Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zfs/dmu_redact.c
48383 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
/*
23
* Copyright (c) 2017, 2018 by Delphix. All rights reserved.
24
*/
25
26
#include <sys/zfs_context.h>
27
#include <sys/txg.h>
28
#include <sys/dmu_objset.h>
29
#include <sys/dmu_traverse.h>
30
#include <sys/dmu_redact.h>
31
#include <sys/bqueue.h>
32
#include <sys/objlist.h>
33
#include <sys/dmu_tx.h>
34
#ifdef _KERNEL
35
#include <sys/zfs_vfsops.h>
36
#include <sys/zap.h>
37
#include <sys/zfs_znode.h>
38
#endif
39
40
/*
41
* This controls the number of entries in the buffer the redaction_list_update
42
* synctask uses to buffer writes to the redaction list.
43
*/
44
static const int redact_sync_bufsize = 1024;
45
46
/*
47
* Controls how often to update the redaction list when creating a redaction
48
* list.
49
*/
50
static const uint64_t redaction_list_update_interval_ns =
51
1000 * 1000 * 1000ULL; /* 1s */
52
53
/*
54
* This tunable controls the length of the queues that zfs redact worker threads
55
* use to communicate. If the dmu_redact_snap thread is blocking on these
56
* queues, this variable may need to be increased. If there is a significant
57
* slowdown at the start of a redact operation as these threads consume all the
58
* available IO resources, or the queues are consuming too much memory, this
59
* variable may need to be decreased.
60
*/
61
static const int zfs_redact_queue_length = 1024 * 1024;
62
63
/*
64
* These tunables control the fill fraction of the queues by zfs redact. The
65
* fill fraction controls the frequency with which threads have to be
66
* cv_signaled. If a lot of cpu time is being spent on cv_signal, then these
67
* should be tuned down. If the queues empty before the signalled thread can
68
* catch up, then these should be tuned up.
69
*/
70
static const uint64_t zfs_redact_queue_ff = 20;
71
72
struct redact_record {
73
bqueue_node_t ln;
74
boolean_t eos_marker; /* Marks the end of the stream */
75
uint64_t start_object;
76
uint64_t start_blkid;
77
uint64_t end_object;
78
uint64_t end_blkid;
79
uint8_t indblkshift;
80
uint32_t datablksz;
81
};
82
83
struct redact_thread_arg {
84
bqueue_t q;
85
objset_t *os; /* Objset to traverse */
86
dsl_dataset_t *ds; /* Dataset to traverse */
87
struct redact_record *current_record;
88
int error_code;
89
boolean_t cancel;
90
zbookmark_phys_t resume;
91
objlist_t *deleted_objs;
92
uint64_t *num_blocks_visited;
93
uint64_t ignore_object; /* ignore further callbacks on this */
94
uint64_t txg; /* txg to traverse since */
95
};
96
97
/*
98
* The redaction node is a wrapper around the redaction record that is used
99
* by the redaction merging thread to sort the records and determine overlaps.
100
*
101
* It contains two nodes; one sorts the records by their start_zb, and the other
102
* sorts the records by their end_zb.
103
*/
104
struct redact_node {
105
avl_node_t avl_node_start;
106
avl_node_t avl_node_end;
107
struct redact_record *record;
108
struct redact_thread_arg *rt_arg;
109
uint32_t thread_num;
110
};
111
112
struct merge_data {
113
list_t md_redact_block_pending;
114
redact_block_phys_t md_coalesce_block;
115
uint64_t md_last_time;
116
redact_block_phys_t md_furthest[TXG_SIZE];
117
/* Lists of struct redact_block_list_node. */
118
list_t md_blocks[TXG_SIZE];
119
boolean_t md_synctask_txg[TXG_SIZE];
120
uint64_t md_latest_synctask_txg;
121
redaction_list_t *md_redaction_list;
122
};
123
124
/*
125
* A wrapper around struct redact_block so it can be stored in a list_t.
126
*/
127
struct redact_block_list_node {
128
redact_block_phys_t block;
129
list_node_t node;
130
};
131
132
/*
133
* We've found a new redaction candidate. In order to improve performance, we
134
* coalesce these blocks when they're adjacent to each other. This function
135
* handles that. If the new candidate block range is immediately after the
136
* range we're building, coalesce it into the range we're building. Otherwise,
137
* put the record we're building on the queue, and update the build pointer to
138
* point to the new record.
139
*/
140
static void
141
record_merge_enqueue(bqueue_t *q, struct redact_record **build,
142
struct redact_record *new)
143
{
144
if (new->eos_marker) {
145
if (*build != NULL)
146
bqueue_enqueue(q, *build, sizeof (**build));
147
bqueue_enqueue_flush(q, new, sizeof (*new));
148
return;
149
}
150
if (*build == NULL) {
151
*build = new;
152
return;
153
}
154
struct redact_record *curbuild = *build;
155
if ((curbuild->end_object == new->start_object &&
156
curbuild->end_blkid + 1 == new->start_blkid &&
157
curbuild->end_blkid != UINT64_MAX) ||
158
(curbuild->end_object + 1 == new->start_object &&
159
curbuild->end_blkid == UINT64_MAX && new->start_blkid == 0)) {
160
curbuild->end_object = new->end_object;
161
curbuild->end_blkid = new->end_blkid;
162
kmem_free(new, sizeof (*new));
163
} else {
164
bqueue_enqueue(q, curbuild, sizeof (*curbuild));
165
*build = new;
166
}
167
}
168
#ifdef _KERNEL
169
struct objnode {
170
avl_node_t node;
171
uint64_t obj;
172
};
173
174
static int
175
objnode_compare(const void *o1, const void *o2)
176
{
177
const struct objnode *obj1 = o1;
178
const struct objnode *obj2 = o2;
179
if (obj1->obj < obj2->obj)
180
return (-1);
181
if (obj1->obj > obj2->obj)
182
return (1);
183
return (0);
184
}
185
186
187
static objlist_t *
188
zfs_get_deleteq(objset_t *os)
189
{
190
objlist_t *deleteq_objlist = objlist_create();
191
uint64_t deleteq_obj;
192
zap_cursor_t zc;
193
zap_attribute_t *za;
194
dmu_object_info_t doi;
195
196
ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
197
VERIFY0(dmu_object_info(os, MASTER_NODE_OBJ, &doi));
198
ASSERT3U(doi.doi_type, ==, DMU_OT_MASTER_NODE);
199
200
VERIFY0(zap_lookup(os, MASTER_NODE_OBJ,
201
ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
202
203
/*
204
* In order to insert objects into the objlist, they must be in sorted
205
* order. We don't know what order we'll get them out of the ZAP in, so
206
* we insert them into and remove them from an avl_tree_t to sort them.
