Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zfs/dmu.c
107787 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
/*
23
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
27
* Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
28
* Copyright (c) 2015 by Chunwei Chen. All rights reserved.
29
* Copyright (c) 2019 Datto Inc.
30
* Copyright (c) 2019, 2023, Klara Inc.
31
* Copyright (c) 2019, Allan Jude
32
* Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
33
* Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
34
*/
35
36
#include <sys/dmu.h>
37
#include <sys/dmu_impl.h>
38
#include <sys/dmu_tx.h>
39
#include <sys/dbuf.h>
40
#include <sys/dnode.h>
41
#include <sys/zfs_context.h>
42
#include <sys/dmu_objset.h>
43
#include <sys/dmu_traverse.h>
44
#include <sys/dsl_dataset.h>
45
#include <sys/dsl_dir.h>
46
#include <sys/dsl_pool.h>
47
#include <sys/dsl_synctask.h>
48
#include <sys/dsl_prop.h>
49
#include <sys/dmu_zfetch.h>
50
#include <sys/zfs_ioctl.h>
51
#include <sys/zap.h>
52
#include <sys/zio_checksum.h>
53
#include <sys/zio_compress.h>
54
#include <sys/sa.h>
55
#include <sys/zfeature.h>
56
#include <sys/abd.h>
57
#include <sys/brt.h>
58
#include <sys/trace_zfs.h>
59
#include <sys/zfs_racct.h>
60
#include <sys/zfs_rlock.h>
61
#ifdef _KERNEL
62
#include <sys/vmsystm.h>
63
#include <sys/zfs_znode.h>
64
#endif
65
66
/*
67
* Enable/disable nopwrite feature.
68
*/
69
static int zfs_nopwrite_enabled = 1;
70
71
/*
72
* Tunable to control percentage of dirtied L1 blocks from frees allowed into
73
* one TXG. After this threshold is crossed, additional dirty blocks from frees
74
* will wait until the next TXG.
75
* A value of zero will disable this throttle.
76
*/
77
static uint_t zfs_per_txg_dirty_frees_percent = 30;
78
79
/*
80
* Enable/disable forcing txg sync when dirty checking for holes with lseek().
81
* By default this is enabled to ensure accurate hole reporting, it can result
82
* in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
83
* Disabling this option will result in holes never being reported in dirty
84
* files which is always safe.
85
*/
86
static int zfs_dmu_offset_next_sync = 1;
87
88
/*
89
* Limit the amount we can prefetch with one call to this amount. This
90
* helps to limit the amount of memory that can be used by prefetching.
91
* Larger objects should be prefetched a bit at a time.
92
*/
93
#ifdef _ILP32
94
uint_t dmu_prefetch_max = 8 * 1024 * 1024;
95
#else
96
uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
97
#endif
98
99
/*
100
* Override copies= for dedup state objects. 0 means the traditional behaviour
101
* (ie the default for the containing objset ie 3 for the MOS).
102
*/
103
uint_t dmu_ddt_copies = 0;
104
105
const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
106
{DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
107
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
108
{DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
109
{DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
110
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
111
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
112
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
113
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
114
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
115
{DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
116
{DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
117
{DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
118
{DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
119
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"},
120
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
121
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
122
{DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
123
{DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
124
{DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
125
{DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
126
{DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
127
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
128
{DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
129
{DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
130
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
131
{DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
132
{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
133
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
134
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
135
{DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
136
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
137
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
138
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
139
{DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
140
{DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
141
{DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
142
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
143
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"},
144
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
145
{DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" },
146
{DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"},
147
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"},
148
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
149
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
150
{DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
151
{DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
152
{DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
153
{DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
154
{DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
155
{DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
156
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
157
{DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
158
{DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
159
{DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
160
};
161
162
dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
163
{ byteswap_uint8_array, "uint8" },
164
{ byteswap_uint16_array, "uint16" },
165
{ byteswap_uint32_array, "uint32" },
166
{ byteswap_uint64_array, "uint64" },
167
{ zap_byteswap, "zap" },
168
{ dnode_buf_byteswap, "dnode" },
169
{ dmu_objset_byteswap, "objset" },
170
{ zfs_znode_byteswap, "znode" },
171
{ zfs_oldacl_byteswap, "oldacl" },
172
{ zfs_acl_byteswap, "acl" }
173
};
174
175
int
176
dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
177
const void *tag, dmu_buf_t **dbp)
178
{
179
uint64_t blkid;
180
dmu_buf_impl_t *db;
181
182
rw_enter(&dn->dn_struct_rwlock, RW_READER);
183
blkid = dbuf_whichblock(dn, 0, offset);
184
db = dbuf_hold(dn, blkid, tag);
185
rw_exit(&dn->dn_struct_rwlock);
186
187
if (db == NULL) {
188
*dbp = NULL;
189
return (SET_ERROR(EIO));
190
}
191
192
*dbp = &db->db;
193
return (0);
194
}
195
196
int
197
dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
198
const void *tag, dmu_buf_t **dbp)
199
{
200
dnode_t *dn;
201
uint64_t blkid;
202
dmu_buf_impl_t *db;
203
int err;
204
205
err = dnode_hold(os, object, FTAG, &dn);
206
if (err)
207
return (err);
208
rw_enter(&dn->dn_struct_rwlock, RW_READER);
209
blkid = dbuf_whichblock(dn, 0, offset);
210
db = dbuf_hold(dn, blkid, tag);
211
rw_exit(&dn->dn_struct_rwlock);
212
dnode_rele(dn, FTAG);
213
214
if (db == NULL) {
215
*dbp = NULL;
216
return (SET_ERROR(EIO));
217
}
218
219
*dbp = &db->db;
220
return (err);
221
}
222
223
int
224
dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
225
const void *tag, dmu_buf_t **dbp, dmu_flags_t flags)
226
{
227
int err;
228
229
err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
230
if (err == 0) {
231
dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
232
err = dbuf_read(db, NULL, flags | DB_RF_CANFAIL);
233
if (err != 0) {
234
dbuf_rele(db, tag);
235
*dbp = NULL;
236
}
237
}
238
239
return (err);
240
}
241
242
int
243
dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
244
const void *tag, dmu_buf_t **dbp, dmu_flags_t flags)
245
{
246
int err;
247
248
err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
249
if (err == 0) {
250
dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
251
err = dbuf_read(db, NULL, flags | DB_RF_CANFAIL);
252
if (err != 0) {
253
dbuf_rele(db, tag);
254
*dbp = NULL;
255
}
256
}
257
258
return (err);
259
}
260
261
int
262
dmu_bonus_max(void)
263
{
264
return (DN_OLD_MAX_BONUSLEN);
265
}
266
267
int
268
dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
269
{
270
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
271
dnode_t *dn;
272
int error;
273
274
if (newsize < 0 || newsize > db_fake->db_size)
275
return (SET_ERROR(EINVAL));
276
277
DB_DNODE_ENTER(db);
278
dn = DB_DNODE(db);
279
280
if (dn->dn_bonus != db) {
281
error = SET_ERROR(EINVAL);
282
} else {
283
dnode_setbonuslen(dn, newsize, tx);
284
error = 0;
285
}
286
287
DB_DNODE_EXIT(db);
288
return (error);
289
}
290
291
int
292
dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
293
{
294
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
295
dnode_t *dn;
296
int error;
297
298
if (!DMU_OT_IS_VALID(type))
299
return (SET_ERROR(EINVAL));
300
301
DB_DNODE_ENTER(db);
302
dn = DB_DNODE(db);
303
304
if (dn->dn_bonus != db) {
305
error = SET_ERROR(EINVAL);
306
} else {
307
dnode_setbonus_type(dn, type, tx);
308
error = 0;
309
}
310
311
DB_DNODE_EXIT(db);
312
return (error);
313
}
314
315
dmu_object_type_t
316
dmu_get_bonustype(dmu_buf_t *db_fake)
317
{
318
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
319
dmu_object_type_t type;
320
321
DB_DNODE_ENTER(db);
322
type = DB_DNODE(db)->dn_bonustype;
323
DB_DNODE_EXIT(db);
324
325
return (type);
326
}
327
328
int
329
dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
330
{
331
dnode_t *dn;
332
int error;
333
334
error = dnode_hold(os, object, FTAG, &dn);
335
dbuf_rm_spill(dn, tx);
336
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
337
dnode_rm_spill(dn, tx);
338
rw_exit(&dn->dn_struct_rwlock);
339
dnode_rele(dn, FTAG);
340
return (error);
341
}
342
343
/*
344
* Lookup and hold the bonus buffer for the provided dnode. If the dnode
345
* has not yet been allocated a new bonus dbuf a will be allocated.
346
* Returns ENOENT, EIO, or 0.
347
*/
348
int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
349
dmu_flags_t flags)
350
{
351
dmu_buf_impl_t *db;
352
int error;
353
354
rw_enter(&dn->dn_struct_rwlock, RW_READER);
355
if (dn->dn_bonus == NULL) {
356
if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
357
rw_exit(&dn->dn_struct_rwlock);
358
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
359
}
360
if (dn->dn_bonus == NULL)
361
dbuf_create_bonus(dn);
362
}
363
db = dn->dn_bonus;
364
365
/* as long as the bonus buf is held, the dnode will be held */
366
if (zfs_refcount_add(&db->db_holds, tag) == 1) {
367
VERIFY(dnode_add_ref(dn, db));
368
atomic_inc_32(&dn->dn_dbufs_count);
369
}
370
371
/*
372
* Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
373
* hold and incrementing the dbuf count to ensure that dnode_move() sees
374
* a dnode hold for every dbuf.
375
*/
376
rw_exit(&dn->dn_struct_rwlock);
377
378
error = dbuf_read(db, NULL, flags | DB_RF_CANFAIL);
379
if (error) {
380
dnode_evict_bonus(dn);
381
dbuf_rele(db, tag);
382
*dbp = NULL;
383
return (error);
384
}
385
386
*dbp = &db->db;
387
return (0);
388
}
389
390
int
391
dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
392
{
393
dnode_t *dn;
394
int error;
395
396
error = dnode_hold(os, object, FTAG, &dn);
397
if (error)
398
return (error);
399
400
error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
401
dnode_rele(dn, FTAG);
402
403
return (error);
404
}
405
406
/*
407
* returns ENOENT, EIO, or 0.
408
*
409
* This interface will allocate a blank spill dbuf when a spill blk
410
* doesn't already exist on the dnode.
411
*
412
* if you only want to find an already existing spill db, then
413
* dmu_spill_hold_existing() should be used.
414
*/
415
int
416
dmu_spill_hold_by_dnode(dnode_t *dn, dmu_flags_t flags, const void *tag,
417
dmu_buf_t **dbp)
418
{
419
dmu_buf_impl_t *db = NULL;
420
int err;
421
422
if ((flags & DB_RF_HAVESTRUCT) == 0)
423
rw_enter(&dn->dn_struct_rwlock, RW_READER);
424
425
db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
426
427
if ((flags & DB_RF_HAVESTRUCT) == 0)
428
rw_exit(&dn->dn_struct_rwlock);
429
430
if (db == NULL) {
431
*dbp = NULL;
432
return (SET_ERROR(EIO));
433
}
434
err = dbuf_read(db, NULL, flags);
435
if (err == 0)
436
*dbp = &db->db;
437
else {
438
dbuf_rele(db, tag);
439
*dbp = NULL;
440
}
441
return (err);
442
}
443
444
int
445
dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
446
{
447
dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
448
dnode_t *dn;
449
int err;
450
451
DB_DNODE_ENTER(db);
452
dn = DB_DNODE(db);
453
454
if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
455
err = SET_ERROR(EINVAL);
456
} else {
457
rw_enter(&dn->dn_struct_rwlock, RW_READER);
458
459
if (!dn->dn_have_spill) {
460
err = SET_ERROR(ENOENT);
461
} else {
462
err = dmu_spill_hold_by_dnode(dn,
463
DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
464
}
465
466
rw_exit(&dn->dn_struct_rwlock);
467
}
468
469
DB_DNODE_EXIT(db);
470
return (err);
471
}
472
473
int
474
dmu_spill_hold_by_bonus(dmu_buf_t *bonus, dmu_flags_t flags, const void *tag,
475
dmu_buf_t **dbp)
476
{
477
dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
478
int err;
479
480
DB_DNODE_ENTER(db);
481
err = dmu_spill_hold_by_dnode(DB_DNODE(db), flags, tag, dbp);
482
DB_DNODE_EXIT(db);
483
484
return (err);
485
}
486
487
/*
488
* Note: longer-term, we should modify all of the dmu_buf_*() interfaces
489
* to take a held dnode rather than <os, object> -- the lookup is wasteful,
490
* and can induce severe lock contention when writing to several files
491
* whose dnodes are in the same block.
