Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zfs/dnode_sync.c
48383 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
23
/*
24
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25
* Copyright (c) 2012, 2020 by Delphix. All rights reserved.
26
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27
* Copyright 2020 Oxide Computer Company
28
*/
29
30
#include <sys/zfs_context.h>
31
#include <sys/dbuf.h>
32
#include <sys/dnode.h>
33
#include <sys/dmu.h>
34
#include <sys/dmu_tx.h>
35
#include <sys/dmu_objset.h>
36
#include <sys/dmu_recv.h>
37
#include <sys/dsl_dataset.h>
38
#include <sys/spa.h>
39
#include <sys/range_tree.h>
40
#include <sys/zfeature.h>
41
42
static void
43
dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx)
44
{
45
dmu_buf_impl_t *db;
46
int txgoff = tx->tx_txg & TXG_MASK;
47
int nblkptr = dn->dn_phys->dn_nblkptr;
48
int old_toplvl = dn->dn_phys->dn_nlevels - 1;
49
int new_level = dn->dn_next_nlevels[txgoff];
50
int i;
51
52
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
53
54
/* this dnode can't be paged out because it's dirty */
55
ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
56
ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0);
57
58
db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG);
59
ASSERT(db != NULL);
60
61
dn->dn_phys->dn_nlevels = new_level;
62
dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset,
63
(u_longlong_t)dn->dn_object, dn->dn_phys->dn_nlevels);
64
65
/*
66
* Lock ordering requires that we hold the children's db_mutexes (by
67
* calling dbuf_find()) before holding the parent's db_rwlock. The lock
68
* order is imposed by dbuf_read's steps of "grab the lock to protect
69
* db_parent, get db_parent, hold db_parent's db_rwlock".
70
*/
71
dmu_buf_impl_t *children[DN_MAX_NBLKPTR];
72
ASSERT3U(nblkptr, <=, DN_MAX_NBLKPTR);
73
for (i = 0; i < nblkptr; i++) {
74
children[i] = dbuf_find(dn->dn_objset, dn->dn_object,
75
old_toplvl, i, NULL);
76
}
77
78
/* transfer dnode's block pointers to new indirect block */
79
(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT);
80
if (dn->dn_dbuf != NULL)
81
rw_enter(&dn->dn_dbuf->db_rwlock, RW_WRITER);
82
rw_enter(&db->db_rwlock, RW_WRITER);
83
ASSERT(db->db.db_data);
84
ASSERT(arc_released(db->db_buf));
85
ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size);
86
memcpy(db->db.db_data, dn->dn_phys->dn_blkptr,
87
sizeof (blkptr_t) * nblkptr);
88
arc_buf_freeze(db->db_buf);
89
90
/* set dbuf's parent pointers to new indirect buf */
91
for (i = 0; i < nblkptr; i++) {
92
dmu_buf_impl_t *child = children[i];
93
94
if (child == NULL)
95
continue;
96
#ifdef ZFS_DEBUG
97
DB_DNODE_ENTER(child);
98
ASSERT3P(DB_DNODE(child), ==, dn);
99
DB_DNODE_EXIT(child);
100
#endif /* DEBUG */
101
if (child->db_parent && child->db_parent != dn->dn_dbuf) {
102
ASSERT(child->db_parent->db_level == db->db_level);
103
ASSERT(child->db_blkptr !=
104
&dn->dn_phys->dn_blkptr[child->db_blkid]);
105
mutex_exit(&child->db_mtx);
106
continue;
107
}
108
ASSERT(child->db_parent == NULL ||
109
child->db_parent == dn->dn_dbuf);
110
111
child->db_parent = db;
112
dbuf_add_ref(db, child);
113
if (db->db.db_data)
114
child->db_blkptr = (blkptr_t *)db->db.db_data + i;
115
else
116
child->db_blkptr = NULL;
117
dprintf_dbuf_bp(child, child->db_blkptr,
118
"changed db_blkptr to new indirect %s", "");
119
120
mutex_exit(&child->db_mtx);
121
}
122
123
memset(dn->dn_phys->dn_blkptr, 0, sizeof (blkptr_t) * nblkptr);
124
125
rw_exit(&db->db_rwlock);
126
if (dn->dn_dbuf != NULL)
127
rw_exit(&dn->dn_dbuf->db_rwlock);
128
129
dbuf_rele(db, FTAG);
130
131
rw_exit(&dn->dn_struct_rwlock);
132
}
133
134
static void
135
free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx)
136
{
137
dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
138
uint64_t bytesfreed = 0;
139
140
dprintf("ds=%p obj=%llx num=%d\n", ds, (u_longlong_t)dn->dn_object,
141
num);
142
143
for (int i = 0; i < num; i++, bp++) {
144
if (BP_IS_HOLE(bp))
145
continue;
146
147
bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE);
148
ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys));
149
150
/*
151
* Save some useful information on the holes being
152
* punched, including logical size, type, and indirection
153
* level. Retaining birth time enables detection of when
154
* holes are punched for reducing the number of free
155
* records transmitted during a zfs send.
