Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zfs/dmu_object.c
48383 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
/*
23
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24
* Copyright (c) 2013, 2017 by Delphix. All rights reserved.
25
* Copyright 2014 HybridCluster. All rights reserved.
26
*/
27
28
#include <sys/dbuf.h>
29
#include <sys/dmu.h>
30
#include <sys/dmu_impl.h>
31
#include <sys/dmu_objset.h>
32
#include <sys/dmu_tx.h>
33
#include <sys/dnode.h>
34
#include <sys/zap.h>
35
#include <sys/zfeature.h>
36
#include <sys/dsl_dataset.h>
37
38
/*
39
* Each of the concurrent object allocators will grab
40
* 2^dmu_object_alloc_chunk_shift dnode slots at a time. The default is to
41
* grab 128 slots, which is 4 blocks worth. This was experimentally
42
* determined to be the lowest value that eliminates the measurable effect
43
* of lock contention from this code path.
44
*/
45
uint_t dmu_object_alloc_chunk_shift = 7;
46
47
static uint64_t
48
dmu_object_alloc_impl(objset_t *os, dmu_object_type_t ot, int blocksize,
49
int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
50
int dnodesize, dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
51
{
52
uint64_t object;
53
uint64_t L1_dnode_count = DNODES_PER_BLOCK <<
54
(DMU_META_DNODE(os)->dn_indblkshift - SPA_BLKPTRSHIFT);
55
dnode_t *dn = NULL;
56
int dn_slots = dnodesize >> DNODE_SHIFT;
57
boolean_t restarted = B_FALSE;
58
uint64_t *cpuobj = NULL;
59
uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
60
int error;
61
62
cpuobj = &os->os_obj_next_percpu[CPU_SEQID_UNSTABLE %
63
os->os_obj_next_percpu_len];
64
65
if (dn_slots == 0) {
66
dn_slots = DNODE_MIN_SLOTS;
67
} else {
68
ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
69
ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
70
}
71
72
/*
73
* The "chunk" of dnodes that is assigned to a CPU-specific
74
* allocator needs to be at least one block's worth, to avoid
75
* lock contention on the dbuf. It can be at most one L1 block's
76
* worth, so that the "rescan after polishing off a L1's worth"
77
* logic below will be sure to kick in.
78
*/
79
if (dnodes_per_chunk < DNODES_PER_BLOCK)
80
dnodes_per_chunk = DNODES_PER_BLOCK;
81
if (dnodes_per_chunk > L1_dnode_count)
82
dnodes_per_chunk = L1_dnode_count;
83
84
/*
85
* The caller requested the dnode be returned as a performance
86
* optimization in order to avoid releasing the hold only to
87
* immediately reacquire it. Since they caller is responsible
88
* for releasing the hold they must provide the tag.
89
*/
90
if (allocated_dnode != NULL) {
91
ASSERT3P(tag, !=, NULL);
92
} else {
93
ASSERT0P(tag);
94
tag = FTAG;
95
}
96
97
object = *cpuobj;
98
for (;;) {
99
/*
100
* If we finished a chunk of dnodes, get a new one from
101
* the global allocator.
102
*/
103
if ((P2PHASE(object, dnodes_per_chunk) == 0) ||
104
(P2PHASE(object + dn_slots - 1, dnodes_per_chunk) <
105
dn_slots)) {
106
DNODE_STAT_BUMP(dnode_alloc_next_chunk);
107
mutex_enter(&os->os_obj_lock);
108
ASSERT0(P2PHASE(os->os_obj_next_chunk,
109
dnodes_per_chunk));
110
object = os->os_obj_next_chunk;
111
112
/*
113
* Each time we polish off a L1 bp worth of dnodes
114
* (2^12 objects), move to another L1 bp that's
115
* still reasonably sparse (at most 1/4 full). Look
116
* from the beginning at most once per txg. If we
117
* still can't allocate from that L1 block, search
118
* for an empty L0 block, which will quickly skip
119
* to the end of the metadnode if no nearby L0
120
* blocks are empty. This fallback avoids a
121
* pathology where full dnode blocks containing
122
* large dnodes appear sparse because they have a
123
* low blk_fill, leading to many failed allocation
124
* attempts. In the long term a better mechanism to
125
* search for sparse metadnode regions, such as
126
* spacemaps, could be implemented.
127
*
128
* os_scan_dnodes is set during txg sync if enough
129
* objects have been freed since the previous
130
* rescan to justify backfilling again.