492
*/
493
int
494
dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
495
boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
496
dmu_flags_t flags)
497
{
498
dmu_buf_t **dbp;
499
zstream_t *zs = NULL;
500
uint64_t blkid, nblks, i;
501
dmu_flags_t dbuf_flags;
502
int err;
503
zio_t *zio = NULL;
504
boolean_t missed = B_FALSE;
505
506
ASSERT(!read || length <= DMU_MAX_ACCESS);
507
508
/*
509
* Note: We directly notify the prefetch code of this read, so that
510
* we can tell it about the multi-block read. dbuf_read() only knows
511
* about the one block it is accessing.
512
*/
513
dbuf_flags = (flags & ~DMU_READ_PREFETCH) | DMU_READ_NO_PREFETCH |
514
DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
515
516
rw_enter(&dn->dn_struct_rwlock, RW_READER);
517
if (dn->dn_datablkshift) {
518
int blkshift = dn->dn_datablkshift;
519
nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
520
P2ALIGN_TYPED(offset, 1ULL << blkshift, uint64_t))
521
>> blkshift;
522
} else {
523
if (offset + length > dn->dn_datablksz) {
524
zfs_panic_recover("zfs: accessing past end of object "
525
"%llx/%llx (size=%u access=%llu+%llu)",
526
(longlong_t)dn->dn_objset->
527
os_dsl_dataset->ds_object,
528
(longlong_t)dn->dn_object, dn->dn_datablksz,
529
(longlong_t)offset, (longlong_t)length);
530
rw_exit(&dn->dn_struct_rwlock);
531
return (SET_ERROR(EIO));
532
}
533
nblks = 1;
534
}
535
dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
536
537
if (read)
538
zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
539
ZIO_FLAG_CANFAIL);
540
blkid = dbuf_whichblock(dn, 0, offset);
541
if ((flags & DMU_READ_NO_PREFETCH) == 0) {
542
/*
543
* Prepare the zfetch before initiating the demand reads, so
544
* that if multiple threads block on same indirect block, we
545
* base predictions on the original less racy request order.
546
*/
547
zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks,
548
read && !(flags & DMU_DIRECTIO), B_TRUE);
549
}
550
for (i = 0; i < nblks; i++) {
551
dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
552
if (db == NULL) {
553
if (zs) {
554
dmu_zfetch_run(&dn->dn_zfetch, zs, missed,
555
B_TRUE, (flags & DMU_UNCACHEDIO));
556
}
557
rw_exit(&dn->dn_struct_rwlock);
558
dmu_buf_rele_array(dbp, nblks, tag);
559
if (read)
560
zio_nowait(zio);
561
return (SET_ERROR(EIO));
562
}
563
564
/*
565
* Initiate async demand data read.
566
* We check the db_state after calling dbuf_read() because
567
* (1) dbuf_read() may change the state to CACHED due to a
568
* hit in the ARC, and (2) on a cache miss, a child will
569
* have been added to "zio" but not yet completed, so the
570
* state will not yet be CACHED.
571
*/
572
if (read) {
573
if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
574
offset + length < db->db.db_offset +
575
db->db.db_size) {
576
if (offset <= db->db.db_offset)
577
dbuf_flags |= DMU_PARTIAL_FIRST;
578
else
579
dbuf_flags |= DMU_PARTIAL_MORE;
580
}
581
(void) dbuf_read(db, zio, dbuf_flags);
582
if (db->db_state != DB_CACHED)
583
missed = B_TRUE;
584
}
585
dbp[i] = &db->db;
586
}
587
588
/*
589
* If we are doing O_DIRECT we still hold the dbufs, even for reads,
590
* but we do not issue any reads here. We do not want to account for
591
* writes in this case.
592
*
593
* O_DIRECT write/read accounting takes place in
594
* dmu_{write/read}_abd().
595
*/
596
if (!read && ((flags & DMU_DIRECTIO) == 0))
597
zfs_racct_write(dn->dn_objset->os_spa, length, nblks, flags);
598
599
if (zs) {
600
dmu_zfetch_run(&dn->dn_zfetch, zs, missed, B_TRUE,
601
(flags & DMU_UNCACHEDIO));
602
}
603
rw_exit(&dn->dn_struct_rwlock);
604
605
if (read) {
606
/* wait for async read i/o */
607
err = zio_wait(zio);
608
if (err) {
609
dmu_buf_rele_array(dbp, nblks, tag);
610
return (err);
611
}
612
613
/* wait for other io to complete */
614
for (i = 0; i < nblks; i++) {
615
dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
616
mutex_enter(&db->db_mtx);
617
while (db->db_state == DB_READ ||
618
db->db_state == DB_FILL)
619
cv_wait(&db->db_changed, &db->db_mtx);
620
if (db->db_state == DB_UNCACHED)
621
err = SET_ERROR(EIO);
622
mutex_exit(&db->db_mtx);
623
if (err) {
624
dmu_buf_rele_array(dbp, nblks, tag);
625
return (err);
626
}
627
}
628
}
629
630
*numbufsp = nblks;
631
*dbpp = dbp;
632
return (0);
633
}
634
635
int
636
dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
637
uint64_t length, int read, const void *tag, int *numbufsp,
638
dmu_buf_t ***dbpp, dmu_flags_t flags)
639
{
640
dnode_t *dn;
641
int err;
642
643
err = dnode_hold(os, object, FTAG, &dn);
644
if (err)
645
return (err);
646
647
err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
648
numbufsp, dbpp, flags);
649
650
dnode_rele(dn, FTAG);
651
652
return (err);
653
}
654
655
int
656
dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
657
uint64_t length, boolean_t read, const void *tag, int *numbufsp,
658
dmu_buf_t ***dbpp, dmu_flags_t flags)
659
{
660
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
661
int err;
662
663
DB_DNODE_ENTER(db);
664
err = dmu_buf_hold_array_by_dnode(DB_DNODE(db), offset, length, read,
665
tag, numbufsp, dbpp, flags);
666
DB_DNODE_EXIT(db);
667
668
return (err);
669
}
670
671
void
672
dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
673
{
674
int i;
675
dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
676
677
if (numbufs == 0)
678
return;
679
680
for (i = 0; i < numbufs; i++) {
681
if (dbp[i])
682
dbuf_rele(dbp[i], tag);
683
}
684
685
kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
686
}
687
688
/*
689
* Issue prefetch I/Os for the given blocks. If level is greater than 0, the
690
* indirect blocks prefetched will be those that point to the blocks containing
691
* the data starting at offset, and continuing to offset + len. If the range
692
* is too long, prefetch the first dmu_prefetch_max bytes as requested, while
693
* for the rest only a higher level, also fitting within dmu_prefetch_max. It
694
* should primarily help random reads, since for long sequential reads there is
695
* a speculative prefetcher.
696
*
697
* Note that if the indirect blocks above the blocks being prefetched are not
698
* in cache, they will be asynchronously read in. Dnode read by dnode_hold()
699
* is currently synchronous.
700
*/
701
void
702
dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
703
uint64_t len, zio_priority_t pri)
704
{
705
dnode_t *dn;
706
707
if (dmu_prefetch_max == 0 || len == 0) {
708
dmu_prefetch_dnode(os, object, pri);
709
return;
710
}
711
712
if (dnode_hold(os, object, FTAG, &dn) != 0)
713
return;
714
715
dmu_prefetch_by_dnode(dn, level, offset, len, pri);
716
717
dnode_rele(dn, FTAG);
718
}
719
720
void
721
dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset,
722
uint64_t len, zio_priority_t pri)
723
{
724
int64_t level2 = level;
725
uint64_t start, end, start2, end2;
726
727
/*
728
* Depending on len we may do two prefetches: blocks [start, end) at
729
* level, and following blocks [start2, end2) at higher level2.
730
*/
731
rw_enter(&dn->dn_struct_rwlock, RW_READER);
732
if (dn->dn_datablkshift != 0) {
733
734
/*
735
* Limit prefetch to present blocks.
736
*/
737
uint64_t size = (dn->dn_maxblkid + 1) << dn->dn_datablkshift;
738
if (offset >= size) {
739
rw_exit(&dn->dn_struct_rwlock);
740
return;
741
}
742
if (offset + len < offset || offset + len > size)
743
len = size - offset;
744
745
/*
746
* The object has multiple blocks. Calculate the full range
747
* of blocks [start, end2) and then split it into two parts,
748
* so that the first [start, end) fits into dmu_prefetch_max.
749
*/
750
start = dbuf_whichblock(dn, level, offset);
751
end2 = dbuf_whichblock(dn, level, offset + len - 1) + 1;
752
uint8_t ibs = dn->dn_indblkshift;
753
uint8_t bs = (level == 0) ? dn->dn_datablkshift : ibs;
754
uint_t limit = P2ROUNDUP(dmu_prefetch_max, 1 << bs) >> bs;
755
start2 = end = MIN(end2, start + limit);
756
757
/*
758
* Find level2 where [start2, end2) fits into dmu_prefetch_max.
759
*/
760
uint8_t ibps = ibs - SPA_BLKPTRSHIFT;
761
limit = P2ROUNDUP(dmu_prefetch_max, 1 << ibs) >> ibs;
762
if (limit == 0)
763
end2 = start2;
764
do {
765
level2++;
766
start2 = P2ROUNDUP(start2, 1 << ibps) >> ibps;
767
end2 = P2ROUNDUP(end2, 1 << ibps) >> ibps;
768
} while (end2 - start2 > limit);
769
} else {
770
/* There is only one block. Prefetch it or nothing. */
771
start = start2 = end2 = 0;
772
end = start + (level == 0 && offset < dn->dn_datablksz);
773
}
774
775
for (uint64_t i = start; i < end; i++)
776
dbuf_prefetch(dn, level, i, pri, 0);
777
for (uint64_t i = start2; i < end2; i++)
778
dbuf_prefetch(dn, level2, i, pri, 0);
779
rw_exit(&dn->dn_struct_rwlock);
780
}
781
782
typedef struct {
783
kmutex_t dpa_lock;
784
kcondvar_t dpa_cv;
785
uint64_t dpa_pending_io;
786
} dmu_prefetch_arg_t;
787
788
static void
789
dmu_prefetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t issued)
790
{
791
(void) level; (void) blkid; (void)issued;
792
dmu_prefetch_arg_t *dpa = arg;
793
794
ASSERT0(level);
795
796
mutex_enter(&dpa->dpa_lock);
797
ASSERT3U(dpa->dpa_pending_io, >, 0);
798
if (--dpa->dpa_pending_io == 0)
799
cv_broadcast(&dpa->dpa_cv);
800
mutex_exit(&dpa->dpa_lock);
801
}
802
803
static void
804
dmu_prefetch_wait_by_dnode(dnode_t *dn, uint64_t offset, uint64_t len)
805
{
806
dmu_prefetch_arg_t dpa;
807
808
mutex_init(&dpa.dpa_lock, NULL, MUTEX_DEFAULT, NULL);
809
cv_init(&dpa.dpa_cv, NULL, CV_DEFAULT, NULL);
810
811
rw_enter(&dn->dn_struct_rwlock, RW_READER);
812
813
uint64_t start = dbuf_whichblock(dn, 0, offset);
814
uint64_t end = dbuf_whichblock(dn, 0, offset + len - 1) + 1;
815
dpa.dpa_pending_io = end - start;
816
817
for (uint64_t blk = start; blk < end; blk++) {
818
(void) dbuf_prefetch_impl(dn, 0, blk, ZIO_PRIORITY_ASYNC_READ,
819
0, dmu_prefetch_done, &dpa);
820
}
821
822
rw_exit(&dn->dn_struct_rwlock);
823
824
/* wait for prefetch L0 reads to finish */
825
mutex_enter(&dpa.dpa_lock);
826
while (dpa.dpa_pending_io > 0) {
827
cv_wait(&dpa.dpa_cv, &dpa.dpa_lock);
828
829
}
830
mutex_exit(&dpa.dpa_lock);
831
832
mutex_destroy(&dpa.dpa_lock);
833
cv_destroy(&dpa.dpa_cv);
834
}
835
836
/*
837
* Issue prefetch I/Os for the given L0 block range and wait for the I/O
838
* to complete. This does not enforce dmu_prefetch_max and will prefetch
839
* the entire range. The blocks are read from disk into the ARC but no
840
* decompression occurs (i.e., the dbuf cache is not required).
