Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zfs/dmu_send.c
48383 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
/*
23
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
26
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
27
* Copyright 2014 HybridCluster. All rights reserved.
28
* Copyright 2016 RackTop Systems.
29
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
30
* Copyright (c) 2019, 2024, Klara, Inc.
31
* Copyright (c) 2019, Allan Jude
32
*/
33
34
#include <sys/dmu.h>
35
#include <sys/dmu_impl.h>
36
#include <sys/dmu_tx.h>
37
#include <sys/dbuf.h>
38
#include <sys/dnode.h>
39
#include <sys/zfs_context.h>
40
#include <sys/dmu_objset.h>
41
#include <sys/dmu_traverse.h>
42
#include <sys/dsl_dataset.h>
43
#include <sys/dsl_dir.h>
44
#include <sys/dsl_prop.h>
45
#include <sys/dsl_pool.h>
46
#include <sys/dsl_synctask.h>
47
#include <sys/spa_impl.h>
48
#include <sys/zfs_ioctl.h>
49
#include <sys/zap.h>
50
#include <sys/zio_checksum.h>
51
#include <sys/zfs_znode.h>
52
#include <zfs_fletcher.h>
53
#include <sys/avl.h>
54
#include <sys/ddt.h>
55
#include <sys/zfs_onexit.h>
56
#include <sys/dmu_send.h>
57
#include <sys/dmu_recv.h>
58
#include <sys/dsl_destroy.h>
59
#include <sys/blkptr.h>
60
#include <sys/dsl_bookmark.h>
61
#include <sys/zfeature.h>
62
#include <sys/bqueue.h>
63
#include <sys/zvol.h>
64
#include <sys/policy.h>
65
#include <sys/objlist.h>
66
#ifdef _KERNEL
67
#include <sys/zfs_vfsops.h>
68
#endif
69
70
/* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
71
static int zfs_send_corrupt_data = B_FALSE;
72
/*
73
* This tunable controls the amount of data (measured in bytes) that will be
74
* prefetched by zfs send. If the main thread is blocking on reads that haven't
75
* completed, this variable might need to be increased. If instead the main
76
* thread is issuing new reads because the prefetches have fallen out of the
77
* cache, this may need to be decreased.
78
*/
79
static uint_t zfs_send_queue_length = SPA_MAXBLOCKSIZE;
80
/*
81
* This tunable controls the length of the queues that zfs send worker threads
82
* use to communicate. If the send_main_thread is blocking on these queues,
83
* this variable may need to be increased. If there is a significant slowdown
84
* at the start of a send as these threads consume all the available IO
85
* resources, this variable may need to be decreased.
86
*/
87
static uint_t zfs_send_no_prefetch_queue_length = 1024 * 1024;
88
/*
89
* These tunables control the fill fraction of the queues by zfs send. The fill
90
* fraction controls the frequency with which threads have to be cv_signaled.
91
* If a lot of cpu time is being spent on cv_signal, then these should be tuned
92
* down. If the queues empty before the signalled thread can catch up, then
93
* these should be tuned up.
94
*/
95
static uint_t zfs_send_queue_ff = 20;
96
static uint_t zfs_send_no_prefetch_queue_ff = 20;
97
98
/*
99
* Use this to override the recordsize calculation for fast zfs send estimates.
100
*/
101
static uint_t zfs_override_estimate_recordsize = 0;
102
103
/* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
104
static const boolean_t zfs_send_set_freerecords_bit = B_TRUE;
105
106
/* Set this tunable to FALSE is disable sending unmodified spill blocks. */
107
static int zfs_send_unmodified_spill_blocks = B_TRUE;
108
109
static inline boolean_t
110
overflow_multiply(uint64_t a, uint64_t b, uint64_t *c)
111
{
112
uint64_t temp = a * b;
113
if (b != 0 && temp / b != a)
114
return (B_FALSE);
115
*c = temp;
116
return (B_TRUE);
117
}
118
119
struct send_thread_arg {
120
bqueue_t q;
121
objset_t *os; /* Objset to traverse */
122
uint64_t fromtxg; /* Traverse from this txg */
123
int flags; /* flags to pass to traverse_dataset */
124
int error_code;
125
boolean_t cancel;
126
zbookmark_phys_t resume;
127
uint64_t *num_blocks_visited;
128
};
129
130
struct redact_list_thread_arg {
131
boolean_t cancel;
132
bqueue_t q;
133
zbookmark_phys_t resume;
134
redaction_list_t *rl;
135
boolean_t mark_redact;
136
int error_code;
137
uint64_t *num_blocks_visited;
138
};
139
140
struct send_merge_thread_arg {
141
bqueue_t q;
142
objset_t *os;
143
struct redact_list_thread_arg *from_arg;
144
struct send_thread_arg *to_arg;
145
struct redact_list_thread_arg *redact_arg;
146
int error;
147
boolean_t cancel;
148
};
149
150
struct send_range {
151
boolean_t eos_marker; /* Marks the end of the stream */
152
uint64_t object;
153
uint64_t start_blkid;
154
uint64_t end_blkid;
155
bqueue_node_t ln;
156
enum type {DATA, HOLE, OBJECT, OBJECT_RANGE, REDACT,
157
PREVIOUSLY_REDACTED} type;
158
union {
159
struct srd {
160
dmu_object_type_t obj_type;
161
uint32_t datablksz; // logical size
162
uint32_t datasz; // payload size
163
blkptr_t bp;
164
arc_buf_t *abuf;
165
abd_t *abd;
166
kmutex_t lock;
167
kcondvar_t cv;
168
boolean_t io_outstanding;
169
boolean_t io_compressed;
170
int io_err;
171
} data;
172
struct srh {
173
uint32_t datablksz;
174
} hole;
175
struct sro {
176
/*
177
* This is a pointer because embedding it in the
178
* struct causes these structures to be massively larger
179
* for all range types; this makes the code much less
180
* memory efficient.
181
*/
182
dnode_phys_t *dnp;
183
blkptr_t bp;
184
/* Piggyback unmodified spill block */
185
struct send_range *spill_range;
186
} object;
187
struct srr {
188
uint32_t datablksz;
189
} redact;
190
struct sror {
191
blkptr_t bp;
192
} object_range;
193
} sru;
194
};
195
196
/*
197
* The list of data whose inclusion in a send stream can be pending from
198
* one call to backup_cb to another. Multiple calls to dump_free(),
199
* dump_freeobjects(), and dump_redact() can be aggregated into a single
200
* DRR_FREE, DRR_FREEOBJECTS, or DRR_REDACT replay record.
201
*/
202
typedef enum {
203
PENDING_NONE,
204
PENDING_FREE,
205
PENDING_FREEOBJECTS,
206
PENDING_REDACT
207
} dmu_pendop_t;
208
209
typedef struct dmu_send_cookie {
210
dmu_replay_record_t *dsc_drr;
211
dmu_send_outparams_t *dsc_dso;
212
offset_t *dsc_off;
213
objset_t *dsc_os;
214
zio_cksum_t dsc_zc;
215
uint64_t dsc_toguid;
216
uint64_t dsc_fromtxg;
217
int dsc_err;
218
dmu_pendop_t dsc_pending_op;
219
uint64_t dsc_featureflags;
220
uint64_t dsc_last_data_object;
221
uint64_t dsc_last_data_offset;
222
uint64_t dsc_resume_object;
223
uint64_t dsc_resume_offset;
224
boolean_t dsc_sent_begin;
225
boolean_t dsc_sent_end;
226
} dmu_send_cookie_t;
227
228
static int do_dump(dmu_send_cookie_t *dscp, struct send_range *range);
229
230
static void
231
range_free(struct send_range *range)
232
{
233
if (range->type == OBJECT) {
234
size_t size = sizeof (dnode_phys_t) *
235
(range->sru.object.dnp->dn_extra_slots + 1);
236
kmem_free(range->sru.object.dnp, size);
237
if (range->sru.object.spill_range)
238
range_free(range->sru.object.spill_range);
239
} else if (range->type == DATA) {
240
mutex_enter(&range->sru.data.lock);
241
while (range->sru.data.io_outstanding)
242
cv_wait(&range->sru.data.cv, &range->sru.data.lock);
243
if (range->sru.data.abd != NULL)
244
abd_free(range->sru.data.abd);
245
if (range->sru.data.abuf != NULL) {
246
arc_buf_destroy(range->sru.data.abuf,
247
&range->sru.data.abuf);
248
}
249
mutex_exit(&range->sru.data.lock);
250
251
cv_destroy(&range->sru.data.cv);
252
mutex_destroy(&range->sru.data.lock);
253
}
254
kmem_free(range, sizeof (*range));
255
}
256
257
/*
258
* For all record types except BEGIN, fill in the checksum (overlaid in
259
* drr_u.drr_checksum.drr_checksum). The checksum verifies everything
260
* up to the start of the checksum itself.
261
*/
262
static int
263
dump_record(dmu_send_cookie_t *dscp, void *payload, int payload_len)
264
{
265
dmu_send_outparams_t *dso = dscp->dsc_dso;
266
ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
267
==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
268
(void) fletcher_4_incremental_native(dscp->dsc_drr,
269
offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
270
&dscp->dsc_zc);
271
if (dscp->dsc_drr->drr_type == DRR_BEGIN) {
272
dscp->dsc_sent_begin = B_TRUE;
273
} else {
274
ASSERT(ZIO_CHECKSUM_IS_ZERO(&dscp->dsc_drr->drr_u.
275
drr_checksum.drr_checksum));
276
dscp->dsc_drr->drr_u.drr_checksum.drr_checksum = dscp->dsc_zc;
277
}
278
if (dscp->dsc_drr->drr_type == DRR_END) {
279
dscp->dsc_sent_end = B_TRUE;
280
}
281
(void) fletcher_4_incremental_native(&dscp->dsc_drr->
282
drr_u.drr_checksum.drr_checksum,
283
sizeof (zio_cksum_t), &dscp->dsc_zc);
284
*dscp->dsc_off += sizeof (dmu_replay_record_t);
285
dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, dscp->dsc_drr,
286
sizeof (dmu_replay_record_t), dso->dso_arg);
287
if (dscp->dsc_err != 0)
288
return (SET_ERROR(EINTR));
289
if (payload_len != 0) {
290
*dscp->dsc_off += payload_len;
291
/*
292
* payload is null when dso_dryrun == B_TRUE (i.e. when we're
293
* doing a send size calculation)
294
*/
295
if (payload != NULL) {
296
(void) fletcher_4_incremental_native(
297
payload, payload_len, &dscp->dsc_zc);
298
}
299
300
/*
301
* The code does not rely on this (len being a multiple of 8).
302
* We keep this assertion because of the corresponding assertion
303
* in receive_read(). Keeping this assertion ensures that we do
304
* not inadvertently break backwards compatibility (causing the
305
* assertion in receive_read() to trigger on old software).
306
*
307
* Raw sends cannot be received on old software, and so can
308
* bypass this assertion.
309
*/
310
311
ASSERT((payload_len % 8 == 0) ||
312
(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW));
313
314
dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, payload,
315
payload_len, dso->dso_arg);
316
if (dscp->dsc_err != 0)
317
return (SET_ERROR(EINTR));
318
}
319
return (0);
320
}
321
322
/*
323
* Fill in the drr_free struct, or perform aggregation if the previous record is
324
* also a free record, and the two are adjacent.
325
*
326
* Note that we send free records even for a full send, because we want to be
327
* able to receive a full send as a clone, which requires a list of all the free
328
* and freeobject records that were generated on the source.
329
*/
330
static int
331
dump_free(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
332
uint64_t length)
333
{
334
struct drr_free *drrf = &(dscp->dsc_drr->drr_u.drr_free);
335
336
/*
337
* When we receive a free record, dbuf_free_range() assumes
338
* that the receiving system doesn't have any dbufs in the range
339
* being freed. This is always true because there is a one-record
340
* constraint: we only send one WRITE record for any given
341
* object,offset. We know that the one-record constraint is
342
* true because we always send data in increasing order by
343
* object,offset.
344
*
345
* If the increasing-order constraint ever changes, we should find
346
* another way to assert that the one-record constraint is still
347
* satisfied.
348
*/
349
ASSERT(object > dscp->dsc_last_data_object ||
350
(object == dscp->dsc_last_data_object &&
351
offset > dscp->dsc_last_data_offset));
352
353
/*
354
* If there is a pending op, but it's not PENDING_FREE, push it out,
355
* since free block aggregation can only be done for blocks of the
356
* same type (i.e., DRR_FREE records can only be aggregated with
357
* other DRR_FREE records. DRR_FREEOBJECTS records can only be
358
* aggregated with other DRR_FREEOBJECTS records).
359
*/
360
if (dscp->dsc_pending_op != PENDING_NONE &&
361
dscp->dsc_pending_op != PENDING_FREE) {
362
if (dump_record(dscp, NULL, 0) != 0)
363
return (SET_ERROR(EINTR));
364
dscp->dsc_pending_op = PENDING_NONE;
365
}
366
367
if (dscp->dsc_pending_op == PENDING_FREE) {
368
/*
369
* Check to see whether this free block can be aggregated
370
* with pending one.
371
*/
372
if (drrf->drr_object == object && drrf->drr_offset +
373
drrf->drr_length == offset) {
374
if (offset + length < offset || length == UINT64_MAX)
375
drrf->drr_length = UINT64_MAX;
376
else
377
drrf->drr_length += length;
378
return (0);
379
} else {
380
/* not a continuation. Push out pending record */
381
if (dump_record(dscp, NULL, 0) != 0)
382
return (SET_ERROR(EINTR));
383
dscp->dsc_pending_op = PENDING_NONE;
384
}
385
}
386
/* create a FREE record and make it pending */
387
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
388
dscp->dsc_drr->drr_type = DRR_FREE;
389
drrf->drr_object = object;
390
drrf->drr_offset = offset;
391
if (offset + length < offset)
392
drrf->drr_length = DMU_OBJECT_END;
393
else
394
drrf->drr_length = length;
395
drrf->drr_toguid = dscp->dsc_toguid;
396
if (length == DMU_OBJECT_END) {
397
if (dump_record(dscp, NULL, 0) != 0)
398
return (SET_ERROR(EINTR));
399
} else {
400
dscp->dsc_pending_op = PENDING_FREE;
401
}
402
403
return (0);
404
}
405
406
/*
407
* Fill in the drr_redact struct, or perform aggregation if the previous record
408
* is also a redaction record, and the two are adjacent.
409
*/
410
static int
411
dump_redact(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
412
uint64_t length)
413
{
414
struct drr_redact *drrr = &dscp->dsc_drr->drr_u.drr_redact;
415
416
/*
417
* If there is a pending op, but it's not PENDING_REDACT, push it out,
418
* since free block aggregation can only be done for blocks of the
419
* same type (i.e., DRR_REDACT records can only be aggregated with
420
* other DRR_REDACT records).
421
*/
422
if (dscp->dsc_pending_op != PENDING_NONE &&
423
dscp->dsc_pending_op != PENDING_REDACT) {
424
if (dump_record(dscp, NULL, 0) != 0)
425
return (SET_ERROR(EINTR));
426
dscp->dsc_pending_op = PENDING_NONE;
427
}
428
429
if (dscp->dsc_pending_op == PENDING_REDACT) {
430
/*
431
* Check to see whether this redacted block can be aggregated
432
* with pending one.
