Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zfs/dmu_redact.c
107994 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
/*
23
* Copyright (c) 2017, 2018 by Delphix. All rights reserved.
24
*/
25
26
#include <sys/zfs_context.h>
27
#include <sys/txg.h>
28
#include <sys/dmu_objset.h>
29
#include <sys/dmu_traverse.h>
30
#include <sys/dmu_redact.h>
31
#include <sys/bqueue.h>
32
#include <sys/objlist.h>
33
#include <sys/dmu_tx.h>
34
#ifdef _KERNEL
35
#include <sys/zfs_vfsops.h>
36
#include <sys/zap.h>
37
#include <sys/zfs_znode.h>
38
#endif
39
40
/*
41
* This controls the number of entries in the buffer the redaction_list_update
42
* synctask uses to buffer writes to the redaction list.
43
*/
44
static const int redact_sync_bufsize = 1024;
45
46
/*
47
* Controls how often to update the redaction list when creating a redaction
48
* list.
49
*/
50
static const uint64_t redaction_list_update_interval_ns =
51
1000 * 1000 * 1000ULL; /* 1s */
52
53
/*
54
* This tunable controls the length of the queues that zfs redact worker threads
55
* use to communicate. If the dmu_redact_snap thread is blocking on these
56
* queues, this variable may need to be increased. If there is a significant
57
* slowdown at the start of a redact operation as these threads consume all the
58
* available IO resources, or the queues are consuming too much memory, this
59
* variable may need to be decreased.
60
*/
61
static const int zfs_redact_queue_length = 1024 * 1024;
62
63
/*
64
* These tunables control the fill fraction of the queues by zfs redact. The
65
* fill fraction controls the frequency with which threads have to be
66
* cv_signaled. If a lot of cpu time is being spent on cv_signal, then these
67
* should be tuned down. If the queues empty before the signalled thread can
68
* catch up, then these should be tuned up.
69
*/
70
static const uint64_t zfs_redact_queue_ff = 20;
71
72
struct redact_record {
73
bqueue_node_t ln;
74
boolean_t eos_marker; /* Marks the end of the stream */
75
uint64_t start_object;
76
uint64_t start_blkid;
77
uint64_t end_object;
78
uint64_t end_blkid;
79
uint8_t indblkshift;
80
uint32_t datablksz;
81
};
82
83
struct redact_thread_arg {
84
bqueue_t q;
85
objset_t *os; /* Objset to traverse */
86
dsl_dataset_t *ds; /* Dataset to traverse */
87
struct redact_record *current_record;
88
int error_code;
89
boolean_t cancel;
90
zbookmark_phys_t resume;
91
objlist_t *deleted_objs;
92
uint64_t *num_blocks_visited;
93
uint64_t ignore_object; /* ignore further callbacks on this */
94
uint64_t txg; /* txg to traverse since */
95
};
96
97
/*
98
* The redaction node is a wrapper around the redaction record that is used
99
* by the redaction merging thread to sort the records and determine overlaps.
100
*
101
* It contains two nodes; one sorts the records by their start_zb, and the other
102
* sorts the records by their end_zb.
103
*/
104
struct redact_node {
105
avl_node_t avl_node_start;
106
avl_node_t avl_node_end;
107
struct redact_record *record;
108
struct redact_thread_arg *rt_arg;
109
uint32_t thread_num;
110
};
111
112
struct merge_data {
113
list_t md_redact_block_pending;
114
redact_block_phys_t md_coalesce_block;
115
uint64_t md_last_time;
116
redact_block_phys_t md_furthest[TXG_SIZE];
117
/* Lists of struct redact_block_list_node. */
118
list_t md_blocks[TXG_SIZE];
119
boolean_t md_synctask_txg[TXG_SIZE];
120
uint64_t md_latest_synctask_txg;
121
redaction_list_t *md_redaction_list;
122
};
123
124
/*
125
* A wrapper around struct redact_block so it can be stored in a list_t.
126
*/
127
struct redact_block_list_node {
128
redact_block_phys_t block;
129
list_node_t node;
130
};
131
132
/*
133
* We've found a new redaction candidate. In order to improve performance, we
134
* coalesce these blocks when they're adjacent to each other. This function
135
* handles that. If the new candidate block range is immediately after the
136
* range we're building, coalesce it into the range we're building. Otherwise,
137
* put the record we're building on the queue, and update the build pointer to
138
* point to the new record.
139
*/
140
static void
141
record_merge_enqueue(bqueue_t *q, struct redact_record **build,
142
struct redact_record *new)
143
{
144
if (new->eos_marker) {
145
if (*build != NULL)
146
bqueue_enqueue(q, *build, sizeof (**build));
147
bqueue_enqueue_flush(q, new, sizeof (*new));
148
return;
149
}
150
if (*build == NULL) {
151
*build = new;
152
return;
153
}
154
struct redact_record *curbuild = *build;
155
if ((curbuild->end_object == new->start_object &&
156
curbuild->end_blkid + 1 == new->start_blkid &&
157
curbuild->end_blkid != UINT64_MAX) ||
158
(curbuild->end_object + 1 == new->start_object &&
159
curbuild->end_blkid == UINT64_MAX && new->start_blkid == 0)) {
160
curbuild->end_object = new->end_object;
161
curbuild->end_blkid = new->end_blkid;
162
kmem_free(new, sizeof (*new));
163
} else {
164
bqueue_enqueue(q, curbuild, sizeof (*curbuild));
165
*build = new;
166
}
167
}
168
#ifdef _KERNEL
169
struct objnode {
170
avl_node_t node;
171
uint64_t obj;
172
};
173
174
static int
175
objnode_compare(const void *o1, const void *o2)
176
{
177
const struct objnode *obj1 = o1;
178
const struct objnode *obj2 = o2;
179
if (obj1->obj < obj2->obj)
180
return (-1);
181
if (obj1->obj > obj2->obj)
182
return (1);
183
return (0);
184
}
185
186
187
static objlist_t *
188
zfs_get_deleteq(objset_t *os)
189
{
190
objlist_t *deleteq_objlist = objlist_create();
191
uint64_t deleteq_obj;
192
zap_cursor_t zc;
193
zap_attribute_t *za;
194
dmu_object_info_t doi;
195
196
ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
197
VERIFY0(dmu_object_info(os, MASTER_NODE_OBJ, &doi));
198
ASSERT3U(doi.doi_type, ==, DMU_OT_MASTER_NODE);
199
200
VERIFY0(zap_lookup(os, MASTER_NODE_OBJ,
201
ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
202
203
/*
204
* In order to insert objects into the objlist, they must be in sorted
205
* order. We don't know what order we'll get them out of the ZAP in, so
206
* we insert them into and remove them from an avl_tree_t to sort them.