207
*/
208
avl_tree_t at;
209
avl_create(&at, objnode_compare, sizeof (struct objnode),
210
offsetof(struct objnode, node));
211
212
za = zap_attribute_alloc();
213
for (zap_cursor_init(&zc, os, deleteq_obj);
214
zap_cursor_retrieve(&zc, za) == 0; zap_cursor_advance(&zc)) {
215
struct objnode *obj = kmem_zalloc(sizeof (*obj), KM_SLEEP);
216
obj->obj = za->za_first_integer;
217
avl_add(&at, obj);
218
}
219
zap_cursor_fini(&zc);
220
zap_attribute_free(za);
221
222
struct objnode *next, *found = avl_first(&at);
223
while (found != NULL) {
224
next = AVL_NEXT(&at, found);
225
objlist_insert(deleteq_objlist, found->obj);
226
found = next;
227
}
228
229
void *cookie = NULL;
230
while ((found = avl_destroy_nodes(&at, &cookie)) != NULL)
231
kmem_free(found, sizeof (*found));
232
avl_destroy(&at);
233
return (deleteq_objlist);
234
}
235
#endif
236
237
/*
238
* This is the callback function to traverse_dataset for the redaction threads
239
* for dmu_redact_snap. This thread is responsible for creating redaction
240
* records for all the data that is modified by the snapshots we're redacting
241
* with respect to. Redaction records represent ranges of data that have been
242
* modified by one of the redaction snapshots, and are stored in the
243
* redact_record struct. We need to create redaction records for three
244
* cases:
245
*
246
* First, if there's a normal write, we need to create a redaction record for
247
* that block.
248
*
249
* Second, if there's a hole, we need to create a redaction record that covers
250
* the whole range of the hole. If the hole is in the meta-dnode, it must cover
251
* every block in all of the objects in the hole.
252
*
253
* Third, if there is a deleted object, we need to create a redaction record for
254
* all of the blocks in that object.
255
*/
256
static int
257
redact_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
258
const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
259
{
260
(void) spa, (void) zilog;
261
struct redact_thread_arg *rta = arg;
262
struct redact_record *record;
263
264
ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
265
zb->zb_object >= rta->resume.zb_object);
266
267
if (rta->cancel)
268
return (SET_ERROR(EINTR));
269
270
if (rta->ignore_object == zb->zb_object)
271
return (0);
272
273
/*
274
* If we're visiting a dnode, we need to handle the case where the
275
* object has been deleted.
276
*/
277
if (zb->zb_level == ZB_DNODE_LEVEL) {
278
ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
279
280
if (zb->zb_object == 0)
281
return (0);
282
283
/*
284
* If the object has been deleted, redact all of the blocks in
285
* it.
286
*/
287
if (dnp->dn_type == DMU_OT_NONE ||
288
objlist_exists(rta->deleted_objs, zb->zb_object)) {
289
rta->ignore_object = zb->zb_object;
290
record = kmem_zalloc(sizeof (struct redact_record),
291
KM_SLEEP);
292
293
record->eos_marker = B_FALSE;
294
record->start_object = record->end_object =
295
zb->zb_object;
296
record->start_blkid = 0;
297
record->end_blkid = UINT64_MAX;
298
record_merge_enqueue(&rta->q,
299
&rta->current_record, record);
300
}
301
return (0);
302
} else if (zb->zb_level < 0) {
303
return (0);
304
} else if (zb->zb_level > 0 && !BP_IS_HOLE(bp)) {
305
/*
306
* If this is an indirect block, but not a hole, it doesn't
307
* provide any useful information for redaction, so ignore it.
308
*/
309
return (0);
310
}
311
312
/*
313
* At this point, there are two options left for the type of block we're
314
* looking at. Either this is a hole (which could be in the dnode or
315
* the meta-dnode), or it's a level 0 block of some sort. If it's a
316
* hole, we create a redaction record that covers the whole range. If
317
* the hole is in a dnode, we need to redact all the blocks in that
318
* hole. If the hole is in the meta-dnode, we instead need to redact
319
* all blocks in every object covered by that hole. If it's a level 0
320
* block, we only need to redact that single block.