433
*/
434
if (drrr->drr_object == object && drrr->drr_offset +
435
drrr->drr_length == offset) {
436
drrr->drr_length += length;
437
return (0);
438
} else {
439
/* not a continuation. Push out pending record */
440
if (dump_record(dscp, NULL, 0) != 0)
441
return (SET_ERROR(EINTR));
442
dscp->dsc_pending_op = PENDING_NONE;
443
}
444
}
445
/* create a REDACT record and make it pending */
446
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
447
dscp->dsc_drr->drr_type = DRR_REDACT;
448
drrr->drr_object = object;
449
drrr->drr_offset = offset;
450
drrr->drr_length = length;
451
drrr->drr_toguid = dscp->dsc_toguid;
452
dscp->dsc_pending_op = PENDING_REDACT;
453
454
return (0);
455
}
456
457
static int
458
dmu_dump_write(dmu_send_cookie_t *dscp, dmu_object_type_t type, uint64_t object,
459
uint64_t offset, int lsize, int psize, const blkptr_t *bp,
460
boolean_t io_compressed, void *data)
461
{
462
uint64_t payload_size;
463
boolean_t raw = (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
464
struct drr_write *drrw = &(dscp->dsc_drr->drr_u.drr_write);
465
466
/*
467
* We send data in increasing object, offset order.
468
* See comment in dump_free() for details.
469
*/
470
ASSERT(object > dscp->dsc_last_data_object ||
471
(object == dscp->dsc_last_data_object &&
472
offset > dscp->dsc_last_data_offset));
473
dscp->dsc_last_data_object = object;
474
dscp->dsc_last_data_offset = offset + lsize - 1;
475
476
/*
477
* If there is any kind of pending aggregation (currently either
478
* a grouping of free objects or free blocks), push it out to
479
* the stream, since aggregation can't be done across operations
480
* of different types.
481
*/
482
if (dscp->dsc_pending_op != PENDING_NONE) {
483
if (dump_record(dscp, NULL, 0) != 0)
484
return (SET_ERROR(EINTR));
485
dscp->dsc_pending_op = PENDING_NONE;
486
}
487
/* write a WRITE record */
488
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
489
dscp->dsc_drr->drr_type = DRR_WRITE;
490
drrw->drr_object = object;
491
drrw->drr_type = type;
492
drrw->drr_offset = offset;
493
drrw->drr_toguid = dscp->dsc_toguid;
494
drrw->drr_logical_size = lsize;
495
496
/* only set the compression fields if the buf is compressed or raw */
497
boolean_t compressed =
498
(bp != NULL ? BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
499
io_compressed : lsize != psize);
500
if (raw || compressed) {
501
ASSERT(bp != NULL);
502
ASSERT(raw || dscp->dsc_featureflags &
503
DMU_BACKUP_FEATURE_COMPRESSED);
504
ASSERT(!BP_IS_EMBEDDED(bp));
505
ASSERT3S(psize, >, 0);
506
507
if (raw) {
508
ASSERT(BP_IS_PROTECTED(bp));
509
510
/*
511
* This is a raw protected block so we need to pass
512
* along everything the receiving side will need to
513
* interpret this block, including the byteswap, salt,
514
* IV, and MAC.
515
*/
516
if (BP_SHOULD_BYTESWAP(bp))
517
drrw->drr_flags |= DRR_RAW_BYTESWAP;
518
zio_crypt_decode_params_bp(bp, drrw->drr_salt,
519
drrw->drr_iv);
520
zio_crypt_decode_mac_bp(bp, drrw->drr_mac);
521
} else {
522
/* this is a compressed block */
523
ASSERT(dscp->dsc_featureflags &
524
DMU_BACKUP_FEATURE_COMPRESSED);
525
ASSERT(!BP_SHOULD_BYTESWAP(bp));
526
ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
527
ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
528
ASSERT3S(lsize, >=, psize);
529
}
530
531
/* set fields common to compressed and raw sends */
532
drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
533
drrw->drr_compressed_size = psize;
534
payload_size = drrw->drr_compressed_size;
535
} else {
536
payload_size = drrw->drr_logical_size;
537
}
538
539
if (bp == NULL || BP_IS_EMBEDDED(bp) || (BP_IS_PROTECTED(bp) && !raw)) {
540
/*
541
* There's no pre-computed checksum for partial-block writes,
542
* embedded BP's, or encrypted BP's that are being sent as
543
* plaintext, so (like fletcher4-checksummed blocks) userland
544
* will have to compute a dedup-capable checksum itself.
545
*/
546
drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
547
} else {
548
drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
549
if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
550
ZCHECKSUM_FLAG_DEDUP)
551
drrw->drr_flags |= DRR_CHECKSUM_DEDUP;
552
DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
553
DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
554
DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
555
DDK_SET_CRYPT(&drrw->drr_key, BP_IS_PROTECTED(bp));
556
drrw->drr_key.ddk_cksum = bp->blk_cksum;
557
}
558
559
if (dump_record(dscp, data, payload_size) != 0)
560
return (SET_ERROR(EINTR));
561
return (0);
562
}
563
564
static int
565
dump_write_embedded(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
566
int blksz, const blkptr_t *bp)
567
{
568
char buf[BPE_PAYLOAD_SIZE];
569
struct drr_write_embedded *drrw =
570
&(dscp->dsc_drr->drr_u.drr_write_embedded);
571
572
if (dscp->dsc_pending_op != PENDING_NONE) {
573
if (dump_record(dscp, NULL, 0) != 0)
574
return (SET_ERROR(EINTR));
575
dscp->dsc_pending_op = PENDING_NONE;
576
}
577
578
ASSERT(BP_IS_EMBEDDED(bp));
579
580
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
581
dscp->dsc_drr->drr_type = DRR_WRITE_EMBEDDED;
582
drrw->drr_object = object;
583
drrw->drr_offset = offset;
584
drrw->drr_length = blksz;
585
drrw->drr_toguid = dscp->dsc_toguid;
586
drrw->drr_compression = BP_GET_COMPRESS(bp);
587
drrw->drr_etype = BPE_GET_ETYPE(bp);
588
drrw->drr_lsize = BPE_GET_LSIZE(bp);
589
drrw->drr_psize = BPE_GET_PSIZE(bp);
590
591
decode_embedded_bp_compressed(bp, buf);
592
593
uint32_t psize = drrw->drr_psize;
594
uint32_t rsize = P2ROUNDUP(psize, 8);
595
596
if (psize != rsize)
597
memset(buf + psize, 0, rsize - psize);
598
599
if (dump_record(dscp, buf, rsize) != 0)
600
return (SET_ERROR(EINTR));
601
return (0);
602
}
603
604
static int
605
dump_spill(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
606
void *data)
607
{
608
struct drr_spill *drrs = &(dscp->dsc_drr->drr_u.drr_spill);
609
uint64_t blksz = BP_GET_LSIZE(bp);
610
uint64_t payload_size = blksz;
611
612
if (dscp->dsc_pending_op != PENDING_NONE) {
613
if (dump_record(dscp, NULL, 0) != 0)
614
return (SET_ERROR(EINTR));
615
dscp->dsc_pending_op = PENDING_NONE;
616
}
617
618
/* write a SPILL record */
619
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
620
dscp->dsc_drr->drr_type = DRR_SPILL;
621
drrs->drr_object = object;
622
drrs->drr_length = blksz;
623
drrs->drr_toguid = dscp->dsc_toguid;
624
625
/* See comment in piggyback_unmodified_spill() for full details */
626
if (zfs_send_unmodified_spill_blocks &&
627
(BP_GET_LOGICAL_BIRTH(bp) <= dscp->dsc_fromtxg)) {
628
drrs->drr_flags |= DRR_SPILL_UNMODIFIED;
629
}
630
631
/* handle raw send fields */
632
if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
633
ASSERT(BP_IS_PROTECTED(bp));
634
635
if (BP_SHOULD_BYTESWAP(bp))
636
drrs->drr_flags |= DRR_RAW_BYTESWAP;
637
drrs->drr_compressiontype = BP_GET_COMPRESS(bp);
638
drrs->drr_compressed_size = BP_GET_PSIZE(bp);
639
zio_crypt_decode_params_bp(bp, drrs->drr_salt, drrs->drr_iv);
640
zio_crypt_decode_mac_bp(bp, drrs->drr_mac);
641
payload_size = drrs->drr_compressed_size;
642
}
643
644
if (dump_record(dscp, data, payload_size) != 0)
645
return (SET_ERROR(EINTR));
646
return (0);
647
}
648
649
static int
650
dump_freeobjects(dmu_send_cookie_t *dscp, uint64_t firstobj, uint64_t numobjs)
651
{
652
struct drr_freeobjects *drrfo = &(dscp->dsc_drr->drr_u.drr_freeobjects);
653
uint64_t maxobj = DNODES_PER_BLOCK *
654
(DMU_META_DNODE(dscp->dsc_os)->dn_maxblkid + 1);
655
656
/*
657
* ZoL < 0.7 does not handle large FREEOBJECTS records correctly,
658
* leading to zfs recv never completing. to avoid this issue, don't
659
* send FREEOBJECTS records for object IDs which cannot exist on the
660
* receiving side.
661
*/
662
if (maxobj > 0) {
663
if (maxobj <= firstobj)
664
return (0);
665
666
if (maxobj < firstobj + numobjs)
667
numobjs = maxobj - firstobj;
668
}
669
670
/*
671
* If there is a pending op, but it's not PENDING_FREEOBJECTS,
672
* push it out, since free block aggregation can only be done for
673
* blocks of the same type (i.e., DRR_FREE records can only be
674
* aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
675
* can only be aggregated with other DRR_FREEOBJECTS records).
676
*/
677
if (dscp->dsc_pending_op != PENDING_NONE &&
678
dscp->dsc_pending_op != PENDING_FREEOBJECTS) {
679
if (dump_record(dscp, NULL, 0) != 0)
680
return (SET_ERROR(EINTR));
681
dscp->dsc_pending_op = PENDING_NONE;
682
}
683
684
if (dscp->dsc_pending_op == PENDING_FREEOBJECTS) {
685
/*
686
* See whether this free object array can be aggregated
687
* with pending one
688
*/
689
if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
690
drrfo->drr_numobjs += numobjs;
691
return (0);
692
} else {
693
/* can't be aggregated. Push out pending record */
694
if (dump_record(dscp, NULL, 0) != 0)
695
return (SET_ERROR(EINTR));
696
dscp->dsc_pending_op = PENDING_NONE;
697
}
698
}
699
700
/* write a FREEOBJECTS record */
701
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
702
dscp->dsc_drr->drr_type = DRR_FREEOBJECTS;
703
drrfo->drr_firstobj = firstobj;
704
drrfo->drr_numobjs = numobjs;
705
drrfo->drr_toguid = dscp->dsc_toguid;
706
707
dscp->dsc_pending_op = PENDING_FREEOBJECTS;
708
709
return (0);
710
}
711
712
static int
713
dump_dnode(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
714
dnode_phys_t *dnp)
715
{
716
struct drr_object *drro = &(dscp->dsc_drr->drr_u.drr_object);
717
int bonuslen;
718
719
if (object < dscp->dsc_resume_object) {
720
/*
721
* Note: when resuming, we will visit all the dnodes in
722
* the block of dnodes that we are resuming from. In
723
* this case it's unnecessary to send the dnodes prior to
724
* the one we are resuming from. We should be at most one
725
* block's worth of dnodes behind the resume point.
726
*/
727
ASSERT3U(dscp->dsc_resume_object - object, <,
728
1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
729
return (0);
730
}
731
732
if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
733
return (dump_freeobjects(dscp, object, 1));
734
735
if (dscp->dsc_pending_op != PENDING_NONE) {
736
if (dump_record(dscp, NULL, 0) != 0)
737
return (SET_ERROR(EINTR));
738
dscp->dsc_pending_op = PENDING_NONE;
739
}
740
741
/* write an OBJECT record */
742
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
743
dscp->dsc_drr->drr_type = DRR_OBJECT;
744
drro->drr_object = object;
745
drro->drr_type = dnp->dn_type;
746
drro->drr_bonustype = dnp->dn_bonustype;
747
drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
748
drro->drr_bonuslen = dnp->dn_bonuslen;
749
drro->drr_dn_slots = dnp->dn_extra_slots + 1;
750
drro->drr_checksumtype = dnp->dn_checksum;
751
drro->drr_compress = dnp->dn_compress;
752
drro->drr_toguid = dscp->dsc_toguid;
753
754
if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
755
drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
756
drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
757
758
bonuslen = P2ROUNDUP(dnp->dn_bonuslen, 8);
759
760
if ((dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
761
ASSERT(BP_IS_ENCRYPTED(bp));
762
763
if (BP_SHOULD_BYTESWAP(bp))
764
drro->drr_flags |= DRR_RAW_BYTESWAP;
765
766
/* needed for reconstructing dnp on recv side */
767
drro->drr_maxblkid = dnp->dn_maxblkid;
768
drro->drr_indblkshift = dnp->dn_indblkshift;
769
drro->drr_nlevels = dnp->dn_nlevels;
770
drro->drr_nblkptr = dnp->dn_nblkptr;
771
772
/*
773
* Since we encrypt the entire bonus area, the (raw) part
774
* beyond the bonuslen is actually nonzero, so we need
775
* to send it.
776
*/
777
if (bonuslen != 0) {
778
if (drro->drr_bonuslen > DN_MAX_BONUS_LEN(dnp))
779
return (SET_ERROR(EINVAL));
780
drro->drr_raw_bonuslen = DN_MAX_BONUS_LEN(dnp);
781
bonuslen = drro->drr_raw_bonuslen;
782
}
783
}
784
785
/*
786
* DRR_OBJECT_SPILL is set for every dnode which references a
787
* spill block. This allows the receiving pool to definitively
788
* determine when a spill block should be kept or freed.
789
*/
790
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
791
drro->drr_flags |= DRR_OBJECT_SPILL;
792
793
if (dump_record(dscp, DN_BONUS(dnp), bonuslen) != 0)
794
return (SET_ERROR(EINTR));
795
796
/* Free anything past the end of the file. */
797
if (dump_free(dscp, object, (dnp->dn_maxblkid + 1) *
798
(dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), DMU_OBJECT_END) != 0)
799
return (SET_ERROR(EINTR));
800
801
if (dscp->dsc_err != 0)
802
return (SET_ERROR(EINTR));
803
804
return (0);
805
}
806
807
static int
808
dump_object_range(dmu_send_cookie_t *dscp, const blkptr_t *bp,
809
uint64_t firstobj, uint64_t numslots)
810
{
811
struct drr_object_range *drror =
812
&(dscp->dsc_drr->drr_u.drr_object_range);
813
814
/* we only use this record type for raw sends */
815
ASSERT(BP_IS_PROTECTED(bp));
816
ASSERT(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
817
ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
818
ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_DNODE);
819
ASSERT0(BP_GET_LEVEL(bp));
820
821
if (dscp->dsc_pending_op != PENDING_NONE) {
822
if (dump_record(dscp, NULL, 0) != 0)
823
return (SET_ERROR(EINTR));
824
dscp->dsc_pending_op = PENDING_NONE;
825
}
826
827
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
828
dscp->dsc_drr->drr_type = DRR_OBJECT_RANGE;
829
drror->drr_firstobj = firstobj;
830
drror->drr_numslots = numslots;
831
drror->drr_toguid = dscp->dsc_toguid;
832
if (BP_SHOULD_BYTESWAP(bp))
833
drror->drr_flags |= DRR_RAW_BYTESWAP;
834
zio_crypt_decode_params_bp(bp, drror->drr_salt, drror->drr_iv);
835
zio_crypt_decode_mac_bp(bp, drror->drr_mac);
836
837
if (dump_record(dscp, NULL, 0) != 0)
838
return (SET_ERROR(EINTR));
839
return (0);
840
}
841
842
static boolean_t
843
send_do_embed(const blkptr_t *bp, uint64_t featureflags)
844
{
845
if (!BP_IS_EMBEDDED(bp))
846
return (B_FALSE);
847
848
/*
849
* Compression function must be legacy, or explicitly enabled.