207
*/
208
avl_tree_t at;
209
avl_create(&at, objnode_compare, sizeof (struct objnode),
210
offsetof(struct objnode, node));
211
212
za = zap_attribute_alloc();
213
for (zap_cursor_init(&zc, os, deleteq_obj);
214
zap_cursor_retrieve(&zc, za) == 0; zap_cursor_advance(&zc)) {
215
struct objnode *obj = kmem_zalloc(sizeof (*obj), KM_SLEEP);
216
obj->obj = za->za_first_integer;
217
avl_add(&at, obj);
218
}
219
zap_cursor_fini(&zc);
220
zap_attribute_free(za);
221
222
struct objnode *next, *found = avl_first(&at);
223
while (found != NULL) {
224
next = AVL_NEXT(&at, found);
225
objlist_insert(deleteq_objlist, found->obj);
226
found = next;
227
}
228
229
void *cookie = NULL;
230
while ((found = avl_destroy_nodes(&at, &cookie)) != NULL)
231
kmem_free(found, sizeof (*found));
232
avl_destroy(&at);
233
return (deleteq_objlist);
234
}
235
#endif
236
237
/*
238
* This is the callback function to traverse_dataset for the redaction threads
239
* for dmu_redact_snap. This thread is responsible for creating redaction
240
* records for all the data that is modified by the snapshots we're redacting
241
* with respect to. Redaction records represent ranges of data that have been
242
* modified by one of the redaction snapshots, and are stored in the
243
* redact_record struct. We need to create redaction records for three
244
* cases:
245
*
246
* First, if there's a normal write, we need to create a redaction record for
247
* that block.
248
*
249
* Second, if there's a hole, we need to create a redaction record that covers
250
* the whole range of the hole. If the hole is in the meta-dnode, it must cover
251
* every block in all of the objects in the hole.
252
*
253
* Third, if there is a deleted object, we need to create a redaction record for
254
* all of the blocks in that object.
255
*/
256
static int
257
redact_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
258
const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
259
{
260
(void) spa, (void) zilog;
261
struct redact_thread_arg *rta = arg;
262
struct redact_record *record;
263
264
ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
265
zb->zb_object >= rta->resume.zb_object);
266
267
if (rta->cancel)
268
return (SET_ERROR(EINTR));
269
270
if (rta->ignore_object == zb->zb_object)
271
return (0);
272
273
/*
274
* If we're visiting a dnode, we need to handle the case where the
275
* object has been deleted.
276
*/
277
if (zb->zb_level == ZB_DNODE_LEVEL) {
278
ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
279
280
if (zb->zb_object == 0)
281
return (0);
282
283
/*
284
* If the object has been deleted, redact all of the blocks in
285
* it.
286
*/
287
if (dnp->dn_type == DMU_OT_NONE ||
288
objlist_exists(rta->deleted_objs, zb->zb_object)) {
289
rta->ignore_object = zb->zb_object;
290
record = kmem_zalloc(sizeof (struct redact_record),
291
KM_SLEEP);
292
293
record->eos_marker = B_FALSE;
294
record->start_object = record->end_object =
295
zb->zb_object;
296
record->start_blkid = 0;
297
record->end_blkid = UINT64_MAX;
298
record_merge_enqueue(&rta->q,
299
&rta->current_record, record);
300
}
301
return (0);
302
} else if (zb->zb_level < 0) {
303
return (0);
304
} else if (zb->zb_level > 0 && !BP_IS_HOLE(bp)) {
305
/*
306
* If this is an indirect block, but not a hole, it doesn't
307
* provide any useful information for redaction, so ignore it.
308
*/
309
return (0);
310
}
311
312
/*
313
* At this point, there are two options left for the type of block we're
314
* looking at. Either this is a hole (which could be in the dnode or
315
* the meta-dnode), or it's a level 0 block of some sort. If it's a
316
* hole, we create a redaction record that covers the whole range. If
317
* the hole is in a dnode, we need to redact all the blocks in that
318
* hole. If the hole is in the meta-dnode, we instead need to redact
319
* all blocks in every object covered by that hole. If it's a level 0
320
* block, we only need to redact that single block.
