
1899
* Record the vdev(s) backing this blkptr so they can be flushed after
1900
* the writes for the lwb have completed.
1901
*/
1902
if (zgd && zio->io_error == 0) {
1903
zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1904
}
1905
1906
mutex_enter(&db->db_mtx);
1907
ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1908
if (zio->io_error == 0) {
1909
ASSERT0(dr->dt.dl.dr_has_raw_params);
1910
dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1911
if (dr->dt.dl.dr_nopwrite) {
1912
blkptr_t *bp = zio->io_bp;
1913
blkptr_t *bp_orig = &zio->io_bp_orig;
1914
uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1915
1916
ASSERT(BP_EQUAL(bp, bp_orig));
1917
VERIFY(BP_EQUAL(bp, db->db_blkptr));
1918
ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1919
VERIFY(zio_checksum_table[chksum].ci_flags &
1920
ZCHECKSUM_FLAG_NOPWRITE);
1921
}
1922
dr->dt.dl.dr_overridden_by = *zio->io_bp;
1923
dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1924
dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1925
dr->dt.dl.dr_gang_copies = zio->io_prop.zp_gang_copies;
1926
1927
/*
1928
* Old style holes are filled with all zeros, whereas
1929
* new-style holes maintain their lsize, type, level,
1930
* and birth time (see zio_write_compress). While we
1931
* need to reset the BP_SET_LSIZE() call that happened
1932
* in dmu_sync_ready for old style holes, we do *not*
1933
* want to wipe out the information contained in new
1934
* style holes. Thus, only zero out the block pointer if
1935
* it's an old style hole.
1936
*/
1937
if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1938
BP_GET_LOGICAL_BIRTH(&dr->dt.dl.dr_overridden_by) == 0)
1939
BP_ZERO(&dr->dt.dl.dr_overridden_by);
1940
} else {
1941
dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1942
}
1943
1944
cv_broadcast(&db->db_changed);
1945
mutex_exit(&db->db_mtx);
1946
1947
if (dsa->dsa_done)
1948
dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1949
1950
kmem_free(dsa, sizeof (*dsa));
1951
}
1952
1953
static void
1954
dmu_sync_late_arrival_done(zio_t *zio)
1955
{
1956
blkptr_t *bp = zio->io_bp;
1957
dmu_sync_arg_t *dsa = zio->io_private;
1958
zgd_t *zgd = dsa->dsa_zgd;
1959
1960
if (zio->io_error == 0) {
1961
/*
1962
* Record the vdev(s) backing this blkptr so they can be
1963
* flushed after the writes for the lwb have completed.
1964
*/
1965
zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1966
1967
if (!BP_IS_HOLE(bp)) {
1968
blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1969
ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1970
ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1971
ASSERT(BP_GET_BIRTH(zio->io_bp) == zio->io_txg);
1972
ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1973
zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1974
}
1975
}
1976
1977
dmu_tx_commit(dsa->dsa_tx);
1978
1979
dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1980
1981
abd_free(zio->io_abd);
1982
kmem_free(dsa, sizeof (*dsa));
1983
}
1984
1985
static int
1986
dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1987
zio_prop_t *zp, zbookmark_phys_t *zb)
1988
{
1989
dmu_sync_arg_t *dsa;
1990
dmu_tx_t *tx;
1991
int error;
1992
1993
error = dbuf_read((dmu_buf_impl_t *)zgd->zgd_db, NULL,
1994
DB_RF_CANFAIL | DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING);
1995
if (error != 0)
1996
return (error);
1997
1998
tx = dmu_tx_create(os);
1999
dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
2000
/*
2001
* This transaction does not produce any dirty data or log blocks, so
2002
* it should not be throttled. All other cases wait for TXG sync, by
2003
* which time the log block we are writing will be obsolete, so we can
2004
* skip waiting and just return error here instead.
2005
*/
2006
if (dmu_tx_assign(tx, DMU_TX_NOWAIT | DMU_TX_NOTHROTTLE) != 0) {
2007
dmu_tx_abort(tx);
2008
/* Make zl_get_data do txg_waited_synced() */
2009
return (SET_ERROR(EIO));
2010
}
2011
2012
/*
2013
* In order to prevent the zgd's lwb from being free'd prior to
2014
* dmu_sync_late_arrival_done() being called, we have to ensure
2015
* the lwb's "max txg" takes this tx's txg into account.
2016
*/
2017
zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
2018
2019
dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2020
dsa->dsa_dr = NULL;
2021
dsa->dsa_done = done;
2022
dsa->dsa_zgd = zgd;
2023
dsa->dsa_tx = tx;
2024
2025
/*
2026
* Since we are currently syncing this txg, it's nontrivial to
2027
* determine what BP to nopwrite against, so we disable nopwrite.