321
*/
322
record = kmem_zalloc(sizeof (struct redact_record), KM_SLEEP);
323
record->eos_marker = B_FALSE;
324
325
record->start_object = record->end_object = zb->zb_object;
326
if (BP_IS_HOLE(bp)) {
327
record->start_blkid = zb->zb_blkid *
328
bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
329
330
record->end_blkid = ((zb->zb_blkid + 1) *
331
bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level)) - 1;
332
333
if (zb->zb_object == DMU_META_DNODE_OBJECT) {
334
record->start_object = record->start_blkid *
335
((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
336
sizeof (dnode_phys_t));
337
record->start_blkid = 0;
338
record->end_object = ((record->end_blkid +
339
1) * ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
340
sizeof (dnode_phys_t))) - 1;
341
record->end_blkid = UINT64_MAX;
342
}
343
} else if (zb->zb_level != 0 ||
344
zb->zb_object == DMU_META_DNODE_OBJECT) {
345
kmem_free(record, sizeof (*record));
346
return (0);
347
} else {
348
record->start_blkid = record->end_blkid = zb->zb_blkid;
349
}
350
record->indblkshift = dnp->dn_indblkshift;
351
record->datablksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
352
record_merge_enqueue(&rta->q, &rta->current_record, record);
353
354
return (0);
355
}
356
357
static __attribute__((noreturn)) void
358
redact_traverse_thread(void *arg)
359
{
360
struct redact_thread_arg *rt_arg = arg;
361
int err;
362
struct redact_record *data;
363
#ifdef _KERNEL
364
if (rt_arg->os->os_phys->os_type == DMU_OST_ZFS)
365
rt_arg->deleted_objs = zfs_get_deleteq(rt_arg->os);
366
else
367
rt_arg->deleted_objs = objlist_create();
368
#else
369
rt_arg->deleted_objs = objlist_create();
370
#endif
371
372
err = traverse_dataset_resume(rt_arg->ds, rt_arg->txg,
373
&rt_arg->resume, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
374
TRAVERSE_LOGICAL, redact_cb, rt_arg);
375
376
if (err != EINTR)
377
rt_arg->error_code = err;
378
objlist_destroy(rt_arg->deleted_objs);
379
data = kmem_zalloc(sizeof (*data), KM_SLEEP);
380
data->eos_marker = B_TRUE;
381
record_merge_enqueue(&rt_arg->q, &rt_arg->current_record, data);
382
thread_exit();
383
}
384
385
static inline void
386
create_zbookmark_from_obj_off(zbookmark_phys_t *zb, uint64_t object,
387
uint64_t blkid)
388
{
389
zb->zb_object = object;
390
zb->zb_level = 0;
391
zb->zb_blkid = blkid;
392
}
393
394
/*
395
* This is a utility function that can do the comparison for the start or ends
396
* of the ranges in a redact_record.
397
*/
398
static int
399
redact_range_compare(uint64_t obj1, uint64_t off1, uint32_t dbss1,
400
uint64_t obj2, uint64_t off2, uint32_t dbss2)
401
{
402
zbookmark_phys_t z1, z2;
403
create_zbookmark_from_obj_off(&z1, obj1, off1);
404
create_zbookmark_from_obj_off(&z2, obj2, off2);
405
406
return (zbookmark_compare(dbss1 >> SPA_MINBLOCKSHIFT, 0,
407
dbss2 >> SPA_MINBLOCKSHIFT, 0, &z1, &z2));
408
}
409
410
/*
411
* Compare two redaction records by their range's start location. Also makes
412
* eos records always compare last. We use the thread number in the redact_node
413
* to ensure that records do not compare equal (which is not allowed in our avl
414
* trees).
415
*/
416
static int
417
redact_node_compare_start(const void *arg1, const void *arg2)
418
{
419
const struct redact_node *rn1 = arg1;
420
const struct redact_node *rn2 = arg2;
421
const struct redact_record *rr1 = rn1->record;
422
const struct redact_record *rr2 = rn2->record;
423
if (rr1->eos_marker)
424
return (1);
425
if (rr2->eos_marker)
426
return (-1);
427
428
int cmp = redact_range_compare(rr1->start_object, rr1->start_blkid,
429
rr1->datablksz, rr2->start_object, rr2->start_blkid,
430
rr2->datablksz);
431
if (cmp == 0)
432
cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
433
return (cmp);
434
}
435
436
/*
437
* Compare two redaction records by their range's end location. Also makes
438
* eos records always compare last. We use the thread number in the redact_node
439
* to ensure that records do not compare equal (which is not allowed in our avl
440
* trees).
441
*/
442
static int
443
redact_node_compare_end(const void *arg1, const void *arg2)
444
{
445
const struct redact_node *rn1 = arg1;
446
const struct redact_node *rn2 = arg2;
447
const struct redact_record *srr1 = rn1->record;
448
const struct redact_record *srr2 = rn2->record;
449
if (srr1->eos_marker)
450
return (1);
451
if (srr2->eos_marker)
452
return (-1);
453
454
int cmp = redact_range_compare(srr1->end_object, srr1->end_blkid,
455
srr1->datablksz, srr2->end_object, srr2->end_blkid,
456
srr2->datablksz);
457
if (cmp == 0)
458
cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
459
return (cmp);
460
}
461
462
/*
463
* Utility function that compares two redaction records to determine if any part
464
* of the "from" record is before any part of the "to" record. Also causes End
465
* of Stream redaction records to compare after all others, so that the
466
* redaction merging logic can stay simple.
467
*/
468
static boolean_t
469
redact_record_before(const struct redact_record *from,
470
const struct redact_record *to)
471
{
472
if (from->eos_marker == B_TRUE)
473
return (B_FALSE);
474
else if (to->eos_marker == B_TRUE)
475
return (B_TRUE);
476
return (redact_range_compare(from->start_object, from->start_blkid,
477
from->datablksz, to->end_object, to->end_blkid,
478
to->datablksz) <= 0);
479
}
480
481
/*
482
* Pop a new redaction record off the queue, check that the records are in the
483
* right order, and free the old data.
484
*/
485
static struct redact_record *
486
get_next_redact_record(bqueue_t *bq, struct redact_record *prev)
487
{
488
struct redact_record *next = bqueue_dequeue(bq);
489
ASSERT(redact_record_before(prev, next));
490
kmem_free(prev, sizeof (*prev));
491
return (next);
492
}
493
494
/*
495
* Remove the given redaction node from both trees, pull a new redaction record
496
* off the queue, free the old redaction record, update the redaction node, and
497
* reinsert the node into the trees.