321
*/
322
record = kmem_zalloc(sizeof (struct redact_record), KM_SLEEP);
323
record->eos_marker = B_FALSE;
324
325
record->start_object = record->end_object = zb->zb_object;
326
if (BP_IS_HOLE(bp)) {
327
record->start_blkid = zb->zb_blkid *
328
bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
329
330
record->end_blkid = ((zb->zb_blkid + 1) *
331
bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level)) - 1;
332
333
if (zb->zb_object == DMU_META_DNODE_OBJECT) {
334
record->start_object = record->start_blkid *
335
((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
336
sizeof (dnode_phys_t));
337
record->start_blkid = 0;
338
record->end_object = ((record->end_blkid +
339
1) * ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
340
sizeof (dnode_phys_t))) - 1;
341
record->end_blkid = UINT64_MAX;
342
}
343
} else if (zb->zb_level != 0 ||
344
zb->zb_object == DMU_META_DNODE_OBJECT) {
345
kmem_free(record, sizeof (*record));
346
return (0);
347
} else {
348
record->start_blkid = record->end_blkid = zb->zb_blkid;
349
}
350
record->indblkshift = dnp->dn_indblkshift;
351
record->datablksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
352
record_merge_enqueue(&rta->q, &rta->current_record, record);
353
354
return (0);
355
}
356
357
static __attribute__((noreturn)) void
358
redact_traverse_thread(void *arg)
359
{
360
struct redact_thread_arg *rt_arg = arg;
361
int err;
362
struct redact_record *data;
363
#ifdef _KERNEL
364
if (rt_arg->os->os_phys->os_type == DMU_OST_ZFS)
365
rt_arg->deleted_objs = zfs_get_deleteq(rt_arg->os);
366
else
367
rt_arg->deleted_objs = objlist_create();
368
#else
369
rt_arg->deleted_objs = objlist_create();
370
#endif
371
372
err = traverse_dataset_resume(rt_arg->ds, rt_arg->txg,
373
&rt_arg->resume, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
374
TRAVERSE_LOGICAL, redact_cb, rt_arg);
375
376
if (err != EINTR)
377
rt_arg->error_code = err;
378
objlist_destroy(rt_arg->deleted_objs);
379
data = kmem_zalloc(sizeof (*data), KM_SLEEP);
380
data->eos_marker = B_TRUE;
381
record_merge_enqueue(&rt_arg->q, &rt_arg->current_record, data);
382
thread_exit();
383
}
384
385
static inline void
386
create_zbookmark_from_obj_off(zbookmark_phys_t *zb, uint64_t object,
387
uint64_t blkid)
388
{
389
zb->zb_object = object;
390
zb->zb_level = 0;
391
zb->zb_blkid = blkid;
392
}
393
394
/*
395
* This is a utility function that can do the comparison for the start or ends
396
* of the ranges in a redact_record.
397
*/
398
static int
399
redact_range_compare(uint64_t obj1, uint64_t off1, uint32_t dbss1,
400
uint64_t obj2, uint64_t off2, uint32_t dbss2)
401
{
402
zbookmark_phys_t z1, z2;
403
create_zbookmark_from_obj_off(&z1, obj1, off1);
404
create_zbookmark_from_obj_off(&z2, obj2, off2);
405
406
return (zbookmark_compare(dbss1 >> SPA_MINBLOCKSHIFT, 0,
407
dbss2 >> SPA_MINBLOCKSHIFT, 0, &z1, &z2));
408
}
409
410
/*
411
* Compare two redaction records by their range's start location. Also makes
412
* eos records always compare last. We use the thread number in the redact_node
413
* to ensure that records do not compare equal (which is not allowed in our avl
414
* trees).
415
*/
416
static int
417
redact_node_compare_start(const void *arg1, const void *arg2)
418
{
419
const struct redact_node *rn1 = arg1;
420
const struct redact_node *rn2 = arg2;
421
const struct redact_record *rr1 = rn1->record;
422
const struct redact_record *rr2 = rn2->record;
423
if (rr1->eos_marker)
424
return (1);
425
if (rr2->eos_marker)
426
return (-1);
427
428
int cmp = redact_range_compare(rr1->start_object, rr1->start_blkid,
429
rr1->datablksz, rr2->start_object, rr2->start_blkid,
430
rr2->datablksz);
431
if (cmp == 0)
432
cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
433
return (cmp);
434
}
435
436
/*
437
* Compare two redaction records by their range's end location. Also makes
438
* eos records always compare last. We use the thread number in the redact_node
439
* to ensure that records do not compare equal (which is not allowed in our avl
440
* trees).
441
*/
442
static int
443
redact_node_compare_end(const void *arg1, const void *arg2)
444
{
445
const struct redact_node *rn1 = arg1;
446
const struct redact_node *rn2 = arg2;
447
const struct redact_record *srr1 = rn1->record;
448
const struct redact_record *srr2 = rn2->record;
449
if (srr1->eos_marker)
450
return (1);
451
if (srr2->eos_marker)
452
return (-1);
453
454
int cmp = redact_range_compare(srr1->end_object, srr1->end_blkid,
455
srr1->datablksz, srr2->end_object, srr2->end_blkid,
456
srr2->datablksz);
457
if (cmp == 0)
458
cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
459
return (cmp);
460
}
461
462
/*
463
* Utility function that compares two redaction records to determine if any part
464
* of the "from" record is before any part of the "to" record. Also causes End
465
* of Stream redaction records to compare after all others, so that the
466
* redaction merging logic can stay simple.
467
*/
468
static boolean_t
469
redact_record_before(const struct redact_record *from,
470
const struct redact_record *to)
471
{
472
if (from->eos_marker == B_TRUE)
473
return (B_FALSE);
474
else if (to->eos_marker == B_TRUE)
475
return (B_TRUE);
476
return (redact_range_compare(from->start_object, from->start_blkid,
477
from->datablksz, to->end_object, to->end_blkid,
478
to->datablksz) <= 0);
479
}
480
481
/*
482
* Pop a new redaction record off the queue, check that the records are in the
483
* right order, and free the old data.
484
*/
485
static struct redact_record *
486
get_next_redact_record(bqueue_t *bq, struct redact_record *prev)
487
{
488
struct redact_record *next = bqueue_dequeue(bq);
489
ASSERT(redact_record_before(prev, next));
490
kmem_free(prev, sizeof (*prev));
491
return (next);
492
}
493
494
/*
495
* Remove the given redaction node from both trees, pull a new redaction record
496
* off the queue, free the old redaction record, update the redaction node, and
497
* reinsert the node into the trees.