2028
*
2029
* When syncing, the db_blkptr is initially the BP of the previous
2030
* txg. We can not nopwrite against it because it will be changed
2031
* (this is similar to the non-late-arrival case where the dbuf is
2032
* dirty in a future txg).
2033
*
2034
* Then dbuf_write_ready() sets bp_blkptr to the location we will write.
2035
* We can not nopwrite against it because although the BP will not
2036
* (typically) be changed, the data has not yet been persisted to this
2037
* location.
2038
*
2039
* Finally, when dbuf_write_done() is called, it is theoretically
2040
* possible to always nopwrite, because the data that was written in
2041
* this txg is the same data that we are trying to write. However we
2042
* would need to check that this dbuf is not dirty in any future
2043
* txg's (as we do in the normal dmu_sync() path). For simplicity, we
2044
* don't nopwrite in this case.
2045
*/
2046
zp->zp_nopwrite = B_FALSE;
2047
2048
zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
2049
abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
2050
zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
2051
dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done,
2052
dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
2053
2054
return (0);
2055
}
2056
2057
/*
2058
* Intent log support: sync the block associated with db to disk.
2059
* N.B. and XXX: the caller is responsible for making sure that the
2060
* data isn't changing while dmu_sync() is writing it.
2061
*
2062
* Return values:
2063
*
2064
* EEXIST: this txg has already been synced, so there's nothing to do.
2065
* The caller should not log the write.
2066
*
2067
* ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
2068
* The caller should not log the write.
2069
*
2070
* EALREADY: this block is already in the process of being synced.
2071
* The caller should track its progress (somehow).
2072
*
2073
* EIO: could not do the I/O.
2074
* The caller should do a txg_wait_synced().
2075
*
2076
* 0: the I/O has been initiated.
2077
* The caller should log this blkptr in the done callback.
2078
* It is possible that the I/O will fail, in which case
2079
* the error will be reported to the done callback and
2080
* propagated to pio from zio_done().
2081
*/
2082
int
2083
dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
2084
{
2085
dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
2086
objset_t *os = db->db_objset;
2087
dsl_dataset_t *ds = os->os_dsl_dataset;
2088
dbuf_dirty_record_t *dr, *dr_next;
2089
dmu_sync_arg_t *dsa;
2090
zbookmark_phys_t zb;
2091
zio_prop_t zp;
2092
2093
ASSERT(pio != NULL);
2094
ASSERT(txg != 0);
2095
2096
SET_BOOKMARK(&zb, ds->ds_object,
2097
db->db.db_object, db->db_level, db->db_blkid);
2098
2099
DB_DNODE_ENTER(db);
2100
dmu_write_policy(os, DB_DNODE(db), db->db_level, WP_DMU_SYNC, &zp);
2101
DB_DNODE_EXIT(db);
2102
2103
/*
2104
* If we're frozen (running ziltest), we always need to generate a bp.
2105
*/
2106
if (txg > spa_freeze_txg(os->os_spa))
2107
return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2108
2109
/*
2110
* Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
2111
* and us. If we determine that this txg is not yet syncing,
2112
* but it begins to sync a moment later, that's OK because the
2113
* sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
2114
*/
2115
mutex_enter(&db->db_mtx);
2116
2117
if (txg <= spa_last_synced_txg(os->os_spa)) {
2118
/*
2119
* This txg has already synced. There's nothing to do.
2120
*/
2121
mutex_exit(&db->db_mtx);
2122
return (SET_ERROR(EEXIST));
2123
}
2124
2125
if (txg <= spa_syncing_txg(os->os_spa)) {
2126
/*
2127
* This txg is currently syncing, so we can't mess with
2128
* the dirty record anymore; just write a new log block.
2129
*/
2130
mutex_exit(&db->db_mtx);
2131
return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2132
}
2133
2134
dr = dbuf_find_dirty_eq(db, txg);
2135
2136
if (dr == NULL) {
2137
/*
2138
* There's no dr for this dbuf, so it must have been freed.
2139
* There's no need to log writes to freed blocks, so we're done.
2140
*/
2141
mutex_exit(&db->db_mtx);
2142
return (SET_ERROR(ENOENT));
2143
}
2144
2145
dr_next = list_next(&db->db_dirty_records, dr);
2146
ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
2147
2148
if (db->db_blkptr != NULL) {
2149
/*
2150
* We need to fill in zgd_bp with the current blkptr so that
2151
* the nopwrite code can check if we're writing the same
2152
* data that's already on disk. We can only nopwrite if we
2153
* are sure that after making the copy, db_blkptr will not
2154
* change until our i/o completes. We ensure this by
2155
* holding the db_mtx, and only allowing nopwrite if the
2156
* block is not already dirty (see below). This is verified
2157
* by dmu_sync_done(), which VERIFYs that the db_blkptr has
2158
* not changed.