156
*/
157
158
uint64_t lsize = BP_GET_LSIZE(bp);
159
dmu_object_type_t type = BP_GET_TYPE(bp);
160
uint64_t lvl = BP_GET_LEVEL(bp);
161
162
memset(bp, 0, sizeof (blkptr_t));
163
164
if (spa_feature_is_active(dn->dn_objset->os_spa,
165
SPA_FEATURE_HOLE_BIRTH)) {
166
BP_SET_LSIZE(bp, lsize);
167
BP_SET_TYPE(bp, type);
168
BP_SET_LEVEL(bp, lvl);
169
BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0);
170
}
171
}
172
dnode_diduse_space(dn, -bytesfreed);
173
}
174
175
#ifdef ZFS_DEBUG
176
static void
177
free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx)
178
{
179
uint64_t off, num, i, j;
180
unsigned int epbs;
181
int err;
182
uint64_t txg = tx->tx_txg;
183
dnode_t *dn;
184
185
DB_DNODE_ENTER(db);
186
dn = DB_DNODE(db);
187
epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
188
off = start - (db->db_blkid << epbs);
189
num = end - start + 1;
190
191
ASSERT3U(dn->dn_phys->dn_indblkshift, >=, SPA_BLKPTRSHIFT);
192
ASSERT3U(end + 1, >=, start);
193
ASSERT3U(start, >=, (db->db_blkid << epbs));
194
ASSERT3U(db->db_level, >, 0);
195
ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
196
ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT);
197
ASSERT(db->db_blkptr != NULL);
198
199
for (i = off; i < off+num; i++) {
200
uint64_t *buf;
201
dmu_buf_impl_t *child;
202
dbuf_dirty_record_t *dr;
203
204
ASSERT(db->db_level == 1);
205
206
rw_enter(&dn->dn_struct_rwlock, RW_READER);
207
err = dbuf_hold_impl(dn, db->db_level - 1,
208
(db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child);
209
rw_exit(&dn->dn_struct_rwlock);
210
if (err == ENOENT)
211
continue;
212
ASSERT0(err);
213
ASSERT0(child->db_level);
214
dr = dbuf_find_dirty_eq(child, txg);
215
216
/* data_old better be zeroed */
217
if (dr) {
218
buf = dr->dt.dl.dr_data->b_data;
219
for (j = 0; j < child->db.db_size >> 3; j++) {
220
if (buf[j] != 0) {
221
panic("freed data not zero: "
222
"child=%p i=%llu off=%llu "
223
"num=%llu\n",
224
(void *)child, (u_longlong_t)i,
225
(u_longlong_t)off,
226
(u_longlong_t)num);
227
}
228
}
229
}
230
231
/*
232
* db_data better be zeroed unless it's dirty in a
233
* future txg.