498
*/
499
static int
500
update_avl_trees(avl_tree_t *start_tree, avl_tree_t *end_tree,
501
struct redact_node *redact_node)
502
{
503
avl_remove(start_tree, redact_node);
504
avl_remove(end_tree, redact_node);
505
redact_node->record = get_next_redact_record(&redact_node->rt_arg->q,
506
redact_node->record);
507
avl_add(end_tree, redact_node);
508
avl_add(start_tree, redact_node);
509
return (redact_node->rt_arg->error_code);
510
}
511
512
/*
513
* Synctask for updating redaction lists. We first take this txg's list of
514
* redacted blocks and append those to the redaction list. We then update the
515
* redaction list's bonus buffer. We store the furthest blocks we visited and
516
* the list of snapshots that we're redacting with respect to. We need these so
517
* that redacted sends and receives can be correctly resumed.
518
*/
519
static void
520
redaction_list_update_sync(void *arg, dmu_tx_t *tx)
521
{
522
struct merge_data *md = arg;
523
uint64_t txg = dmu_tx_get_txg(tx);
524
list_t *list = &md->md_blocks[txg & TXG_MASK];
525
redact_block_phys_t *furthest_visited =
526
&md->md_furthest[txg & TXG_MASK];
527
objset_t *mos = tx->tx_pool->dp_meta_objset;
528
redaction_list_t *rl = md->md_redaction_list;
529
int bufsize = redact_sync_bufsize;
530
redact_block_phys_t *buf = kmem_alloc(bufsize * sizeof (*buf),
531
KM_SLEEP);
532
int index = 0;
533
534
dmu_buf_will_dirty(rl->rl_dbuf, tx);
535
536
for (struct redact_block_list_node *rbln = list_remove_head(list);
537
rbln != NULL; rbln = list_remove_head(list)) {
538
ASSERT3U(rbln->block.rbp_object, <=,
539
furthest_visited->rbp_object);
540
ASSERT(rbln->block.rbp_object < furthest_visited->rbp_object ||
541
rbln->block.rbp_blkid <= furthest_visited->rbp_blkid);
542
buf[index] = rbln->block;
543
index++;
544
if (index == bufsize) {
545
dmu_write(mos, rl->rl_object,
546
rl->rl_phys->rlp_num_entries * sizeof (*buf),
547
bufsize * sizeof (*buf), buf, tx,
548
DMU_READ_NO_PREFETCH);
549
rl->rl_phys->rlp_num_entries += bufsize;
550
index = 0;
551
}
552
kmem_free(rbln, sizeof (*rbln));
553
}
554
if (index > 0) {
555
dmu_write(mos, rl->rl_object, rl->rl_phys->rlp_num_entries *
556
sizeof (*buf), index * sizeof (*buf), buf, tx,
557
DMU_READ_NO_PREFETCH);
558
rl->rl_phys->rlp_num_entries += index;
559
}
560
kmem_free(buf, bufsize * sizeof (*buf));
561
562
md->md_synctask_txg[txg & TXG_MASK] = B_FALSE;
563
rl->rl_phys->rlp_last_object = furthest_visited->rbp_object;
564
rl->rl_phys->rlp_last_blkid = furthest_visited->rbp_blkid;
565
}
566
567
static void
568
commit_rl_updates(objset_t *os, struct merge_data *md, uint64_t object,
569
uint64_t blkid)
570
{
571
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(os->os_spa)->dp_mos_dir);
572
dmu_tx_hold_space(tx, sizeof (struct redact_block_list_node));
573
VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
574
uint64_t txg = dmu_tx_get_txg(tx);
575
if (!md->md_synctask_txg[txg & TXG_MASK]) {
576
dsl_sync_task_nowait(dmu_tx_pool(tx),
577
redaction_list_update_sync, md, tx);
578
md->md_synctask_txg[txg & TXG_MASK] = B_TRUE;
579
md->md_latest_synctask_txg = txg;
580
}
581
md->md_furthest[txg & TXG_MASK].rbp_object = object;
582
md->md_furthest[txg & TXG_MASK].rbp_blkid = blkid;
583
list_move_tail(&md->md_blocks[txg & TXG_MASK],
584
&md->md_redact_block_pending);
585
dmu_tx_commit(tx);
586
md->md_last_time = gethrtime();
587
}
588
589
/*
590
* We want to store the list of blocks that we're redacting in the bookmark's
591
* redaction list. However, this list is stored in the MOS, which means it can
592
* only be written to in syncing context. To get around this, we create a
593
* synctask that will write to the mos for us. We tell it what to write by
594
* a linked list for each current transaction group; every time we decide to
595
* redact a block, we append it to the transaction group that is currently in
596
* open context. We also update some progress information that the synctask
597
* will store to enable resumable redacted sends.