850
*/
851
if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
852
!(featureflags & DMU_BACKUP_FEATURE_LZ4)))
853
return (B_FALSE);
854
855
/*
856
* If we have not set the ZSTD feature flag, we can't send ZSTD
857
* compressed embedded blocks, as the receiver may not support them.
858
*/
859
if ((BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD &&
860
!(featureflags & DMU_BACKUP_FEATURE_ZSTD)))
861
return (B_FALSE);
862
863
/*
864
* Embed type must be explicitly enabled.
865
*/
866
switch (BPE_GET_ETYPE(bp)) {
867
case BP_EMBEDDED_TYPE_DATA:
868
if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
869
return (B_TRUE);
870
break;
871
default:
872
return (B_FALSE);
873
}
874
return (B_FALSE);
875
}
876
877
/*
878
* This function actually handles figuring out what kind of record needs to be
879
* dumped, and calling the appropriate helper function. In most cases,
880
* the data has already been read by send_reader_thread().
881
*/
882
static int
883
do_dump(dmu_send_cookie_t *dscp, struct send_range *range)
884
{
885
int err = 0;
886
switch (range->type) {
887
case OBJECT:
888
err = dump_dnode(dscp, &range->sru.object.bp, range->object,
889
range->sru.object.dnp);
890
/* Dump piggybacked unmodified spill block */
891
if (!err && range->sru.object.spill_range)
892
err = do_dump(dscp, range->sru.object.spill_range);
893
return (err);
894
case OBJECT_RANGE: {
895
ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
896
if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
897
return (0);
898
}
899
uint64_t epb = BP_GET_LSIZE(&range->sru.object_range.bp) >>
900
DNODE_SHIFT;
901
uint64_t firstobj = range->start_blkid * epb;
902
err = dump_object_range(dscp, &range->sru.object_range.bp,
903
firstobj, epb);
904
break;
905
}
906
case REDACT: {
907
struct srr *srrp = &range->sru.redact;
908
err = dump_redact(dscp, range->object, range->start_blkid *
909
srrp->datablksz, (range->end_blkid - range->start_blkid) *
910
srrp->datablksz);
911
return (err);
912
}
913
case DATA: {
914
struct srd *srdp = &range->sru.data;
915
blkptr_t *bp = &srdp->bp;
916
spa_t *spa =
917
dmu_objset_spa(dscp->dsc_os);
918
919
ASSERT3U(srdp->datablksz, ==, BP_GET_LSIZE(bp));
920
ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
921
922
if (send_do_embed(bp, dscp->dsc_featureflags)) {
923
err = dump_write_embedded(dscp, range->object,
924
range->start_blkid * srdp->datablksz,
925
srdp->datablksz, bp);
926
return (err);
927
}
928
ASSERT(range->object > dscp->dsc_resume_object ||
929
(range->object == dscp->dsc_resume_object &&
930
(range->start_blkid == DMU_SPILL_BLKID ||
931
range->start_blkid * srdp->datablksz >=
932
dscp->dsc_resume_offset)));
933
/* it's a level-0 block of a regular object */
934
935
mutex_enter(&srdp->lock);
936
while (srdp->io_outstanding)
937
cv_wait(&srdp->cv, &srdp->lock);
938
err = srdp->io_err;
939
mutex_exit(&srdp->lock);
940
941
if (err != 0) {
942
if (zfs_send_corrupt_data &&
943
!dscp->dsc_dso->dso_dryrun) {
944
/*
945
* Send a block filled with 0x"zfs badd bloc"
946
*/
947
srdp->abuf = arc_alloc_buf(spa, &srdp->abuf,
948
ARC_BUFC_DATA, srdp->datablksz);
949
uint64_t *ptr;
950
for (ptr = srdp->abuf->b_data;
951
(char *)ptr < (char *)srdp->abuf->b_data +
952
srdp->datablksz; ptr++)
953
*ptr = 0x2f5baddb10cULL;
954
} else {
955
return (SET_ERROR(EIO));
956
}
957
}
958
959
ASSERT(dscp->dsc_dso->dso_dryrun ||
960
srdp->abuf != NULL || srdp->abd != NULL);
961
962
char *data = NULL;
963
if (srdp->abd != NULL) {
964
data = abd_to_buf(srdp->abd);
965
ASSERT0P(srdp->abuf);
966
} else if (srdp->abuf != NULL) {
967
data = srdp->abuf->b_data;
968
}
969
970
if (BP_GET_TYPE(bp) == DMU_OT_SA) {
971
ASSERT3U(range->start_blkid, ==, DMU_SPILL_BLKID);
972
err = dump_spill(dscp, bp, range->object, data);
973
return (err);
974
}
975
976
uint64_t offset = range->start_blkid * srdp->datablksz;
977
978
/*
979
* If we have large blocks stored on disk but the send flags
980
* don't allow us to send large blocks, we split the data from
981
* the arc buf into chunks.
982
*/
983
if (srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
984
!(dscp->dsc_featureflags &
985
DMU_BACKUP_FEATURE_LARGE_BLOCKS)) {
986
while (srdp->datablksz > 0 && err == 0) {
987
int n = MIN(srdp->datablksz,
988
SPA_OLD_MAXBLOCKSIZE);
989
err = dmu_dump_write(dscp, srdp->obj_type,
990
range->object, offset, n, n, NULL, B_FALSE,
991
data);
992
offset += n;
993
/*
994
* When doing dry run, data==NULL is used as a
995
* sentinel value by
996
* dmu_dump_write()->dump_record().
997
*/
998
if (data != NULL)
999
data += n;
1000
srdp->datablksz -= n;
1001
}
1002
} else {
1003
err = dmu_dump_write(dscp, srdp->obj_type,
1004
range->object, offset,
1005
srdp->datablksz, srdp->datasz, bp,
1006
srdp->io_compressed, data);
1007
}
1008
return (err);
1009
}
1010
case HOLE: {
1011
struct srh *srhp = &range->sru.hole;
1012
if (range->object == DMU_META_DNODE_OBJECT) {
1013
uint32_t span = srhp->datablksz >> DNODE_SHIFT;
1014
uint64_t first_obj = range->start_blkid * span;
1015
uint64_t numobj = range->end_blkid * span - first_obj;
1016
return (dump_freeobjects(dscp, first_obj, numobj));
1017
}
1018
uint64_t offset = 0;
1019
1020
/*
1021
* If this multiply overflows, we don't need to send this block.
1022
* Even if it has a birth time, it can never not be a hole, so
1023
* we don't need to send records for it.
1024
*/
1025
if (!overflow_multiply(range->start_blkid, srhp->datablksz,
1026
&offset)) {
1027
return (0);
1028
}
1029
uint64_t len = 0;
1030
1031
if (!overflow_multiply(range->end_blkid, srhp->datablksz, &len))
1032
len = UINT64_MAX;
1033
len = len - offset;
1034
return (dump_free(dscp, range->object, offset, len));
1035
}
1036
default:
1037
panic("Invalid range type in do_dump: %d", range->type);
1038
}
1039
return (err);
1040
}
1041
1042
static struct send_range *
1043
range_alloc(enum type type, uint64_t object, uint64_t start_blkid,
1044
uint64_t end_blkid, boolean_t eos)
1045
{
1046
struct send_range *range = kmem_alloc(sizeof (*range), KM_SLEEP);
1047
range->type = type;
1048
range->object = object;
1049
range->start_blkid = start_blkid;
1050
range->end_blkid = end_blkid;
1051
range->eos_marker = eos;
1052
if (type == DATA) {
1053
range->sru.data.abd = NULL;
1054
range->sru.data.abuf = NULL;
1055
mutex_init(&range->sru.data.lock, NULL, MUTEX_DEFAULT, NULL);
1056
cv_init(&range->sru.data.cv, NULL, CV_DEFAULT, NULL);
1057
range->sru.data.io_outstanding = 0;
1058
range->sru.data.io_err = 0;
1059
range->sru.data.io_compressed = B_FALSE;
1060
} else if (type == OBJECT) {
1061
range->sru.object.spill_range = NULL;
1062
}
1063
return (range);
1064
}
1065
1066
/*
1067
* This is the callback function to traverse_dataset that acts as a worker
1068
* thread for dmu_send_impl.
1069
*/
1070
static int
1071
send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1072
const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
1073
{
1074
(void) zilog;
1075
struct send_thread_arg *sta = arg;
1076
struct send_range *record;
1077
1078
ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
1079
zb->zb_object >= sta->resume.zb_object);
1080
1081
/*
1082
* All bps of an encrypted os should have the encryption bit set.
1083
* If this is not true it indicates tampering and we report an error.
1084
*/
1085
if (sta->os->os_encrypted &&
1086
!BP_IS_HOLE(bp) && !BP_USES_CRYPT(bp)) {
1087
spa_log_error(spa, zb, BP_GET_PHYSICAL_BIRTH(bp));
1088
return (SET_ERROR(EIO));
1089
}
1090
1091
if (sta->cancel)
1092
return (SET_ERROR(EINTR));
1093
if (zb->zb_object != DMU_META_DNODE_OBJECT &&
1094
DMU_OBJECT_IS_SPECIAL(zb->zb_object))
1095
return (0);
1096
atomic_inc_64(sta->num_blocks_visited);
1097
1098
if (zb->zb_level == ZB_DNODE_LEVEL) {
1099
if (zb->zb_object == DMU_META_DNODE_OBJECT)
1100
return (0);
1101
record = range_alloc(OBJECT, zb->zb_object, 0, 0, B_FALSE);
1102
record->sru.object.bp = *bp;
1103
size_t size = sizeof (*dnp) * (dnp->dn_extra_slots + 1);
1104
record->sru.object.dnp = kmem_alloc(size, KM_SLEEP);
1105
memcpy(record->sru.object.dnp, dnp, size);
1106
bqueue_enqueue(&sta->q, record, sizeof (*record));
1107
return (0);
1108
}
1109
if (zb->zb_level == 0 && zb->zb_object == DMU_META_DNODE_OBJECT &&
1110
!BP_IS_HOLE(bp)) {
1111
record = range_alloc(OBJECT_RANGE, 0, zb->zb_blkid,
1112
zb->zb_blkid + 1, B_FALSE);
1113
record->sru.object_range.bp = *bp;
1114
bqueue_enqueue(&sta->q, record, sizeof (*record));
1115
return (0);
1116
}
1117
if (zb->zb_level < 0 || (zb->zb_level > 0 && !BP_IS_HOLE(bp)))
1118
return (0);
1119
if (zb->zb_object == DMU_META_DNODE_OBJECT && !BP_IS_HOLE(bp))
1120
return (0);
1121
1122
uint64_t span = bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
1123
uint64_t start;
1124
1125
/*
1126
* If this multiply overflows, we don't need to send this block.
1127
* Even if it has a birth time, it can never not be a hole, so
1128
* we don't need to send records for it.
1129
*/
1130
if (!overflow_multiply(span, zb->zb_blkid, &start) || (!(zb->zb_blkid ==
1131
DMU_SPILL_BLKID || DMU_OT_IS_METADATA(dnp->dn_type)) &&
1132
span * zb->zb_blkid > dnp->dn_maxblkid)) {
1133
ASSERT(BP_IS_HOLE(bp));
1134
return (0);
1135
}
1136
1137
if (zb->zb_blkid == DMU_SPILL_BLKID)
1138
ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1139
1140
enum type record_type = DATA;
1141
if (BP_IS_HOLE(bp))
1142
record_type = HOLE;
1143
else if (BP_IS_REDACTED(bp))
1144
record_type = REDACT;
1145
else
1146
record_type = DATA;
1147
1148
record = range_alloc(record_type, zb->zb_object, start,
1149
(start + span < start ? 0 : start + span), B_FALSE);
1150
1151
uint64_t datablksz = (zb->zb_blkid == DMU_SPILL_BLKID ?
1152
BP_GET_LSIZE(bp) : dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
1153
1154
if (BP_IS_HOLE(bp)) {
1155
record->sru.hole.datablksz = datablksz;
1156
} else if (BP_IS_REDACTED(bp)) {
1157
record->sru.redact.datablksz = datablksz;
1158
} else {
1159
record->sru.data.datablksz = datablksz;
1160
record->sru.data.obj_type = dnp->dn_type;
1161
record->sru.data.bp = *bp;
1162
}
1163
1164
bqueue_enqueue(&sta->q, record, sizeof (*record));
1165
return (0);
1166
}
1167
1168
struct redact_list_cb_arg {
1169
uint64_t *num_blocks_visited;
1170
bqueue_t *q;
1171
boolean_t *cancel;
1172
boolean_t mark_redact;
1173
};
1174
1175
static int
1176
redact_list_cb(redact_block_phys_t *rb, void *arg)
1177
{
1178
struct redact_list_cb_arg *rlcap = arg;
1179
1180
atomic_inc_64(rlcap->num_blocks_visited);
1181
if (*rlcap->cancel)
1182
return (-1);
1183
1184
struct send_range *data = range_alloc(REDACT, rb->rbp_object,
1185
rb->rbp_blkid, rb->rbp_blkid + redact_block_get_count(rb), B_FALSE);
1186
ASSERT3U(data->end_blkid, >, rb->rbp_blkid);
1187
if (rlcap->mark_redact) {
1188
data->type = REDACT;
1189
data->sru.redact.datablksz = redact_block_get_size(rb);
1190
} else {
1191
data->type = PREVIOUSLY_REDACTED;
1192
}
1193
bqueue_enqueue(rlcap->q, data, sizeof (*data));
1194
1195
return (0);
1196
}
1197
1198
/*
1199
* This function kicks off the traverse_dataset. It also handles setting the
1200
* error code of the thread in case something goes wrong, and pushes the End of
1201
* Stream record when the traverse_dataset call has finished.
1202
*/
1203
static __attribute__((noreturn)) void
1204
send_traverse_thread(void *arg)
1205
{
1206
struct send_thread_arg *st_arg = arg;
1207
int err = 0;
1208
struct send_range *data;
1209
fstrans_cookie_t cookie = spl_fstrans_mark();
1210
1211
err = traverse_dataset_resume(st_arg->os->os_dsl_dataset,
1212
st_arg->fromtxg, &st_arg->resume,
1213
st_arg->flags | TRAVERSE_LOGICAL, send_cb, st_arg);
1214
1215
if (err != EINTR)
1216
st_arg->error_code = err;
1217
data = range_alloc(DATA, 0, 0, 0, B_TRUE);
1218
bqueue_enqueue_flush(&st_arg->q, data, sizeof (*data));
1219
spl_fstrans_unmark(cookie);
1220
thread_exit();
1221
}
1222
1223
/*
1224
* Utility function that causes End of Stream records to compare after of all
1225
* others, so that other threads' comparison logic can stay simple.