2159
*/
2160
*zgd->zgd_bp = *db->db_blkptr;
2161
}
2162
2163
/*
2164
* Assume the on-disk data is X, the current syncing data (in
2165
* txg - 1) is Y, and the current in-memory data is Z (currently
2166
* in dmu_sync).
2167
*
2168
* We usually want to perform a nopwrite if X and Z are the
2169
* same. However, if Y is different (i.e. the BP is going to
2170
* change before this write takes effect), then a nopwrite will
2171
* be incorrect - we would override with X, which could have
2172
* been freed when Y was written.
2173
*
2174
* (Note that this is not a concern when we are nop-writing from
2175
* syncing context, because X and Y must be identical, because
2176
* all previous txgs have been synced.)
2177
*
2178
* Therefore, we disable nopwrite if the current BP could change
2179
* before this TXG. There are two ways it could change: by
2180
* being dirty (dr_next is non-NULL), or by being freed
2181
* (dnode_block_freed()). This behavior is verified by
2182
* zio_done(), which VERIFYs that the override BP is identical
2183
* to the on-disk BP.
2184
*/
2185
if (dr_next != NULL) {
2186
zp.zp_nopwrite = B_FALSE;
2187
} else {
2188
DB_DNODE_ENTER(db);
2189
if (dnode_block_freed(DB_DNODE(db), db->db_blkid))
2190
zp.zp_nopwrite = B_FALSE;
2191
DB_DNODE_EXIT(db);
2192
}
2193
2194
ASSERT(dr->dr_txg == txg);
2195
if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
2196
dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2197
/*
2198
* We have already issued a sync write for this buffer,
2199
* or this buffer has already been synced. It could not
2200
* have been dirtied since, or we would have cleared the state.
2201
*/
2202
mutex_exit(&db->db_mtx);
2203
return (SET_ERROR(EALREADY));
2204
}
2205
2206
ASSERT0(dr->dt.dl.dr_has_raw_params);
2207
ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2208
dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
2209
mutex_exit(&db->db_mtx);
2210
2211
dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2212
dsa->dsa_dr = dr;
2213
dsa->dsa_done = done;
2214
dsa->dsa_zgd = zgd;
2215
dsa->dsa_tx = NULL;
2216
2217
zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
2218
dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db),
2219
dbuf_is_l2cacheable(db, NULL), &zp, dmu_sync_ready, NULL,
2220
dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL,
2221
&zb));
2222
2223
return (0);
2224
}
2225
2226
int
2227
dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2228
{
2229
dnode_t *dn;
2230
int err;
2231
2232
err = dnode_hold(os, object, FTAG, &dn);
2233
if (err)
2234
return (err);
2235
err = dnode_set_nlevels(dn, nlevels, tx);
2236
dnode_rele(dn, FTAG);
2237
return (err);
2238
}
2239
2240
int
2241
dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
2242
dmu_tx_t *tx)
2243
{
2244
dnode_t *dn;
2245
int err;
2246
2247
err = dnode_hold(os, object, FTAG, &dn);
2248
if (err)
2249
return (err);
2250
err = dnode_set_blksz(dn, size, ibs, tx);
2251
dnode_rele(dn, FTAG);
2252
return (err);
2253
}
2254
2255
int
2256
dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2257
dmu_tx_t *tx)
2258
{
2259
dnode_t *dn;
2260
int err;
2261
2262
err = dnode_hold(os, object, FTAG, &dn);
2263
if (err)
2264
return (err);
2265
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2266
dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
2267
rw_exit(&dn->dn_struct_rwlock);
2268
dnode_rele(dn, FTAG);
2269
return (0);
2270
}
2271
2272
void
2273
dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
2274
dmu_tx_t *tx)
2275
{
2276
dnode_t *dn;
2277
2278
/*
2279
* Send streams include each object's checksum function. This
2280
* check ensures that the receiving system can understand the
2281
* checksum function transmitted.
2282
*/
2283
ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2284
2285
VERIFY0(dnode_hold(os, object, FTAG, &dn));
2286
ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
2287
dn->dn_checksum = checksum;
2288
dnode_setdirty(dn, tx);
2289
dnode_rele(dn, FTAG);
2290
}
2291
2292
void
2293
dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
2294
dmu_tx_t *tx)
2295
{
2296
dnode_t *dn;
2297
2298
/*
2299
* Send streams include each object's compression function. This
2300
* check ensures that the receiving system can understand the
2301
* compression function transmitted.
2302
*/
2303
ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2304
2305
VERIFY0(dnode_hold(os, object, FTAG, &dn));
2306
dn->dn_compress = compress;
2307
dnode_setdirty(dn, tx);
2308
dnode_rele(dn, FTAG);
2309
}
2310
2311
/*
2312
* When the "redundant_metadata" property is set to "most", only indirect
2313
* blocks of this level and higher will have an additional ditto block.