598
*/
599
static void
600
update_redaction_list(struct merge_data *md, objset_t *os,
601
uint64_t object, uint64_t blkid, uint64_t endblkid, uint32_t blksz)
602
{
603
boolean_t enqueue = B_FALSE;
604
redact_block_phys_t cur = {0};
605
uint64_t count = endblkid - blkid + 1;
606
while (count > REDACT_BLOCK_MAX_COUNT) {
607
update_redaction_list(md, os, object, blkid,
608
blkid + REDACT_BLOCK_MAX_COUNT - 1, blksz);
609
blkid += REDACT_BLOCK_MAX_COUNT;
610
count -= REDACT_BLOCK_MAX_COUNT;
611
}
612
redact_block_phys_t *coalesce = &md->md_coalesce_block;
613
boolean_t new;
614
if (coalesce->rbp_size_count == 0) {
615
new = B_TRUE;
616
enqueue = B_FALSE;
617
} else {
618
uint64_t old_count = redact_block_get_count(coalesce);
619
if (coalesce->rbp_object == object &&
620
coalesce->rbp_blkid + old_count == blkid &&
621
old_count + count <= REDACT_BLOCK_MAX_COUNT) {
622
ASSERT3U(redact_block_get_size(coalesce), ==, blksz);
623
redact_block_set_count(coalesce, old_count + count);
624
new = B_FALSE;
625
enqueue = B_FALSE;
626
} else {
627
new = B_TRUE;
628
enqueue = B_TRUE;
629
}
630
}
631
632
if (new) {
633
cur = *coalesce;
634
coalesce->rbp_blkid = blkid;
635
coalesce->rbp_object = object;
636
637
redact_block_set_count(coalesce, count);
638
redact_block_set_size(coalesce, blksz);
639
}
640
641
if (enqueue && redact_block_get_size(&cur) != 0) {
642
struct redact_block_list_node *rbln =
643
kmem_alloc(sizeof (struct redact_block_list_node),
644
KM_SLEEP);
645
rbln->block = cur;
646
list_insert_tail(&md->md_redact_block_pending, rbln);
647
}
648
649
if (gethrtime() > md->md_last_time +
650
redaction_list_update_interval_ns) {
651
commit_rl_updates(os, md, object, blkid);
652
}
653
}
654
655
/*
656
* This thread merges all the redaction records provided by the worker threads,
657
* and determines which blocks are redacted by all the snapshots. The algorithm
658
* for doing so is similar to performing a merge in mergesort with n sub-lists
659
* instead of 2, with some added complexity due to the fact that the entries are
660
* ranges, not just single blocks. This algorithm relies on the fact that the
661
* queues are sorted, which is ensured by the fact that traverse_dataset
662
* traverses the dataset in a consistent order. We pull one entry off the front
663
* of the queues of each secure dataset traversal thread. Then we repeat the
664
* following: each record represents a range of blocks modified by one of the
665
* redaction snapshots, and each block in that range may need to be redacted in
666
* the send stream. Find the record with the latest start of its range, and the
667
* record with the earliest end of its range. If the last start is before the
668
* first end, then we know that the blocks in the range [last_start, first_end]
669
* are covered by all of the ranges at the front of the queues, which means
670
* every thread redacts that whole range. For example, let's say the ranges on
671
* each queue look like this:
672
*
673
* Block Id 1 2 3 4 5 6 7 8 9 10 11
674
* Thread 1 | [====================]
675
* Thread 2 | [========]
676
* Thread 3 | [=================]
677
*
678
* Thread 3 has the last start (5), and the thread 2 has the last end (6). All
679
* three threads modified the range [5,6], so that data should not be sent over
680
* the wire. After we've determined whether or not to redact anything, we take
681
* the record with the first end. We discard that record, and pull a new one
682
* off the front of the queue it came from. In the above example, we would
683
* discard Thread 2's record, and pull a new one. Let's say the next record we
684
* pulled from Thread 2 covered range [10,11]. The new layout would look like
685
* this:
686
*
687
* Block Id 1 2 3 4 5 6 7 8 9 10 11
688
* Thread 1 | [====================]
689
* Thread 2 | [==]
690
* Thread 3 | [=================]
691
*
692
* When we compare the last start (10, from Thread 2) and the first end (9, from
693
* Thread 1), we see that the last start is greater than the first end.
694
* Therefore, we do not redact anything from these records. We'll iterate by
695
* replacing the record from Thread 1.
696
*
697
* We iterate by replacing the record with the lowest end because we know
698
* that the record with the lowest end has helped us as much as it can. All the
699
* ranges before it that we will ever redact have been redacted. In addition,
700
* by replacing the one with the lowest end, we guarantee we catch all ranges
701
* that need to be redacted. For example, if in the case above we had replaced
702
* the record from Thread 1 instead, we might have ended up with the following:
703
*
704
* Block Id 1 2 3 4 5 6 7 8 9 10 11 12
705
* Thread 1 | [==]
706
* Thread 2 | [========]
707
* Thread 3 | [=================]
708
*
709
* If the next record from Thread 2 had been [8,10], for example, we should have
710
* redacted part of that range, but because we updated Thread 1's record, we
711
* missed it.
712
*
713
* We implement this algorithm by using two trees. The first sorts the
714
* redaction records by their start_zb, and the second sorts them by their
715
* end_zb. We use these to find the record with the last start and the record
716
* with the first end. We create a record with that start and end, and send it
717
* on. The overall runtime of this implementation is O(n log m), where n is the
718
* total number of redaction records from all the different redaction snapshots,
719
* and m is the number of redaction snapshots.
720
*
721
* If we redact with respect to zero snapshots, we create a redaction
722
* record with the start object and blkid to 0, and the end object and blkid to
723
* UINT64_MAX. This will result in us redacting every block.
724
*/
725
static int
726
perform_thread_merge(bqueue_t *q, uint32_t num_threads,
727
struct redact_thread_arg *thread_args, boolean_t *cancel)
728
{
729
struct redact_node *redact_nodes = NULL;
730
avl_tree_t start_tree, end_tree;
731
struct redact_record *record;
732
struct redact_record *current_record = NULL;
733
int err = 0;
734
struct merge_data md = { {0} };
735
list_create(&md.md_redact_block_pending,
736
sizeof (struct redact_block_list_node),
737
offsetof(struct redact_block_list_node, node));
738
739
/*
740
* If we're redacting with respect to zero snapshots, then no data is
741
* permitted to be sent. We enqueue a record that redacts all blocks,
742
* and an eos marker.
743
*/
744
if (num_threads == 0) {
745
record = kmem_zalloc(sizeof (struct redact_record),
746
KM_SLEEP);
747
// We can't redact object 0, so don't try.