1226
*/
1227
static int __attribute__((unused))
1228
send_range_after(const struct send_range *from, const struct send_range *to)
1229
{
1230
if (from->eos_marker == B_TRUE)
1231
return (1);
1232
if (to->eos_marker == B_TRUE)
1233
return (-1);
1234
1235
uint64_t from_obj = from->object;
1236
uint64_t from_end_obj = from->object + 1;
1237
uint64_t to_obj = to->object;
1238
uint64_t to_end_obj = to->object + 1;
1239
if (from_obj == 0) {
1240
ASSERT(from->type == HOLE || from->type == OBJECT_RANGE);
1241
from_obj = from->start_blkid << DNODES_PER_BLOCK_SHIFT;
1242
from_end_obj = from->end_blkid << DNODES_PER_BLOCK_SHIFT;
1243
}
1244
if (to_obj == 0) {
1245
ASSERT(to->type == HOLE || to->type == OBJECT_RANGE);
1246
to_obj = to->start_blkid << DNODES_PER_BLOCK_SHIFT;
1247
to_end_obj = to->end_blkid << DNODES_PER_BLOCK_SHIFT;
1248
}
1249
1250
if (from_end_obj <= to_obj)
1251
return (-1);
1252
if (from_obj >= to_end_obj)
1253
return (1);
1254
int64_t cmp = TREE_CMP(to->type == OBJECT_RANGE, from->type ==
1255
OBJECT_RANGE);
1256
if (unlikely(cmp))
1257
return (cmp);
1258
cmp = TREE_CMP(to->type == OBJECT, from->type == OBJECT);
1259
if (unlikely(cmp))
1260
return (cmp);
1261
if (from->end_blkid <= to->start_blkid)
1262
return (-1);
1263
if (from->start_blkid >= to->end_blkid)
1264
return (1);
1265
return (0);
1266
}
1267
1268
/*
1269
* Pop the new data off the queue, check that the records we receive are in
1270
* the right order, but do not free the old data. This is used so that the
1271
* records can be sent on to the main thread without copying the data.
1272
*/
1273
static struct send_range *
1274
get_next_range_nofree(bqueue_t *bq, struct send_range *prev)
1275
{
1276
struct send_range *next = bqueue_dequeue(bq);
1277
ASSERT3S(send_range_after(prev, next), ==, -1);
1278
return (next);
1279
}
1280
1281
/*
1282
* Pop the new data off the queue, check that the records we receive are in
1283
* the right order, and free the old data.
1284
*/
1285
static struct send_range *
1286
get_next_range(bqueue_t *bq, struct send_range *prev)
1287
{
1288
struct send_range *next = get_next_range_nofree(bq, prev);
1289
range_free(prev);
1290
return (next);
1291
}
1292
1293
static __attribute__((noreturn)) void
1294
redact_list_thread(void *arg)
1295
{
1296
struct redact_list_thread_arg *rlt_arg = arg;
1297
struct send_range *record;
1298
fstrans_cookie_t cookie = spl_fstrans_mark();
1299
if (rlt_arg->rl != NULL) {
1300
struct redact_list_cb_arg rlcba = {0};
1301
rlcba.cancel = &rlt_arg->cancel;
1302
rlcba.q = &rlt_arg->q;
1303
rlcba.num_blocks_visited = rlt_arg->num_blocks_visited;
1304
rlcba.mark_redact = rlt_arg->mark_redact;
1305
int err = dsl_redaction_list_traverse(rlt_arg->rl,
1306
&rlt_arg->resume, redact_list_cb, &rlcba);
1307
if (err != EINTR)
1308
rlt_arg->error_code = err;
1309
}
1310
record = range_alloc(DATA, 0, 0, 0, B_TRUE);
1311
bqueue_enqueue_flush(&rlt_arg->q, record, sizeof (*record));
1312
spl_fstrans_unmark(cookie);
1313
1314
thread_exit();
1315
}
1316
1317
/*
1318
* Compare the start point of the two provided ranges. End of stream ranges
1319
* compare last, objects compare before any data or hole inside that object and
1320
* multi-object holes that start at the same object.
1321
*/
1322
static int
1323
send_range_start_compare(struct send_range *r1, struct send_range *r2)
1324
{
1325
uint64_t r1_objequiv = r1->object;
1326
uint64_t r1_l0equiv = r1->start_blkid;
1327
uint64_t r2_objequiv = r2->object;
1328
uint64_t r2_l0equiv = r2->start_blkid;
1329
int64_t cmp = TREE_CMP(r1->eos_marker, r2->eos_marker);
1330
if (unlikely(cmp))
1331
return (cmp);
1332
if (r1->object == 0) {
1333
r1_objequiv = r1->start_blkid * DNODES_PER_BLOCK;
1334
r1_l0equiv = 0;
1335
}
1336
if (r2->object == 0) {
1337
r2_objequiv = r2->start_blkid * DNODES_PER_BLOCK;
1338
r2_l0equiv = 0;
1339
}
1340
1341
cmp = TREE_CMP(r1_objequiv, r2_objequiv);
1342
if (likely(cmp))
1343
return (cmp);
1344
cmp = TREE_CMP(r2->type == OBJECT_RANGE, r1->type == OBJECT_RANGE);
1345
if (unlikely(cmp))
1346
return (cmp);
1347
cmp = TREE_CMP(r2->type == OBJECT, r1->type == OBJECT);
1348
if (unlikely(cmp))
1349
return (cmp);
1350
1351
return (TREE_CMP(r1_l0equiv, r2_l0equiv));
1352
}
1353
1354
enum q_idx {
1355
REDACT_IDX = 0,
1356
TO_IDX,
1357
FROM_IDX,
1358
NUM_THREADS
1359
};
1360
1361
/*
1362
* This function returns the next range the send_merge_thread should operate on.
1363
* The inputs are two arrays; the first one stores the range at the front of the
1364
* queues stored in the second one. The ranges are sorted in descending
1365
* priority order; the metadata from earlier ranges overrules metadata from
1366
* later ranges. out_mask is used to return which threads the ranges came from;
1367
* bit i is set if ranges[i] started at the same place as the returned range.
1368
*
1369
* This code is not hardcoded to compare a specific number of threads; it could
1370
* be used with any number, just by changing the q_idx enum.
1371
*
1372
* The "next range" is the one with the earliest start; if two starts are equal,
1373
* the highest-priority range is the next to operate on. If a higher-priority
1374
* range starts in the middle of the first range, then the first range will be
1375
* truncated to end where the higher-priority range starts, and we will operate
1376
* on that one next time. In this way, we make sure that each block covered by
1377
* some range gets covered by a returned range, and each block covered is
1378
* returned using the metadata of the highest-priority range it appears in.
1379
*
1380
* For example, if the three ranges at the front of the queues were [2,4),
1381
* [3,5), and [1,3), then the ranges returned would be [1,2) with the metadata
1382
* from the third range, [2,4) with the metadata from the first range, and then
1383
* [4,5) with the metadata from the second.
1384
*/
1385
static struct send_range *
1386
find_next_range(struct send_range **ranges, bqueue_t **qs, uint64_t *out_mask)
1387
{
1388
int idx = 0; // index of the range with the earliest start
1389
int i;
1390
uint64_t bmask = 0;
1391
for (i = 1; i < NUM_THREADS; i++) {
1392
if (send_range_start_compare(ranges[i], ranges[idx]) < 0)
1393
idx = i;
1394
}
1395
if (ranges[idx]->eos_marker) {
1396
struct send_range *ret = range_alloc(DATA, 0, 0, 0, B_TRUE);
1397
*out_mask = 0;
1398
return (ret);
1399
}
1400
/*
1401
* Find all the ranges that start at that same point.
1402
*/
1403
for (i = 0; i < NUM_THREADS; i++) {
1404
if (send_range_start_compare(ranges[i], ranges[idx]) == 0)
1405
bmask |= 1 << i;
1406
}
1407
*out_mask = bmask;
1408
/*
1409
* OBJECT_RANGE records only come from the TO thread, and should always
1410
* be treated as overlapping with nothing and sent on immediately. They
1411
* are only used in raw sends, and are never redacted.
1412
*/
1413
if (ranges[idx]->type == OBJECT_RANGE) {
1414
ASSERT3U(idx, ==, TO_IDX);
1415
ASSERT3U(*out_mask, ==, 1 << TO_IDX);
1416
struct send_range *ret = ranges[idx];
1417
ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1418
return (ret);
1419
}
1420
/*
1421
* Find the first start or end point after the start of the first range.
1422
*/
1423
uint64_t first_change = ranges[idx]->end_blkid;
1424
for (i = 0; i < NUM_THREADS; i++) {
1425
if (i == idx || ranges[i]->eos_marker ||
1426
ranges[i]->object > ranges[idx]->object ||
1427
ranges[i]->object == DMU_META_DNODE_OBJECT)
1428
continue;
1429
ASSERT3U(ranges[i]->object, ==, ranges[idx]->object);
1430
if (first_change > ranges[i]->start_blkid &&
1431
(bmask & (1 << i)) == 0)
1432
first_change = ranges[i]->start_blkid;
1433
else if (first_change > ranges[i]->end_blkid)
1434
first_change = ranges[i]->end_blkid;
1435
}
1436
/*
1437
* Update all ranges to no longer overlap with the range we're
1438
* returning. All such ranges must start at the same place as the range
1439
* being returned, and end at or after first_change. Thus we update
1440
* their start to first_change. If that makes them size 0, then free
1441
* them and pull a new range from that thread.
1442
*/
1443
for (i = 0; i < NUM_THREADS; i++) {
1444
if (i == idx || (bmask & (1 << i)) == 0)
1445
continue;
1446
ASSERT3U(first_change, >, ranges[i]->start_blkid);
1447
ranges[i]->start_blkid = first_change;
1448
ASSERT3U(ranges[i]->start_blkid, <=, ranges[i]->end_blkid);
1449
if (ranges[i]->start_blkid == ranges[i]->end_blkid)
1450
ranges[i] = get_next_range(qs[i], ranges[i]);
1451
}
1452
/*
1453
* Short-circuit the simple case; if the range doesn't overlap with
1454
* anything else, or it only overlaps with things that start at the same
1455
* place and are longer, send it on.
1456
*/
1457
if (first_change == ranges[idx]->end_blkid) {
1458
struct send_range *ret = ranges[idx];
1459
ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1460
return (ret);
1461
}
1462
1463
/*
1464
* Otherwise, return a truncated copy of ranges[idx] and move the start
1465
* of ranges[idx] back to first_change.
1466
*/
1467
struct send_range *ret = kmem_alloc(sizeof (*ret), KM_SLEEP);
1468
*ret = *ranges[idx];
1469
ret->end_blkid = first_change;
1470
ranges[idx]->start_blkid = first_change;
1471
return (ret);
1472
}
1473
1474
#define FROM_AND_REDACT_BITS ((1 << REDACT_IDX) | (1 << FROM_IDX))
1475
1476
/*
1477
* Merge the results from the from thread and the to thread, and then hand the
1478
* records off to send_prefetch_thread to prefetch them. If this is not a
1479
* send from a redaction bookmark, the from thread will push an end of stream
1480
* record and stop, and we'll just send everything that was changed in the
1481
* to_ds since the ancestor's creation txg. If it is, then since
1482
* traverse_dataset has a canonical order, we can compare each change as
1483
* they're pulled off the queues. That will give us a stream that is
1484
* appropriately sorted, and covers all records. In addition, we pull the
1485
* data from the redact_list_thread and use that to determine which blocks
1486
* should be redacted.
1487
*/
1488
static __attribute__((noreturn)) void
1489
send_merge_thread(void *arg)
1490
{
1491
struct send_merge_thread_arg *smt_arg = arg;
1492
struct send_range *front_ranges[NUM_THREADS];
1493
bqueue_t *queues[NUM_THREADS];
1494
int err = 0;
1495
fstrans_cookie_t cookie = spl_fstrans_mark();
1496
1497
if (smt_arg->redact_arg == NULL) {
1498
front_ranges[REDACT_IDX] =
1499
kmem_zalloc(sizeof (struct send_range), KM_SLEEP);
1500
front_ranges[REDACT_IDX]->eos_marker = B_TRUE;
1501
front_ranges[REDACT_IDX]->type = REDACT;
1502
queues[REDACT_IDX] = NULL;
1503
} else {
1504
front_ranges[REDACT_IDX] =
1505
bqueue_dequeue(&smt_arg->redact_arg->q);
1506
queues[REDACT_IDX] = &smt_arg->redact_arg->q;
1507
}
1508
front_ranges[TO_IDX] = bqueue_dequeue(&smt_arg->to_arg->q);
1509
queues[TO_IDX] = &smt_arg->to_arg->q;
1510
front_ranges[FROM_IDX] = bqueue_dequeue(&smt_arg->from_arg->q);
1511
queues[FROM_IDX] = &smt_arg->from_arg->q;
1512
uint64_t mask = 0;
1513
struct send_range *range;
1514
for (range = find_next_range(front_ranges, queues, &mask);
1515
!range->eos_marker && err == 0 && !smt_arg->cancel;
1516
range = find_next_range(front_ranges, queues, &mask)) {
1517
/*
1518
* If the range in question was in both the from redact bookmark
1519
* and the bookmark we're using to redact, then don't send it.
1520
* It's already redacted on the receiving system, so a redaction
1521
* record would be redundant.
1522
*/
1523
if ((mask & FROM_AND_REDACT_BITS) == FROM_AND_REDACT_BITS) {
1524
ASSERT3U(range->type, ==, REDACT);
1525
range_free(range);
1526
continue;
1527
}
1528
bqueue_enqueue(&smt_arg->q, range, sizeof (*range));
1529
1530
if (smt_arg->to_arg->error_code != 0) {
1531
err = smt_arg->to_arg->error_code;
1532
} else if (smt_arg->from_arg->error_code != 0) {
1533
err = smt_arg->from_arg->error_code;
1534
} else if (smt_arg->redact_arg != NULL &&
1535
smt_arg->redact_arg->error_code != 0) {
1536
err = smt_arg->redact_arg->error_code;
1537
}
1538
}
1539
if (smt_arg->cancel && err == 0)
1540
err = SET_ERROR(EINTR);
1541
smt_arg->error = err;
1542
if (smt_arg->error != 0) {
1543
smt_arg->to_arg->cancel = B_TRUE;
1544
smt_arg->from_arg->cancel = B_TRUE;
1545
if (smt_arg->redact_arg != NULL)
1546
smt_arg->redact_arg->cancel = B_TRUE;
1547
}
1548
for (int i = 0; i < NUM_THREADS; i++) {
1549
while (!front_ranges[i]->eos_marker) {
1550
front_ranges[i] = get_next_range(queues[i],
1551
front_ranges[i]);
1552
}
1553
range_free(front_ranges[i]);
1554
}
1555
range->eos_marker = B_TRUE;
1556
bqueue_enqueue_flush(&smt_arg->q, range, 1);
1557
spl_fstrans_unmark(cookie);
1558
thread_exit();
1559
}
1560
1561
struct send_reader_thread_arg {
1562
struct send_merge_thread_arg *smta;
1563
bqueue_t q;
1564
boolean_t cancel;
1565
boolean_t issue_reads;
1566
uint64_t featureflags;
1567
int error;
1568
};
1569
1570
static void
1571
dmu_send_read_done(zio_t *zio)
1572
{
1573
struct send_range *range = zio->io_private;
1574
1575
mutex_enter(&range->sru.data.lock);
1576
if (zio->io_error != 0) {
1577
abd_free(range->sru.data.abd);
1578
range->sru.data.abd = NULL;
1579
range->sru.data.io_err = zio->io_error;
1580
}
1581
1582
ASSERT(range->sru.data.io_outstanding);
1583
range->sru.data.io_outstanding = B_FALSE;
1584
cv_broadcast(&range->sru.data.cv);
1585
mutex_exit(&range->sru.data.lock);
1586
}
1587
1588
static void
1589
issue_data_read(struct send_reader_thread_arg *srta, struct send_range *range)
1590
{
1591
struct srd *srdp = &range->sru.data;
1592
blkptr_t *bp = &srdp->bp;
1593
objset_t *os = srta->smta->os;
1594
1595
ASSERT3U(range->type, ==, DATA);
1596
ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
1597
/*
1598
* If we have large blocks stored on disk but
1599
* the send flags don't allow us to send large
1600
* blocks, we split the data from the arc buf
1601
* into chunks.