841
*/
842
int
843
dmu_prefetch_wait(objset_t *os, uint64_t object, uint64_t offset, uint64_t size)
844
{
845
dnode_t *dn;
846
int err = 0;
847
848
err = dnode_hold(os, object, FTAG, &dn);
849
if (err != 0)
850
return (err);
851
852
/*
853
* Chunk the requests (16 indirects worth) so that we can be
854
* interrupted. Prefetch at least SPA_MAXBLOCKSIZE at a time
855
* to better utilize pools with smaller block sizes.
856
*/
857
uint64_t chunksize;
858
if (dn->dn_indblkshift) {
859
uint64_t nbps = bp_span_in_blocks(dn->dn_indblkshift, 1);
860
chunksize = (nbps * 16) << dn->dn_datablkshift;
861
chunksize = MAX(chunksize, SPA_MAXBLOCKSIZE);
862
} else {
863
chunksize = dn->dn_datablksz;
864
}
865
866
while (size > 0) {
867
uint64_t mylen = MIN(size, chunksize);
868
869
dmu_prefetch_wait_by_dnode(dn, offset, mylen);
870
871
offset += mylen;
872
size -= mylen;
873
874
if (issig()) {
875
err = SET_ERROR(EINTR);
876
break;
877
}
878
}
879
880
dnode_rele(dn, FTAG);
881
882
return (err);
883
}
884
885
/*
886
* Issue prefetch I/Os for the given object's dnode.
887
*/
888
void
889
dmu_prefetch_dnode(objset_t *os, uint64_t object, zio_priority_t pri)
890
{
891
if (object == 0 || object >= DN_MAX_OBJECT)
892
return;
893
894
dnode_t *dn = DMU_META_DNODE(os);
895
rw_enter(&dn->dn_struct_rwlock, RW_READER);
896
uint64_t blkid = dbuf_whichblock(dn, 0, object * sizeof (dnode_phys_t));
897
dbuf_prefetch(dn, 0, blkid, pri, 0);
898
rw_exit(&dn->dn_struct_rwlock);
899
}
900
901
/*
902
* Get the next "chunk" of file data to free. We traverse the file from
903
* the end so that the file gets shorter over time (if we crash in the
904
* middle, this will leave us in a better state). We find allocated file
905
* data by simply searching the allocated level 1 indirects.
906
*
907
* On input, *start should be the first offset that does not need to be
908
* freed (e.g. "offset + length"). On return, *start will be the first
909
* offset that should be freed and l1blks is set to the number of level 1
910
* indirect blocks found within the chunk.
911
*/
912
static int
913
get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
914
{
915
uint64_t blks;
916
uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
917
/* bytes of data covered by a level-1 indirect block */
918
uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
919
EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
920
921
ASSERT3U(minimum, <=, *start);
922
923
/* dn_nlevels == 1 means we don't have any L1 blocks */
924
if (dn->dn_nlevels <= 1) {
925
*l1blks = 0;
926
*start = minimum;
927
return (0);
928
}
929
930
/*
931
* Check if we can free the entire range assuming that all of the
932
* L1 blocks in this range have data. If we can, we use this
933
* worst case value as an estimate so we can avoid having to look
934
* at the object's actual data.
935
*/
936
uint64_t total_l1blks =
937
(roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
938
iblkrange;
939
if (total_l1blks <= maxblks) {
940
*l1blks = total_l1blks;
941
*start = minimum;
942
return (0);
943
}
944
ASSERT(ISP2(iblkrange));
945
946
for (blks = 0; *start > minimum && blks < maxblks; blks++) {
947
int err;
948
949
/*
950
* dnode_next_offset(BACKWARDS) will find an allocated L1
951
* indirect block at or before the input offset. We must
952
* decrement *start so that it is at the end of the region
953
* to search.
954
*/
955
(*start)--;
956
957
err = dnode_next_offset(dn,
958
DNODE_FIND_BACKWARDS, start, 2, 1, 0);
959
960
/* if there are no indirect blocks before start, we are done */
961
if (err == ESRCH) {
962
*start = minimum;
963
break;
964
} else if (err != 0) {
965
*l1blks = blks;
966
return (err);
967
}
968
969
/* set start to the beginning of this L1 indirect */
970
*start = P2ALIGN_TYPED(*start, iblkrange, uint64_t);
971
}
972
if (*start < minimum)
973
*start = minimum;
974
*l1blks = blks;
975
976
return (0);
977
}
978
979
/*
980
* If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
981
* otherwise return false.
982
* Used below in dmu_free_long_range_impl() to enable abort when unmounting
983
*/
984
static boolean_t
985
dmu_objset_zfs_unmounting(objset_t *os)
986
{
987
#ifdef _KERNEL
988
if (dmu_objset_type(os) == DMU_OST_ZFS)
989
return (zfs_get_vfs_flag_unmounted(os));
990
#else
991
(void) os;
992
#endif
993
return (B_FALSE);
994
}
995
996
static int
997
dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
998
uint64_t length)
999
{
1000
uint64_t object_size;
1001
int err;
1002
uint64_t dirty_frees_threshold;
1003
dsl_pool_t *dp = dmu_objset_pool(os);
1004
1005
if (dn == NULL)
1006
return (SET_ERROR(EINVAL));
1007
1008
object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1009
if (offset >= object_size)
1010
return (0);
1011
1012
if (zfs_per_txg_dirty_frees_percent <= 100)
1013
dirty_frees_threshold =
1014
zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
1015
else
1016
dirty_frees_threshold = zfs_dirty_data_max / 20;
1017
1018
if (length == DMU_OBJECT_END || offset + length > object_size)
1019
length = object_size - offset;
1020
1021
while (length != 0) {
1022
uint64_t chunk_end, chunk_begin, chunk_len;
1023
uint64_t l1blks;
1024
dmu_tx_t *tx;
1025
1026
if (dmu_objset_zfs_unmounting(dn->dn_objset))
1027
return (SET_ERROR(EINTR));
1028
1029
chunk_end = chunk_begin = offset + length;
1030
1031
/* move chunk_begin backwards to the beginning of this chunk */
1032
err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
1033
if (err)
1034
return (err);
1035
ASSERT3U(chunk_begin, >=, offset);
1036
ASSERT3U(chunk_begin, <=, chunk_end);
1037
1038
chunk_len = chunk_end - chunk_begin;
1039
1040
tx = dmu_tx_create(os);
1041
dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
1042
1043
/*
1044
* Mark this transaction as typically resulting in a net
1045
* reduction in space used.
1046
*/
1047
dmu_tx_mark_netfree(tx);
1048
err = dmu_tx_assign(tx, DMU_TX_WAIT);
1049
if (err) {
1050
dmu_tx_abort(tx);
1051
return (err);
1052
}
1053
1054
uint64_t txg = dmu_tx_get_txg(tx);
1055
1056
mutex_enter(&dp->dp_lock);
1057
uint64_t long_free_dirty =
1058
dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
1059
mutex_exit(&dp->dp_lock);
1060
1061
/*
1062
* To avoid filling up a TXG with just frees, wait for
1063
* the next TXG to open before freeing more chunks if
1064
* we have reached the threshold of frees.
1065
*/
1066
if (dirty_frees_threshold != 0 &&
1067
long_free_dirty >= dirty_frees_threshold) {
1068
DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
1069
dmu_tx_commit(tx);
1070
txg_wait_open(dp, 0, B_TRUE);
1071
continue;
1072
}
1073
1074
/*
1075
* In order to prevent unnecessary write throttling, for each
1076
* TXG, we track the cumulative size of L1 blocks being dirtied
1077
* in dnode_free_range() below. We compare this number to a
1078
* tunable threshold, past which we prevent new L1 dirty freeing
1079
* blocks from being added into the open TXG. See
1080
* dmu_free_long_range_impl() for details. The threshold
1081
* prevents write throttle activation due to dirty freeing L1
1082
* blocks taking up a large percentage of zfs_dirty_data_max.
1083
*/
1084
mutex_enter(&dp->dp_lock);
1085
dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
1086
l1blks << dn->dn_indblkshift;
1087
mutex_exit(&dp->dp_lock);
1088
DTRACE_PROBE3(free__long__range,
1089
uint64_t, long_free_dirty, uint64_t, chunk_len,
1090
uint64_t, txg);
1091
dnode_free_range(dn, chunk_begin, chunk_len, tx);
1092
1093
dmu_tx_commit(tx);
1094
1095
length -= chunk_len;
1096
}
1097
return (0);
1098
}
1099
1100
int
1101
dmu_free_long_range(objset_t *os, uint64_t object,
1102
uint64_t offset, uint64_t length)
1103
{
1104
dnode_t *dn;
1105
int err;
1106
1107
err = dnode_hold(os, object, FTAG, &dn);
1108
if (err != 0)
1109
return (err);
1110
err = dmu_free_long_range_impl(os, dn, offset, length);
1111
1112
/*
1113
* It is important to zero out the maxblkid when freeing the entire
1114
* file, so that (a) subsequent calls to dmu_free_long_range_impl()
1115
* will take the fast path, and (b) dnode_reallocate() can verify
1116
* that the entire file has been freed.
1117
*/
1118
if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
1119
dn->dn_maxblkid = 0;
1120
1121
dnode_rele(dn, FTAG);
1122
return (err);
1123
}
1124
1125
int
1126
dmu_free_long_object(objset_t *os, uint64_t object)
1127
{
1128
dmu_tx_t *tx;
1129
int err;
1130
1131
err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
1132
if (err != 0)
1133
return (err);
1134
1135
tx = dmu_tx_create(os);
1136
dmu_tx_hold_bonus(tx, object);
1137
dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1138
dmu_tx_mark_netfree(tx);
1139
err = dmu_tx_assign(tx, DMU_TX_WAIT);
1140
if (err == 0) {
1141
err = dmu_object_free(os, object, tx);
1142
dmu_tx_commit(tx);
1143
} else {
1144
dmu_tx_abort(tx);
1145
}
1146
1147
return (err);
1148
}
1149
1150
int
1151
dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
1152
uint64_t size, dmu_tx_t *tx)
1153
{
1154
dnode_t *dn;
1155
int err = dnode_hold(os, object, FTAG, &dn);
1156
if (err)
1157
return (err);
1158
ASSERT(offset < UINT64_MAX);
1159
ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
1160
dnode_free_range(dn, offset, size, tx);
1161
dnode_rele(dn, FTAG);
1162
return (0);
1163
}
1164
1165
static int
1166
dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1167
void *buf, dmu_flags_t flags)
1168
{
1169
dmu_buf_t **dbp;
1170
int numbufs, err = 0;
1171
1172
/*
1173
* Deal with odd block sizes, where there can't be data past the first
1174
* block. If we ever do the tail block optimization, we will need to
1175
* handle that here as well.