2314
*/
2315
static const int zfs_redundant_metadata_most_ditto_level = 2;
2316
2317
void
2318
dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2319
{
2320
dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2321
boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2322
(wp & WP_SPILL));
2323
enum zio_checksum checksum = os->os_checksum;
2324
enum zio_compress compress = os->os_compress;
2325
uint8_t complevel = os->os_complevel;
2326
enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2327
boolean_t dedup = B_FALSE;
2328
boolean_t nopwrite = B_FALSE;
2329
boolean_t dedup_verify = os->os_dedup_verify;
2330
boolean_t encrypt = B_FALSE;
2331
int copies = os->os_copies;
2332
int gang_copies = os->os_copies;
2333
2334
/*
2335
* We maintain different write policies for each of the following
2336
* types of data:
2337
* 1. metadata
2338
* 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2339
* 3. all other level 0 blocks
2340
*/
2341
if (ismd) {
2342
/*
2343
* XXX -- we should design a compression algorithm
2344
* that specializes in arrays of bps.
2345
*/
2346
compress = zio_compress_select(os->os_spa,
2347
ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2348
2349
/*
2350
* Metadata always gets checksummed. If the data
2351
* checksum is multi-bit correctable, and it's not a
2352
* ZBT-style checksum, then it's suitable for metadata
2353
* as well. Otherwise, the metadata checksum defaults
2354
* to fletcher4.
2355
*/
2356
if (!(zio_checksum_table[checksum].ci_flags &
2357
ZCHECKSUM_FLAG_METADATA) ||
2358
(zio_checksum_table[checksum].ci_flags &
2359
ZCHECKSUM_FLAG_EMBEDDED))
2360
checksum = ZIO_CHECKSUM_FLETCHER_4;
2361
2362
switch (os->os_redundant_metadata) {
2363
case ZFS_REDUNDANT_METADATA_ALL:
2364
copies++;
2365
gang_copies++;
2366
break;
2367
case ZFS_REDUNDANT_METADATA_MOST:
2368
if (level >= zfs_redundant_metadata_most_ditto_level ||
2369
DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2370
copies++;
2371
if (level + 1 >=
2372
zfs_redundant_metadata_most_ditto_level ||
2373
DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2374
gang_copies++;
2375
break;
2376
case ZFS_REDUNDANT_METADATA_SOME:
2377
if (DMU_OT_IS_CRITICAL(type, level)) {
2378
copies++;
2379
gang_copies++;
2380
} else if (DMU_OT_IS_METADATA(type)) {
2381
gang_copies++;
2382
}
2383
break;
2384
case ZFS_REDUNDANT_METADATA_NONE:
2385
break;
2386
}
2387
2388
if (dmu_ddt_copies > 0) {
2389
/*
2390
* If this tunable is set, and this is a write for a
2391
* dedup entry store (zap or log), then we treat it
2392
* something like ZFS_REDUNDANT_METADATA_MOST on a
2393
* regular dataset: this many copies, and one more for
2394
* "higher" indirect blocks. This specific exception is
2395
* necessary because dedup objects are stored in the
2396
* MOS, which always has the highest possible copies.
2397
*/
2398
dmu_object_type_t stype =
2399
dn ? dn->dn_storage_type : DMU_OT_NONE;
2400
if (stype == DMU_OT_NONE)
2401
stype = type;
2402
if (stype == DMU_OT_DDT_ZAP) {
2403
copies = dmu_ddt_copies;
2404
if (level >=
2405
zfs_redundant_metadata_most_ditto_level)
2406
copies++;
2407
}
2408
}
2409
} else if (wp & WP_NOFILL) {
2410
ASSERT0(level);
2411
2412
/*
2413
* If we're writing preallocated blocks, we aren't actually
2414
* writing them so don't set any policy properties. These
2415
* blocks are currently only used by an external subsystem
2416
* outside of zfs (i.e. dump) and not written by the zio
2417
* pipeline.
2418
*/
2419
compress = ZIO_COMPRESS_OFF;
2420
checksum = ZIO_CHECKSUM_OFF;
2421
} else {
2422
compress = zio_compress_select(os->os_spa, dn->dn_compress,
2423
compress);
2424
complevel = zio_complevel_select(os->os_spa, compress,
2425
complevel, complevel);
2426
2427
/*
2428
* Storing many references to an all zeros block in the dedup
2429
* table would be expensive. Instead, if dedup is enabled,
2430
* store them as holes even if compression is not enabled.
2431
*/
2432
if (compress == ZIO_COMPRESS_OFF &&
2433
dedup_checksum != ZIO_CHECKSUM_OFF)
2434
compress = ZIO_COMPRESS_EMPTY;
2435
2436
checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2437
zio_checksum_select(dn->dn_checksum, checksum) :
2438
dedup_checksum;
2439
2440
/*
2441
* Determine dedup setting. If we are in dmu_sync(),
2442
* we won't actually dedup now because that's all
2443
* done in syncing context; but we do want to use the
2444
* dedup checksum. If the checksum is not strong
2445
* enough to ensure unique signatures, force
2446
* dedup_verify.