1602
*/
1603
boolean_t split_large_blocks =
1604
srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1605
!(srta->featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
1606
/*
1607
* We should only request compressed data from the ARC if all
1608
* the following are true:
1609
* - stream compression was requested
1610
* - we aren't splitting large blocks into smaller chunks
1611
* - the data won't need to be byteswapped before sending
1612
* - this isn't an embedded block
1613
* - this isn't metadata (if receiving on a different endian
1614
* system it can be byteswapped more easily)
1615
*/
1616
boolean_t request_compressed =
1617
(srta->featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
1618
!split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
1619
!BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
1620
1621
zio_flag_t zioflags = ZIO_FLAG_CANFAIL;
1622
1623
if (srta->featureflags & DMU_BACKUP_FEATURE_RAW) {
1624
zioflags |= ZIO_FLAG_RAW;
1625
srdp->io_compressed = B_TRUE;
1626
} else if (request_compressed) {
1627
zioflags |= ZIO_FLAG_RAW_COMPRESS;
1628
srdp->io_compressed = B_TRUE;
1629
}
1630
1631
srdp->datasz = (zioflags & ZIO_FLAG_RAW_COMPRESS) ?
1632
BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp);
1633
1634
if (!srta->issue_reads)
1635
return;
1636
if (BP_IS_REDACTED(bp))
1637
return;
1638
if (send_do_embed(bp, srta->featureflags))
1639
return;
1640
1641
zbookmark_phys_t zb = {
1642
.zb_objset = dmu_objset_id(os),
1643
.zb_object = range->object,
1644
.zb_level = 0,
1645
.zb_blkid = range->start_blkid,
1646
};
1647
1648
arc_flags_t aflags = ARC_FLAG_CACHED_ONLY;
1649
1650
int arc_err = arc_read(NULL, os->os_spa, bp,
1651
arc_getbuf_func, &srdp->abuf, ZIO_PRIORITY_ASYNC_READ,
1652
zioflags, &aflags, &zb);
1653
/*
1654
* If the data is not already cached in the ARC, we read directly
1655
* from zio. This avoids the performance overhead of adding a new
1656
* entry to the ARC, and we also avoid polluting the ARC cache with
1657
* data that is not likely to be used in the future.
1658
*/
1659
if (arc_err != 0) {
1660
srdp->abd = abd_alloc_linear(srdp->datasz, B_FALSE);
1661
srdp->io_outstanding = B_TRUE;
1662
zio_nowait(zio_read(NULL, os->os_spa, bp, srdp->abd,
1663
srdp->datasz, dmu_send_read_done, range,
1664
ZIO_PRIORITY_ASYNC_READ, zioflags, &zb));
1665
}
1666
}
1667
1668
/*
1669
* Create a new record with the given values.
1670
*/
1671
static void
1672
enqueue_range(struct send_reader_thread_arg *srta, bqueue_t *q, dnode_t *dn,
1673
uint64_t blkid, uint64_t count, const blkptr_t *bp, uint32_t datablksz)
1674
{
1675
enum type range_type = (bp == NULL || BP_IS_HOLE(bp) ? HOLE :
1676
(BP_IS_REDACTED(bp) ? REDACT : DATA));
1677
1678
struct send_range *range = range_alloc(range_type, dn->dn_object,
1679
blkid, blkid + count, B_FALSE);
1680
1681
if (blkid == DMU_SPILL_BLKID) {
1682
ASSERT3P(bp, !=, NULL);
1683
ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1684
}
1685
1686
switch (range_type) {
1687
case HOLE:
1688
range->sru.hole.datablksz = datablksz;
1689
break;
1690
case DATA:
1691
ASSERT3U(count, ==, 1);
1692
range->sru.data.datablksz = datablksz;
1693
range->sru.data.obj_type = dn->dn_type;
1694
range->sru.data.bp = *bp;
1695
issue_data_read(srta, range);
1696
break;
1697
case REDACT:
1698
range->sru.redact.datablksz = datablksz;
1699
break;
1700
default:
1701
break;
1702
}
1703
bqueue_enqueue(q, range, datablksz);
1704
}
1705
1706
/*
1707
* Send DRR_SPILL records for unmodified spill blocks. This is useful
1708
* because changing certain attributes of the object (e.g. blocksize)
1709
* can cause old versions of ZFS to incorrectly remove a spill block.
1710
* Including these records in the stream forces an up to date version
1711
* to always be written ensuring they're never lost. Current versions
1712
* of the code which understand the DRR_FLAG_SPILL_BLOCK feature can
1713
* ignore these unmodified spill blocks.
1714
*
1715
* We piggyback the spill_range to dnode range instead of enqueueing it
1716
* so send_range_after won't complain.
1717
*/
1718
static uint64_t
1719
piggyback_unmodified_spill(struct send_reader_thread_arg *srta,
1720
struct send_range *range)
1721
{
1722
ASSERT3U(range->type, ==, OBJECT);
1723
1724
dnode_phys_t *dnp = range->sru.object.dnp;
1725
uint64_t fromtxg = srta->smta->to_arg->fromtxg;
1726
1727
if (!zfs_send_unmodified_spill_blocks ||
1728
!(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ||
1729
!(BP_GET_LOGICAL_BIRTH(DN_SPILL_BLKPTR(dnp)) <= fromtxg))
1730
return (0);
1731
1732
blkptr_t *bp = DN_SPILL_BLKPTR(dnp);
1733
struct send_range *spill_range = range_alloc(DATA, range->object,
1734
DMU_SPILL_BLKID, DMU_SPILL_BLKID+1, B_FALSE);
1735
spill_range->sru.data.bp = *bp;
1736
spill_range->sru.data.obj_type = dnp->dn_type;
1737
spill_range->sru.data.datablksz = BP_GET_LSIZE(bp);
1738
1739
issue_data_read(srta, spill_range);
1740
range->sru.object.spill_range = spill_range;
1741
1742
return (BP_GET_LSIZE(bp));
1743
}
1744
1745
/*
1746
* This thread is responsible for two things: First, it retrieves the correct
1747
* blkptr in the to ds if we need to send the data because of something from
1748
* the from thread. As a result of this, we're the first ones to discover that
1749
* some indirect blocks can be discarded because they're not holes. Second,
1750
* it issues prefetches for the data we need to send.
1751
*/
1752
static __attribute__((noreturn)) void
1753
send_reader_thread(void *arg)
1754
{
1755
struct send_reader_thread_arg *srta = arg;
1756
struct send_merge_thread_arg *smta = srta->smta;
1757
bqueue_t *inq = &smta->q;
1758
bqueue_t *outq = &srta->q;
1759
objset_t *os = smta->os;
1760
fstrans_cookie_t cookie = spl_fstrans_mark();
1761
struct send_range *range = bqueue_dequeue(inq);
1762
int err = 0;
1763
1764
/*
1765
* If the record we're analyzing is from a redaction bookmark from the
1766
* fromds, then we need to know whether or not it exists in the tods so
1767
* we know whether to create records for it or not. If it does, we need
1768
* the datablksz so we can generate an appropriate record for it.
1769
* Finally, if it isn't redacted, we need the blkptr so that we can send
1770
* a WRITE record containing the actual data.
1771
*/
1772
uint64_t last_obj = UINT64_MAX;
1773
uint64_t last_obj_exists = B_TRUE;
1774
while (!range->eos_marker && !srta->cancel && smta->error == 0 &&
1775
err == 0) {
1776
uint64_t spill = 0;
1777
switch (range->type) {
1778
case DATA:
1779
issue_data_read(srta, range);
1780
bqueue_enqueue(outq, range, range->sru.data.datablksz);
1781
range = get_next_range_nofree(inq, range);
1782
break;
1783
case OBJECT:
1784
spill = piggyback_unmodified_spill(srta, range);
1785
zfs_fallthrough;
1786
case HOLE:
1787
case OBJECT_RANGE:
1788
case REDACT: // Redacted blocks must exist
1789
bqueue_enqueue(outq, range, sizeof (*range) + spill);
1790
range = get_next_range_nofree(inq, range);
1791
break;
1792
case PREVIOUSLY_REDACTED: {
1793
/*
1794
* This entry came from the "from bookmark" when
1795
* sending from a bookmark that has a redaction
1796
* list. We need to check if this object/blkid
1797
* exists in the target ("to") dataset, and if
1798
* not then we drop this entry. We also need
1799
* to fill in the block pointer so that we know
1800
* what to prefetch.
1801
*
1802
* To accomplish the above, we first cache whether or
1803
* not the last object we examined exists. If it
1804
* doesn't, we can drop this record. If it does, we hold
1805
* the dnode and use it to call dbuf_dnode_findbp. We do
1806
* this instead of dbuf_bookmark_findbp because we will
1807
* often operate on large ranges, and holding the dnode
1808
* once is more efficient.
1809
*/
1810
boolean_t object_exists = B_TRUE;
1811
/*
1812
* If the data is redacted, we only care if it exists,
1813
* so that we don't send records for objects that have
1814
* been deleted.
1815
*/
1816
dnode_t *dn;
1817
if (range->object == last_obj && !last_obj_exists) {
1818
/*
1819
* If we're still examining the same object as
1820
* previously, and it doesn't exist, we don't
1821
* need to call dbuf_bookmark_findbp.
1822
*/
1823
object_exists = B_FALSE;
1824
} else {
1825
err = dnode_hold(os, range->object, FTAG, &dn);
1826
if (err == ENOENT) {
1827
object_exists = B_FALSE;
1828
err = 0;
1829
}
1830
last_obj = range->object;
1831
last_obj_exists = object_exists;
1832
}
1833
1834
if (err != 0) {
1835
break;
1836
} else if (!object_exists) {
1837
/*
1838
* The block was modified, but doesn't
1839
* exist in the to dataset; if it was
1840
* deleted in the to dataset, then we'll
1841
* visit the hole bp for it at some point.
1842
*/
1843
range = get_next_range(inq, range);
1844
continue;
1845
}
1846
uint64_t file_max =
1847
MIN(dn->dn_maxblkid, range->end_blkid);
1848
/*
1849
* The object exists, so we need to try to find the
1850
* blkptr for each block in the range we're processing.
1851
*/
1852
rw_enter(&dn->dn_struct_rwlock, RW_READER);
1853
for (uint64_t blkid = range->start_blkid;
1854
blkid < file_max; blkid++) {
1855
blkptr_t bp;
1856
uint32_t datablksz =
1857
dn->dn_phys->dn_datablkszsec <<
1858
SPA_MINBLOCKSHIFT;
1859
uint64_t offset = blkid * datablksz;
1860
/*
1861
* This call finds the next non-hole block in
1862
* the object. This is to prevent a
1863
* performance problem where we're unredacting
1864
* a large hole. Using dnode_next_offset to
1865
* skip over the large hole avoids iterating
1866
* over every block in it.
1867
*/
1868
err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1869
&offset, 1, 1, 0);
1870
if (err == ESRCH) {
1871
offset = UINT64_MAX;
1872
err = 0;
1873
} else if (err != 0) {
1874
break;
1875
}
1876
if (offset != blkid * datablksz) {
1877
/*
1878
* if there is a hole from here
1879
* (blkid) to offset
1880
*/
1881
offset = MIN(offset, file_max *
1882
datablksz);
1883
uint64_t nblks = (offset / datablksz) -
1884
blkid;
1885
enqueue_range(srta, outq, dn, blkid,
1886
nblks, NULL, datablksz);
1887
blkid += nblks;
1888
}
1889
if (blkid >= file_max)
1890
break;
1891
err = dbuf_dnode_findbp(dn, 0, blkid, &bp,
1892
NULL, NULL);
1893
if (err != 0)
1894
break;
1895
ASSERT(!BP_IS_HOLE(&bp));
1896
enqueue_range(srta, outq, dn, blkid, 1, &bp,
1897
datablksz);
1898
}
1899
rw_exit(&dn->dn_struct_rwlock);
1900
dnode_rele(dn, FTAG);
1901
range = get_next_range(inq, range);
1902
}
1903
}
1904
}
1905
if (srta->cancel || err != 0) {
1906
smta->cancel = B_TRUE;
1907
srta->error = err;
1908
} else if (smta->error != 0) {
1909
srta->error = smta->error;
1910
}
1911
while (!range->eos_marker)
1912
range = get_next_range(inq, range);
1913
1914
bqueue_enqueue_flush(outq, range, 1);
1915
spl_fstrans_unmark(cookie);
1916
thread_exit();
1917
}
1918
1919
#define NUM_SNAPS_NOT_REDACTED UINT64_MAX
1920
1921
struct dmu_send_params {
1922
/* Pool args */
1923
const void *tag; // Tag dp was held with, will be used to release dp.
1924
dsl_pool_t *dp;
1925
/* To snapshot args */
1926
const char *tosnap;
1927
dsl_dataset_t *to_ds;
1928
/* From snapshot args */
1929
zfs_bookmark_phys_t ancestor_zb;
1930
uint64_t *fromredactsnaps;
1931
/* NUM_SNAPS_NOT_REDACTED if not sending from redaction bookmark */
1932
uint64_t numfromredactsnaps;
1933
/* Stream params */
1934
boolean_t is_clone;
1935
boolean_t embedok;
1936
boolean_t large_block_ok;
1937
boolean_t compressok;
1938
boolean_t rawok;
1939
boolean_t savedok;
1940
uint64_t resumeobj;
1941
uint64_t resumeoff;
1942
uint64_t saved_guid;
1943
zfs_bookmark_phys_t *redactbook;
1944
/* Stream output params */
1945
dmu_send_outparams_t *dso;
1946
1947
/* Stream progress params */
1948
offset_t *off;
1949
int outfd;
1950
char saved_toname[MAXNAMELEN];
1951
};
1952
1953
static int
1954
setup_featureflags(struct dmu_send_params *dspp, objset_t *os,
1955
uint64_t *featureflags)
1956
{
1957
dsl_dataset_t *to_ds = dspp->to_ds;
1958
dsl_pool_t *dp = dspp->dp;
1959
1960
if (dmu_objset_type(os) == DMU_OST_ZFS) {
1961
uint64_t version;
1962
if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0)
1963
return (SET_ERROR(EINVAL));
1964
1965
if (version >= ZPL_VERSION_SA)
1966
*featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
1967
}
1968
1969
/* raw sends imply large_block_ok */
1970
if ((dspp->rawok || dspp->large_block_ok) &&
1971
dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_BLOCKS)) {
1972
*featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
1973
}
1974
1975
/* encrypted datasets will not have embedded blocks */
1976
if ((dspp->embedok || dspp->rawok) && !os->os_encrypted &&
1977
spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
1978
*featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
1979
}
1980
1981
/* raw send implies compressok */
1982
if (dspp->compressok || dspp->rawok)
1983
*featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
1984
1985
if (dspp->rawok && os->os_encrypted)
1986
*featureflags |= DMU_BACKUP_FEATURE_RAW;
1987
1988
if ((*featureflags &
1989
(DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED |
1990
DMU_BACKUP_FEATURE_RAW)) != 0 &&
1991
spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
1992
*featureflags |= DMU_BACKUP_FEATURE_LZ4;
1993
}
1994
1995
/*
1996
* We specifically do not include DMU_BACKUP_FEATURE_EMBED_DATA here to
1997
* allow sending ZSTD compressed datasets to a receiver that does not
1998
* support ZSTD
1999
*/
2000
if ((*featureflags &
2001
(DMU_BACKUP_FEATURE_COMPRESSED | DMU_BACKUP_FEATURE_RAW)) != 0 &&
2002
dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_ZSTD_COMPRESS)) {
2003
*featureflags |= DMU_BACKUP_FEATURE_ZSTD;
2004
}
2005
2006
if (dspp->resumeobj != 0 || dspp->resumeoff != 0) {
2007
*featureflags |= DMU_BACKUP_FEATURE_RESUMING;
2008
}
2009
2010
if (dspp->redactbook != NULL) {
2011
*featureflags |= DMU_BACKUP_FEATURE_REDACTED;
2012
}
2013
2014
if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_DNODE)) {
2015
*featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE;
2016
}
2017
2018
if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LONGNAME)) {
2019
*featureflags |= DMU_BACKUP_FEATURE_LONGNAME;
2020
}
2021
2022
if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_MICROZAP)) {
2023
/*
2024
* We must never split a large microzap block, so we can only
2025
* send large microzaps if LARGE_BLOCKS is already enabled.