1176
*/
1177
if (dn->dn_maxblkid == 0) {
1178
uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1179
MIN(size, dn->dn_datablksz - offset);
1180
memset((char *)buf + newsz, 0, size - newsz);
1181
size = newsz;
1182
}
1183
1184
if (size == 0)
1185
return (0);
1186
1187
/* Allow Direct I/O when requested and properly aligned */
1188
if ((flags & DMU_DIRECTIO) && zfs_dio_page_aligned(buf) &&
1189
zfs_dio_aligned(offset, size, PAGESIZE)) {
1190
abd_t *data = abd_get_from_buf(buf, size);
1191
err = dmu_read_abd(dn, offset, size, data, flags);
1192
abd_free(data);
1193
return (err);
1194
}
1195
flags &= ~DMU_DIRECTIO;
1196
1197
while (size > 0) {
1198
uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1199
int i;
1200
1201
/*
1202
* NB: we could do this block-at-a-time, but it's nice
1203
* to be reading in parallel.
1204
*/
1205
err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1206
TRUE, FTAG, &numbufs, &dbp, flags);
1207
if (err)
1208
break;
1209
1210
for (i = 0; i < numbufs; i++) {
1211
uint64_t tocpy;
1212
int64_t bufoff;
1213
dmu_buf_t *db = dbp[i];
1214
1215
ASSERT(size > 0);
1216
1217
bufoff = offset - db->db_offset;
1218
tocpy = MIN(db->db_size - bufoff, size);
1219
1220
ASSERT(db->db_data != NULL);
1221
(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1222
1223
offset += tocpy;
1224
size -= tocpy;
1225
buf = (char *)buf + tocpy;
1226
}
1227
dmu_buf_rele_array(dbp, numbufs, FTAG);
1228
}
1229
return (err);
1230
}
1231
1232
int
1233
dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1234
void *buf, dmu_flags_t flags)
1235
{
1236
dnode_t *dn;
1237
int err;
1238
1239
err = dnode_hold(os, object, FTAG, &dn);
1240
if (err != 0)
1241
return (err);
1242
1243
err = dmu_read_impl(dn, offset, size, buf, flags);
1244
dnode_rele(dn, FTAG);
1245
return (err);
1246
}
1247
1248
int
1249
dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1250
dmu_flags_t flags)
1251
{
1252
return (dmu_read_impl(dn, offset, size, buf, flags));
1253
}
1254
1255
static void
1256
dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1257
const void *buf, dmu_tx_t *tx, dmu_flags_t flags)
1258
{
1259
int i;
1260
1261
for (i = 0; i < numbufs; i++) {
1262
uint64_t tocpy;
1263
int64_t bufoff;
1264
dmu_buf_t *db = dbp[i];
1265
1266
ASSERT(size > 0);
1267
1268
bufoff = offset - db->db_offset;
1269
tocpy = MIN(db->db_size - bufoff, size);
1270
1271
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1272
1273
if (tocpy == db->db_size) {
1274
dmu_buf_will_fill_flags(db, tx, B_FALSE, flags);
1275
} else {
1276
if (i == numbufs - 1 && bufoff + tocpy < db->db_size) {
1277
if (bufoff == 0)
1278
flags |= DMU_PARTIAL_FIRST;
1279
else
1280
flags |= DMU_PARTIAL_MORE;
1281
}
1282
dmu_buf_will_dirty_flags(db, tx, flags);
1283
}
1284
1285
ASSERT(db->db_data != NULL);
1286
(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1287
1288
if (tocpy == db->db_size)
1289
dmu_buf_fill_done(db, tx, B_FALSE);
1290
1291
offset += tocpy;
1292
size -= tocpy;
1293
buf = (char *)buf + tocpy;
1294
}
1295
}
1296
1297
void
1298
dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1299
const void *buf, dmu_tx_t *tx, dmu_flags_t flags)
1300
{
1301
dmu_buf_t **dbp;
1302
int numbufs;
1303
1304
if (size == 0)
1305
return;
1306
1307
VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1308
FALSE, FTAG, &numbufs, &dbp, flags));
1309
dmu_write_impl(dbp, numbufs, offset, size, buf, tx, flags);
1310
dmu_buf_rele_array(dbp, numbufs, FTAG);
1311
}
1312
1313
int
1314
dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1315
const void *buf, dmu_tx_t *tx, dmu_flags_t flags)
1316
{
1317
dmu_buf_t **dbp;
1318
int numbufs;
1319
int error;
1320
1321
if (size == 0)
1322
return (0);
1323
1324
/* Allow Direct I/O when requested and properly aligned */
1325
if ((flags & DMU_DIRECTIO) && zfs_dio_page_aligned((void *)buf) &&
1326
zfs_dio_aligned(offset, size, dn->dn_datablksz)) {
1327
abd_t *data = abd_get_from_buf((void *)buf, size);
1328
error = dmu_write_abd(dn, offset, size, data, flags, tx);
1329
abd_free(data);
1330
return (error);
1331
}
1332
flags &= ~DMU_DIRECTIO;
1333
1334
VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1335
FALSE, FTAG, &numbufs, &dbp, flags));
1336
dmu_write_impl(dbp, numbufs, offset, size, buf, tx, flags);
1337
dmu_buf_rele_array(dbp, numbufs, FTAG);
1338
return (0);
1339
}
1340
1341
void
1342
dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1343
dmu_tx_t *tx)
1344
{
1345
dmu_buf_t **dbp;
1346
int numbufs, i;
1347
1348
if (size == 0)
1349
return;
1350
1351
VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1352
FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1353
1354
for (i = 0; i < numbufs; i++) {
1355
dmu_buf_t *db = dbp[i];
1356
1357
dmu_buf_will_not_fill(db, tx);
1358
}
1359
dmu_buf_rele_array(dbp, numbufs, FTAG);
1360
}
1361
1362
void
1363
dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1364
void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1365
int compressed_size, int byteorder, dmu_tx_t *tx)
1366
{
1367
dmu_buf_t *db;
1368
1369
ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1370
ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1371
VERIFY0(dmu_buf_hold_noread(os, object, offset,
1372
FTAG, &db));
1373
1374
dmu_buf_write_embedded(db,
1375
data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1376
uncompressed_size, compressed_size, byteorder, tx);
1377
1378
dmu_buf_rele(db, FTAG);
1379
}
1380
1381
void
1382
dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1383
dmu_tx_t *tx)
1384
{
1385
int numbufs, i;
1386
dmu_buf_t **dbp;
1387
1388
VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1389
&numbufs, &dbp, DMU_READ_PREFETCH));
1390
for (i = 0; i < numbufs; i++)
1391
dmu_buf_redact(dbp[i], tx);
1392
dmu_buf_rele_array(dbp, numbufs, FTAG);
1393
}
1394
1395
#ifdef _KERNEL
1396
int
1397
dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size,
1398
dmu_flags_t flags)
1399
{
1400
dmu_buf_t **dbp;
1401
int numbufs, i, err;
1402
1403
if ((flags & DMU_DIRECTIO) && (uio->uio_extflg & UIO_DIRECT))
1404
return (dmu_read_uio_direct(dn, uio, size, flags));
1405
flags &= ~DMU_DIRECTIO;
1406
1407
/*
1408
* NB: we could do this block-at-a-time, but it's nice
1409
* to be reading in parallel.
1410
*/
1411
err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1412
TRUE, FTAG, &numbufs, &dbp, flags);
1413
if (err)
1414
return (err);
1415
1416
for (i = 0; i < numbufs; i++) {
1417
uint64_t tocpy;
1418
int64_t bufoff;
1419
dmu_buf_t *db = dbp[i];
1420
1421
ASSERT(size > 0);
1422
1423
bufoff = zfs_uio_offset(uio) - db->db_offset;
1424
tocpy = MIN(db->db_size - bufoff, size);
1425
1426
ASSERT(db->db_data != NULL);
1427
err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1428
UIO_READ, uio);
1429
1430
if (err)
1431
break;
1432
1433
size -= tocpy;
1434
}
1435
dmu_buf_rele_array(dbp, numbufs, FTAG);
1436
1437
return (err);
1438
}
1439
1440
/*
1441
* Read 'size' bytes into the uio buffer.
1442
* From object zdb->db_object.
1443
* Starting at zfs_uio_offset(uio).
1444
*
1445
* If the caller already has a dbuf in the target object
1446
* (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1447
* because we don't have to find the dnode_t for the object.
1448
*/
1449
int
1450
dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1451
dmu_flags_t flags)
1452
{
1453
dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1454
int err;
1455
1456
if (size == 0)
1457
return (0);
1458
1459
DB_DNODE_ENTER(db);
1460
err = dmu_read_uio_dnode(DB_DNODE(db), uio, size, flags);
1461
DB_DNODE_EXIT(db);
1462
1463
return (err);
1464
}
1465
1466
/*
1467
* Read 'size' bytes into the uio buffer.
1468
* From the specified object
1469
* Starting at offset zfs_uio_offset(uio).
1470
*/
1471
int
1472
dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1473
dmu_flags_t flags)
1474
{
1475
dnode_t *dn;
1476
int err;
1477
1478
if (size == 0)
1479
return (0);
1480
1481
err = dnode_hold(os, object, FTAG, &dn);
1482
if (err)
1483
return (err);
1484
1485
err = dmu_read_uio_dnode(dn, uio, size, flags);
1486
1487
dnode_rele(dn, FTAG);
1488
1489
return (err);
1490
}
1491
1492
int
1493
dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx,
1494
dmu_flags_t flags)
1495
{
1496
dmu_buf_t **dbp;
1497
int numbufs;
1498
int err = 0;
1499
uint64_t write_size;
1500
dmu_flags_t oflags = flags;
1501
1502
top:
1503
write_size = size;
1504
1505
/*
1506
* We only allow Direct I/O writes to happen if we are block
1507
* sized aligned. Otherwise, we pass the write off to the ARC.
1508
*/
1509
if ((flags & DMU_DIRECTIO) && (uio->uio_extflg & UIO_DIRECT) &&
1510
(write_size >= dn->dn_datablksz)) {
1511
if (zfs_dio_aligned(zfs_uio_offset(uio), write_size,
1512
dn->dn_datablksz)) {
1513
return (dmu_write_uio_direct(dn, uio, size, flags, tx));
1514
} else if (write_size > dn->dn_datablksz &&
1515
zfs_dio_offset_aligned(zfs_uio_offset(uio),
1516
dn->dn_datablksz)) {
1517
write_size =
1518
dn->dn_datablksz * (write_size / dn->dn_datablksz);
1519
err = dmu_write_uio_direct(dn, uio, write_size, flags,
1520
tx);
1521
if (err == 0) {
1522
size -= write_size;
1523
goto top;
1524
} else {
1525
return (err);
1526
}
1527
} else {
1528
write_size =
1529
P2PHASE(zfs_uio_offset(uio), dn->dn_datablksz);
1530
}
1531
}
1532
flags &= ~DMU_DIRECTIO;
1533
1534
err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), write_size,
1535
FALSE, FTAG, &numbufs, &dbp, flags);
1536
if (err)
1537
return (err);
1538
1539
for (int i = 0; i < numbufs; i++) {
1540
uint64_t tocpy;
1541
int64_t bufoff;
1542
dmu_buf_t *db = dbp[i];
1543
1544
ASSERT(write_size > 0);
1545
1546
offset_t off = zfs_uio_offset(uio);
1547
bufoff = off - db->db_offset;
1548
tocpy = MIN(db->db_size - bufoff, write_size);
1549
1550
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1551
1552
if (tocpy == db->db_size) {
1553
dmu_buf_will_fill_flags(db, tx, B_TRUE, flags);
1554
} else {
1555
if (i == numbufs - 1 && bufoff + tocpy < db->db_size) {
1556
if (bufoff == 0)
1557
flags |= DMU_PARTIAL_FIRST;
1558
else
1559
flags |= DMU_PARTIAL_MORE;
1560
}
1561
dmu_buf_will_dirty_flags(db, tx, flags);
1562
}
1563
1564
ASSERT(db->db_data != NULL);
1565
err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1566
tocpy, UIO_WRITE, uio);
1567
1568
if (tocpy == db->db_size && dmu_buf_fill_done(db, tx, err)) {
1569
/* The fill was reverted. Undo any uio progress. */
1570
zfs_uio_advance(uio, off - zfs_uio_offset(uio));
1571
}
1572
1573
if (err)
1574
break;
1575
1576
write_size -= tocpy;
1577
size -= tocpy;
1578
}
1579
1580
IMPLY(err == 0, write_size == 0);
1581
1582
dmu_buf_rele_array(dbp, numbufs, FTAG);
1583
1584
if ((oflags & DMU_DIRECTIO) && (uio->uio_extflg & UIO_DIRECT) &&
1585
err == 0 && size > 0) {
1586
flags = oflags;
1587
goto top;
1588
}
1589
IMPLY(err == 0, size == 0);
1590
1591
return (err);
1592
}
1593
1594
/*
1595
* Write 'size' bytes from the uio buffer.