498
*/
499
static int
500
update_avl_trees(avl_tree_t *start_tree, avl_tree_t *end_tree,
501
struct redact_node *redact_node)
502
{
503
avl_remove(start_tree, redact_node);
504
avl_remove(end_tree, redact_node);
505
redact_node->record = get_next_redact_record(&redact_node->rt_arg->q,
506
redact_node->record);
507
avl_add(end_tree, redact_node);
508
avl_add(start_tree, redact_node);
509
return (redact_node->rt_arg->error_code);
510
}
511
512
/*
513
* Synctask for updating redaction lists. We first take this txg's list of
514
* redacted blocks and append those to the redaction list. We then update the
515
* redaction list's bonus buffer. We store the furthest blocks we visited and
516
* the list of snapshots that we're redacting with respect to. We need these so
517
* that redacted sends and receives can be correctly resumed.
518
*/
519
static void
520
redaction_list_update_sync(void *arg, dmu_tx_t *tx)
521
{
522
struct merge_data *md = arg;
523
uint64_t txg = dmu_tx_get_txg(tx);
524
list_t *list = &md->md_blocks[txg & TXG_MASK];
525
redact_block_phys_t *furthest_visited =
526
&md->md_furthest[txg & TXG_MASK];
527
objset_t *mos = tx->tx_pool->dp_meta_objset;
528
redaction_list_t *rl = md->md_redaction_list;
529
int bufsize = redact_sync_bufsize;
530
redact_block_phys_t *buf = kmem_alloc(bufsize * sizeof (*buf),
531
KM_SLEEP);
532
int index = 0;
533
534
dmu_buf_will_dirty(rl->rl_dbuf, tx);
535
536
for (struct redact_block_list_node *rbln = list_remove_head(list);
537
rbln != NULL; rbln = list_remove_head(list)) {
538
ASSERT3U(rbln->block.rbp_object, <=,
539
furthest_visited->rbp_object);
540
ASSERT(rbln->block.rbp_object < furthest_visited->rbp_object ||
541
rbln->block.rbp_blkid <= furthest_visited->rbp_blkid);
542
buf[index] = rbln->block;
543
index++;
544
if (index == bufsize) {
545
dmu_write(mos, rl->rl_object,
546
rl->rl_phys->rlp_num_entries * sizeof (*buf),
547
bufsize * sizeof (*buf), buf, tx);
548
rl->rl_phys->rlp_num_entries += bufsize;
549
index = 0;
550
}
551
kmem_free(rbln, sizeof (*rbln));
552
}
553
if (index > 0) {
554
dmu_write(mos, rl->rl_object, rl->rl_phys->rlp_num_entries *
555
sizeof (*buf), index * sizeof (*buf), buf, tx);
556
rl->rl_phys->rlp_num_entries += index;
557
}
558
kmem_free(buf, bufsize * sizeof (*buf));
559
560
md->md_synctask_txg[txg & TXG_MASK] = B_FALSE;
561
rl->rl_phys->rlp_last_object = furthest_visited->rbp_object;
562
rl->rl_phys->rlp_last_blkid = furthest_visited->rbp_blkid;
563
}
564
565
static void
566
commit_rl_updates(objset_t *os, struct merge_data *md, uint64_t object,
567
uint64_t blkid)
568
{
569
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(os->os_spa)->dp_mos_dir);
570
dmu_tx_hold_space(tx, sizeof (struct redact_block_list_node));
571
VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
572
uint64_t txg = dmu_tx_get_txg(tx);
573
if (!md->md_synctask_txg[txg & TXG_MASK]) {
574
dsl_sync_task_nowait(dmu_tx_pool(tx),
575
redaction_list_update_sync, md, tx);
576
md->md_synctask_txg[txg & TXG_MASK] = B_TRUE;
577
md->md_latest_synctask_txg = txg;
578
}
579
md->md_furthest[txg & TXG_MASK].rbp_object = object;
580
md->md_furthest[txg & TXG_MASK].rbp_blkid = blkid;
581
list_move_tail(&md->md_blocks[txg & TXG_MASK],
582
&md->md_redact_block_pending);
583
dmu_tx_commit(tx);
584
md->md_last_time = gethrtime();
585
}
586
587
/*
588
* We want to store the list of blocks that we're redacting in the bookmark's
589
* redaction list. However, this list is stored in the MOS, which means it can
590
* only be written to in syncing context. To get around this, we create a
591
* synctask that will write to the mos for us. We tell it what to write by
592
* a linked list for each current transaction group; every time we decide to
593
* redact a block, we append it to the transaction group that is currently in
594
* open context. We also update some progress information that the synctask
595
* will store to enable resumable redacted sends.