2026
*/
2027
if (!(*featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
2028
return (SET_ERROR(ZFS_ERR_STREAM_LARGE_MICROZAP));
2029
*featureflags |= DMU_BACKUP_FEATURE_LARGE_MICROZAP;
2030
}
2031
2032
return (0);
2033
}
2034
2035
static dmu_replay_record_t *
2036
create_begin_record(struct dmu_send_params *dspp, objset_t *os,
2037
uint64_t featureflags)
2038
{
2039
dmu_replay_record_t *drr = kmem_zalloc(sizeof (dmu_replay_record_t),
2040
KM_SLEEP);
2041
drr->drr_type = DRR_BEGIN;
2042
2043
struct drr_begin *drrb = &drr->drr_u.drr_begin;
2044
dsl_dataset_t *to_ds = dspp->to_ds;
2045
2046
drrb->drr_magic = DMU_BACKUP_MAGIC;
2047
drrb->drr_creation_time = dsl_dataset_phys(to_ds)->ds_creation_time;
2048
drrb->drr_type = dmu_objset_type(os);
2049
drrb->drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2050
drrb->drr_fromguid = dspp->ancestor_zb.zbm_guid;
2051
2052
DMU_SET_STREAM_HDRTYPE(drrb->drr_versioninfo, DMU_SUBSTREAM);
2053
DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, featureflags);
2054
2055
if (dspp->is_clone)
2056
drrb->drr_flags |= DRR_FLAG_CLONE;
2057
if (dsl_dataset_phys(dspp->to_ds)->ds_flags & DS_FLAG_CI_DATASET)
2058
drrb->drr_flags |= DRR_FLAG_CI_DATA;
2059
if (zfs_send_set_freerecords_bit)
2060
drrb->drr_flags |= DRR_FLAG_FREERECORDS;
2061
drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_SPILL_BLOCK;
2062
2063
if (dspp->savedok) {
2064
drrb->drr_toguid = dspp->saved_guid;
2065
strlcpy(drrb->drr_toname, dspp->saved_toname,
2066
sizeof (drrb->drr_toname));
2067
} else {
2068
dsl_dataset_name(to_ds, drrb->drr_toname);
2069
if (!to_ds->ds_is_snapshot) {
2070
(void) strlcat(drrb->drr_toname, "@--head--",
2071
sizeof (drrb->drr_toname));
2072
}
2073
}
2074
return (drr);
2075
}
2076
2077
static void
2078
setup_to_thread(struct send_thread_arg *to_arg, objset_t *to_os,
2079
dmu_sendstatus_t *dssp, uint64_t fromtxg, boolean_t rawok)
2080
{
2081
VERIFY0(bqueue_init(&to_arg->q, zfs_send_no_prefetch_queue_ff,
2082
MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2083
offsetof(struct send_range, ln)));
2084
to_arg->error_code = 0;
2085
to_arg->cancel = B_FALSE;
2086
to_arg->os = to_os;
2087
to_arg->fromtxg = fromtxg;
2088
to_arg->flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA;
2089
if (rawok)
2090
to_arg->flags |= TRAVERSE_NO_DECRYPT;
2091
if (zfs_send_corrupt_data)
2092
to_arg->flags |= TRAVERSE_HARD;
2093
to_arg->num_blocks_visited = &dssp->dss_blocks;
2094
(void) thread_create(NULL, 0, send_traverse_thread, to_arg, 0,
2095
curproc, TS_RUN, minclsyspri);
2096
}
2097
2098
static void
2099
setup_from_thread(struct redact_list_thread_arg *from_arg,
2100
redaction_list_t *from_rl, dmu_sendstatus_t *dssp)
2101
{
2102
VERIFY0(bqueue_init(&from_arg->q, zfs_send_no_prefetch_queue_ff,
2103
MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2104
offsetof(struct send_range, ln)));
2105
from_arg->error_code = 0;
2106
from_arg->cancel = B_FALSE;
2107
from_arg->rl = from_rl;
2108
from_arg->mark_redact = B_FALSE;
2109
from_arg->num_blocks_visited = &dssp->dss_blocks;
2110
/*
2111
* If from_ds is null, send_traverse_thread just returns success and
2112
* enqueues an eos marker.
2113
*/
2114
(void) thread_create(NULL, 0, redact_list_thread, from_arg, 0,
2115
curproc, TS_RUN, minclsyspri);
2116
}
2117
2118
static void
2119
setup_redact_list_thread(struct redact_list_thread_arg *rlt_arg,
2120
struct dmu_send_params *dspp, redaction_list_t *rl, dmu_sendstatus_t *dssp)
2121
{
2122
if (dspp->redactbook == NULL)
2123
return;
2124
2125
rlt_arg->cancel = B_FALSE;
2126
VERIFY0(bqueue_init(&rlt_arg->q, zfs_send_no_prefetch_queue_ff,
2127
MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2128
offsetof(struct send_range, ln)));
2129
rlt_arg->error_code = 0;
2130
rlt_arg->mark_redact = B_TRUE;
2131
rlt_arg->rl = rl;
2132
rlt_arg->num_blocks_visited = &dssp->dss_blocks;
2133
2134
(void) thread_create(NULL, 0, redact_list_thread, rlt_arg, 0,
2135
curproc, TS_RUN, minclsyspri);
2136
}
2137
2138
static void
2139
setup_merge_thread(struct send_merge_thread_arg *smt_arg,
2140
struct dmu_send_params *dspp, struct redact_list_thread_arg *from_arg,
2141
struct send_thread_arg *to_arg, struct redact_list_thread_arg *rlt_arg,
2142
objset_t *os)
2143
{
2144
VERIFY0(bqueue_init(&smt_arg->q, zfs_send_no_prefetch_queue_ff,
2145
MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2146
offsetof(struct send_range, ln)));
2147
smt_arg->cancel = B_FALSE;
2148
smt_arg->error = 0;
2149
smt_arg->from_arg = from_arg;
2150
smt_arg->to_arg = to_arg;
2151
if (dspp->redactbook != NULL)
2152
smt_arg->redact_arg = rlt_arg;
2153
2154
smt_arg->os = os;
2155
(void) thread_create(NULL, 0, send_merge_thread, smt_arg, 0, curproc,
2156
TS_RUN, minclsyspri);
2157
}
2158
2159
static void
2160
setup_reader_thread(struct send_reader_thread_arg *srt_arg,
2161
struct dmu_send_params *dspp, struct send_merge_thread_arg *smt_arg,
2162
uint64_t featureflags)
2163
{
2164
VERIFY0(bqueue_init(&srt_arg->q, zfs_send_queue_ff,
2165
MAX(zfs_send_queue_length, 2 * zfs_max_recordsize),
2166
offsetof(struct send_range, ln)));
2167
srt_arg->smta = smt_arg;
2168
srt_arg->issue_reads = !dspp->dso->dso_dryrun;
2169
srt_arg->featureflags = featureflags;
2170
(void) thread_create(NULL, 0, send_reader_thread, srt_arg, 0,
2171
curproc, TS_RUN, minclsyspri);
2172
}
2173
2174
static int
2175
setup_resume_points(struct dmu_send_params *dspp,
2176
struct send_thread_arg *to_arg, struct redact_list_thread_arg *from_arg,
2177
struct redact_list_thread_arg *rlt_arg,
2178
struct send_merge_thread_arg *smt_arg, boolean_t resuming, objset_t *os,
2179
redaction_list_t *redact_rl, nvlist_t *nvl)
2180
{
2181
(void) smt_arg;
2182
dsl_dataset_t *to_ds = dspp->to_ds;
2183
int err = 0;
2184
2185
uint64_t obj = 0;
2186
uint64_t blkid = 0;
2187
if (resuming) {
2188
obj = dspp->resumeobj;
2189
dmu_object_info_t to_doi;
2190
err = dmu_object_info(os, obj, &to_doi);
2191
if (err != 0)
2192
return (err);
2193
2194
blkid = dspp->resumeoff / to_doi.doi_data_block_size;
2195
}
2196
/*
2197
* If we're resuming a redacted send, we can skip to the appropriate
2198
* point in the redaction bookmark by binary searching through it.
2199
*/
2200
if (redact_rl != NULL) {
2201
SET_BOOKMARK(&rlt_arg->resume, to_ds->ds_object, obj, 0, blkid);
2202
}
2203
2204
SET_BOOKMARK(&to_arg->resume, to_ds->ds_object, obj, 0, blkid);
2205
if (nvlist_exists(nvl, BEGINNV_REDACT_FROM_SNAPS)) {
2206
uint64_t objset = dspp->ancestor_zb.zbm_redaction_obj;
2207
/*
2208
* Note: If the resume point is in an object whose
2209
* blocksize is different in the from vs to snapshots,
2210
* we will have divided by the "wrong" blocksize.
2211
* However, in this case fromsnap's send_cb() will
2212
* detect that the blocksize has changed and therefore
2213
* ignore this object.
2214
*
2215
* If we're resuming a send from a redaction bookmark,
2216
* we still cannot accidentally suggest blocks behind
2217
* the to_ds. In addition, we know that any blocks in
2218
* the object in the to_ds will have to be sent, since
2219
* the size changed. Therefore, we can't cause any harm
2220
* this way either.
2221
*/
2222
SET_BOOKMARK(&from_arg->resume, objset, obj, 0, blkid);
2223
}
2224
if (resuming) {
2225
fnvlist_add_uint64(nvl, BEGINNV_RESUME_OBJECT, dspp->resumeobj);
2226
fnvlist_add_uint64(nvl, BEGINNV_RESUME_OFFSET, dspp->resumeoff);
2227
}
2228
return (0);
2229
}
2230
2231
static dmu_sendstatus_t *
2232
setup_send_progress(struct dmu_send_params *dspp)
2233
{
2234
dmu_sendstatus_t *dssp = kmem_zalloc(sizeof (*dssp), KM_SLEEP);
2235
dssp->dss_outfd = dspp->outfd;
2236
dssp->dss_off = dspp->off;
2237
dssp->dss_proc = curproc;
2238
mutex_enter(&dspp->to_ds->ds_sendstream_lock);
2239
list_insert_head(&dspp->to_ds->ds_sendstreams, dssp);
2240
mutex_exit(&dspp->to_ds->ds_sendstream_lock);
2241
return (dssp);
2242
}
2243
2244
/*
2245
* Actually do the bulk of the work in a zfs send.
2246
*
2247
* The idea is that we want to do a send from ancestor_zb to to_ds. We also
2248
* want to not send any data that has been modified by all the datasets in
2249
* redactsnaparr, and store the list of blocks that are redacted in this way in
2250
* a bookmark named redactbook, created on the to_ds. We do this by creating
2251
* several worker threads, whose function is described below.
2252
*
2253
* There are three cases.
2254
* The first case is a redacted zfs send. In this case there are 5 threads.
2255
* The first thread is the to_ds traversal thread: it calls dataset_traverse on
2256
* the to_ds and finds all the blocks that have changed since ancestor_zb (if
2257
* it's a full send, that's all blocks in the dataset). It then sends those
2258
* blocks on to the send merge thread. The redact list thread takes the data
2259
* from the redaction bookmark and sends those blocks on to the send merge
2260
* thread. The send merge thread takes the data from the to_ds traversal
2261
* thread, and combines it with the redaction records from the redact list
2262
* thread. If a block appears in both the to_ds's data and the redaction data,
2263
* the send merge thread will mark it as redacted and send it on to the prefetch
2264
* thread. Otherwise, the send merge thread will send the block on to the
2265
* prefetch thread unchanged. The prefetch thread will issue prefetch reads for
2266
* any data that isn't redacted, and then send the data on to the main thread.
2267
* The main thread behaves the same as in a normal send case, issuing demand
2268
* reads for data blocks and sending out records over the network
2269
*
2270
* The graphic below diagrams the flow of data in the case of a redacted zfs
2271
* send. Each box represents a thread, and each line represents the flow of
2272
* data.
2273
*
2274
* Records from the |
2275
* redaction bookmark |
2276
* +--------------------+ | +---------------------------+
2277
* | | v | Send Merge Thread |
2278
* | Redact List Thread +----------> Apply redaction marks to |
2279
* | | | records as specified by |
2280
* +--------------------+ | redaction ranges |
2281
* +----^---------------+------+
2282
* | | Merged data
2283
* | |
2284
* | +------------v--------+
2285
* | | Prefetch Thread |
2286
* +--------------------+ | | Issues prefetch |
2287
* | to_ds Traversal | | | reads of data blocks|
2288
* | Thread (finds +---------------+ +------------+--------+
2289
* | candidate blocks) | Blocks modified | Prefetched data
2290
* +--------------------+ by to_ds since |
2291
* ancestor_zb +------------v----+
2292
* | Main Thread | File Descriptor
2293
* | Sends data over +->(to zfs receive)
2294
* | wire |
2295
* +-----------------+
2296
*
2297
* The second case is an incremental send from a redaction bookmark. The to_ds
2298
* traversal thread and the main thread behave the same as in the redacted
2299
* send case. The new thread is the from bookmark traversal thread. It
2300
* iterates over the redaction list in the redaction bookmark, and enqueues
2301
* records for each block that was redacted in the original send. The send
2302
* merge thread now has to merge the data from the two threads. For details
2303
* about that process, see the header comment of send_merge_thread(). Any data
2304
* it decides to send on will be prefetched by the prefetch thread. Note that
2305
* you can perform a redacted send from a redaction bookmark; in that case,
2306
* the data flow behaves very similarly to the flow in the redacted send case,
2307
* except with the addition of the bookmark traversal thread iterating over the
2308
* redaction bookmark. The send_merge_thread also has to take on the
2309
* responsibility of merging the redact list thread's records, the bookmark
2310
* traversal thread's records, and the to_ds records.
2311
*
2312
* +---------------------+
2313
* | |
2314
* | Redact List Thread +--------------+
2315
* | | |
2316
* +---------------------+ |
2317
* Blocks in redaction list | Ranges modified by every secure snap
2318
* of from bookmark | (or EOS if not readcted)
2319
* |
2320
* +---------------------+ | +----v----------------------+
2321
* | bookmark Traversal | v | Send Merge Thread |
2322
* | Thread (finds +---------> Merges bookmark, rlt, and |
2323
* | candidate blocks) | | to_ds send records |
2324
* +---------------------+ +----^---------------+------+
2325
* | | Merged data
2326
* | +------------v--------+
2327
* | | Prefetch Thread |
2328
* +--------------------+ | | Issues prefetch |
2329
* | to_ds Traversal | | | reads of data blocks|
2330
* | Thread (finds +---------------+ +------------+--------+
2331
* | candidate blocks) | Blocks modified | Prefetched data
2332
* +--------------------+ by to_ds since +------------v----+
2333
* ancestor_zb | Main Thread | File Descriptor
2334
* | Sends data over +->(to zfs receive)
2335
* | wire |
2336
* +-----------------+
2337
*
2338
* The final case is a simple zfs full or incremental send. The to_ds traversal
2339
* thread behaves the same as always. The redact list thread is never started.
2340
* The send merge thread takes all the blocks that the to_ds traversal thread
2341
* sends it, prefetches the data, and sends the blocks on to the main thread.
2342
* The main thread sends the data over the wire.