234
*/
235
mutex_enter(&child->db_mtx);
236
buf = child->db.db_data;
237
if (buf != NULL && child->db_state != DB_FILL &&
238
list_is_empty(&child->db_dirty_records)) {
239
for (j = 0; j < child->db.db_size >> 3; j++) {
240
if (buf[j] != 0) {
241
panic("freed data not zero: "
242
"child=%p i=%llu off=%llu "
243
"num=%llu\n",
244
(void *)child, (u_longlong_t)i,
245
(u_longlong_t)off,
246
(u_longlong_t)num);
247
}
248
}
249
}
250
mutex_exit(&child->db_mtx);
251
252
dbuf_rele(child, FTAG);
253
}
254
DB_DNODE_EXIT(db);
255
}
256
#endif
257
258
/*
259
* We don't usually free the indirect blocks here. If in one txg we have a
260
* free_range and a write to the same indirect block, it's important that we
261
* preserve the hole's birth times. Therefore, we don't free any any indirect
262
* blocks in free_children(). If an indirect block happens to turn into all
263
* holes, it will be freed by dbuf_write_children_ready, which happens at a
264
* point in the syncing process where we know for certain the contents of the
265
* indirect block.
266
*
267
* However, if we're freeing a dnode, its space accounting must go to zero
268
* before we actually try to free the dnode, or we will trip an assertion. In
269
* addition, we know the case described above cannot occur, because the dnode is
270
* being freed. Therefore, we free the indirect blocks immediately in that
271
* case.
272
*/
273
static void
274
free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks,
275
boolean_t free_indirects, dmu_tx_t *tx)
276
{
277
dnode_t *dn;
278
blkptr_t *bp;
279
dmu_buf_impl_t *subdb;
280
uint64_t start, end, dbstart, dbend;
281
unsigned int epbs, shift, i;
282
283
/*
284
* There is a small possibility that this block will not be cached:
285
* 1 - if level > 1 and there are no children with level <= 1
286
* 2 - if this block was evicted since we read it from
287
* dmu_tx_hold_free().
288
*/
289
if (db->db_state != DB_CACHED)
290
(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
291
292
/*
293
* If we modify this indirect block, and we are not freeing the
294
* dnode (!free_indirects), then this indirect block needs to get
295
* written to disk by dbuf_write(). If it is dirty, we know it will
296
* be written (otherwise, we would have incorrect on-disk state
297
* because the space would be freed but still referenced by the BP
298
* in this indirect block). Therefore we VERIFY that it is
299
* dirty.
300
*
301
* Our VERIFY covers some cases that do not actually have to be
302
* dirty, but the open-context code happens to dirty. E.g. if the
303
* blocks we are freeing are all holes, because in that case, we
304
* are only freeing part of this indirect block, so it is an
305
* ancestor of the first or last block to be freed. The first and
306
* last L1 indirect blocks are always dirtied by dnode_free_range().
307
*/
308
db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
309
VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0);
310
dmu_buf_unlock_parent(db, dblt, FTAG);
311
312
dbuf_release_bp(db);
313
bp = db->db.db_data;
314
315
DB_DNODE_ENTER(db);
316
dn = DB_DNODE(db);
317
epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
318
ASSERT3U(epbs, <, 31);
319
shift = (db->db_level - 1) * epbs;
320
dbstart = db->db_blkid << epbs;
321
start = blkid >> shift;
322
if (dbstart < start) {
323
bp += start - dbstart;
324
} else {
325
start = dbstart;
326
}
327
dbend = ((db->db_blkid + 1) << epbs) - 1;
328
end = (blkid + nblks - 1) >> shift;
329
if (dbend <= end)
330
end = dbend;
331
332
ASSERT3U(start, <=, end);
333
334
if (db->db_level == 1) {
335
FREE_VERIFY(db, start, end, tx);
336
rw_enter(&db->db_rwlock, RW_WRITER);
337
free_blocks(dn, bp, end - start + 1, tx);
338
rw_exit(&db->db_rwlock);
339
} else {
340
for (uint64_t id = start; id <= end; id++, bp++) {
341
if (BP_IS_HOLE(bp))
342
continue;
343
rw_enter(&dn->dn_struct_rwlock, RW_READER);
344
VERIFY0(dbuf_hold_impl(dn, db->db_level - 1,
345
id, TRUE, FALSE, FTAG, &subdb));
346
rw_exit(&dn->dn_struct_rwlock);
347
ASSERT3P(bp, ==, subdb->db_blkptr);
348
349
free_children(subdb, blkid, nblks, free_indirects, tx);
350
dbuf_rele(subdb, FTAG);
351
}
352
}
353
354
if (free_indirects) {
355
rw_enter(&db->db_rwlock, RW_WRITER);
356
for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++)
357
ASSERT(BP_IS_HOLE(bp));
358
memset(db->db.db_data, 0, db->db.db_size);
359
free_blocks(dn, db->db_blkptr, 1, tx);
360
rw_exit(&db->db_rwlock);
361
}
362
363
DB_DNODE_EXIT(db);
364
arc_buf_freeze(db->db_buf);
365
}
366
367
/*
368
* Traverse the indicated range of the provided file
369
* and "free" all the blocks contained there.