596
*/
597
static void
598
update_redaction_list(struct merge_data *md, objset_t *os,
599
uint64_t object, uint64_t blkid, uint64_t endblkid, uint32_t blksz)
600
{
601
boolean_t enqueue = B_FALSE;
602
redact_block_phys_t cur = {0};
603
uint64_t count = endblkid - blkid + 1;
604
while (count > REDACT_BLOCK_MAX_COUNT) {
605
update_redaction_list(md, os, object, blkid,
606
blkid + REDACT_BLOCK_MAX_COUNT - 1, blksz);
607
blkid += REDACT_BLOCK_MAX_COUNT;
608
count -= REDACT_BLOCK_MAX_COUNT;
609
}
610
redact_block_phys_t *coalesce = &md->md_coalesce_block;
611
boolean_t new;
612
if (coalesce->rbp_size_count == 0) {
613
new = B_TRUE;
614
enqueue = B_FALSE;
615
} else {
616
uint64_t old_count = redact_block_get_count(coalesce);
617
if (coalesce->rbp_object == object &&
618
coalesce->rbp_blkid + old_count == blkid &&
619
old_count + count <= REDACT_BLOCK_MAX_COUNT) {
620
ASSERT3U(redact_block_get_size(coalesce), ==, blksz);
621
redact_block_set_count(coalesce, old_count + count);
622
new = B_FALSE;
623
enqueue = B_FALSE;
624
} else {
625
new = B_TRUE;
626
enqueue = B_TRUE;
627
}
628
}
629
630
if (new) {
631
cur = *coalesce;
632
coalesce->rbp_blkid = blkid;
633
coalesce->rbp_object = object;
634
635
redact_block_set_count(coalesce, count);
636
redact_block_set_size(coalesce, blksz);
637
}
638
639
if (enqueue && redact_block_get_size(&cur) != 0) {
640
struct redact_block_list_node *rbln =
641
kmem_alloc(sizeof (struct redact_block_list_node),
642
KM_SLEEP);
643
rbln->block = cur;
644
list_insert_tail(&md->md_redact_block_pending, rbln);
645
}
646
647
if (gethrtime() > md->md_last_time +
648
redaction_list_update_interval_ns) {
649
commit_rl_updates(os, md, object, blkid);
650
}
651
}
652
653
/*
654
* This thread merges all the redaction records provided by the worker threads,
655
* and determines which blocks are redacted by all the snapshots. The algorithm
656
* for doing so is similar to performing a merge in mergesort with n sub-lists
657
* instead of 2, with some added complexity due to the fact that the entries are
658
* ranges, not just single blocks. This algorithm relies on the fact that the
659
* queues are sorted, which is ensured by the fact that traverse_dataset
660
* traverses the dataset in a consistent order. We pull one entry off the front
661
* of the queues of each secure dataset traversal thread. Then we repeat the
662
* following: each record represents a range of blocks modified by one of the
663
* redaction snapshots, and each block in that range may need to be redacted in
664
* the send stream. Find the record with the latest start of its range, and the
665
* record with the earliest end of its range. If the last start is before the
666
* first end, then we know that the blocks in the range [last_start, first_end]
667
* are covered by all of the ranges at the front of the queues, which means
668
* every thread redacts that whole range. For example, let's say the ranges on
669
* each queue look like this:
670
*
671
* Block Id 1 2 3 4 5 6 7 8 9 10 11
672
* Thread 1 | [====================]
673
* Thread 2 | [========]
674
* Thread 3 | [=================]
675
*
676
* Thread 3 has the last start (5), and the thread 2 has the last end (6). All
677
* three threads modified the range [5,6], so that data should not be sent over
678
* the wire. After we've determined whether or not to redact anything, we take
679
* the record with the first end. We discard that record, and pull a new one
680
* off the front of the queue it came from. In the above example, we would
681
* discard Thread 2's record, and pull a new one. Let's say the next record we
682
* pulled from Thread 2 covered range [10,11]. The new layout would look like
683
* this:
684
*
685
* Block Id 1 2 3 4 5 6 7 8 9 10 11
686
* Thread 1 | [====================]
687
* Thread 2 | [==]
688
* Thread 3 | [=================]
689
*
690
* When we compare the last start (10, from Thread 2) and the first end (9, from
691
* Thread 1), we see that the last start is greater than the first end.
692
* Therefore, we do not redact anything from these records. We'll iterate by
693
* replacing the record from Thread 1.
694
*
695
* We iterate by replacing the record with the lowest end because we know
696
* that the record with the lowest end has helped us as much as it can. All the
697
* ranges before it that we will ever redact have been redacted. In addition,
698
* by replacing the one with the lowest end, we guarantee we catch all ranges
699
* that need to be redacted. For example, if in the case above we had replaced
700
* the record from Thread 1 instead, we might have ended up with the following:
701
*
702
* Block Id 1 2 3 4 5 6 7 8 9 10 11 12
703
* Thread 1 | [==]
704
* Thread 2 | [========]
705
* Thread 3 | [=================]
706
*
707
* If the next record from Thread 2 had been [8,10], for example, we should have
708
* redacted part of that range, but because we updated Thread 1's record, we
709
* missed it.
710
*
711
* We implement this algorithm by using two trees. The first sorts the
712
* redaction records by their start_zb, and the second sorts them by their
713
* end_zb. We use these to find the record with the last start and the record
714
* with the first end. We create a record with that start and end, and send it
715
* on. The overall runtime of this implementation is O(n log m), where n is the
716
* total number of redaction records from all the different redaction snapshots,
717
* and m is the number of redaction snapshots.
718
*
719
* If we redact with respect to zero snapshots, we create a redaction
720
* record with the start object and blkid to 0, and the end object and blkid to
721
* UINT64_MAX. This will result in us redacting every block.
722
*/
723
static int
724
perform_thread_merge(bqueue_t *q, uint32_t num_threads,
725
struct redact_thread_arg *thread_args, boolean_t *cancel)
726
{
727
struct redact_node *redact_nodes = NULL;
728
avl_tree_t start_tree, end_tree;
729
struct redact_record *record;
730
struct redact_record *current_record = NULL;
731
int err = 0;
732
struct merge_data md = { {0} };
733
list_create(&md.md_redact_block_pending,
734
sizeof (struct redact_block_list_node),
735
offsetof(struct redact_block_list_node, node));
736
737
/*
738
* If we're redacting with respect to zero snapshots, then no data is
739
* permitted to be sent. We enqueue a record that redacts all blocks,
740
* and an eos marker.
741
*/
742
if (num_threads == 0) {
743
record = kmem_zalloc(sizeof (struct redact_record),
744
KM_SLEEP);
745
// We can't redact object 0, so don't try.