2343
*
2344
* To keep performance acceptable, we want to prefetch the data in the worker
2345
* threads. While the to_ds thread could simply use the TRAVERSE_PREFETCH
2346
* feature built into traverse_dataset, the combining and deletion of records
2347
* due to redaction and sends from redaction bookmarks mean that we could
2348
* issue many unnecessary prefetches. As a result, we only prefetch data
2349
* after we've determined that the record is not going to be redacted. To
2350
* prevent the prefetching from getting too far ahead of the main thread, the
2351
* blocking queues that are used for communication are capped not by the
2352
* number of entries in the queue, but by the sum of the size of the
2353
* prefetches associated with them. The limit on the amount of data that the
2354
* thread can prefetch beyond what the main thread has reached is controlled
2355
* by the global variable zfs_send_queue_length. In addition, to prevent poor
2356
* performance in the beginning of a send, we also limit the distance ahead
2357
* that the traversal threads can be. That distance is controlled by the
2358
* zfs_send_no_prefetch_queue_length tunable.
2359
*
2360
* Note: Releases dp using the specified tag.
2361
*/
2362
static int
2363
dmu_send_impl(struct dmu_send_params *dspp)
2364
{
2365
objset_t *os;
2366
dmu_replay_record_t *drr;
2367
dmu_sendstatus_t *dssp;
2368
dmu_send_cookie_t dsc = {0};
2369
int err;
2370
uint64_t fromtxg = dspp->ancestor_zb.zbm_creation_txg;
2371
uint64_t featureflags = 0;
2372
struct redact_list_thread_arg *from_arg;
2373
struct send_thread_arg *to_arg;
2374
struct redact_list_thread_arg *rlt_arg;
2375
struct send_merge_thread_arg *smt_arg;
2376
struct send_reader_thread_arg *srt_arg;
2377
struct send_range *range;
2378
redaction_list_t *from_rl = NULL;
2379
redaction_list_t *redact_rl = NULL;
2380
boolean_t resuming = (dspp->resumeobj != 0 || dspp->resumeoff != 0);
2381
boolean_t book_resuming = resuming;
2382
2383
dsl_dataset_t *to_ds = dspp->to_ds;
2384
zfs_bookmark_phys_t *ancestor_zb = &dspp->ancestor_zb;
2385
dsl_pool_t *dp = dspp->dp;
2386
const void *tag = dspp->tag;
2387
2388
err = dmu_objset_from_ds(to_ds, &os);
2389
if (err != 0) {
2390
dsl_pool_rele(dp, tag);
2391
return (err);
2392
}
2393
2394
/*
2395
* If this is a non-raw send of an encrypted ds, we can ensure that
2396
* the objset_phys_t is authenticated. This is safe because this is
2397
* either a snapshot or we have owned the dataset, ensuring that
2398
* it can't be modified.
2399
*/
2400
if (!dspp->rawok && os->os_encrypted &&
2401
arc_is_unauthenticated(os->os_phys_buf)) {
2402
zbookmark_phys_t zb;
2403
2404
SET_BOOKMARK(&zb, to_ds->ds_object, ZB_ROOT_OBJECT,
2405
ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2406
err = arc_untransform(os->os_phys_buf, os->os_spa,
2407
&zb, B_FALSE);
2408
if (err != 0) {
2409
dsl_pool_rele(dp, tag);
2410
return (err);
2411
}
2412
2413
ASSERT0(arc_is_unauthenticated(os->os_phys_buf));
2414
}
2415
2416
if ((err = setup_featureflags(dspp, os, &featureflags)) != 0) {
2417
dsl_pool_rele(dp, tag);
2418
return (err);
2419
}
2420
2421
/*
2422
* If we're doing a redacted send, hold the bookmark's redaction list.
2423
*/
2424
if (dspp->redactbook != NULL) {
2425
err = dsl_redaction_list_hold_obj(dp,
2426
dspp->redactbook->zbm_redaction_obj, FTAG,
2427
&redact_rl);
2428
if (err != 0) {
2429
dsl_pool_rele(dp, tag);
2430
return (SET_ERROR(EINVAL));
2431
}
2432
dsl_redaction_list_long_hold(dp, redact_rl, FTAG);
2433
}
2434
2435
/*
2436
* If we're sending from a redaction bookmark, hold the redaction list
2437
* so that we can consider sending the redacted blocks.
2438
*/
2439
if (ancestor_zb->zbm_redaction_obj != 0) {
2440
err = dsl_redaction_list_hold_obj(dp,
2441
ancestor_zb->zbm_redaction_obj, FTAG, &from_rl);
2442
if (err != 0) {
2443
if (redact_rl != NULL) {
2444
dsl_redaction_list_long_rele(redact_rl, FTAG);
2445
dsl_redaction_list_rele(redact_rl, FTAG);
2446
}
2447
dsl_pool_rele(dp, tag);
2448
return (SET_ERROR(EINVAL));
2449
}
2450
dsl_redaction_list_long_hold(dp, from_rl, FTAG);
2451
}
2452
2453
dsl_dataset_long_hold(to_ds, FTAG);
2454
2455
from_arg = kmem_zalloc(sizeof (*from_arg), KM_SLEEP);
2456
to_arg = kmem_zalloc(sizeof (*to_arg), KM_SLEEP);
2457
rlt_arg = kmem_zalloc(sizeof (*rlt_arg), KM_SLEEP);
2458
smt_arg = kmem_zalloc(sizeof (*smt_arg), KM_SLEEP);
2459
srt_arg = kmem_zalloc(sizeof (*srt_arg), KM_SLEEP);
2460
2461
drr = create_begin_record(dspp, os, featureflags);
2462
dssp = setup_send_progress(dspp);
2463
2464
dsc.dsc_drr = drr;
2465
dsc.dsc_dso = dspp->dso;
2466
dsc.dsc_os = os;
2467
dsc.dsc_off = dspp->off;
2468
dsc.dsc_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2469
dsc.dsc_fromtxg = fromtxg;
2470
dsc.dsc_pending_op = PENDING_NONE;
2471
dsc.dsc_featureflags = featureflags;
2472
dsc.dsc_resume_object = dspp->resumeobj;
2473
dsc.dsc_resume_offset = dspp->resumeoff;
2474
2475
dsl_pool_rele(dp, tag);
2476
2477
void *payload = NULL;
2478
size_t payload_len = 0;
2479
nvlist_t *nvl = fnvlist_alloc();
2480
2481
/*
2482
* If we're doing a redacted send, we include the snapshots we're
2483
* redacted with respect to so that the target system knows what send
2484
* streams can be correctly received on top of this dataset. If we're
2485
* instead sending a redacted dataset, we include the snapshots that the
2486
* dataset was created with respect to.
2487
*/
2488
if (dspp->redactbook != NULL) {
2489
fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS,
2490
redact_rl->rl_phys->rlp_snaps,
2491
redact_rl->rl_phys->rlp_num_snaps);
2492
} else if (dsl_dataset_feature_is_active(to_ds,
2493
SPA_FEATURE_REDACTED_DATASETS)) {
2494
uint64_t *tods_guids;
2495
uint64_t length;
2496
VERIFY(dsl_dataset_get_uint64_array_feature(to_ds,
2497
SPA_FEATURE_REDACTED_DATASETS, &length, &tods_guids));
2498
fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, tods_guids,
2499
length);
2500
}
2501
2502
/*
2503
* If we're sending from a redaction bookmark, then we should retrieve
2504
* the guids of that bookmark so we can send them over the wire.
2505
*/
2506
if (from_rl != NULL) {
2507
fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2508
from_rl->rl_phys->rlp_snaps,
2509
from_rl->rl_phys->rlp_num_snaps);
2510
}
2511
2512
/*
2513
* If the snapshot we're sending from is redacted, include the redaction
2514
* list in the stream.
2515
*/
2516
if (dspp->numfromredactsnaps != NUM_SNAPS_NOT_REDACTED) {
2517
ASSERT0P(from_rl);
2518
fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2519
dspp->fromredactsnaps, (uint_t)dspp->numfromredactsnaps);
2520
if (dspp->numfromredactsnaps > 0) {
2521
kmem_free(dspp->fromredactsnaps,
2522
dspp->numfromredactsnaps * sizeof (uint64_t));
2523
dspp->fromredactsnaps = NULL;
2524
}
2525
}
2526
2527
if (resuming || book_resuming) {
2528
err = setup_resume_points(dspp, to_arg, from_arg,
2529
rlt_arg, smt_arg, resuming, os, redact_rl, nvl);
2530
if (err != 0)
2531
goto out;
2532
}
2533
2534
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
2535
uint64_t ivset_guid = ancestor_zb->zbm_ivset_guid;
2536
nvlist_t *keynvl = NULL;
2537
ASSERT(os->os_encrypted);
2538
2539
err = dsl_crypto_populate_key_nvlist(os, ivset_guid,
2540
&keynvl);
2541
if (err != 0) {
2542
fnvlist_free(nvl);
2543
goto out;
2544
}
2545
2546
fnvlist_add_nvlist(nvl, "crypt_keydata", keynvl);
2547
fnvlist_free(keynvl);
2548
}
2549
2550
if (!nvlist_empty(nvl)) {
2551
payload = fnvlist_pack(nvl, &payload_len);
2552
drr->drr_payloadlen = payload_len;
2553
}
2554
2555
fnvlist_free(nvl);
2556
err = dump_record(&dsc, payload, payload_len);
2557
fnvlist_pack_free(payload, payload_len);
2558
if (err != 0) {
2559
err = dsc.dsc_err;
2560
goto out;
2561
}
2562
2563
setup_to_thread(to_arg, os, dssp, fromtxg, dspp->rawok);
2564
setup_from_thread(from_arg, from_rl, dssp);
2565
setup_redact_list_thread(rlt_arg, dspp, redact_rl, dssp);
2566
setup_merge_thread(smt_arg, dspp, from_arg, to_arg, rlt_arg, os);
2567
setup_reader_thread(srt_arg, dspp, smt_arg, featureflags);
2568
2569
range = bqueue_dequeue(&srt_arg->q);
2570
while (err == 0 && !range->eos_marker) {
2571
err = do_dump(&dsc, range);
2572
range = get_next_range(&srt_arg->q, range);
2573
if (issig())
2574
err = SET_ERROR(EINTR);
2575
}
2576
2577
/*
2578
* If we hit an error or are interrupted, cancel our worker threads and
2579
* clear the queue of any pending records. The threads will pass the
2580
* cancel up the tree of worker threads, and each one will clean up any
2581
* pending records before exiting.
2582
*/
2583
if (err != 0) {
2584
srt_arg->cancel = B_TRUE;
2585
while (!range->eos_marker) {
2586
range = get_next_range(&srt_arg->q, range);
2587
}
2588
}
2589
range_free(range);
2590
2591
bqueue_destroy(&srt_arg->q);
2592
bqueue_destroy(&smt_arg->q);
2593
if (dspp->redactbook != NULL)
2594
bqueue_destroy(&rlt_arg->q);
2595
bqueue_destroy(&to_arg->q);
2596
bqueue_destroy(&from_arg->q);
2597
2598
if (err == 0 && srt_arg->error != 0)
2599
err = srt_arg->error;
2600
2601
if (err != 0)
2602
goto out;
2603
2604
if (dsc.dsc_pending_op != PENDING_NONE)
2605
if (dump_record(&dsc, NULL, 0) != 0)
2606
err = SET_ERROR(EINTR);
2607
2608
if (err != 0) {
2609
if (err == EINTR && dsc.dsc_err != 0)
2610
err = dsc.dsc_err;
2611
goto out;
2612
}
2613
2614
/*
2615
* Send the DRR_END record if this is not a saved stream.
2616
* Otherwise, the omitted DRR_END record will signal to
2617
* the receive side that the stream is incomplete.
2618
*/
2619
if (!dspp->savedok) {
2620
memset(drr, 0, sizeof (dmu_replay_record_t));
2621
drr->drr_type = DRR_END;
2622
drr->drr_u.drr_end.drr_checksum = dsc.dsc_zc;
2623
drr->drr_u.drr_end.drr_toguid = dsc.dsc_toguid;
2624
2625
if (dump_record(&dsc, NULL, 0) != 0)
2626
err = dsc.dsc_err;
2627
}
2628
out:
2629
mutex_enter(&to_ds->ds_sendstream_lock);
2630
list_remove(&to_ds->ds_sendstreams, dssp);
2631
mutex_exit(&to_ds->ds_sendstream_lock);
2632
2633
VERIFY(err != 0 || (dsc.dsc_sent_begin &&
2634
(dsc.dsc_sent_end || dspp->savedok)));
2635
2636
kmem_free(drr, sizeof (dmu_replay_record_t));
2637
kmem_free(dssp, sizeof (dmu_sendstatus_t));
2638
kmem_free(from_arg, sizeof (*from_arg));
2639
kmem_free(to_arg, sizeof (*to_arg));
2640
kmem_free(rlt_arg, sizeof (*rlt_arg));
2641
kmem_free(smt_arg, sizeof (*smt_arg));
2642
kmem_free(srt_arg, sizeof (*srt_arg));
2643
2644
dsl_dataset_long_rele(to_ds, FTAG);
2645
if (from_rl != NULL) {
2646
dsl_redaction_list_long_rele(from_rl, FTAG);
2647
dsl_redaction_list_rele(from_rl, FTAG);
2648
}
2649
if (redact_rl != NULL) {
2650
dsl_redaction_list_long_rele(redact_rl, FTAG);
2651
dsl_redaction_list_rele(redact_rl, FTAG);
2652
}
2653
2654
return (err);
2655
}
2656
2657
int
2658
dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
2659
boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
2660
boolean_t rawok, boolean_t savedok, int outfd, offset_t *off,
2661
dmu_send_outparams_t *dsop)
2662
{
2663
int err;
2664
dsl_dataset_t *fromds;
2665
ds_hold_flags_t dsflags;
2666
struct dmu_send_params dspp = {0};
2667
dspp.embedok = embedok;
2668
dspp.large_block_ok = large_block_ok;
2669
dspp.compressok = compressok;
2670
dspp.outfd = outfd;
2671
dspp.off = off;
2672
dspp.dso = dsop;
2673
dspp.tag = FTAG;
2674
dspp.rawok = rawok;
2675
dspp.savedok = savedok;
2676
2677
dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2678
err = dsl_pool_hold(pool, FTAG, &dspp.dp);
2679
if (err != 0)
2680
return (err);
2681
2682
err = dsl_dataset_hold_obj_flags(dspp.dp, tosnap, dsflags, FTAG,
2683
&dspp.to_ds);
2684
if (err != 0) {
2685
dsl_pool_rele(dspp.dp, FTAG);
2686
return (err);
2687
}
2688
2689
if (fromsnap != 0) {
2690
err = dsl_dataset_hold_obj(dspp.dp, fromsnap, FTAG, &fromds);
2691
2692
if (err != 0) {
2693
dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2694
dsl_pool_rele(dspp.dp, FTAG);
2695
return (err);
2696
}
2697
dspp.ancestor_zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
2698
dspp.ancestor_zb.zbm_creation_txg =
2699
dsl_dataset_phys(fromds)->ds_creation_txg;
2700
dspp.ancestor_zb.zbm_creation_time =
2701
dsl_dataset_phys(fromds)->ds_creation_time;
2702
2703
if (dsl_dataset_is_zapified(fromds)) {
2704
(void) zap_lookup(dspp.dp->dp_meta_objset,
2705
fromds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
2706
&dspp.ancestor_zb.zbm_ivset_guid);
2707
}
2708
2709
/* See dmu_send for the reasons behind this. */
2710
uint64_t *fromredact;
2711
2712
if (!dsl_dataset_get_uint64_array_feature(fromds,
2713
SPA_FEATURE_REDACTED_DATASETS,
2714
&dspp.numfromredactsnaps,
2715
&fromredact)) {
2716
dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2717
} else if (dspp.numfromredactsnaps > 0) {
2718
uint64_t size = dspp.numfromredactsnaps *
2719
sizeof (uint64_t);
2720
dspp.fromredactsnaps = kmem_zalloc(size, KM_SLEEP);
2721
memcpy(dspp.fromredactsnaps, fromredact, size);
2722
}
2723
2724
boolean_t is_before =
2725
dsl_dataset_is_before(dspp.to_ds, fromds, 0);
2726
dspp.is_clone = (dspp.to_ds->ds_dir !=
2727
fromds->ds_dir);
2728
dsl_dataset_rele(fromds, FTAG);
2729
if (!is_before) {
2730
dsl_pool_rele(dspp.dp, FTAG);
2731
err = SET_ERROR(EXDEV);
2732
} else {
2733
err = dmu_send_impl(&dspp);
2734
}
2735
} else {
2736
dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2737
err = dmu_send_impl(&dspp);
2738
}
2739
if (dspp.fromredactsnaps)
2740
kmem_free(dspp.fromredactsnaps,
2741
dspp.numfromredactsnaps * sizeof (uint64_t));
2742
2743
dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2744
return (err);
2745
}
2746
2747
int
2748
dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
2749
boolean_t large_block_ok, boolean_t compressok, boolean_t rawok,
2750
boolean_t savedok, uint64_t resumeobj, uint64_t resumeoff,
2751
const char *redactbook, int outfd, offset_t *off,
2752
dmu_send_outparams_t *dsop)
2753
{
2754
int err = 0;
2755
ds_hold_flags_t dsflags;
2756
boolean_t owned = B_FALSE;
2757
dsl_dataset_t *fromds = NULL;
2758
zfs_bookmark_phys_t book = {0};
2759
struct dmu_send_params dspp = {0};
2760
2761
dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2762
dspp.tosnap = tosnap;
2763
dspp.embedok = embedok;
2764
dspp.large_block_ok = large_block_ok;
2765
dspp.compressok = compressok;
2766
dspp.outfd = outfd;
2767
dspp.off = off;
2768
dspp.dso = dsop;
2769
dspp.tag = FTAG;
2770
dspp.resumeobj = resumeobj;
2771
dspp.resumeoff = resumeoff;
2772
dspp.rawok = rawok;
2773
dspp.savedok = savedok;
2774
2775
if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
2776
return (SET_ERROR(EINVAL));
2777
2778
err = dsl_pool_hold(tosnap, FTAG, &dspp.dp);
2779
if (err != 0)
2780
return (err);
2781
2782
if (strchr(tosnap, '@') == NULL && spa_writeable(dspp.dp->dp_spa)) {
2783
/*
2784
* We are sending a filesystem or volume. Ensure
2785
* that it doesn't change by owning the dataset.