748
record->start_object = 1;
749
record->start_blkid = 0;
750
record->end_object = record->end_blkid = UINT64_MAX;
751
bqueue_enqueue(q, record, sizeof (*record));
752
return (0);
753
}
754
redact_nodes = vmem_zalloc(num_threads *
755
sizeof (*redact_nodes), KM_SLEEP);
756
757
avl_create(&start_tree, redact_node_compare_start,
758
sizeof (struct redact_node),
759
offsetof(struct redact_node, avl_node_start));
760
avl_create(&end_tree, redact_node_compare_end,
761
sizeof (struct redact_node),
762
offsetof(struct redact_node, avl_node_end));
763
764
for (int i = 0; i < num_threads; i++) {
765
struct redact_node *node = &redact_nodes[i];
766
struct redact_thread_arg *targ = &thread_args[i];
767
node->record = bqueue_dequeue(&targ->q);
768
node->rt_arg = targ;
769
node->thread_num = i;
770
avl_add(&start_tree, node);
771
avl_add(&end_tree, node);
772
}
773
774
/*
775
* Once the first record in the end tree has returned EOS, every record
776
* must be an EOS record, so we should stop.
777
*/
778
while (err == 0 && !((struct redact_node *)avl_first(&end_tree))->
779
record->eos_marker) {
780
if (*cancel) {
781
err = EINTR;
782
break;
783
}
784
struct redact_node *last_start = avl_last(&start_tree);
785
struct redact_node *first_end = avl_first(&end_tree);
786
787
/*
788
* If the last start record is before the first end record,
789
* then we have blocks that are redacted by all threads.
790
* Therefore, we should redact them. Copy the record, and send
791
* it to the main thread.
792
*/
793
if (redact_record_before(last_start->record,
794
first_end->record)) {
795
record = kmem_zalloc(sizeof (struct redact_record),
796
KM_SLEEP);
797
*record = *first_end->record;
798
record->start_object = last_start->record->start_object;
799
record->start_blkid = last_start->record->start_blkid;
800
record_merge_enqueue(q, &current_record,
801
record);
802
}
803
err = update_avl_trees(&start_tree, &end_tree, first_end);
804
}
805
806
/*
807
* We're done; if we were cancelled, we need to cancel our workers and
808
* clear out their queues. Either way, we need to remove every thread's
809
* redact_node struct from the avl trees.
810
*/
811
for (int i = 0; i < num_threads; i++) {
812
if (err != 0) {
813
thread_args[i].cancel = B_TRUE;
814
while (!redact_nodes[i].record->eos_marker) {
815
(void) update_avl_trees(&start_tree, &end_tree,
816
&redact_nodes[i]);
817
}
818
}
819
avl_remove(&start_tree, &redact_nodes[i]);
820
avl_remove(&end_tree, &redact_nodes[i]);
821
kmem_free(redact_nodes[i].record,
822
sizeof (struct redact_record));
823
bqueue_destroy(&thread_args[i].q);
824
}
825
826
avl_destroy(&start_tree);
827
avl_destroy(&end_tree);
828
vmem_free(redact_nodes, num_threads * sizeof (*redact_nodes));
829
if (current_record != NULL)
830
bqueue_enqueue(q, current_record, sizeof (*current_record));
831
return (err);
832
}
833
834
struct redact_merge_thread_arg {
835
bqueue_t q;
836
spa_t *spa;
837
int numsnaps;
838
struct redact_thread_arg *thr_args;
839
boolean_t cancel;
840
int error_code;
841
};
842
843
static __attribute__((noreturn)) void
844
redact_merge_thread(void *arg)
845
{
846
struct redact_merge_thread_arg *rmta = arg;
847
rmta->error_code = perform_thread_merge(&rmta->q,
848
rmta->numsnaps, rmta->thr_args, &rmta->cancel);
849
struct redact_record *rec = kmem_zalloc(sizeof (*rec), KM_SLEEP);
850
rec->eos_marker = B_TRUE;
851
bqueue_enqueue_flush(&rmta->q, rec, 1);
852
thread_exit();
853
}
854
855
/*
856
* Find the next object in or after the redaction range passed in, and hold
857
* its dnode with the provided tag. Also update *object to contain the new
858
* object number.
859
*/
860
static int
861
hold_next_object(objset_t *os, struct redact_record *rec, const void *tag,
862
uint64_t *object, dnode_t **dn)
863
{
864
int err = 0;
865
if (*dn != NULL)
866
dnode_rele(*dn, tag);
867
*dn = NULL;
868
if (*object < rec->start_object) {
869
*object = rec->start_object - 1;
870
}
871
err = dmu_object_next(os, object, B_FALSE, 0);
872
if (err != 0)
873
return (err);
874
875
err = dnode_hold(os, *object, tag, dn);
876
while (err == 0 && (*object < rec->start_object ||
877
DMU_OT_IS_METADATA((*dn)->dn_type))) {
878
dnode_rele(*dn, tag);
879
*dn = NULL;
880
err = dmu_object_next(os, object, B_FALSE, 0);
881
if (err != 0)
882
break;
883
err = dnode_hold(os, *object, tag, dn);
884
}
885
return (err);
886
}
887
888
static int
889
perform_redaction(objset_t *os, redaction_list_t *rl,
890
struct redact_merge_thread_arg *rmta)
891
{
892
int err = 0;
893
bqueue_t *q = &rmta->q;
894
struct redact_record *rec = NULL;
895
struct merge_data md = { {0} };
896
897
list_create(&md.md_redact_block_pending,
898
sizeof (struct redact_block_list_node),
899
offsetof(struct redact_block_list_node, node));
900
md.md_redaction_list = rl;
901
902
for (int i = 0; i < TXG_SIZE; i++) {
903
list_create(&md.md_blocks[i],
904
sizeof (struct redact_block_list_node),
905
offsetof(struct redact_block_list_node, node));
906
}
907
dnode_t *dn = NULL;
908
uint64_t prev_obj = 0;
909
for (rec = bqueue_dequeue(q); !rec->eos_marker && err == 0;
910
rec = get_next_redact_record(q, rec)) {
911
ASSERT3U(rec->start_object, !=, 0);
912
uint64_t object;
913
if (prev_obj != rec->start_object) {
914
object = rec->start_object - 1;
915
err = hold_next_object(os, rec, FTAG, &object, &dn);
916
} else {
917
object = prev_obj;
918
}
919
while (err == 0 && object <= rec->end_object) {
920
if (issig()) {
921
err = EINTR;
922
break;
923
}
924
/*
925
* Part of the current object is contained somewhere in
926
* the range covered by rec.