1596
* To object zdb->db_object.
1597
* Starting at offset zfs_uio_offset(uio).
1598
*
1599
* If the caller already has a dbuf in the target object
1600
* (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1601
* because we don't have to find the dnode_t for the object.
1602
*/
1603
int
1604
dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1605
dmu_tx_t *tx, dmu_flags_t flags)
1606
{
1607
dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1608
int err;
1609
1610
if (size == 0)
1611
return (0);
1612
1613
DB_DNODE_ENTER(db);
1614
err = dmu_write_uio_dnode(DB_DNODE(db), uio, size, tx, flags);
1615
DB_DNODE_EXIT(db);
1616
1617
return (err);
1618
}
1619
1620
/*
1621
* Write 'size' bytes from the uio buffer.
1622
* To the specified object.
1623
* Starting at offset zfs_uio_offset(uio).
1624
*/
1625
int
1626
dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1627
dmu_tx_t *tx, dmu_flags_t flags)
1628
{
1629
dnode_t *dn;
1630
int err;
1631
1632
if (size == 0)
1633
return (0);
1634
1635
err = dnode_hold(os, object, FTAG, &dn);
1636
if (err)
1637
return (err);
1638
1639
err = dmu_write_uio_dnode(dn, uio, size, tx, flags);
1640
1641
dnode_rele(dn, FTAG);
1642
1643
return (err);
1644
}
1645
#endif /* _KERNEL */
1646
1647
static void
1648
dmu_cached_bps(spa_t *spa, blkptr_t *bps, uint_t nbps,
1649
uint64_t *l1sz, uint64_t *l2sz)
1650
{
1651
int cached_flags;
1652
1653
if (bps == NULL)
1654
return;
1655
1656
for (size_t blk_off = 0; blk_off < nbps; blk_off++) {
1657
blkptr_t *bp = &bps[blk_off];
1658
1659
if (BP_IS_HOLE(bp))
1660
continue;
1661
1662
cached_flags = arc_cached(spa, bp);
1663
if (cached_flags == 0)
1664
continue;
1665
1666
if ((cached_flags & (ARC_CACHED_IN_L1 | ARC_CACHED_IN_L2)) ==
1667
ARC_CACHED_IN_L2)
1668
*l2sz += BP_GET_LSIZE(bp);
1669
else
1670
*l1sz += BP_GET_LSIZE(bp);
1671
}
1672
}
1673
1674
/*
1675
* Estimate DMU object cached size.
1676
*/
1677
int
1678
dmu_object_cached_size(objset_t *os, uint64_t object,
1679
uint64_t *l1sz, uint64_t *l2sz)
1680
{
1681
dnode_t *dn;
1682
dmu_object_info_t doi;
1683
int err = 0;
1684
1685
*l1sz = *l2sz = 0;
1686
1687
if (dnode_hold(os, object, FTAG, &dn) != 0)
1688
return (0);
1689
1690
if (dn->dn_nlevels < 2) {
1691
dnode_rele(dn, FTAG);
1692
return (0);
1693
}
1694
1695
dmu_object_info_from_dnode(dn, &doi);
1696
1697
for (uint64_t off = 0; off < doi.doi_max_offset &&
1698
dmu_prefetch_max > 0; off += dmu_prefetch_max) {
1699
/* dbuf_read doesn't prefetch L1 blocks. */
1700
dmu_prefetch_by_dnode(dn, 1, off,
1701
dmu_prefetch_max, ZIO_PRIORITY_SYNC_READ);
1702
}
1703
1704
/*
1705
* Hold all valid L1 blocks, asking ARC the status of each BP
1706
* contained in each such L1 block.
1707
*/
1708
uint_t nbps = bp_span_in_blocks(dn->dn_indblkshift, 1);
1709
uint64_t l1blks = 1 + (dn->dn_maxblkid / nbps);
1710
1711
rw_enter(&dn->dn_struct_rwlock, RW_READER);
1712
for (uint64_t blk = 0; blk < l1blks; blk++) {
1713
dmu_buf_impl_t *db = NULL;
1714
1715
if (issig()) {
1716
/*
1717
* On interrupt, get out, and bubble up EINTR
1718
*/
1719
err = EINTR;
1720
break;
1721
}
1722
1723
/*
1724
* If we get an i/o error here, the L1 can't be read,
1725
* and nothing under it could be cached, so we just
1726
* continue. Ignoring the error from dbuf_hold_impl
1727
* or from dbuf_read is then a reasonable choice.
1728
*/
1729
err = dbuf_hold_impl(dn, 1, blk, B_TRUE, B_FALSE, FTAG, &db);
1730
if (err != 0) {
1731
/*
1732
* ignore error and continue
1733
*/
1734
err = 0;
1735
continue;
1736
}
1737
1738
err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1739
if (err == 0) {
1740
dmu_cached_bps(dmu_objset_spa(os), db->db.db_data,
1741
nbps, l1sz, l2sz);
1742
}
1743
/*
1744
* error may be ignored, and we continue
1745
*/
1746
err = 0;
1747
dbuf_rele(db, FTAG);
1748
}
1749
rw_exit(&dn->dn_struct_rwlock);
1750
1751
dnode_rele(dn, FTAG);
1752
return (err);
1753
}
1754
1755
/*
1756
* Allocate a loaned anonymous arc buffer.
1757
*/
1758
arc_buf_t *
1759
dmu_request_arcbuf(dmu_buf_t *handle, int size)
1760
{
1761
dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1762
1763
return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1764
}
1765
1766
/*
1767
* Free a loaned arc buffer.
1768
*/
1769
void
1770
dmu_return_arcbuf(arc_buf_t *buf)
1771
{
1772
arc_return_buf(buf, FTAG);
1773
arc_buf_destroy(buf, FTAG);
1774
}
1775
1776
/*
1777
* A "lightweight" write is faster than a regular write (e.g.
1778
* dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1779
* CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the
1780
* data can not be read or overwritten until the transaction's txg has been
1781
* synced. This makes it appropriate for workloads that are known to be
1782
* (temporarily) write-only, like "zfs receive".
1783
*
1784
* A single block is written, starting at the specified offset in bytes. If
1785
* the call is successful, it returns 0 and the provided abd has been
1786
* consumed (the caller should not free it).
1787
*/
1788
int
1789
dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1790
const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
1791
{
1792
dbuf_dirty_record_t *dr =
1793
dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1794
if (dr == NULL)
1795
return (SET_ERROR(EIO));
1796
dr->dt.dll.dr_abd = abd;
1797
dr->dt.dll.dr_props = *zp;
1798
dr->dt.dll.dr_flags = flags;
1799
return (0);
1800
}
1801
1802
/*
1803
* When possible directly assign passed loaned arc buffer to a dbuf.
1804
* If this is not possible copy the contents of passed arc buf via
1805
* dmu_write().
1806
*/
1807
int
1808
dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1809
dmu_tx_t *tx, dmu_flags_t flags)
1810
{
1811
dmu_buf_impl_t *db;
1812
objset_t *os = dn->dn_objset;
1813
uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1814
uint64_t blkid;
1815
1816
rw_enter(&dn->dn_struct_rwlock, RW_READER);
1817
blkid = dbuf_whichblock(dn, 0, offset);
1818
db = dbuf_hold(dn, blkid, FTAG);
1819
rw_exit(&dn->dn_struct_rwlock);
1820
if (db == NULL)
1821
return (SET_ERROR(EIO));
1822
1823
/*
1824
* We can only assign if the offset is aligned and the arc buf is the
1825
* same size as the dbuf.
1826
*/
1827
if (offset == db->db.db_offset && blksz == db->db.db_size) {
1828
zfs_racct_write(os->os_spa, blksz, 1, flags);
1829
dbuf_assign_arcbuf(db, buf, tx, flags);
1830
dbuf_rele(db, FTAG);
1831
} else {
1832
/* compressed bufs must always be assignable to their dbuf */
1833
ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1834
ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1835
1836
dbuf_rele(db, FTAG);
1837
dmu_write_by_dnode(dn, offset, blksz, buf->b_data, tx, flags);
1838
dmu_return_arcbuf(buf);
1839
}
1840
1841
return (0);
1842
}
1843
1844
int
1845
dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1846
dmu_tx_t *tx, dmu_flags_t flags)
1847
{
1848
int err;
1849
dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1850
1851
DB_DNODE_ENTER(db);
1852
err = dmu_assign_arcbuf_by_dnode(DB_DNODE(db), offset, buf, tx, flags);
1853
DB_DNODE_EXIT(db);
1854
1855
return (err);
1856
}
1857
1858
void
1859
dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1860
{
1861
(void) buf;
1862
dmu_sync_arg_t *dsa = varg;
1863
1864
if (zio->io_error == 0) {
1865
dbuf_dirty_record_t *dr = dsa->dsa_dr;
1866
blkptr_t *bp = zio->io_bp;
1867
1868
if (BP_IS_HOLE(bp)) {
1869
dmu_buf_t *db = NULL;
1870
if (dr)
1871
db = &(dr->dr_dbuf->db);
1872
else
1873
db = dsa->dsa_zgd->zgd_db;
1874
/*
1875
* A block of zeros may compress to a hole, but the
1876
* block size still needs to be known for replay.
1877
*/
1878
BP_SET_LSIZE(bp, db->db_size);
1879
} else if (!BP_IS_EMBEDDED(bp)) {
1880
ASSERT0(BP_GET_LEVEL(bp));
1881
BP_SET_FILL(bp, 1);
1882
}
1883
}
1884
}
1885
1886
static void
1887
dmu_sync_late_arrival_ready(zio_t *zio)
1888
{
1889
dmu_sync_ready(zio, NULL, zio->io_private);
1890
}
1891
1892
void
1893
dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1894
{
1895
(void) buf;
1896
dmu_sync_arg_t *dsa = varg;
1897
dbuf_dirty_record_t *dr = dsa->dsa_dr;
1898
dmu_buf_impl_t *db = dr->dr_dbuf;
1899
zgd_t *zgd = dsa->dsa_zgd;
1900
1901
/*
1902
* Record the vdev(s) backing this blkptr so they can be flushed after
1903
* the writes for the lwb have completed.
1904
*/
1905
if (zgd && zio->io_error == 0) {
1906
zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1907
}
1908
1909
mutex_enter(&db->db_mtx);
1910
ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1911
if (zio->io_error == 0) {
1912
ASSERT0(dr->dt.dl.dr_has_raw_params);
1913
dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1914
if (dr->dt.dl.dr_nopwrite) {
1915
blkptr_t *bp = zio->io_bp;
1916
blkptr_t *bp_orig = &zio->io_bp_orig;
1917
uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1918
1919
ASSERT(BP_EQUAL(bp, bp_orig));
1920
VERIFY(BP_EQUAL(bp, db->db_blkptr));
1921
ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1922
VERIFY(zio_checksum_table[chksum].ci_flags &
1923
ZCHECKSUM_FLAG_NOPWRITE);
1924
}
1925
dr->dt.dl.dr_overridden_by = *zio->io_bp;
1926
dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1927
dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1928
dr->dt.dl.dr_gang_copies = zio->io_prop.zp_gang_copies;
1929
1930
/*
1931
* Old style holes are filled with all zeros, whereas
1932
* new-style holes maintain their lsize, type, level,
1933
* and birth time (see zio_write_compress). While we
1934
* need to reset the BP_SET_LSIZE() call that happened
1935
* in dmu_sync_ready for old style holes, we do *not*
1936
* want to wipe out the information contained in new
1937
* style holes. Thus, only zero out the block pointer if
1938
* it's an old style hole.