131
*
132
* Note that dmu_traverse depends on the behavior
133
* that we use multiple blocks of the dnode object
134
* before going back to reuse objects. Any change
135
* to this algorithm should preserve that property
136
* or find another solution to the issues described
137
* in traverse_visitbp.
138
*/
139
if (P2PHASE(object, L1_dnode_count) == 0) {
140
uint64_t offset;
141
uint64_t blkfill;
142
int minlvl;
143
if (os->os_rescan_dnodes) {
144
offset = 0;
145
os->os_rescan_dnodes = B_FALSE;
146
} else {
147
offset = object << DNODE_SHIFT;
148
}
149
blkfill = restarted ? 1 : DNODES_PER_BLOCK >> 2;
150
minlvl = restarted ? 1 : 2;
151
restarted = B_TRUE;
152
error = dnode_next_offset(DMU_META_DNODE(os),
153
DNODE_FIND_HOLE, &offset, minlvl,
154
blkfill, 0);
155
if (error == 0) {
156
object = offset >> DNODE_SHIFT;
157
}
158
}
159
/*
160
* Note: if "restarted", we may find a L0 that
161
* is not suitably aligned.
162
*/
163
os->os_obj_next_chunk =
164
P2ALIGN_TYPED(object, dnodes_per_chunk, uint64_t) +
165
dnodes_per_chunk;
166
(void) atomic_swap_64(cpuobj, object);
167
mutex_exit(&os->os_obj_lock);
168
}
169
170
/*
171
* The value of (*cpuobj) before adding dn_slots is the object
172
* ID assigned to us. The value afterwards is the object ID
173
* assigned to whoever wants to do an allocation next.
174
*/
175
object = atomic_add_64_nv(cpuobj, dn_slots) - dn_slots;
176
177
/*
178
* XXX We should check for an i/o error here and return
179
* up to our caller. Actually we should pre-read it in
180
* dmu_tx_assign(), but there is currently no mechanism
181
* to do so.
182
*/
183
error = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE,
184
dn_slots, tag, &dn);
185
if (error == 0) {
186
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
187
/*
188
* Another thread could have allocated it; check
189
* again now that we have the struct lock.
190
*/
191
if (dn->dn_type == DMU_OT_NONE) {
192
dnode_allocate(dn, ot, blocksize,
193
indirect_blockshift, bonustype,
194
bonuslen, dn_slots, tx);
195
rw_exit(&dn->dn_struct_rwlock);
196
dmu_tx_add_new_object(tx, dn);
197
198
/*
199
* Caller requested the allocated dnode be
200
* returned and is responsible for the hold.
201
*/
202
if (allocated_dnode != NULL)
203
*allocated_dnode = dn;
204
else
205
dnode_rele(dn, tag);
206
207
return (object);
208
}
209
rw_exit(&dn->dn_struct_rwlock);
210
dnode_rele(dn, tag);
211
DNODE_STAT_BUMP(dnode_alloc_race);
212
}
213
214
/*
215
* Skip to next known valid starting point on error. This
216
* is the start of the next block of dnodes.
217
*/
218
if (dmu_object_next(os, &object, B_TRUE, 0) != 0) {
219
object = P2ROUNDUP(object + 1, DNODES_PER_BLOCK);
220
DNODE_STAT_BUMP(dnode_alloc_next_block);
221
}
222
(void) atomic_swap_64(cpuobj, object);
223
}
224
}
225
226
uint64_t
227
dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize,
228
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
229
{
230
return dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype,
231
bonuslen, 0, NULL, NULL, tx);
232
}
233
234
uint64_t
235
dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
236
int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
237
dmu_tx_t *tx)
238
{
239
return dmu_object_alloc_impl(os, ot, blocksize, indirect_blockshift,
240
bonustype, bonuslen, 0, NULL, NULL, tx);
241
}
242
243
uint64_t
244
dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, int blocksize,
245
dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
246
{
247
return (dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype,
248
bonuslen, dnodesize, NULL, NULL, tx));
249
}
250
251
/*
252
* Allocate a new object and return a pointer to the newly allocated dnode
253
* via the allocated_dnode argument. The returned dnode will be held and
254
* the caller is responsible for releasing the hold by calling dnode_rele().