2447
*/
2448
if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2449
dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2450
if (!(zio_checksum_table[checksum].ci_flags &
2451
ZCHECKSUM_FLAG_DEDUP))
2452
dedup_verify = B_TRUE;
2453
}
2454
2455
/*
2456
* Enable nopwrite if we have secure enough checksum
2457
* algorithm (see comment in zio_nop_write) and
2458
* compression is enabled. We don't enable nopwrite if
2459
* dedup is enabled as the two features are mutually
2460
* exclusive.
2461
*/
2462
nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2463
ZCHECKSUM_FLAG_NOPWRITE) &&
2464
compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2465
2466
if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2467
(os->os_redundant_metadata ==
2468
ZFS_REDUNDANT_METADATA_MOST &&
2469
zfs_redundant_metadata_most_ditto_level <= 1))
2470
gang_copies++;
2471
}
2472
2473
/*
2474
* All objects in an encrypted objset are protected from modification
2475
* via a MAC. Encrypted objects store their IV and salt in the last DVA
2476
* in the bp, so we cannot use all copies. Encrypted objects are also
2477
* not subject to nopwrite since writing the same data will still
2478
* result in a new ciphertext. Only encrypted blocks can be dedup'd
2479
* to avoid ambiguity in the dedup code since the DDT does not store
2480
* object types.
2481
*/
2482
if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2483
encrypt = B_TRUE;
2484
2485
if (DMU_OT_IS_ENCRYPTED(type)) {
2486
copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2487
gang_copies = MIN(gang_copies, SPA_DVAS_PER_BP - 1);
2488
nopwrite = B_FALSE;
2489
} else {
2490
dedup = B_FALSE;
2491
}
2492
2493
if (level <= 0 &&
2494
(type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2495
compress = ZIO_COMPRESS_EMPTY;
2496
}
2497
}
2498
2499
zp->zp_compress = compress;
2500
zp->zp_complevel = complevel;
2501
zp->zp_checksum = checksum;
2502
zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2503
zp->zp_level = level;
2504
zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2505
zp->zp_gang_copies = MIN(MAX(gang_copies, copies),
2506
spa_max_replication(os->os_spa));
2507
zp->zp_dedup = dedup;
2508
zp->zp_dedup_verify = dedup && dedup_verify;
2509
zp->zp_nopwrite = nopwrite;
2510
zp->zp_encrypt = encrypt;
2511
zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2512
zp->zp_direct_write = (wp & WP_DIRECT_WR) ? B_TRUE : B_FALSE;
2513
zp->zp_rewrite = B_FALSE;
2514
memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2515
memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2516
memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2517
zp->zp_zpl_smallblk = (DMU_OT_IS_FILE(zp->zp_type) ||
2518
zp->zp_type == DMU_OT_ZVOL) ?
2519
os->os_zpl_special_smallblock : 0;
2520
zp->zp_storage_type = dn ? dn->dn_storage_type : DMU_OT_NONE;
2521
2522
ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2523
}
2524
2525
/*
2526
* Reports the location of data and holes in an object. In order to
2527
* accurately report holes all dirty data must be synced to disk. This
2528
* causes extremely poor performance when seeking for holes in a dirty file.
2529
* As a compromise, only provide hole data when the dnode is clean. When
2530
* a dnode is dirty report the dnode as having no holes by returning EBUSY
2531
* which is always safe to do.
2532
*/
2533
int
2534
dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2535
{
2536
dnode_t *dn;
2537
uint64_t txg, maxtxg = 0;
2538
int err;
2539
2540
restart:
2541
err = dnode_hold(os, object, FTAG, &dn);
2542
if (err)
2543
return (err);
2544
2545
rw_enter(&dn->dn_struct_rwlock, RW_READER);
2546
2547
if (dnode_is_dirty(dn)) {
2548
/*
2549
* If the zfs_dmu_offset_next_sync module option is enabled
2550
* then hole reporting has been requested. Dirty dnodes
2551
* must be synced to disk to accurately report holes.
2552
*
2553
* Provided a RL_READER rangelock spanning 0-UINT64_MAX is
2554
* held by the caller only limited restarts will be required.
2555
* We tolerate callers which do not hold the rangelock by
2556
* returning EBUSY and not reporting holes after at most
2557
* TXG_CONCURRENT_STATES (3) restarts.