370
*/
371
static void
372
dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks,
373
boolean_t free_indirects, dmu_tx_t *tx)
374
{
375
blkptr_t *bp = dn->dn_phys->dn_blkptr;
376
int dnlevel = dn->dn_phys->dn_nlevels;
377
boolean_t trunc = B_FALSE;
378
379
if (blkid > dn->dn_phys->dn_maxblkid)
380
return;
381
382
ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX);
383
if (blkid + nblks > dn->dn_phys->dn_maxblkid) {
384
nblks = dn->dn_phys->dn_maxblkid - blkid + 1;
385
trunc = B_TRUE;
386
}
387
388
/* There are no indirect blocks in the object */
389
if (dnlevel == 1) {
390
if (blkid >= dn->dn_phys->dn_nblkptr) {
391
/* this range was never made persistent */
392
return;
393
}
394
ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr);
395
free_blocks(dn, bp + blkid, nblks, tx);
396
} else {
397
int shift = (dnlevel - 1) *
398
(dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT);
399
int start = blkid >> shift;
400
int end = (blkid + nblks - 1) >> shift;
401
dmu_buf_impl_t *db;
402
403
ASSERT(start < dn->dn_phys->dn_nblkptr);
404
bp += start;
405
for (int i = start; i <= end; i++, bp++) {
406
if (BP_IS_HOLE(bp))
407
continue;
408
rw_enter(&dn->dn_struct_rwlock, RW_READER);
409
VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i,
410
TRUE, FALSE, FTAG, &db));
411
rw_exit(&dn->dn_struct_rwlock);
412
free_children(db, blkid, nblks, free_indirects, tx);
413
dbuf_rele(db, FTAG);
414
}
415
}
416
417
/*
418
* Do not truncate the maxblkid if we are performing a raw
419
* receive. The raw receive sets the maxblkid manually and
420
* must not be overridden. Usually, the last DRR_FREE record
421
* will be at the maxblkid, because the source system sets
422
* the maxblkid when truncating. However, if the last block
423
* was freed by overwriting with zeros and being compressed
424
* away to a hole, the source system will generate a DRR_FREE
425
* record while leaving the maxblkid after the end of that
426
* record. In this case we need to leave the maxblkid as
427
* indicated in the DRR_OBJECT record, so that it matches the
428
* source system, ensuring that the cryptographic hashes will
429
* match.
430
*/
431
if (trunc && !dn->dn_objset->os_raw_receive) {
432
uint64_t off __maybe_unused;
433
dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1;
434
435
off = (dn->dn_phys->dn_maxblkid + 1) *
436
(dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT);
437
ASSERT(off < dn->dn_phys->dn_maxblkid ||
438
dn->dn_phys->dn_maxblkid == 0 ||
439
dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
440
}
441
}
442
443
typedef struct dnode_sync_free_range_arg {
444
dnode_t *dsfra_dnode;
445
dmu_tx_t *dsfra_tx;
446
boolean_t dsfra_free_indirects;
447
} dnode_sync_free_range_arg_t;
448
449
static void
450
dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks)
451
{
452
dnode_sync_free_range_arg_t *dsfra = arg;
453
dnode_t *dn = dsfra->dsfra_dnode;
454
455
mutex_exit(&dn->dn_mtx);
456
dnode_sync_free_range_impl(dn, blkid, nblks,
457
dsfra->dsfra_free_indirects, dsfra->dsfra_tx);
458
mutex_enter(&dn->dn_mtx);
459
}
460
461
/*
462
* Try to kick all the dnode's dbufs out of the cache...