927
*/
928
uint64_t startblkid;
929
uint64_t endblkid;
930
uint64_t maxblkid = dn->dn_phys->dn_maxblkid;
931
932
if (rec->start_object < object)
933
startblkid = 0;
934
else if (rec->start_blkid > maxblkid)
935
break;
936
else
937
startblkid = rec->start_blkid;
938
939
if (rec->end_object > object || rec->end_blkid >
940
maxblkid) {
941
endblkid = maxblkid;
942
} else {
943
endblkid = rec->end_blkid;
944
}
945
update_redaction_list(&md, os, object, startblkid,
946
endblkid, dn->dn_datablksz);
947
948
if (object == rec->end_object)
949
break;
950
err = hold_next_object(os, rec, FTAG, &object, &dn);
951
}
952
if (err == ESRCH)
953
err = 0;
954
if (dn != NULL)
955
prev_obj = object;
956
}
957
if (err == 0 && dn != NULL)
958
dnode_rele(dn, FTAG);
959
960
if (err == ESRCH)
961
err = 0;
962
rmta->cancel = B_TRUE;
963
while (!rec->eos_marker)
964
rec = get_next_redact_record(q, rec);
965
kmem_free(rec, sizeof (*rec));
966
967
/*
968
* There may be a block that's being coalesced, sync that out before we
969
* return.
970
*/
971
if (err == 0 && md.md_coalesce_block.rbp_size_count != 0) {
972
struct redact_block_list_node *rbln =
973
kmem_alloc(sizeof (struct redact_block_list_node),
974
KM_SLEEP);
975
rbln->block = md.md_coalesce_block;
976
list_insert_tail(&md.md_redact_block_pending, rbln);
977
}
978
commit_rl_updates(os, &md, UINT64_MAX, UINT64_MAX);
979
980
/*
981
* Wait for all the redaction info to sync out before we return, so that
982
* anyone who attempts to resume this redaction will have all the data
983
* they need.
984
*/
985
dsl_pool_t *dp = spa_get_dsl(os->os_spa);
986
if (md.md_latest_synctask_txg != 0)
987
txg_wait_synced(dp, md.md_latest_synctask_txg);
988
for (int i = 0; i < TXG_SIZE; i++)
989
list_destroy(&md.md_blocks[i]);
990
return (err);
991
}
992
993
static boolean_t
994
redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
995
{
996
for (int i = 0; i < num_snaps; i++) {
997
if (snaps[i] == guid)
998
return (B_TRUE);
999
}
1000
return (B_FALSE);
1001
}
1002
1003
int
1004
dmu_redact_snap(const char *snapname, nvlist_t *redactnvl,
1005
const char *redactbook)
1006
{
1007
int err = 0;
1008
dsl_pool_t *dp = NULL;
1009
dsl_dataset_t *ds = NULL;
1010
int numsnaps = 0;
1011
objset_t *os;
1012
struct redact_thread_arg *args = NULL;
1013
redaction_list_t *new_rl = NULL;
1014
char *newredactbook;
1015
1016
if ((err = dsl_pool_hold(snapname, FTAG, &dp)) != 0)
1017
return (err);
1018
1019
newredactbook = kmem_zalloc(sizeof (char) * ZFS_MAX_DATASET_NAME_LEN,
1020
KM_SLEEP);
1021
1022
if ((err = dsl_dataset_hold_flags(dp, snapname, DS_HOLD_FLAG_DECRYPT,
1023
FTAG, &ds)) != 0) {
1024
goto out;
1025
}
1026
dsl_dataset_long_hold(ds, FTAG);
1027
if (!ds->ds_is_snapshot || dmu_objset_from_ds(ds, &os) != 0) {
1028
err = EINVAL;
1029
goto out;
1030
}
1031
if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)) {
1032
err = EALREADY;
1033
goto out;
1034
}
1035
1036
numsnaps = fnvlist_num_pairs(redactnvl);
1037
if (numsnaps > 0)
1038
args = vmem_zalloc(numsnaps * sizeof (*args), KM_SLEEP);
1039
1040
nvpair_t *pair = NULL;
1041
for (int i = 0; i < numsnaps; i++) {
1042
pair = nvlist_next_nvpair(redactnvl, pair);
1043
const char *name = nvpair_name(pair);
1044
struct redact_thread_arg *rta = &args[i];
1045
err = dsl_dataset_hold_flags(dp, name, DS_HOLD_FLAG_DECRYPT,
1046
FTAG, &rta->ds);
1047
if (err != 0)
1048
break;
1049
/*
1050
* We want to do the long hold before we can get any other
1051
* errors, because the cleanup code will release the long
1052
* hold if rta->ds is filled in.