2786
*/
2787
2788
if (savedok) {
2789
/*
2790
* We are looking for the dataset that represents the
2791
* partially received send stream. If this stream was
2792
* received as a new snapshot of an existing dataset,
2793
* this will be saved in a hidden clone named
2794
* "<pool>/<dataset>/%recv". Otherwise, the stream
2795
* will be saved in the live dataset itself. In
2796
* either case we need to use dsl_dataset_own_force()
2797
* because the stream is marked as inconsistent,
2798
* which would normally make it unavailable to be
2799
* owned.
2800
*/
2801
char *name = kmem_asprintf("%s/%s", tosnap,
2802
recv_clone_name);
2803
err = dsl_dataset_own_force(dspp.dp, name, dsflags,
2804
FTAG, &dspp.to_ds);
2805
if (err == ENOENT) {
2806
err = dsl_dataset_own_force(dspp.dp, tosnap,
2807
dsflags, FTAG, &dspp.to_ds);
2808
}
2809
2810
if (err == 0) {
2811
owned = B_TRUE;
2812
err = zap_lookup(dspp.dp->dp_meta_objset,
2813
dspp.to_ds->ds_object,
2814
DS_FIELD_RESUME_TOGUID, 8, 1,
2815
&dspp.saved_guid);
2816
}
2817
2818
if (err == 0) {
2819
err = zap_lookup(dspp.dp->dp_meta_objset,
2820
dspp.to_ds->ds_object,
2821
DS_FIELD_RESUME_TONAME, 1,
2822
sizeof (dspp.saved_toname),
2823
dspp.saved_toname);
2824
}
2825
/* Only disown if there was an error in the lookups */
2826
if (owned && (err != 0))
2827
dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2828
2829
kmem_strfree(name);
2830
} else {
2831
err = dsl_dataset_own(dspp.dp, tosnap, dsflags,
2832
FTAG, &dspp.to_ds);
2833
if (err == 0)
2834
owned = B_TRUE;
2835
}
2836
} else {
2837
err = dsl_dataset_hold_flags(dspp.dp, tosnap, dsflags, FTAG,
2838
&dspp.to_ds);
2839
}
2840
2841
if (err != 0) {
2842
/* Note: dsl dataset is not owned at this point */
2843
dsl_pool_rele(dspp.dp, FTAG);
2844
return (err);
2845
}
2846
2847
if (redactbook != NULL) {
2848
char path[ZFS_MAX_DATASET_NAME_LEN];
2849
(void) strlcpy(path, tosnap, sizeof (path));
2850
char *at = strchr(path, '@');
2851
if (at == NULL) {
2852
err = EINVAL;
2853
} else {
2854
(void) snprintf(at, sizeof (path) - (at - path), "#%s",
2855
redactbook);
2856
err = dsl_bookmark_lookup(dspp.dp, path,
2857
NULL, &book);
2858
dspp.redactbook = &book;
2859
}
2860
}
2861
2862
if (err != 0) {
2863
dsl_pool_rele(dspp.dp, FTAG);
2864
if (owned)
2865
dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2866
else
2867
dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2868
return (err);
2869
}
2870
2871
if (fromsnap != NULL) {
2872
zfs_bookmark_phys_t *zb = &dspp.ancestor_zb;
2873
int fsnamelen;
2874
if (strpbrk(tosnap, "@#") != NULL)
2875
fsnamelen = strpbrk(tosnap, "@#") - tosnap;
2876
else
2877
fsnamelen = strlen(tosnap);
2878
2879
/*
2880
* If the fromsnap is in a different filesystem, then
2881
* mark the send stream as a clone.
2882
*/
2883
if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
2884
(fromsnap[fsnamelen] != '@' &&
2885
fromsnap[fsnamelen] != '#')) {
2886
dspp.is_clone = B_TRUE;
2887
}
2888
2889
if (strchr(fromsnap, '@') != NULL) {
2890
err = dsl_dataset_hold(dspp.dp, fromsnap, FTAG,
2891
&fromds);
2892
2893
if (err != 0) {
2894
ASSERT0P(fromds);
2895
} else {
2896
/*
2897
* We need to make a deep copy of the redact
2898
* snapshots of the from snapshot, because the
2899
* array will be freed when we evict from_ds.
2900
*/
2901
uint64_t *fromredact;
2902
if (!dsl_dataset_get_uint64_array_feature(
2903
fromds, SPA_FEATURE_REDACTED_DATASETS,
2904
&dspp.numfromredactsnaps,
2905
&fromredact)) {
2906
dspp.numfromredactsnaps =
2907
NUM_SNAPS_NOT_REDACTED;
2908
} else if (dspp.numfromredactsnaps > 0) {
2909
uint64_t size =
2910
dspp.numfromredactsnaps *
2911
sizeof (uint64_t);
2912
dspp.fromredactsnaps = kmem_zalloc(size,
2913
KM_SLEEP);
2914
memcpy(dspp.fromredactsnaps, fromredact,
2915
size);
2916
}
2917
if (!dsl_dataset_is_before(dspp.to_ds, fromds,
2918
0)) {
2919
err = SET_ERROR(EXDEV);
2920
} else {
2921
zb->zbm_creation_txg =
2922
dsl_dataset_phys(fromds)->
2923
ds_creation_txg;
2924
zb->zbm_creation_time =
2925
dsl_dataset_phys(fromds)->
2926
ds_creation_time;
2927
zb->zbm_guid =
2928
dsl_dataset_phys(fromds)->ds_guid;
2929
zb->zbm_redaction_obj = 0;
2930
2931
if (dsl_dataset_is_zapified(fromds)) {
2932
(void) zap_lookup(
2933
dspp.dp->dp_meta_objset,
2934
fromds->ds_object,
2935
DS_FIELD_IVSET_GUID, 8, 1,
2936
&zb->zbm_ivset_guid);
2937
}
2938
}
2939
dsl_dataset_rele(fromds, FTAG);
2940
}
2941
} else {
2942
dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2943
err = dsl_bookmark_lookup(dspp.dp, fromsnap, dspp.to_ds,
2944
zb);
2945
if (err == EXDEV && zb->zbm_redaction_obj != 0 &&
2946
zb->zbm_guid ==
2947
dsl_dataset_phys(dspp.to_ds)->ds_guid)
2948
err = 0;
2949
}
2950
2951
if (err == 0) {
2952
/* dmu_send_impl will call dsl_pool_rele for us. */
2953
err = dmu_send_impl(&dspp);
2954
} else {
2955
if (dspp.fromredactsnaps)
2956
kmem_free(dspp.fromredactsnaps,
2957
dspp.numfromredactsnaps *
2958
sizeof (uint64_t));
2959
dsl_pool_rele(dspp.dp, FTAG);
2960
}
2961
} else {
2962
dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2963
err = dmu_send_impl(&dspp);
2964
}
2965
if (owned)
2966
dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2967
else
2968
dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2969
return (err);
2970
}
2971
2972
static int
2973
dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
2974
uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
2975
{
2976
int err = 0;
2977
uint64_t size;
2978
/*
2979
* Assume that space (both on-disk and in-stream) is dominated by
2980
* data. We will adjust for indirect blocks and the copies property,
2981
* but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
2982
*/
2983
2984
uint64_t recordsize;
2985
uint64_t record_count;
2986
objset_t *os;
2987
VERIFY0(dmu_objset_from_ds(ds, &os));
2988
2989
/* Assume all (uncompressed) blocks are recordsize. */
2990
if (zfs_override_estimate_recordsize != 0) {
2991
recordsize = zfs_override_estimate_recordsize;
2992
} else if (os->os_phys->os_type == DMU_OST_ZVOL) {
2993
err = dsl_prop_get_int_ds(ds,
2994
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
2995
} else {
2996
err = dsl_prop_get_int_ds(ds,
2997
zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
2998
}
2999
if (err != 0)
3000
return (err);
3001
record_count = uncompressed / recordsize;
3002
3003
/*
3004
* If we're estimating a send size for a compressed stream, use the
3005
* compressed data size to estimate the stream size. Otherwise, use the
3006
* uncompressed data size.
3007
*/
3008
size = stream_compressed ? compressed : uncompressed;
3009
3010
/*
3011
* Subtract out approximate space used by indirect blocks.
3012
* Assume most space is used by data blocks (non-indirect, non-dnode).
3013
* Assume no ditto blocks or internal fragmentation.
3014
*
3015
* Therefore, space used by indirect blocks is sizeof(blkptr_t) per
3016
* block.
3017
*/
3018
size -= record_count * sizeof (blkptr_t);
3019
3020
/* Add in the space for the record associated with each block. */
3021
size += record_count * sizeof (dmu_replay_record_t);
3022
3023
*sizep = size;
3024
3025
return (0);
3026
}
3027
3028
int
3029
dmu_send_estimate_fast(dsl_dataset_t *origds, dsl_dataset_t *fromds,
3030
zfs_bookmark_phys_t *frombook, boolean_t stream_compressed,
3031
boolean_t saved, uint64_t *sizep)
3032
{
3033
int err;
3034
dsl_dataset_t *ds = origds;
3035
uint64_t uncomp, comp;
3036
3037
ASSERT(dsl_pool_config_held(origds->ds_dir->dd_pool));
3038
ASSERT(fromds == NULL || frombook == NULL);
3039
3040
/*
3041
* If this is a saved send we may actually be sending
3042
* from the %recv clone used for resuming.
3043
*/
3044
if (saved) {
3045
objset_t *mos = origds->ds_dir->dd_pool->dp_meta_objset;
3046
uint64_t guid;
3047
char dsname[ZFS_MAX_DATASET_NAME_LEN + 6];
3048
3049
dsl_dataset_name(origds, dsname);
3050
(void) strcat(dsname, "/");
3051
(void) strlcat(dsname, recv_clone_name, sizeof (dsname));
3052
3053
err = dsl_dataset_hold(origds->ds_dir->dd_pool,
3054
dsname, FTAG, &ds);
3055
if (err != ENOENT && err != 0) {
3056
return (err);
3057
} else if (err == ENOENT) {
3058
ds = origds;
3059
}
3060
3061
/* check that this dataset has partially received data */
3062
err = zap_lookup(mos, ds->ds_object,
3063
DS_FIELD_RESUME_TOGUID, 8, 1, &guid);
3064
if (err != 0) {
3065
err = SET_ERROR(err == ENOENT ? EINVAL : err);
3066
goto out;
3067
}
3068
3069
err = zap_lookup(mos, ds->ds_object,
3070
DS_FIELD_RESUME_TONAME, 1, sizeof (dsname), dsname);
3071
if (err != 0) {
3072
err = SET_ERROR(err == ENOENT ? EINVAL : err);
3073
goto out;
3074
}
3075
}
3076
3077
/* tosnap must be a snapshot or the target of a saved send */
3078
if (!ds->ds_is_snapshot && ds == origds)
3079
return (SET_ERROR(EINVAL));
3080
3081
if (fromds != NULL) {
3082
uint64_t used;
3083
if (!fromds->ds_is_snapshot) {
3084
err = SET_ERROR(EINVAL);
3085
goto out;
3086
}
3087
3088
if (!dsl_dataset_is_before(ds, fromds, 0)) {
3089
err = SET_ERROR(EXDEV);
3090
goto out;
3091
}
3092
3093
err = dsl_dataset_space_written(fromds, ds, &used, &comp,
3094
&uncomp);
3095
if (err != 0)
3096
goto out;
3097
} else if (frombook != NULL) {
3098
uint64_t used;
3099
err = dsl_dataset_space_written_bookmark(frombook, ds, &used,
3100
&comp, &uncomp);
3101
if (err != 0)
3102
goto out;
3103
} else {
3104
uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
3105
comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
3106
}
3107
3108
err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
3109
stream_compressed, sizep);
3110
/*
3111
* Add the size of the BEGIN and END records to the estimate.
3112
*/
3113
*sizep += 2 * sizeof (dmu_replay_record_t);
3114
3115
out:
3116
if (ds != origds)
3117
dsl_dataset_rele(ds, FTAG);
3118
return (err);
3119
}
3120
3121
ZFS_MODULE_PARAM(zfs_send, zfs_send_, corrupt_data, INT, ZMOD_RW,
3122
"Allow sending corrupt data");
3123
3124
ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_length, UINT, ZMOD_RW,
3125
"Maximum send queue length");
3126
3127
ZFS_MODULE_PARAM(zfs_send, zfs_send_, unmodified_spill_blocks, INT, ZMOD_RW,
3128
"Send unmodified spill blocks");
3129
3130
ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_length, UINT, ZMOD_RW,
3131
"Maximum send queue length for non-prefetch queues");
3132
3133
ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_ff, UINT, ZMOD_RW,
3134
"Send queue fill fraction");
3135
3136
ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_ff, UINT, ZMOD_RW,
3137
"Send queue fill fraction for non-prefetch queues");
3138
3139
ZFS_MODULE_PARAM(zfs_send, zfs_, override_estimate_recordsize, UINT, ZMOD_RW,
3140
"Override block size estimate with fixed size");
3141
3142