463
*/
464
void
465
dnode_evict_dbufs(dnode_t *dn)
466
{
467
dmu_buf_impl_t *db_marker;
468
dmu_buf_impl_t *db, *db_next;
469
470
db_marker = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
471
472
mutex_enter(&dn->dn_dbufs_mtx);
473
for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) {
474
475
#ifdef ZFS_DEBUG
476
DB_DNODE_ENTER(db);
477
ASSERT3P(DB_DNODE(db), ==, dn);
478
DB_DNODE_EXIT(db);
479
#endif /* DEBUG */
480
481
mutex_enter(&db->db_mtx);
482
if (db->db_state != DB_EVICTING &&
483
zfs_refcount_is_zero(&db->db_holds)) {
484
db_marker->db_level = db->db_level;
485
db_marker->db_blkid = db->db_blkid;
486
/*
487
* Insert a MARKER node with the same level and blkid.
488
* And to resolve any ties in dbuf_compare() use the
489
* pointer of the dbuf that we are evicting. Pass the
490
* address in db_parent.
491
*/
492
db_marker->db_state = DB_MARKER;
493
db_marker->db_parent = (void *)((uintptr_t)db - 1);
494
avl_insert_here(&dn->dn_dbufs, db_marker, db,
495
AVL_BEFORE);
496
497
/*
498
* We need to use the "marker" dbuf rather than
499
* simply getting the next dbuf, because
500
* dbuf_destroy() may actually remove multiple dbufs.
501
* It can call itself recursively on the parent dbuf,
502
* which may also be removed from dn_dbufs. The code
503
* flow would look like:
504
*
505
* dbuf_destroy():
506
* dnode_rele_and_unlock(parent_dbuf, evicting=TRUE):
507
* if (!cacheable || pending_evict)
508
* dbuf_destroy()
509
*/
510
dbuf_destroy(db);
511
512
db_next = AVL_NEXT(&dn->dn_dbufs, db_marker);
513
avl_remove(&dn->dn_dbufs, db_marker);
514
} else {
515
db->db_pending_evict = TRUE;
516
db->db_partial_read = FALSE;
517
mutex_exit(&db->db_mtx);
518
db_next = AVL_NEXT(&dn->dn_dbufs, db);
519
}
520
}
521
mutex_exit(&dn->dn_dbufs_mtx);
522
523
kmem_free(db_marker, sizeof (dmu_buf_impl_t));
524
525
dnode_evict_bonus(dn);
526
}
527
528
void
529
dnode_evict_bonus(dnode_t *dn)
530
{
531
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
532
if (dn->dn_bonus != NULL) {
533
if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) {
534
mutex_enter(&dn->dn_bonus->db_mtx);
535
dbuf_destroy(dn->dn_bonus);
536
dn->dn_bonus = NULL;
537
} else {
538
dn->dn_bonus->db_pending_evict = TRUE;
539
}
540
}
541
rw_exit(&dn->dn_struct_rwlock);
542
}
543
544
static void
545
dnode_undirty_dbufs(list_t *list)
546
{
547
dbuf_dirty_record_t *dr;
548
549
while ((dr = list_head(list))) {
550
dmu_buf_impl_t *db = dr->dr_dbuf;
551
uint64_t txg = dr->dr_txg;
552
553
if (db->db_level != 0)
554
dnode_undirty_dbufs(&dr->dt.di.dr_children);
555
556
mutex_enter(&db->db_mtx);
557
/* XXX - use dbuf_undirty()? */
558
list_remove(list, dr);
559
ASSERT(list_head(&db->db_dirty_records) == dr);
560
list_remove_head(&db->db_dirty_records);
561
ASSERT(list_is_empty(&db->db_dirty_records));
562
db->db_dirtycnt -= 1;
563
if (db->db_level == 0) {
564
ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
565
dr->dt.dl.dr_data == db->db_buf);
566
dbuf_unoverride(dr);
567
} else {
568
mutex_destroy(&dr->dt.di.dr_mtx);
569
list_destroy(&dr->dt.di.dr_children);
570
}
571
kmem_cache_free(dbuf_dirty_kmem_cache, dr);
572
dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
573
}
574
}
575
576
static void
577
dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
578
{
579
int txgoff = tx->tx_txg & TXG_MASK;
580
581
ASSERT(dmu_tx_is_syncing(tx));
582
583
/*
584
* Our contents should have been freed in dnode_sync() by the
585
* free range record inserted by the caller of dnode_free().