1053
*/
1054
dsl_dataset_long_hold(rta->ds, FTAG);
1055
1056
err = dmu_objset_from_ds(rta->ds, &rta->os);
1057
if (err != 0)
1058
break;
1059
if (!dsl_dataset_is_before(rta->ds, ds, 0)) {
1060
err = EINVAL;
1061
break;
1062
}
1063
if (dsl_dataset_feature_is_active(rta->ds,
1064
SPA_FEATURE_REDACTED_DATASETS)) {
1065
err = EALREADY;
1066
break;
1067
1068
}
1069
}
1070
if (err != 0)
1071
goto out;
1072
VERIFY0P(nvlist_next_nvpair(redactnvl, pair));
1073
1074
boolean_t resuming = B_FALSE;
1075
zfs_bookmark_phys_t bookmark;
1076
1077
(void) strlcpy(newredactbook, snapname, ZFS_MAX_DATASET_NAME_LEN);
1078
char *c = strchr(newredactbook, '@');
1079
ASSERT3P(c, !=, NULL);
1080
int n = snprintf(c, ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook),
1081
"#%s", redactbook);
1082
if (n >= ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook)) {
1083
dsl_pool_rele(dp, FTAG);
1084
kmem_free(newredactbook,
1085
sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
1086
if (args != NULL)
1087
vmem_free(args, numsnaps * sizeof (*args));
1088
return (SET_ERROR(ENAMETOOLONG));
1089
}
1090
err = dsl_bookmark_lookup(dp, newredactbook, NULL, &bookmark);
1091
if (err == 0) {
1092
resuming = B_TRUE;
1093
if (bookmark.zbm_redaction_obj == 0) {
1094
err = EEXIST;
1095
goto out;
1096
}
1097
err = dsl_redaction_list_hold_obj(dp,
1098
bookmark.zbm_redaction_obj, FTAG, &new_rl);
1099
if (err != 0) {
1100
err = EIO;
1101
goto out;
1102
}
1103
dsl_redaction_list_long_hold(dp, new_rl, FTAG);
1104
if (new_rl->rl_phys->rlp_num_snaps != numsnaps) {
1105
err = ESRCH;
1106
goto out;
1107
}
1108
for (int i = 0; i < numsnaps; i++) {
1109
struct redact_thread_arg *rta = &args[i];
1110
if (!redact_snaps_contains(new_rl->rl_phys->rlp_snaps,
1111
new_rl->rl_phys->rlp_num_snaps,
1112
dsl_dataset_phys(rta->ds)->ds_guid)) {
1113
err = ESRCH;
1114
goto out;
1115
}
1116
}
1117
if (new_rl->rl_phys->rlp_last_blkid == UINT64_MAX &&
1118
new_rl->rl_phys->rlp_last_object == UINT64_MAX) {
1119
err = EEXIST;
1120
goto out;
1121
}
1122
dsl_pool_rele(dp, FTAG);
1123
dp = NULL;
1124
} else {
1125
uint64_t *guids = NULL;
1126
if (numsnaps > 0) {
1127
guids = vmem_zalloc(numsnaps * sizeof (uint64_t),
1128
KM_SLEEP);
1129
}
1130
for (int i = 0; i < numsnaps; i++) {
1131
struct redact_thread_arg *rta = &args[i];
1132
guids[i] = dsl_dataset_phys(rta->ds)->ds_guid;
1133
}
1134
1135
dsl_pool_rele(dp, FTAG);
1136
dp = NULL;
1137
err = dsl_bookmark_create_redacted(newredactbook, snapname,
1138
numsnaps, guids, FTAG, &new_rl);
1139
vmem_free(guids, numsnaps * sizeof (uint64_t));
1140
if (err != 0)
1141
goto out;
1142
}
1143
1144
for (int i = 0; i < numsnaps; i++) {
1145
struct redact_thread_arg *rta = &args[i];
1146
(void) bqueue_init(&rta->q, zfs_redact_queue_ff,
1147
zfs_redact_queue_length,
1148
offsetof(struct redact_record, ln));
1149
if (resuming) {
1150
rta->resume.zb_blkid =
1151
new_rl->rl_phys->rlp_last_blkid;
1152
rta->resume.zb_object =
1153
new_rl->rl_phys->rlp_last_object;
1154
}
1155
rta->txg = dsl_dataset_phys(ds)->ds_creation_txg;
1156
(void) thread_create(NULL, 0, redact_traverse_thread, rta,
1157
0, curproc, TS_RUN, minclsyspri);
1158
}
1159
1160
struct redact_merge_thread_arg *rmta;
1161
rmta = kmem_zalloc(sizeof (struct redact_merge_thread_arg), KM_SLEEP);
1162
1163
(void) bqueue_init(&rmta->q, zfs_redact_queue_ff,
1164
zfs_redact_queue_length, offsetof(struct redact_record, ln));
1165
rmta->numsnaps = numsnaps;
1166
rmta->spa = os->os_spa;
1167
rmta->thr_args = args;
1168
(void) thread_create(NULL, 0, redact_merge_thread, rmta, 0, curproc,
1169
TS_RUN, minclsyspri);
1170
err = perform_redaction(os, new_rl, rmta);
1171
bqueue_destroy(&rmta->q);
1172
kmem_free(rmta, sizeof (struct redact_merge_thread_arg));
1173
1174
out:
1175
kmem_free(newredactbook, sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
1176
1177
if (new_rl != NULL) {
1178
dsl_redaction_list_long_rele(new_rl, FTAG);
1179
dsl_redaction_list_rele(new_rl, FTAG);
1180
}
1181
for (int i = 0; i < numsnaps; i++) {
1182
struct redact_thread_arg *rta = &args[i];
1183
/*
1184
* rta->ds may be NULL if we got an error while filling
1185
* it in.
1186
*/
1187
if (rta->ds != NULL) {
1188
dsl_dataset_long_rele(rta->ds, FTAG);
1189
dsl_dataset_rele_flags(rta->ds,
1190
DS_HOLD_FLAG_DECRYPT, FTAG);
1191
}
1192
}
1193
1194
if (args != NULL)
1195
vmem_free(args, numsnaps * sizeof (*args));
1196
if (dp != NULL)
1197
dsl_pool_rele(dp, FTAG);
1198
if (ds != NULL) {
1199
dsl_dataset_long_rele(ds, FTAG);
1200
dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1201
}
1202
return (SET_ERROR(err));
1203
1204
}
1205
1206