746
record->start_object = 1;
747
record->start_blkid = 0;
748
record->end_object = record->end_blkid = UINT64_MAX;
749
bqueue_enqueue(q, record, sizeof (*record));
750
return (0);
751
}
752
redact_nodes = vmem_zalloc(num_threads *
753
sizeof (*redact_nodes), KM_SLEEP);
754
755
avl_create(&start_tree, redact_node_compare_start,
756
sizeof (struct redact_node),
757
offsetof(struct redact_node, avl_node_start));
758
avl_create(&end_tree, redact_node_compare_end,
759
sizeof (struct redact_node),
760
offsetof(struct redact_node, avl_node_end));
761
762
for (int i = 0; i < num_threads; i++) {
763
struct redact_node *node = &redact_nodes[i];
764
struct redact_thread_arg *targ = &thread_args[i];
765
node->record = bqueue_dequeue(&targ->q);
766
node->rt_arg = targ;
767
node->thread_num = i;
768
avl_add(&start_tree, node);
769
avl_add(&end_tree, node);
770
}
771
772
/*
773
* Once the first record in the end tree has returned EOS, every record
774
* must be an EOS record, so we should stop.
775
*/
776
while (err == 0 && !((struct redact_node *)avl_first(&end_tree))->
777
record->eos_marker) {
778
if (*cancel) {
779
err = EINTR;
780
break;
781
}
782
struct redact_node *last_start = avl_last(&start_tree);
783
struct redact_node *first_end = avl_first(&end_tree);
784
785
/*
786
* If the last start record is before the first end record,
787
* then we have blocks that are redacted by all threads.
788
* Therefore, we should redact them. Copy the record, and send
789
* it to the main thread.
790
*/
791
if (redact_record_before(last_start->record,
792
first_end->record)) {
793
record = kmem_zalloc(sizeof (struct redact_record),
794
KM_SLEEP);
795
*record = *first_end->record;
796
record->start_object = last_start->record->start_object;
797
record->start_blkid = last_start->record->start_blkid;
798
record_merge_enqueue(q, &current_record,
799
record);
800
}
801
err = update_avl_trees(&start_tree, &end_tree, first_end);
802
}
803
804
/*
805
* We're done; if we were cancelled, we need to cancel our workers and
806
* clear out their queues. Either way, we need to remove every thread's
807
* redact_node struct from the avl trees.
808
*/
809
for (int i = 0; i < num_threads; i++) {
810
if (err != 0) {
811
thread_args[i].cancel = B_TRUE;
812
while (!redact_nodes[i].record->eos_marker) {
813
(void) update_avl_trees(&start_tree, &end_tree,
814
&redact_nodes[i]);
815
}
816
}
817
avl_remove(&start_tree, &redact_nodes[i]);
818
avl_remove(&end_tree, &redact_nodes[i]);
819
kmem_free(redact_nodes[i].record,
820
sizeof (struct redact_record));
821
bqueue_destroy(&thread_args[i].q);
822
}
823
824
avl_destroy(&start_tree);
825
avl_destroy(&end_tree);
826
vmem_free(redact_nodes, num_threads * sizeof (*redact_nodes));
827
if (current_record != NULL)
828
bqueue_enqueue(q, current_record, sizeof (*current_record));
829
return (err);
830
}
831
832
struct redact_merge_thread_arg {
833
bqueue_t q;
834
spa_t *spa;
835
int numsnaps;
836
struct redact_thread_arg *thr_args;
837
boolean_t cancel;
838
int error_code;
839
};
840
841
static __attribute__((noreturn)) void
842
redact_merge_thread(void *arg)
843
{
844
struct redact_merge_thread_arg *rmta = arg;
845
rmta->error_code = perform_thread_merge(&rmta->q,
846
rmta->numsnaps, rmta->thr_args, &rmta->cancel);
847
struct redact_record *rec = kmem_zalloc(sizeof (*rec), KM_SLEEP);
848
rec->eos_marker = B_TRUE;
849
bqueue_enqueue_flush(&rmta->q, rec, 1);
850
thread_exit();
851
}
852
853
/*
854
* Find the next object in or after the redaction range passed in, and hold
855
* its dnode with the provided tag. Also update *object to contain the new
856
* object number.
857
*/
858
static int
859
hold_next_object(objset_t *os, struct redact_record *rec, const void *tag,
860
uint64_t *object, dnode_t **dn)
861
{
862
int err = 0;
863
if (*dn != NULL)
864
dnode_rele(*dn, tag);
865
*dn = NULL;
866
if (*object < rec->start_object) {
867
*object = rec->start_object - 1;
868
}
869
err = dmu_object_next(os, object, B_FALSE, 0);
870
if (err != 0)
871
return (err);
872
873
err = dnode_hold(os, *object, tag, dn);
874
while (err == 0 && (*object < rec->start_object ||
875
DMU_OT_IS_METADATA((*dn)->dn_type))) {
876
dnode_rele(*dn, tag);
877
*dn = NULL;
878
err = dmu_object_next(os, object, B_FALSE, 0);
879
if (err != 0)
880
break;
881
err = dnode_hold(os, *object, tag, dn);
882
}
883
return (err);
884
}
885
886
static int
887
perform_redaction(objset_t *os, redaction_list_t *rl,
888
struct redact_merge_thread_arg *rmta)
889
{
890
int err = 0;
891
bqueue_t *q = &rmta->q;
892
struct redact_record *rec = NULL;
893
struct merge_data md = { {0} };
894
895
list_create(&md.md_redact_block_pending,
896
sizeof (struct redact_block_list_node),
897
offsetof(struct redact_block_list_node, node));
898
md.md_redaction_list = rl;
899
900
for (int i = 0; i < TXG_SIZE; i++) {
901
list_create(&md.md_blocks[i],
902
sizeof (struct redact_block_list_node),
903
offsetof(struct redact_block_list_node, node));
904
}
905
dnode_t *dn = NULL;
906
uint64_t prev_obj = 0;
907
for (rec = bqueue_dequeue(q); !rec->eos_marker && err == 0;
908
rec = get_next_redact_record(q, rec)) {
909
ASSERT3U(rec->start_object, !=, 0);
910
uint64_t object;
911
if (prev_obj != rec->start_object) {
912
object = rec->start_object - 1;
913
err = hold_next_object(os, rec, FTAG, &object, &dn);
914
} else {
915
object = prev_obj;
916
}
917
while (err == 0 && object <= rec->end_object) {
918
if (issig()) {
919
err = EINTR;
920
break;
921
}
922
/*
923
* Part of the current object is contained somewhere in
924
* the range covered by rec.