1939
*/
1940
if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1941
BP_GET_LOGICAL_BIRTH(&dr->dt.dl.dr_overridden_by) == 0)
1942
BP_ZERO(&dr->dt.dl.dr_overridden_by);
1943
} else {
1944
dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1945
}
1946
1947
cv_broadcast(&db->db_changed);
1948
mutex_exit(&db->db_mtx);
1949
1950
if (dsa->dsa_done)
1951
dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1952
1953
kmem_free(dsa, sizeof (*dsa));
1954
}
1955
1956
static void
1957
dmu_sync_late_arrival_done(zio_t *zio)
1958
{
1959
blkptr_t *bp = zio->io_bp;
1960
dmu_sync_arg_t *dsa = zio->io_private;
1961
zgd_t *zgd = dsa->dsa_zgd;
1962
1963
if (zio->io_error == 0) {
1964
/*
1965
* Record the vdev(s) backing this blkptr so they can be
1966
* flushed after the writes for the lwb have completed.
1967
*/
1968
zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1969
1970
if (!BP_IS_HOLE(bp)) {
1971
blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1972
ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1973
ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1974
ASSERT(BP_GET_BIRTH(zio->io_bp) == zio->io_txg);
1975
ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1976
zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1977
}
1978
}
1979
1980
dmu_tx_commit(dsa->dsa_tx);
1981
1982
dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1983
1984
abd_free(zio->io_abd);
1985
kmem_free(dsa, sizeof (*dsa));
1986
}
1987
1988
static int
1989
dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1990
zio_prop_t *zp, zbookmark_phys_t *zb)
1991
{
1992
dmu_sync_arg_t *dsa;
1993
dmu_tx_t *tx;
1994
int error;
1995
1996
error = dbuf_read((dmu_buf_impl_t *)zgd->zgd_db, NULL,
1997
DB_RF_CANFAIL | DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING);
1998
if (error != 0)
1999
return (error);
2000
2001
tx = dmu_tx_create(os);
2002
dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
2003
/*
2004
* This transaction does not produce any dirty data or log blocks, so
2005
* it should not be throttled. All other cases wait for TXG sync, by
2006
* which time the log block we are writing will be obsolete, so we can
2007
* skip waiting and just return error here instead.
2008
*/
2009
if (dmu_tx_assign(tx, DMU_TX_NOWAIT | DMU_TX_NOTHROTTLE) != 0) {
2010
dmu_tx_abort(tx);
2011
/* Make zl_get_data do txg_waited_synced() */
2012
return (SET_ERROR(EIO));
2013
}
2014
2015
/*
2016
* In order to prevent the zgd's lwb from being free'd prior to
2017
* dmu_sync_late_arrival_done() being called, we have to ensure
2018
* the lwb's "max txg" takes this tx's txg into account.
2019
*/
2020
zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
2021
2022
dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2023
dsa->dsa_dr = NULL;
2024
dsa->dsa_done = done;
2025
dsa->dsa_zgd = zgd;
2026
dsa->dsa_tx = tx;
2027
2028
/*
2029
* Since we are currently syncing this txg, it's nontrivial to
2030
* determine what BP to nopwrite against, so we disable nopwrite.
2031
*
2032
* When syncing, the db_blkptr is initially the BP of the previous
2033
* txg. We can not nopwrite against it because it will be changed
2034
* (this is similar to the non-late-arrival case where the dbuf is
2035
* dirty in a future txg).
2036
*
2037
* Then dbuf_write_ready() sets bp_blkptr to the location we will write.
2038
* We can not nopwrite against it because although the BP will not
2039
* (typically) be changed, the data has not yet been persisted to this
2040
* location.
2041
*
2042
* Finally, when dbuf_write_done() is called, it is theoretically
2043
* possible to always nopwrite, because the data that was written in
2044
* this txg is the same data that we are trying to write. However we
2045
* would need to check that this dbuf is not dirty in any future
2046
* txg's (as we do in the normal dmu_sync() path). For simplicity, we
2047
* don't nopwrite in this case.
2048
*/
2049
zp->zp_nopwrite = B_FALSE;
2050
2051
zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
2052
abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
2053
zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
2054
dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done,
2055
dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
2056
2057
return (0);
2058
}
2059
2060
/*
2061
* Intent log support: sync the block associated with db to disk.
2062
* N.B. and XXX: the caller is responsible for making sure that the
2063
* data isn't changing while dmu_sync() is writing it.
2064
*
2065
* Return values:
2066
*
2067
* EEXIST: this txg has already been synced, so there's nothing to do.
2068
* The caller should not log the write.
2069
*
2070
* ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
2071
* The caller should not log the write.
2072
*
2073
* EALREADY: this block is already in the process of being synced.
2074
* The caller should track its progress (somehow).
2075
*
2076
* EIO: could not do the I/O.
2077
* The caller should do a txg_wait_synced().
2078
*
2079
* 0: the I/O has been initiated.
2080
* The caller should log this blkptr in the done callback.
2081
* It is possible that the I/O will fail, in which case
2082
* the error will be reported to the done callback and
2083
* propagated to pio from zio_done().
2084
*/
2085
int
2086
dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
2087
{
2088
dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
2089
objset_t *os = db->db_objset;
2090
dsl_dataset_t *ds = os->os_dsl_dataset;
2091
dbuf_dirty_record_t *dr, *dr_next;
2092
dmu_sync_arg_t *dsa;
2093
zbookmark_phys_t zb;
2094
zio_prop_t zp;
2095
2096
ASSERT(pio != NULL);
2097
ASSERT(txg != 0);
2098
2099
SET_BOOKMARK(&zb, ds->ds_object,
2100
db->db.db_object, db->db_level, db->db_blkid);
2101
2102
DB_DNODE_ENTER(db);
2103
dmu_write_policy(os, DB_DNODE(db), db->db_level, WP_DMU_SYNC, &zp);
2104
DB_DNODE_EXIT(db);
2105
2106
/*
2107
* If we're frozen (running ziltest), we always need to generate a bp.
2108
*/
2109
if (txg > spa_freeze_txg(os->os_spa))
2110
return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2111
2112
/*
2113
* Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
2114
* and us. If we determine that this txg is not yet syncing,
2115
* but it begins to sync a moment later, that's OK because the
2116
* sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
2117
*/
2118
mutex_enter(&db->db_mtx);
2119
2120
if (txg <= spa_last_synced_txg(os->os_spa)) {
2121
/*
2122
* This txg has already synced. There's nothing to do.
2123
*/
2124
mutex_exit(&db->db_mtx);
2125
return (SET_ERROR(EEXIST));
2126
}
2127
2128
if (txg <= spa_syncing_txg(os->os_spa)) {
2129
/*
2130
* This txg is currently syncing, so we can't mess with
2131
* the dirty record anymore; just write a new log block.
2132
*/
2133
mutex_exit(&db->db_mtx);
2134
return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2135
}
2136
2137
dr = dbuf_find_dirty_eq(db, txg);
2138
2139
if (dr == NULL) {
2140
/*
2141
* There's no dr for this dbuf, so it must have been freed.
2142
* There's no need to log writes to freed blocks, so we're done.
2143
*/
2144
mutex_exit(&db->db_mtx);
2145
return (SET_ERROR(ENOENT));
2146
}
2147
2148
dr_next = list_next(&db->db_dirty_records, dr);
2149
ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
2150
2151
if (db->db_blkptr != NULL) {
2152
/*
2153
* We need to fill in zgd_bp with the current blkptr so that
2154
* the nopwrite code can check if we're writing the same
2155
* data that's already on disk. We can only nopwrite if we
2156
* are sure that after making the copy, db_blkptr will not
2157
* change until our i/o completes. We ensure this by
2158
* holding the db_mtx, and only allowing nopwrite if the
2159
* block is not already dirty (see below). This is verified
2160
* by dmu_sync_done(), which VERIFYs that the db_blkptr has
2161
* not changed.
2162
*/
2163
*zgd->zgd_bp = *db->db_blkptr;
2164
}
2165
2166
/*
2167
* Assume the on-disk data is X, the current syncing data (in
2168
* txg - 1) is Y, and the current in-memory data is Z (currently
2169
* in dmu_sync).
2170
*
2171
* We usually want to perform a nopwrite if X and Z are the
2172
* same. However, if Y is different (i.e. the BP is going to
2173
* change before this write takes effect), then a nopwrite will
2174
* be incorrect - we would override with X, which could have
2175
* been freed when Y was written.
2176
*
2177
* (Note that this is not a concern when we are nop-writing from
2178
* syncing context, because X and Y must be identical, because
2179
* all previous txgs have been synced.)
2180
*
2181
* Therefore, we disable nopwrite if the current BP could change
2182
* before this TXG. There are two ways it could change: by
2183
* being dirty (dr_next is non-NULL), or by being freed
2184
* (dnode_block_freed()). This behavior is verified by
2185
* zio_done(), which VERIFYs that the override BP is identical
2186
* to the on-disk BP.
2187
*/
2188
if (dr_next != NULL) {
2189
zp.zp_nopwrite = B_FALSE;
2190
} else {
2191
DB_DNODE_ENTER(db);
2192
if (dnode_block_freed(DB_DNODE(db), db->db_blkid))
2193
zp.zp_nopwrite = B_FALSE;
2194
DB_DNODE_EXIT(db);
2195
}
2196
2197
ASSERT(dr->dr_txg == txg);
2198
if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
2199
dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2200
/*
2201
* We have already issued a sync write for this buffer,
2202
* or this buffer has already been synced. It could not
2203
* have been dirtied since, or we would have cleared the state.
2204
*/
2205
mutex_exit(&db->db_mtx);
2206
return (SET_ERROR(EALREADY));
2207
}
2208
2209
ASSERT0(dr->dt.dl.dr_has_raw_params);
2210
ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2211
dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
2212
mutex_exit(&db->db_mtx);
2213
2214
dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2215
dsa->dsa_dr = dr;
2216
dsa->dsa_done = done;
2217
dsa->dsa_zgd = zgd;
2218
dsa->dsa_tx = NULL;
2219
2220
zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
2221
dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db),
2222
dbuf_is_l2cacheable(db, NULL), &zp, dmu_sync_ready, NULL,
2223
dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL,
2224
&zb));
2225
2226
return (0);
2227
}
2228
2229
int
2230
dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2231
{
2232
dnode_t *dn;
2233
int err;
2234
2235
err = dnode_hold(os, object, FTAG, &dn);
2236
if (err)
2237
return (err);
2238
err = dnode_set_nlevels(dn, nlevels, tx);
2239
dnode_rele(dn, FTAG);
2240
return (err);
2241
}
2242
2243
int
2244
dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
2245
dmu_tx_t *tx)
2246
{
2247
dnode_t *dn;
2248
int err;
2249
2250
err = dnode_hold(os, object, FTAG, &dn);
2251
if (err)
2252
return (err);
2253
err = dnode_set_blksz(dn, size, ibs, tx);
2254
dnode_rele(dn, FTAG);
2255
return (err);
2256
}
2257
2258
int
2259
dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2260
dmu_tx_t *tx)
2261
{
2262
dnode_t *dn;
2263
int err;
2264
2265
err = dnode_hold(os, object, FTAG, &dn);
2266
if (err)
2267
return (err);
2268
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2269
dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
2270
rw_exit(&dn->dn_struct_rwlock);
2271
dnode_rele(dn, FTAG);
2272
return (0);
2273
}
2274
2275
void
2276
dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
2277
dmu_tx_t *tx)
2278
{
2279
dnode_t *dn;
2280
2281
/*
2282
* Send streams include each object's checksum function. This
2283
* check ensures that the receiving system can understand the
2284
* checksum function transmitted.
2285
*/
2286
ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2287
2288
VERIFY0(dnode_hold(os, object, FTAG, &dn));
2289
ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
2290
dn->dn_checksum = checksum;
2291
dnode_setdirty(dn, tx);
2292
dnode_rele(dn, FTAG);
2293
}
2294
2295
void
2296
dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
2297
dmu_tx_t *tx)
2298
{
2299
dnode_t *dn;
2300
2301
/*
2302
* Send streams include each object's compression function. This
2303
* check ensures that the receiving system can understand the
2304
* compression function transmitted.