2558
*/
2559
if (zfs_dmu_offset_next_sync) {
2560
rw_exit(&dn->dn_struct_rwlock);
2561
dnode_rele(dn, FTAG);
2562
2563
if (maxtxg == 0) {
2564
txg = spa_last_synced_txg(dmu_objset_spa(os));
2565
maxtxg = txg + TXG_CONCURRENT_STATES;
2566
} else if (txg >= maxtxg)
2567
return (SET_ERROR(EBUSY));
2568
2569
txg_wait_synced(dmu_objset_pool(os), ++txg);
2570
goto restart;
2571
}
2572
2573
err = SET_ERROR(EBUSY);
2574
} else {
2575
err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2576
(hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2577
}
2578
2579
rw_exit(&dn->dn_struct_rwlock);
2580
dnode_rele(dn, FTAG);
2581
2582
return (err);
2583
}
2584
2585
int
2586
dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2587
blkptr_t *bps, size_t *nbpsp)
2588
{
2589
dmu_buf_t **dbp, *dbuf;
2590
dmu_buf_impl_t *db;
2591
blkptr_t *bp;
2592
int error, numbufs;
2593
2594
error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2595
&numbufs, &dbp);
2596
if (error != 0) {
2597
if (error == ESRCH) {
2598
error = SET_ERROR(ENXIO);
2599
}
2600
return (error);
2601
}
2602
2603
ASSERT3U(numbufs, <=, *nbpsp);
2604
2605
for (int i = 0; i < numbufs; i++) {
2606
dbuf = dbp[i];
2607
db = (dmu_buf_impl_t *)dbuf;
2608
2609
mutex_enter(&db->db_mtx);
2610
2611
if (!list_is_empty(&db->db_dirty_records)) {
2612
dbuf_dirty_record_t *dr;
2613
2614
dr = list_head(&db->db_dirty_records);
2615
if (dr->dt.dl.dr_brtwrite) {
2616
/*
2617
* This is very special case where we clone a
2618
* block and in the same transaction group we
2619
* read its BP (most likely to clone the clone).
2620
*/
2621
bp = &dr->dt.dl.dr_overridden_by;
2622
} else {
2623
/*
2624
* The block was modified in the same
2625
* transaction group.
2626
*/
2627
mutex_exit(&db->db_mtx);
2628
error = SET_ERROR(EAGAIN);
2629
goto out;
2630
}
2631
} else {
2632
bp = db->db_blkptr;
2633
}
2634
2635
mutex_exit(&db->db_mtx);
2636
2637
if (bp == NULL) {
2638
/*
2639
* The file size was increased, but the block was never
2640
* written, otherwise we would either have the block
2641
* pointer or the dirty record and would not get here.
2642
* It is effectively a hole, so report it as such.
2643
*/
2644
BP_ZERO(&bps[i]);
2645
continue;
2646
}
2647
/*
2648
* Make sure we clone only data blocks.
2649
*/
2650
if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) {
2651
error = SET_ERROR(EINVAL);
2652
goto out;
2653
}
2654
2655
/*
2656
* If the block was allocated in transaction group that is not
2657
* yet synced, we could clone it, but we couldn't write this
2658
* operation into ZIL, or it may be impossible to replay, since
2659
* the block may appear not yet allocated at that point.
2660
*/
2661
if (BP_GET_PHYSICAL_BIRTH(bp) > spa_freeze_txg(os->os_spa)) {
2662
error = SET_ERROR(EINVAL);
2663
goto out;
2664
}
2665
if (BP_GET_PHYSICAL_BIRTH(bp) >
2666
spa_last_synced_txg(os->os_spa)) {
2667
error = SET_ERROR(EAGAIN);
2668
goto out;
2669
}
2670
2671
bps[i] = *bp;
2672
}
2673
2674
*nbpsp = numbufs;
2675
out:
2676
dmu_buf_rele_array(dbp, numbufs, FTAG);
2677
2678
return (error);
2679
}
2680
2681
int
2682
dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2683
dmu_tx_t *tx, const blkptr_t *bps, size_t nbps)
2684
{
2685
spa_t *spa;
2686
dmu_buf_t **dbp, *dbuf;
2687
dmu_buf_impl_t *db;
2688
struct dirty_leaf *dl;
2689
dbuf_dirty_record_t *dr;
2690
const blkptr_t *bp;
2691
int error = 0, i, numbufs;
2692
2693
spa = os->os_spa;
2694
2695
VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2696
&numbufs, &dbp));
2697
ASSERT3U(nbps, ==, numbufs);
2698
2699
/*
2700
* Before we start cloning make sure that the dbufs sizes match new BPs
2701
* sizes. If they don't, that's a no-go, as we are not able to shrink
2702
* dbufs.