586
*/
587
ASSERT0(DN_USED_BYTES(dn->dn_phys));
588
ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr));
589
590
dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]);
591
dnode_evict_dbufs(dn);
592
593
/*
594
* XXX - It would be nice to assert this, but we may still
595
* have residual holds from async evictions from the arc...
596
*
597
* zfs_obj_to_path() also depends on this being
598
* commented out.
599
*
600
* ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1);
601
*/
602
603
/* Undirty next bits */
604
dn->dn_next_nlevels[txgoff] = 0;
605
dn->dn_next_indblkshift[txgoff] = 0;
606
dn->dn_next_blksz[txgoff] = 0;
607
dn->dn_next_maxblkid[txgoff] = 0;
608
609
/* ASSERT(blkptrs are zero); */
610
ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
611
ASSERT(dn->dn_type != DMU_OT_NONE);
612
613
ASSERT(dn->dn_free_txg > 0);
614
if (dn->dn_allocated_txg != dn->dn_free_txg)
615
dmu_buf_will_dirty(&dn->dn_dbuf->db, tx);
616
memset(dn->dn_phys, 0, sizeof (dnode_phys_t) * dn->dn_num_slots);
617
dnode_free_interior_slots(dn);
618
619
mutex_enter(&dn->dn_mtx);
620
dn->dn_type = DMU_OT_NONE;
621
dn->dn_maxblkid = 0;
622
dn->dn_allocated_txg = 0;
623
dn->dn_free_txg = 0;
624
dn->dn_have_spill = B_FALSE;
625
dn->dn_num_slots = 1;
626
mutex_exit(&dn->dn_mtx);
627
628
ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
629
630
dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
631
/*
632
* Now that we've released our hold, the dnode may
633
* be evicted, so we mustn't access it.
634
*/
635
}
636
637
/*
638
* Write out the dnode's dirty buffers.
639
* Does not wait for zio completions.
640
*/
641
void
642
dnode_sync(dnode_t *dn, dmu_tx_t *tx)
643
{
644
objset_t *os = dn->dn_objset;
645
dnode_phys_t *dnp = dn->dn_phys;
646
int txgoff = tx->tx_txg & TXG_MASK;
647
list_t *list = &dn->dn_dirty_records[txgoff];
648
static const dnode_phys_t zerodn __maybe_unused = { 0 };
649
boolean_t kill_spill = B_FALSE;
650
651
ASSERT(dmu_tx_is_syncing(tx));
652
ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg);
653
ASSERT(dnp->dn_type != DMU_OT_NONE ||
654
memcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0);
655
DNODE_VERIFY(dn);
656
657
ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf));
658
659
/*
660
* Do user accounting if it is enabled and this is not
661
* an encrypted receive.
662
*/
663
if (dmu_objset_userused_enabled(os) &&
664
!DMU_OBJECT_IS_SPECIAL(dn->dn_object) &&
665
(!os->os_encrypted || !dmu_objset_is_receiving(os))) {
666
mutex_enter(&dn->dn_mtx);
667
dn->dn_oldused = DN_USED_BYTES(dn->dn_phys);
668
dn->dn_oldflags = dn->dn_phys->dn_flags;
669
dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED;
670
if (dmu_objset_userobjused_enabled(dn->dn_objset))
671
dn->dn_phys->dn_flags |=
672
DNODE_FLAG_USEROBJUSED_ACCOUNTED;
673
mutex_exit(&dn->dn_mtx);
674
dmu_objset_userquota_get_ids(dn, B_FALSE, tx);
675
} else if (!(os->os_encrypted && dmu_objset_is_receiving(os))) {
676
/*
677
* Once we account for it, we should always account for it,
678
* except for the case of a raw receive. We will not be able
679
* to account for it until the receiving dataset has been
680
* mounted.