2305
*/
2306
ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2307
2308
VERIFY0(dnode_hold(os, object, FTAG, &dn));
2309
dn->dn_compress = compress;
2310
dnode_setdirty(dn, tx);
2311
dnode_rele(dn, FTAG);
2312
}
2313
2314
/*
2315
* When the "redundant_metadata" property is set to "most", only indirect
2316
* blocks of this level and higher will have an additional ditto block.
2317
*/
2318
static const int zfs_redundant_metadata_most_ditto_level = 2;
2319
2320
void
2321
dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2322
{
2323
dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2324
boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2325
(wp & WP_SPILL));
2326
enum zio_checksum checksum = os->os_checksum;
2327
enum zio_compress compress = os->os_compress;
2328
uint8_t complevel = os->os_complevel;
2329
enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2330
boolean_t dedup = B_FALSE;
2331
boolean_t nopwrite = B_FALSE;
2332
boolean_t dedup_verify = os->os_dedup_verify;
2333
boolean_t encrypt = B_FALSE;
2334
int copies = os->os_copies;
2335
int gang_copies = os->os_copies;
2336
2337
/*
2338
* We maintain different write policies for each of the following
2339
* types of data:
2340
* 1. metadata
2341
* 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2342
* 3. all other level 0 blocks
2343
*/
2344
if (ismd) {
2345
/*
2346
* XXX -- we should design a compression algorithm
2347
* that specializes in arrays of bps.
2348
*/
2349
compress = zio_compress_select(os->os_spa,
2350
ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2351
2352
/*
2353
* Metadata always gets checksummed. If the data
2354
* checksum is multi-bit correctable, and it's not a
2355
* ZBT-style checksum, then it's suitable for metadata
2356
* as well. Otherwise, the metadata checksum defaults
2357
* to fletcher4.
2358
*/
2359
if (!(zio_checksum_table[checksum].ci_flags &
2360
ZCHECKSUM_FLAG_METADATA) ||
2361
(zio_checksum_table[checksum].ci_flags &
2362
ZCHECKSUM_FLAG_EMBEDDED))
2363
checksum = ZIO_CHECKSUM_FLETCHER_4;
2364
2365
switch (os->os_redundant_metadata) {
2366
case ZFS_REDUNDANT_METADATA_ALL:
2367
copies++;
2368
gang_copies++;
2369
break;
2370
case ZFS_REDUNDANT_METADATA_MOST:
2371
if (level >= zfs_redundant_metadata_most_ditto_level ||
2372
DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2373
copies++;
2374
if (level + 1 >=
2375
zfs_redundant_metadata_most_ditto_level ||
2376
DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2377
gang_copies++;
2378
break;
2379
case ZFS_REDUNDANT_METADATA_SOME:
2380
if (DMU_OT_IS_CRITICAL(type, level)) {
2381
copies++;
2382
gang_copies++;
2383
} else if (DMU_OT_IS_METADATA(type)) {
2384
gang_copies++;
2385
}
2386
break;
2387
case ZFS_REDUNDANT_METADATA_NONE:
2388
break;
2389
}
2390
2391
if (dmu_ddt_copies > 0) {
2392
/*
2393
* If this tunable is set, and this is a write for a
2394
* dedup entry store (zap or log), then we treat it
2395
* something like ZFS_REDUNDANT_METADATA_MOST on a
2396
* regular dataset: this many copies, and one more for
2397
* "higher" indirect blocks. This specific exception is
2398
* necessary because dedup objects are stored in the
2399
* MOS, which always has the highest possible copies.
2400
*/
2401
dmu_object_type_t stype =
2402
dn ? dn->dn_storage_type : DMU_OT_NONE;
2403
if (stype == DMU_OT_NONE)
2404
stype = type;
2405
if (stype == DMU_OT_DDT_ZAP) {
2406
copies = dmu_ddt_copies;
2407
if (level >=
2408
zfs_redundant_metadata_most_ditto_level)
2409
copies++;
2410
}
2411
}
2412
} else if (wp & WP_NOFILL) {
2413
ASSERT0(level);
2414
2415
/*
2416
* If we're writing preallocated blocks, we aren't actually
2417
* writing them so don't set any policy properties. These
2418
* blocks are currently only used by an external subsystem
2419
* outside of zfs (i.e. dump) and not written by the zio
2420
* pipeline.
2421
*/
2422
compress = ZIO_COMPRESS_OFF;
2423
checksum = ZIO_CHECKSUM_OFF;
2424
} else {
2425
compress = zio_compress_select(os->os_spa, dn->dn_compress,
2426
compress);
2427
complevel = zio_complevel_select(os->os_spa, compress,
2428
complevel, complevel);
2429
2430
/*
2431
* Storing many references to an all zeros block in the dedup
2432
* table would be expensive. Instead, if dedup is enabled,
2433
* store them as holes even if compression is not enabled.
2434
*/
2435
if (compress == ZIO_COMPRESS_OFF &&
2436
dedup_checksum != ZIO_CHECKSUM_OFF)
2437
compress = ZIO_COMPRESS_EMPTY;
2438
2439
checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2440
zio_checksum_select(dn->dn_checksum, checksum) :
2441
dedup_checksum;
2442
2443
/*
2444
* Determine dedup setting. If we are in dmu_sync(),
2445
* we won't actually dedup now because that's all
2446
* done in syncing context; but we do want to use the
2447
* dedup checksum. If the checksum is not strong
2448
* enough to ensure unique signatures, force
2449
* dedup_verify.
2450
*/
2451
if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2452
dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2453
if (!(zio_checksum_table[checksum].ci_flags &
2454
ZCHECKSUM_FLAG_DEDUP))
2455
dedup_verify = B_TRUE;
2456
}
2457
2458
/*
2459
* Enable nopwrite if we have secure enough checksum
2460
* algorithm (see comment in zio_nop_write) and
2461
* compression is enabled. We don't enable nopwrite if
2462
* dedup is enabled as the two features are mutually
2463
* exclusive.
2464
*/
2465
nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2466
ZCHECKSUM_FLAG_NOPWRITE) &&
2467
compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2468
2469
if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2470
(os->os_redundant_metadata ==
2471
ZFS_REDUNDANT_METADATA_MOST &&
2472
zfs_redundant_metadata_most_ditto_level <= 1))
2473
gang_copies++;
2474
}
2475
2476
/*
2477
* All objects in an encrypted objset are protected from modification
2478
* via a MAC. Encrypted objects store their IV and salt in the last DVA
2479
* in the bp, so we cannot use all copies. Encrypted objects are also
2480
* not subject to nopwrite since writing the same data will still
2481
* result in a new ciphertext. Only encrypted blocks can be dedup'd
2482
* to avoid ambiguity in the dedup code since the DDT does not store
2483
* object types.
2484
*/
2485
if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2486
encrypt = B_TRUE;
2487
2488
if (DMU_OT_IS_ENCRYPTED(type)) {
2489
copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2490
gang_copies = MIN(gang_copies, SPA_DVAS_PER_BP - 1);
2491
nopwrite = B_FALSE;
2492
} else {
2493
dedup = B_FALSE;
2494
}
2495
2496
if (level <= 0 &&
2497
(type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2498
compress = ZIO_COMPRESS_EMPTY;
2499
}
2500
}
2501
2502
zp->zp_compress = compress;
2503
zp->zp_complevel = complevel;
2504
zp->zp_checksum = checksum;
2505
zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2506
zp->zp_level = level;
2507
zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2508
zp->zp_gang_copies = MIN(MAX(gang_copies, copies),
2509
spa_max_replication(os->os_spa));
2510
zp->zp_dedup = dedup;
2511
zp->zp_dedup_verify = dedup && dedup_verify;
2512
zp->zp_nopwrite = nopwrite;
2513
zp->zp_encrypt = encrypt;
2514
zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2515
zp->zp_direct_write = (wp & WP_DIRECT_WR) ? B_TRUE : B_FALSE;
2516
zp->zp_rewrite = B_FALSE;
2517
memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2518
memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2519
memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2520
zp->zp_zpl_smallblk = (DMU_OT_IS_FILE(zp->zp_type) ||
2521
zp->zp_type == DMU_OT_ZVOL) ?
2522
os->os_zpl_special_smallblock : 0;
2523
zp->zp_storage_type = dn ? dn->dn_storage_type : DMU_OT_NONE;
2524
2525
ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2526
}
2527
2528
/*
2529
* Reports the location of data and holes in an object. In order to
2530
* accurately report holes all dirty data must be synced to disk. This
2531
* causes extremely poor performance when seeking for holes in a dirty file.
2532
* As a compromise, only provide hole data when the dnode is clean. When
2533
* a dnode is dirty report the dnode as having no holes by returning EBUSY
2534
* which is always safe to do.
2535
*/
2536
int
2537
dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2538
{
2539
dnode_t *dn;
2540
uint64_t txg, maxtxg = 0;
2541
int err;
2542
2543
restart:
2544
err = dnode_hold(os, object, FTAG, &dn);
2545
if (err)
2546
return (err);
2547
2548
rw_enter(&dn->dn_struct_rwlock, RW_READER);
2549
2550
if (dnode_is_dirty(dn)) {
2551
/*
2552
* If the zfs_dmu_offset_next_sync module option is enabled
2553
* then hole reporting has been requested. Dirty dnodes
2554
* must be synced to disk to accurately report holes.
2555
*
2556
* Provided a RL_READER rangelock spanning 0-UINT64_MAX is
2557
* held by the caller only limited restarts will be required.
2558
* We tolerate callers which do not hold the rangelock by
2559
* returning EBUSY and not reporting holes after at most
2560
* TXG_CONCURRENT_STATES (3) restarts.
2561
*/
2562
if (zfs_dmu_offset_next_sync) {
2563
rw_exit(&dn->dn_struct_rwlock);
2564
dnode_rele(dn, FTAG);
2565
2566
if (maxtxg == 0) {
2567
txg = spa_last_synced_txg(dmu_objset_spa(os));
2568
maxtxg = txg + TXG_CONCURRENT_STATES;
2569
} else if (txg >= maxtxg)
2570
return (SET_ERROR(EBUSY));
2571
2572
txg_wait_synced(dmu_objset_pool(os), ++txg);
2573
goto restart;
2574
}
2575
2576
err = SET_ERROR(EBUSY);
2577
} else {
2578
err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2579
(hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2580
}
2581
2582
rw_exit(&dn->dn_struct_rwlock);
2583
dnode_rele(dn, FTAG);
2584
2585
return (err);
2586
}
2587
2588
int
2589
dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2590
blkptr_t *bps, size_t *nbpsp)
2591
{
2592
dmu_buf_t **dbp, *dbuf;
2593
dmu_buf_impl_t *db;
2594
blkptr_t *bp;
2595
int error, numbufs;
2596
2597
error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2598
&numbufs, &dbp, DMU_READ_PREFETCH);
2599
if (error != 0) {
2600
if (error == ESRCH) {
2601
error = SET_ERROR(ENXIO);
2602
}
2603
return (error);
2604
}
2605
2606
ASSERT3U(numbufs, <=, *nbpsp);
2607
2608
for (int i = 0; i < numbufs; i++) {
2609
dbuf = dbp[i];
2610
db = (dmu_buf_impl_t *)dbuf;
2611
2612
mutex_enter(&db->db_mtx);
2613
2614
if (!list_is_empty(&db->db_dirty_records)) {
2615
dbuf_dirty_record_t *dr;
2616
2617
dr = list_head(&db->db_dirty_records);
2618
if (dr->dt.dl.dr_brtwrite) {
2619
/*
2620
* This is very special case where we clone a
2621
* block and in the same transaction group we
2622
* read its BP (most likely to clone the clone).
2623
*/
2624
bp = &dr->dt.dl.dr_overridden_by;
2625
} else {
2626
/*
2627
* The block was modified in the same
2628
* transaction group.
2629
*/
2630
mutex_exit(&db->db_mtx);
2631
error = SET_ERROR(EAGAIN);
2632
goto out;
2633
}
2634
} else {
2635
bp = db->db_blkptr;
2636
}
2637
2638
mutex_exit(&db->db_mtx);
2639
2640
if (bp == NULL) {
2641
/*
2642
* The file size was increased, but the block was never
2643
* written, otherwise we would either have the block
2644
* pointer or the dirty record and would not get here.