925
*/
926
uint64_t startblkid;
927
uint64_t endblkid;
928
uint64_t maxblkid = dn->dn_phys->dn_maxblkid;
929
930
if (rec->start_object < object)
931
startblkid = 0;
932
else if (rec->start_blkid > maxblkid)
933
break;
934
else
935
startblkid = rec->start_blkid;
936
937
if (rec->end_object > object || rec->end_blkid >
938
maxblkid) {
939
endblkid = maxblkid;
940
} else {
941
endblkid = rec->end_blkid;
942
}
943
update_redaction_list(&md, os, object, startblkid,
944
endblkid, dn->dn_datablksz);
945
946
if (object == rec->end_object)
947
break;
948
err = hold_next_object(os, rec, FTAG, &object, &dn);
949
}
950
if (err == ESRCH)
951
err = 0;
952
if (dn != NULL)
953
prev_obj = object;
954
}
955
if (err == 0 && dn != NULL)
956
dnode_rele(dn, FTAG);
957
958
if (err == ESRCH)
959
err = 0;
960
rmta->cancel = B_TRUE;
961
while (!rec->eos_marker)
962
rec = get_next_redact_record(q, rec);
963
kmem_free(rec, sizeof (*rec));
964
965
/*
966
* There may be a block that's being coalesced, sync that out before we
967
* return.
968
*/
969
if (err == 0 && md.md_coalesce_block.rbp_size_count != 0) {
970
struct redact_block_list_node *rbln =
971
kmem_alloc(sizeof (struct redact_block_list_node),
972
KM_SLEEP);
973
rbln->block = md.md_coalesce_block;
974
list_insert_tail(&md.md_redact_block_pending, rbln);
975
}
976
commit_rl_updates(os, &md, UINT64_MAX, UINT64_MAX);
977
978
/*
979
* Wait for all the redaction info to sync out before we return, so that
980
* anyone who attempts to resume this redaction will have all the data
981
* they need.
982
*/
983
dsl_pool_t *dp = spa_get_dsl(os->os_spa);
984
if (md.md_latest_synctask_txg != 0)
985
txg_wait_synced(dp, md.md_latest_synctask_txg);
986
for (int i = 0; i < TXG_SIZE; i++)
987
list_destroy(&md.md_blocks[i]);
988
return (err);
989
}
990
991
static boolean_t
992
redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
993
{
994
for (int i = 0; i < num_snaps; i++) {
995
if (snaps[i] == guid)
996
return (B_TRUE);
997
}
998
return (B_FALSE);
999
}
1000
1001
int
1002
dmu_redact_snap(const char *snapname, nvlist_t *redactnvl,
1003
const char *redactbook)
1004
{
1005
int err = 0;
1006
dsl_pool_t *dp = NULL;
1007
dsl_dataset_t *ds = NULL;
1008
int numsnaps = 0;
1009
objset_t *os;
1010
struct redact_thread_arg *args = NULL;
1011
redaction_list_t *new_rl = NULL;
1012
char *newredactbook;
1013
1014
if ((err = dsl_pool_hold(snapname, FTAG, &dp)) != 0)
1015
return (err);
1016
1017
newredactbook = kmem_zalloc(sizeof (char) * ZFS_MAX_DATASET_NAME_LEN,
1018
KM_SLEEP);
1019
1020
if ((err = dsl_dataset_hold_flags(dp, snapname, DS_HOLD_FLAG_DECRYPT,
1021
FTAG, &ds)) != 0) {
1022
goto out;
1023
}
1024
dsl_dataset_long_hold(ds, FTAG);
1025
if (!ds->ds_is_snapshot || dmu_objset_from_ds(ds, &os) != 0) {
1026
err = EINVAL;
1027
goto out;
1028
}
1029
if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)) {
1030
err = EALREADY;
1031
goto out;
1032
}
1033
1034
numsnaps = fnvlist_num_pairs(redactnvl);
1035
if (numsnaps > 0)
1036
args = vmem_zalloc(numsnaps * sizeof (*args), KM_SLEEP);
1037
1038
nvpair_t *pair = NULL;
1039
for (int i = 0; i < numsnaps; i++) {
1040
pair = nvlist_next_nvpair(redactnvl, pair);
1041
const char *name = nvpair_name(pair);
1042
struct redact_thread_arg *rta = &args[i];
1043
err = dsl_dataset_hold_flags(dp, name, DS_HOLD_FLAG_DECRYPT,
1044
FTAG, &rta->ds);
1045
if (err != 0)
1046
break;
1047
/*
1048
* We want to do the long hold before we can get any other
1049
* errors, because the cleanup code will release the long
1050
* hold if rta->ds is filled in.