255
*/
256
uint64_t
257
dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot, int blocksize,
258
int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
259
int dnodesize, dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
260
{
261
return (dmu_object_alloc_impl(os, ot, blocksize, indirect_blockshift,
262
bonustype, bonuslen, dnodesize, allocated_dnode, tag, tx));
263
}
264
265
int
266
dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
267
int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
268
{
269
return (dmu_object_claim_dnsize(os, object, ot, blocksize, bonustype,
270
bonuslen, 0, tx));
271
}
272
273
int
274
dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
275
int blocksize, dmu_object_type_t bonustype, int bonuslen,
276
int dnodesize, dmu_tx_t *tx)
277
{
278
dnode_t *dn;
279
int dn_slots = dnodesize >> DNODE_SHIFT;
280
int err;
281
282
if (dn_slots == 0)
283
dn_slots = DNODE_MIN_SLOTS;
284
ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
285
ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
286
287
if (object == DMU_META_DNODE_OBJECT && !dmu_tx_private_ok(tx))
288
return (SET_ERROR(EBADF));
289
290
err = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, dn_slots,
291
FTAG, &dn);
292
if (err)
293
return (err);
294
295
dnode_allocate(dn, ot, blocksize, 0, bonustype, bonuslen, dn_slots, tx);
296
dmu_tx_add_new_object(tx, dn);
297
298
dnode_rele(dn, FTAG);
299
300
return (0);
301
}
302
303
int
304
dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
305
int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
306
{
307
return (dmu_object_reclaim_dnsize(os, object, ot, blocksize, bonustype,
308
bonuslen, DNODE_MIN_SIZE, B_FALSE, tx));
309
}
310
311
int
312
dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
313
int blocksize, dmu_object_type_t bonustype, int bonuslen, int dnodesize,
314
boolean_t keep_spill, dmu_tx_t *tx)
315
{
316
dnode_t *dn;
317
int dn_slots = dnodesize >> DNODE_SHIFT;
318
int err;
319
320
if (dn_slots == 0)
321
dn_slots = DNODE_MIN_SLOTS;
322
323
if (object == DMU_META_DNODE_OBJECT)
324
return (SET_ERROR(EBADF));
325
326
err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
327
FTAG, &dn);
328
if (err)
329
return (err);
330
331
dnode_reallocate(dn, ot, blocksize, bonustype, bonuslen, dn_slots,
332
keep_spill, tx);
333
334
dnode_rele(dn, FTAG);
335
return (err);
336
}
337
338
int
339
dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
340
{
341
dnode_t *dn;
342
int err;
343
344
err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
345
FTAG, &dn);
346
if (err)
347
return (err);
348
349
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
350
if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
351
dbuf_rm_spill(dn, tx);
352
dnode_rm_spill(dn, tx);
353
}
354
rw_exit(&dn->dn_struct_rwlock);
355
356
dnode_rele(dn, FTAG);
357
return (err);
358
}
359
360
int
361
dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx)
362
{
363
dnode_t *dn;
364
int err;
365
366
ASSERT(object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
367
368
err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
369
FTAG, &dn);
370
if (err)
371
return (err);
372
373
ASSERT(dn->dn_type != DMU_OT_NONE);
374
/*
375
* If we don't create this free range, we'll leak indirect blocks when
376
* we get to freeing the dnode in syncing context.
377
*/
378
dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
379
dnode_free(dn, tx);
380
dnode_rele(dn, FTAG);
381
382
return (0);
383
}
384
385
/*
386
* Return (in *objectp) the next object which is allocated (or a hole)
387
* after *object, taking into account only objects that may have been modified
388
* after the specified txg.
389
*/
390
int
391
dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg)
392
{
393
uint64_t offset;
394
uint64_t start_obj;
395
struct dsl_dataset *ds = os->os_dsl_dataset;
396
int error;
397
398
if (*objectp == 0) {
399
start_obj = 1;
400
} else if (ds && dsl_dataset_feature_is_active(ds,
401
SPA_FEATURE_LARGE_DNODE)) {
402
uint64_t i = *objectp + 1;
403
uint64_t last_obj = *objectp | (DNODES_PER_BLOCK - 1);
404
dmu_object_info_t doi;
405
406
/*
407
* Scan through the remaining meta dnode block. The contents
408
* of each slot in the block are known so it can be quickly
409
* checked. If the block is exhausted without a match then
410
* hand off to dnode_next_offset() for further scanning.