2645
* It is effectively a hole, so report it as such.
2646
*/
2647
BP_ZERO(&bps[i]);
2648
continue;
2649
}
2650
/*
2651
* Make sure we clone only data blocks.
2652
*/
2653
if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) {
2654
error = SET_ERROR(EINVAL);
2655
goto out;
2656
}
2657
2658
/*
2659
* If the block was allocated in transaction group that is not
2660
* yet synced, we could clone it, but we couldn't write this
2661
* operation into ZIL, or it may be impossible to replay, since
2662
* the block may appear not yet allocated at that point.
2663
*/
2664
if (BP_GET_PHYSICAL_BIRTH(bp) > spa_freeze_txg(os->os_spa)) {
2665
error = SET_ERROR(EINVAL);
2666
goto out;
2667
}
2668
if (BP_GET_PHYSICAL_BIRTH(bp) >
2669
spa_last_synced_txg(os->os_spa)) {
2670
error = SET_ERROR(EAGAIN);
2671
goto out;
2672
}
2673
2674
bps[i] = *bp;
2675
}
2676
2677
*nbpsp = numbufs;
2678
out:
2679
dmu_buf_rele_array(dbp, numbufs, FTAG);
2680
2681
return (error);
2682
}
2683
2684
int
2685
dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2686
dmu_tx_t *tx, const blkptr_t *bps, size_t nbps)
2687
{
2688
spa_t *spa;
2689
dmu_buf_t **dbp, *dbuf;
2690
dmu_buf_impl_t *db;
2691
struct dirty_leaf *dl;
2692
dbuf_dirty_record_t *dr;
2693
const blkptr_t *bp;
2694
int error = 0, i, numbufs;
2695
2696
spa = os->os_spa;
2697
2698
VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2699
&numbufs, &dbp, DMU_READ_PREFETCH));
2700
ASSERT3U(nbps, ==, numbufs);
2701
2702
/*
2703
* Before we start cloning make sure that the dbufs sizes match new BPs
2704
* sizes. If they don't, that's a no-go, as we are not able to shrink
2705
* dbufs.
2706
*/
2707
for (i = 0; i < numbufs; i++) {
2708
dbuf = dbp[i];
2709
db = (dmu_buf_impl_t *)dbuf;
2710
bp = &bps[i];
2711
2712
ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT);
2713
ASSERT0(db->db_level);
2714
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2715
ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2716
2717
if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) {
2718
error = SET_ERROR(EXDEV);
2719
goto out;
2720
}
2721
}
2722
2723
for (i = 0; i < numbufs; i++) {
2724
dbuf = dbp[i];
2725
db = (dmu_buf_impl_t *)dbuf;
2726
bp = &bps[i];
2727
2728
dmu_buf_will_clone_or_dio(dbuf, tx);
2729
2730
mutex_enter(&db->db_mtx);
2731
2732
dr = list_head(&db->db_dirty_records);
2733
VERIFY(dr != NULL);
2734
ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2735
dl = &dr->dt.dl;
2736
ASSERT0(dl->dr_has_raw_params);
2737
dl->dr_overridden_by = *bp;
2738
if (!BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) != 0) {
2739
if (!BP_IS_EMBEDDED(bp)) {
2740
BP_SET_BIRTH(&dl->dr_overridden_by, dr->dr_txg,
2741
BP_GET_PHYSICAL_BIRTH(bp));
2742
BP_SET_REWRITE(&dl->dr_overridden_by, 0);
2743
} else {
2744
BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by,
2745
dr->dr_txg);
2746
}
2747
}
2748
dl->dr_brtwrite = B_TRUE;
2749
dl->dr_override_state = DR_OVERRIDDEN;
2750
2751
mutex_exit(&db->db_mtx);
2752
2753
/*
2754
* When data in embedded into BP there is no need to create
2755
* BRT entry as there is no data block. Just copy the BP as
2756
* it contains the data.
2757
*/
2758
if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2759
brt_pending_add(spa, bp, tx);
2760
}
2761
}
2762
out:
2763
dmu_buf_rele_array(dbp, numbufs, FTAG);
2764
2765
return (error);
2766
}
2767
2768
void
2769
__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2770
{
2771
dnode_phys_t *dnp = dn->dn_phys;
2772
2773
doi->doi_data_block_size = dn->dn_datablksz;
2774
doi->doi_metadata_block_size = dn->dn_indblkshift ?
2775
1ULL << dn->dn_indblkshift : 0;
2776
doi->doi_type = dn->dn_type;
2777
doi->doi_bonus_type = dn->dn_bonustype;
2778
doi->doi_bonus_size = dn->dn_bonuslen;
2779
doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2780
doi->doi_indirection = dn->dn_nlevels;
2781
doi->doi_checksum = dn->dn_checksum;
2782
doi->doi_compress = dn->dn_compress;
2783
doi->doi_nblkptr = dn->dn_nblkptr;
2784
doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2785
doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2786
doi->doi_fill_count = 0;
2787
for (int i = 0; i < dnp->dn_nblkptr; i++)
2788
doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2789
}
2790
2791
void
2792
dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2793
{
2794
rw_enter(&dn->dn_struct_rwlock, RW_READER);
2795
mutex_enter(&dn->dn_mtx);
2796
2797
__dmu_object_info_from_dnode(dn, doi);
2798
2799
mutex_exit(&dn->dn_mtx);
2800
rw_exit(&dn->dn_struct_rwlock);
2801
}
2802
2803
/*
2804
* Get information on a DMU object.
2805
* If doi is NULL, just indicates whether the object exists.
2806
*/
2807
int
2808
dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2809
{
2810
dnode_t *dn;
2811
int err = dnode_hold(os, object, FTAG, &dn);
2812
2813
if (err)
2814
return (err);
2815
2816
if (doi != NULL)
2817
dmu_object_info_from_dnode(dn, doi);
2818
2819
dnode_rele(dn, FTAG);
2820
return (0);
2821
}
2822
2823
/*
2824
* As above, but faster; can be used when you have a held dbuf in hand.
2825
*/
2826
void
2827
dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2828
{
2829
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2830
2831
DB_DNODE_ENTER(db);
2832
dmu_object_info_from_dnode(DB_DNODE(db), doi);
2833
DB_DNODE_EXIT(db);
2834
}
2835
2836
/*
2837
* Faster still when you only care about the size.
2838
*/
2839
void
2840
dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2841
u_longlong_t *nblk512)
2842
{
2843
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2844
dnode_t *dn;
2845
2846
DB_DNODE_ENTER(db);
2847
dn = DB_DNODE(db);
2848
2849
*blksize = dn->dn_datablksz;
2850
/* add in number of slots used for the dnode itself */
2851
*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2852
SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2853
DB_DNODE_EXIT(db);
2854
}
2855
2856
void
2857
dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2858
{
2859
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2860
2861
DB_DNODE_ENTER(db);
2862
*dnsize = DB_DNODE(db)->dn_num_slots << DNODE_SHIFT;
2863
DB_DNODE_EXIT(db);
2864
}
2865
2866
void
2867
byteswap_uint64_array(void *vbuf, size_t size)
2868
{
2869
uint64_t *buf = vbuf;
2870
size_t count = size >> 3;
2871
int i;
2872
2873
ASSERT0((size & 7));
2874
2875
for (i = 0; i < count; i++)
2876
buf[i] = BSWAP_64(buf[i]);
2877
}
2878
2879
void
2880
byteswap_uint32_array(void *vbuf, size_t size)
2881
{
2882
uint32_t *buf = vbuf;
2883
size_t count = size >> 2;
2884
int i;
2885
2886
ASSERT0((size & 3));
2887
2888
for (i = 0; i < count; i++)
2889
buf[i] = BSWAP_32(buf[i]);
2890
}
2891
2892
void
2893
byteswap_uint16_array(void *vbuf, size_t size)
2894
{
2895
uint16_t *buf = vbuf;
2896
size_t count = size >> 1;
2897
int i;
2898
2899
ASSERT0((size & 1));
2900
2901
for (i = 0; i < count; i++)
2902
buf[i] = BSWAP_16(buf[i]);
2903
}
2904
2905
void
2906
byteswap_uint8_array(void *vbuf, size_t size)
2907
{
2908
(void) vbuf, (void) size;
2909
}
2910
2911
void
2912
dmu_init(void)
2913
{
2914
abd_init();
2915
zfs_dbgmsg_init();
2916
sa_cache_init();
2917
dmu_objset_init();
2918
dnode_init();
2919
zfetch_init();
2920
dmu_tx_init();
2921
l2arc_init();
2922
arc_init();
2923
dbuf_init();
2924
}
2925
2926
void
2927
dmu_fini(void)
2928
{
2929
arc_fini(); /* arc depends on l2arc, so arc must go first */
2930
l2arc_fini();
2931
dmu_tx_fini();
2932
zfetch_fini();
2933
dbuf_fini();
2934
dnode_fini();
2935
dmu_objset_fini();
2936
sa_cache_fini();
2937
zfs_dbgmsg_fini();
2938
abd_fini();
2939
}
2940
2941
EXPORT_SYMBOL(dmu_bonus_hold);
2942
EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2943
EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2944
EXPORT_SYMBOL(dmu_buf_rele_array);
2945
EXPORT_SYMBOL(dmu_prefetch);
2946
EXPORT_SYMBOL(dmu_prefetch_by_dnode);
2947
EXPORT_SYMBOL(dmu_prefetch_dnode);
2948
EXPORT_SYMBOL(dmu_free_range);
2949
EXPORT_SYMBOL(dmu_free_long_range);
2950
EXPORT_SYMBOL(dmu_free_long_object);
2951
EXPORT_SYMBOL(dmu_read);
2952
EXPORT_SYMBOL(dmu_read_by_dnode);
2953
EXPORT_SYMBOL(dmu_read_uio);
2954
EXPORT_SYMBOL(dmu_read_uio_dbuf);
2955
EXPORT_SYMBOL(dmu_read_uio_dnode);
2956
EXPORT_SYMBOL(dmu_write);
2957
EXPORT_SYMBOL(dmu_write_by_dnode);
2958
EXPORT_SYMBOL(dmu_write_uio);
2959
EXPORT_SYMBOL(dmu_write_uio_dbuf);
2960
EXPORT_SYMBOL(dmu_write_uio_dnode);
2961
EXPORT_SYMBOL(dmu_prealloc);
2962
EXPORT_SYMBOL(dmu_object_info);
2963
EXPORT_SYMBOL(dmu_object_info_from_dnode);
2964
EXPORT_SYMBOL(dmu_object_info_from_db);
2965
EXPORT_SYMBOL(dmu_object_size_from_db);
2966
EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2967
EXPORT_SYMBOL(dmu_object_set_nlevels);
2968
EXPORT_SYMBOL(dmu_object_set_blocksize);
2969
EXPORT_SYMBOL(dmu_object_set_maxblkid);
2970
EXPORT_SYMBOL(dmu_object_set_checksum);
2971
EXPORT_SYMBOL(dmu_object_set_compress);
2972
EXPORT_SYMBOL(dmu_offset_next);
2973
EXPORT_SYMBOL(dmu_write_policy);
2974
EXPORT_SYMBOL(dmu_sync);
2975
EXPORT_SYMBOL(dmu_request_arcbuf);
2976
EXPORT_SYMBOL(dmu_return_arcbuf);
2977
EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2978
EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2979
EXPORT_SYMBOL(dmu_buf_hold);
2980
EXPORT_SYMBOL(dmu_ot);
2981
2982
ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2983
"Enable NOP writes");
2984
2985
ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
2986
"Percentage of dirtied blocks from frees in one TXG");
2987
2988
ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2989
"Enable forcing txg sync to find holes");
2990
2991
ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
2992
"Limit one prefetch call to this size");
2993
2994
ZFS_MODULE_PARAM(zfs, , dmu_ddt_copies, UINT, ZMOD_RW,
2995
"Override copies= for dedup objects");
2996
2997