1051
*/
1052
dsl_dataset_long_hold(rta->ds, FTAG);
1053
1054
err = dmu_objset_from_ds(rta->ds, &rta->os);
1055
if (err != 0)
1056
break;
1057
if (!dsl_dataset_is_before(rta->ds, ds, 0)) {
1058
err = EINVAL;
1059
break;
1060
}
1061
if (dsl_dataset_feature_is_active(rta->ds,
1062
SPA_FEATURE_REDACTED_DATASETS)) {
1063
err = EALREADY;
1064
break;
1065
1066
}
1067
}
1068
if (err != 0)
1069
goto out;
1070
VERIFY0P(nvlist_next_nvpair(redactnvl, pair));
1071
1072
boolean_t resuming = B_FALSE;
1073
zfs_bookmark_phys_t bookmark;
1074
1075
(void) strlcpy(newredactbook, snapname, ZFS_MAX_DATASET_NAME_LEN);
1076
char *c = strchr(newredactbook, '@');
1077
ASSERT3P(c, !=, NULL);
1078
int n = snprintf(c, ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook),
1079
"#%s", redactbook);
1080
if (n >= ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook)) {
1081
dsl_pool_rele(dp, FTAG);
1082
kmem_free(newredactbook,
1083
sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
1084
if (args != NULL)
1085
vmem_free(args, numsnaps * sizeof (*args));
1086
return (SET_ERROR(ENAMETOOLONG));
1087
}
1088
err = dsl_bookmark_lookup(dp, newredactbook, NULL, &bookmark);
1089
if (err == 0) {
1090
resuming = B_TRUE;
1091
if (bookmark.zbm_redaction_obj == 0) {
1092
err = EEXIST;
1093
goto out;
1094
}
1095
err = dsl_redaction_list_hold_obj(dp,
1096
bookmark.zbm_redaction_obj, FTAG, &new_rl);
1097
if (err != 0) {
1098
err = EIO;
1099
goto out;
1100
}
1101
dsl_redaction_list_long_hold(dp, new_rl, FTAG);
1102
if (new_rl->rl_phys->rlp_num_snaps != numsnaps) {
1103
err = ESRCH;
1104
goto out;
1105
}
1106
for (int i = 0; i < numsnaps; i++) {
1107
struct redact_thread_arg *rta = &args[i];
1108
if (!redact_snaps_contains(new_rl->rl_phys->rlp_snaps,
1109
new_rl->rl_phys->rlp_num_snaps,
1110
dsl_dataset_phys(rta->ds)->ds_guid)) {
1111
err = ESRCH;
1112
goto out;
1113
}
1114
}
1115
if (new_rl->rl_phys->rlp_last_blkid == UINT64_MAX &&
1116
new_rl->rl_phys->rlp_last_object == UINT64_MAX) {
1117
err = EEXIST;
1118
goto out;
1119
}
1120
dsl_pool_rele(dp, FTAG);
1121
dp = NULL;
1122
} else {
1123
uint64_t *guids = NULL;
1124
if (numsnaps > 0) {
1125
guids = vmem_zalloc(numsnaps * sizeof (uint64_t),
1126
KM_SLEEP);
1127
}
1128
for (int i = 0; i < numsnaps; i++) {
1129
struct redact_thread_arg *rta = &args[i];
1130
guids[i] = dsl_dataset_phys(rta->ds)->ds_guid;
1131
}
1132
1133
dsl_pool_rele(dp, FTAG);
1134
dp = NULL;
1135
err = dsl_bookmark_create_redacted(newredactbook, snapname,
1136
numsnaps, guids, FTAG, &new_rl);
1137
vmem_free(guids, numsnaps * sizeof (uint64_t));
1138
if (err != 0)
1139
goto out;
1140
}
1141
1142
for (int i = 0; i < numsnaps; i++) {
1143
struct redact_thread_arg *rta = &args[i];
1144
(void) bqueue_init(&rta->q, zfs_redact_queue_ff,
1145
zfs_redact_queue_length,
1146
offsetof(struct redact_record, ln));
1147
if (resuming) {
1148
rta->resume.zb_blkid =
1149
new_rl->rl_phys->rlp_last_blkid;
1150
rta->resume.zb_object =
1151
new_rl->rl_phys->rlp_last_object;
1152
}
1153
rta->txg = dsl_dataset_phys(ds)->ds_creation_txg;
1154
(void) thread_create(NULL, 0, redact_traverse_thread, rta,
1155
0, curproc, TS_RUN, minclsyspri);
1156
}
1157
1158
struct redact_merge_thread_arg *rmta;
1159
rmta = kmem_zalloc(sizeof (struct redact_merge_thread_arg), KM_SLEEP);
1160
1161
(void) bqueue_init(&rmta->q, zfs_redact_queue_ff,
1162
zfs_redact_queue_length, offsetof(struct redact_record, ln));
1163
rmta->numsnaps = numsnaps;
1164
rmta->spa = os->os_spa;
1165
rmta->thr_args = args;
1166
(void) thread_create(NULL, 0, redact_merge_thread, rmta, 0, curproc,
1167
TS_RUN, minclsyspri);
1168
err = perform_redaction(os, new_rl, rmta);
1169
bqueue_destroy(&rmta->q);
1170
kmem_free(rmta, sizeof (struct redact_merge_thread_arg));
1171
1172
out:
1173
kmem_free(newredactbook, sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
1174
1175
if (new_rl != NULL) {
1176
dsl_redaction_list_long_rele(new_rl, FTAG);
1177
dsl_redaction_list_rele(new_rl, FTAG);
1178
}
1179
for (int i = 0; i < numsnaps; i++) {
1180
struct redact_thread_arg *rta = &args[i];
1181
/*
1182
* rta->ds may be NULL if we got an error while filling
1183
* it in.
1184
*/
1185
if (rta->ds != NULL) {
1186
dsl_dataset_long_rele(rta->ds, FTAG);
1187
dsl_dataset_rele_flags(rta->ds,
1188
DS_HOLD_FLAG_DECRYPT, FTAG);
1189
}
1190
}
1191
1192
if (args != NULL)
1193
vmem_free(args, numsnaps * sizeof (*args));
1194
if (dp != NULL)
1195
dsl_pool_rele(dp, FTAG);
1196
if (ds != NULL) {
1197
dsl_dataset_long_rele(ds, FTAG);
1198
dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1199
}
1200
return (SET_ERROR(err));
1201
1202
}
1203
1204