411
*/
412
while (i <= last_obj) {
413
if (i == 0)
414
return (SET_ERROR(ESRCH));
415
error = dmu_object_info(os, i, &doi);
416
if (error == ENOENT) {
417
if (hole) {
418
*objectp = i;
419
return (0);
420
} else {
421
i++;
422
}
423
} else if (error == EEXIST) {
424
i++;
425
} else if (error == 0) {
426
if (hole) {
427
i += doi.doi_dnodesize >> DNODE_SHIFT;
428
} else {
429
*objectp = i;
430
return (0);
431
}
432
} else {
433
return (error);
434
}
435
}
436
437
start_obj = i;
438
} else {
439
start_obj = *objectp + 1;
440
}
441
442
offset = start_obj << DNODE_SHIFT;
443
444
error = dnode_next_offset(DMU_META_DNODE(os),
445
(hole ? DNODE_FIND_HOLE : 0), &offset, 0, DNODES_PER_BLOCK, txg);
446
447
*objectp = offset >> DNODE_SHIFT;
448
449
return (error);
450
}
451
452
/*
453
* Turn this object from old_type into DMU_OTN_ZAP_METADATA, and bump the
454
* refcount on SPA_FEATURE_EXTENSIBLE_DATASET.
455
*
456
* Only for use from syncing context, on MOS objects.
457
*/
458
void
459
dmu_object_zapify(objset_t *mos, uint64_t object, dmu_object_type_t old_type,
460
dmu_tx_t *tx)
461
{
462
dnode_t *dn;
463
464
ASSERT(dmu_tx_is_syncing(tx));
465
466
VERIFY0(dnode_hold(mos, object, FTAG, &dn));
467
if (dn->dn_type == DMU_OTN_ZAP_METADATA) {
468
dnode_rele(dn, FTAG);
469
return;
470
}
471
ASSERT3U(dn->dn_type, ==, old_type);
472
ASSERT0(dn->dn_maxblkid);
473
474
/*
475
* We must initialize the ZAP data before changing the type,
476
* so that concurrent calls to *_is_zapified() can determine if
477
* the object has been completely zapified by checking the type.
478
*/
479
mzap_create_impl(dn, 0, 0, tx);
480
481
dn->dn_next_type[tx->tx_txg & TXG_MASK] = dn->dn_type =
482
DMU_OTN_ZAP_METADATA;
483
dnode_setdirty(dn, tx);
484
dnode_rele(dn, FTAG);
485
486
spa_feature_incr(dmu_objset_spa(mos),
487
SPA_FEATURE_EXTENSIBLE_DATASET, tx);
488
}
489
490
void
491
dmu_object_free_zapified(objset_t *mos, uint64_t object, dmu_tx_t *tx)
492
{
493
dnode_t *dn;
494
dmu_object_type_t t;
495
496
ASSERT(dmu_tx_is_syncing(tx));
497
498
VERIFY0(dnode_hold(mos, object, FTAG, &dn));
499
t = dn->dn_type;
500
dnode_rele(dn, FTAG);
501
502
if (t == DMU_OTN_ZAP_METADATA) {
503
spa_feature_decr(dmu_objset_spa(mos),
504
SPA_FEATURE_EXTENSIBLE_DATASET, tx);
505
}
506
VERIFY0(dmu_object_free(mos, object, tx));
507
}
508
509
EXPORT_SYMBOL(dmu_object_alloc);
510
EXPORT_SYMBOL(dmu_object_alloc_ibs);
511
EXPORT_SYMBOL(dmu_object_alloc_dnsize);
512
EXPORT_SYMBOL(dmu_object_alloc_hold);
513
EXPORT_SYMBOL(dmu_object_claim);
514
EXPORT_SYMBOL(dmu_object_claim_dnsize);
515
EXPORT_SYMBOL(dmu_object_reclaim);
516
EXPORT_SYMBOL(dmu_object_reclaim_dnsize);
517
EXPORT_SYMBOL(dmu_object_rm_spill);
518
EXPORT_SYMBOL(dmu_object_free);
519
EXPORT_SYMBOL(dmu_object_next);
520
EXPORT_SYMBOL(dmu_object_zapify);
521
EXPORT_SYMBOL(dmu_object_free_zapified);
522
523
ZFS_MODULE_PARAM(zfs, , dmu_object_alloc_chunk_shift, UINT, ZMOD_RW,
524
"CPU-specific allocator grabs 2^N objects at once");
525
526