2703
*/
2704
for (i = 0; i < numbufs; i++) {
2705
dbuf = dbp[i];
2706
db = (dmu_buf_impl_t *)dbuf;
2707
bp = &bps[i];
2708
2709
ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT);
2710
ASSERT0(db->db_level);
2711
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2712
ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2713
2714
if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) {
2715
error = SET_ERROR(EXDEV);
2716
goto out;
2717
}
2718
}
2719
2720
for (i = 0; i < numbufs; i++) {
2721
dbuf = dbp[i];
2722
db = (dmu_buf_impl_t *)dbuf;
2723
bp = &bps[i];
2724
2725
dmu_buf_will_clone_or_dio(dbuf, tx);
2726
2727
mutex_enter(&db->db_mtx);
2728
2729
dr = list_head(&db->db_dirty_records);
2730
VERIFY(dr != NULL);
2731
ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2732
dl = &dr->dt.dl;
2733
ASSERT0(dl->dr_has_raw_params);
2734
dl->dr_overridden_by = *bp;
2735
if (!BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) != 0) {
2736
if (!BP_IS_EMBEDDED(bp)) {
2737
BP_SET_BIRTH(&dl->dr_overridden_by, dr->dr_txg,
2738
BP_GET_PHYSICAL_BIRTH(bp));
2739
BP_SET_REWRITE(&dl->dr_overridden_by, 0);
2740
} else {
2741
BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by,
2742
dr->dr_txg);
2743
}
2744
}
2745
dl->dr_brtwrite = B_TRUE;
2746
dl->dr_override_state = DR_OVERRIDDEN;
2747
2748
mutex_exit(&db->db_mtx);
2749
2750
/*
2751
* When data in embedded into BP there is no need to create
2752
* BRT entry as there is no data block. Just copy the BP as
2753
* it contains the data.
2754
*/
2755
if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2756
brt_pending_add(spa, bp, tx);
2757
}
2758
}
2759
out:
2760
dmu_buf_rele_array(dbp, numbufs, FTAG);
2761
2762
return (error);
2763
}
2764
2765
void
2766
__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2767
{
2768
dnode_phys_t *dnp = dn->dn_phys;
2769
2770
doi->doi_data_block_size = dn->dn_datablksz;
2771
doi->doi_metadata_block_size = dn->dn_indblkshift ?
2772
1ULL << dn->dn_indblkshift : 0;
2773
doi->doi_type = dn->dn_type;
2774
doi->doi_bonus_type = dn->dn_bonustype;
2775
doi->doi_bonus_size = dn->dn_bonuslen;
2776
doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2777
doi->doi_indirection = dn->dn_nlevels;
2778
doi->doi_checksum = dn->dn_checksum;
2779
doi->doi_compress = dn->dn_compress;
2780
doi->doi_nblkptr = dn->dn_nblkptr;
2781
doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2782
doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2783
doi->doi_fill_count = 0;
2784
for (int i = 0; i < dnp->dn_nblkptr; i++)
2785
doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2786
}
2787
2788
void
2789
dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2790
{
2791
rw_enter(&dn->dn_struct_rwlock, RW_READER);
2792
mutex_enter(&dn->dn_mtx);
2793
2794
__dmu_object_info_from_dnode(dn, doi);
2795
2796
mutex_exit(&dn->dn_mtx);
2797
rw_exit(&dn->dn_struct_rwlock);
2798
}
2799
2800
/*
2801
* Get information on a DMU object.
2802
* If doi is NULL, just indicates whether the object exists.
2803
*/
2804
int
2805
dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2806
{
2807
dnode_t *dn;
2808
int err = dnode_hold(os, object, FTAG, &dn);
2809
2810
if (err)
2811
return (err);
2812
2813
if (doi != NULL)
2814
dmu_object_info_from_dnode(dn, doi);
2815
2816
dnode_rele(dn, FTAG);
2817
return (0);
2818
}
2819
2820
/*
2821
* As above, but faster; can be used when you have a held dbuf in hand.
2822
*/
2823
void
2824
dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2825
{
2826
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2827
2828
DB_DNODE_ENTER(db);
2829
dmu_object_info_from_dnode(DB_DNODE(db), doi);
2830
DB_DNODE_EXIT(db);
2831
}
2832
2833
/*
2834
* Faster still when you only care about the size.
2835
*/
2836
void
2837
dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2838
u_longlong_t *nblk512)
2839
{
2840
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2841
dnode_t *dn;
2842
2843
DB_DNODE_ENTER(db);
2844
dn = DB_DNODE(db);
2845
2846
*blksize = dn->dn_datablksz;
2847
/* add in number of slots used for the dnode itself */
2848
*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2849
SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2850
DB_DNODE_EXIT(db);
2851
}
2852
2853
void
2854
dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2855
{
2856
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2857
2858
DB_DNODE_ENTER(db);
2859
*dnsize = DB_DNODE(db)->dn_num_slots << DNODE_SHIFT;
2860
DB_DNODE_EXIT(db);
2861
}
2862
2863
void
2864
byteswap_uint64_array(void *vbuf, size_t size)
2865
{
2866
uint64_t *buf = vbuf;
2867
size_t count = size >> 3;
2868
int i;
2869
2870
ASSERT0((size & 7));
2871
2872
for (i = 0; i < count; i++)
2873
buf[i] = BSWAP_64(buf[i]);
2874
}
2875
2876
void
2877
byteswap_uint32_array(void *vbuf, size_t size)
2878
{
2879
uint32_t *buf = vbuf;
2880
size_t count = size >> 2;
2881
int i;
2882
2883
ASSERT0((size & 3));
2884
2885
for (i = 0; i < count; i++)
2886
buf[i] = BSWAP_32(buf[i]);
2887
}
2888
2889
void
2890
byteswap_uint16_array(void *vbuf, size_t size)
2891
{
2892
uint16_t *buf = vbuf;
2893
size_t count = size >> 1;
2894
int i;
2895
2896
ASSERT0((size & 1));
2897
2898
for (i = 0; i < count; i++)
2899
buf[i] = BSWAP_16(buf[i]);
2900
}
2901
2902
void
2903
byteswap_uint8_array(void *vbuf, size_t size)
2904
{
2905
(void) vbuf, (void) size;
2906
}
2907
2908
void
2909
dmu_init(void)
2910
{
2911
abd_init();
2912
zfs_dbgmsg_init();
2913
sa_cache_init();
2914
dmu_objset_init();
2915
dnode_init();
2916
zfetch_init();
2917
dmu_tx_init();
2918
l2arc_init();
2919
arc_init();
2920
dbuf_init();
2921
}
2922
2923
void
2924
dmu_fini(void)
2925
{
2926
arc_fini(); /* arc depends on l2arc, so arc must go first */
2927
l2arc_fini();
2928
dmu_tx_fini();
2929
zfetch_fini();
2930
dbuf_fini();
2931
dnode_fini();
2932
dmu_objset_fini();
2933
sa_cache_fini();
2934
zfs_dbgmsg_fini();
2935
abd_fini();
2936
}
2937
2938
EXPORT_SYMBOL(dmu_bonus_hold);
2939
EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2940
EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2941
EXPORT_SYMBOL(dmu_buf_rele_array);
2942
EXPORT_SYMBOL(dmu_prefetch);
2943
EXPORT_SYMBOL(dmu_prefetch_by_dnode);
2944
EXPORT_SYMBOL(dmu_prefetch_dnode);
2945
EXPORT_SYMBOL(dmu_free_range);
2946
EXPORT_SYMBOL(dmu_free_long_range);
2947
EXPORT_SYMBOL(dmu_free_long_object);
2948
EXPORT_SYMBOL(dmu_read);
2949
EXPORT_SYMBOL(dmu_read_by_dnode);
2950
EXPORT_SYMBOL(dmu_read_uio);
2951
EXPORT_SYMBOL(dmu_read_uio_dbuf);
2952
EXPORT_SYMBOL(dmu_read_uio_dnode);
2953
EXPORT_SYMBOL(dmu_write);
2954
EXPORT_SYMBOL(dmu_write_by_dnode);
2955
EXPORT_SYMBOL(dmu_write_uio);
2956
EXPORT_SYMBOL(dmu_write_uio_dbuf);
2957
EXPORT_SYMBOL(dmu_write_uio_dnode);
2958
EXPORT_SYMBOL(dmu_prealloc);
2959
EXPORT_SYMBOL(dmu_object_info);
2960
EXPORT_SYMBOL(dmu_object_info_from_dnode);
2961
EXPORT_SYMBOL(dmu_object_info_from_db);
2962
EXPORT_SYMBOL(dmu_object_size_from_db);
2963
EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2964
EXPORT_SYMBOL(dmu_object_set_nlevels);
2965
EXPORT_SYMBOL(dmu_object_set_blocksize);
2966
EXPORT_SYMBOL(dmu_object_set_maxblkid);
2967
EXPORT_SYMBOL(dmu_object_set_checksum);
2968
EXPORT_SYMBOL(dmu_object_set_compress);
2969
EXPORT_SYMBOL(dmu_offset_next);
2970
EXPORT_SYMBOL(dmu_write_policy);
2971
EXPORT_SYMBOL(dmu_sync);
2972
EXPORT_SYMBOL(dmu_request_arcbuf);
2973
EXPORT_SYMBOL(dmu_return_arcbuf);
2974
EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2975
EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2976
EXPORT_SYMBOL(dmu_buf_hold);
2977
EXPORT_SYMBOL(dmu_ot);
2978
2979
ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2980
"Enable NOP writes");
2981
2982
ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
2983
"Percentage of dirtied blocks from frees in one TXG");
2984
2985
ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2986
"Enable forcing txg sync to find holes");
2987
2988
ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
2989
"Limit one prefetch call to this size");
2990
2991
ZFS_MODULE_PARAM(zfs, , dmu_ddt_copies, UINT, ZMOD_RW,
2992
"Override copies= for dedup objects");
2993
2994