681
*/
682
ASSERT(!(dn->dn_phys->dn_flags &
683
DNODE_FLAG_USERUSED_ACCOUNTED));
684
ASSERT(!(dn->dn_phys->dn_flags &
685
DNODE_FLAG_USEROBJUSED_ACCOUNTED));
686
}
687
688
mutex_enter(&dn->dn_mtx);
689
if (dn->dn_allocated_txg == tx->tx_txg) {
690
/* The dnode is newly allocated or reallocated */
691
if (dnp->dn_type == DMU_OT_NONE) {
692
/* this is a first alloc, not a realloc */
693
dnp->dn_nlevels = 1;
694
dnp->dn_nblkptr = dn->dn_nblkptr;
695
}
696
697
dnp->dn_type = dn->dn_type;
698
dnp->dn_bonustype = dn->dn_bonustype;
699
dnp->dn_bonuslen = dn->dn_bonuslen;
700
}
701
702
dnp->dn_extra_slots = dn->dn_num_slots - 1;
703
704
ASSERT(dnp->dn_nlevels > 1 ||
705
BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
706
BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) ||
707
BP_GET_LSIZE(&dnp->dn_blkptr[0]) ==
708
dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
709
ASSERT(dnp->dn_nlevels < 2 ||
710
BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
711
BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift);
712
713
if (dn->dn_next_type[txgoff] != 0) {
714
dnp->dn_type = dn->dn_type;
715
dn->dn_next_type[txgoff] = 0;
716
}
717
718
if (dn->dn_next_blksz[txgoff] != 0) {
719
ASSERT(P2PHASE(dn->dn_next_blksz[txgoff],
720
SPA_MINBLOCKSIZE) == 0);
721
ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
722
dn->dn_maxblkid == 0 || list_head(list) != NULL ||
723
dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT ==
724
dnp->dn_datablkszsec ||
725
!zfs_range_tree_is_empty(dn->dn_free_ranges[txgoff]));
726
dnp->dn_datablkszsec =
727
dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT;
728
dn->dn_next_blksz[txgoff] = 0;
729
}
730
731
if (dn->dn_next_bonuslen[txgoff] != 0) {
732
if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN)
733
dnp->dn_bonuslen = 0;
734
else
735
dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff];
736
ASSERT(dnp->dn_bonuslen <=
737
DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1));
738
dn->dn_next_bonuslen[txgoff] = 0;
739
}
740
741
if (dn->dn_next_bonustype[txgoff] != 0) {
742
ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff]));
743
dnp->dn_bonustype = dn->dn_next_bonustype[txgoff];
744
dn->dn_next_bonustype[txgoff] = 0;
745
}
746
747
boolean_t freeing_dnode = dn->dn_free_txg > 0 &&
748
dn->dn_free_txg <= tx->tx_txg;
749
750
/*
751
* Remove the spill block if we have been explicitly asked to
752
* remove it, or if the object is being removed.
753
*/
754
if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) {
755
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
756
kill_spill = B_TRUE;
757
dn->dn_rm_spillblk[txgoff] = 0;
758
}
759
760
if (dn->dn_next_indblkshift[txgoff] != 0) {
761
ASSERT(dnp->dn_nlevels == 1);
762
dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff];
763
dn->dn_next_indblkshift[txgoff] = 0;
764
}
765
766
/*
767
* Just take the live (open-context) values for checksum and compress.
768
* Strictly speaking it's a future leak, but nothing bad happens if we
769
* start using the new checksum or compress algorithm a little early.
770
*/
771
dnp->dn_checksum = dn->dn_checksum;
772
dnp->dn_compress = dn->dn_compress;
773
774
mutex_exit(&dn->dn_mtx);
775
776
if (kill_spill) {
777
free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx);
778
mutex_enter(&dn->dn_mtx);
779
dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR;
780
mutex_exit(&dn->dn_mtx);
781
}
782
783
/* process all the "freed" ranges in the file */
784
if (dn->dn_free_ranges[txgoff] != NULL) {
785
dnode_sync_free_range_arg_t dsfra;
786
dsfra.dsfra_dnode = dn;
787
dsfra.dsfra_tx = tx;
788
dsfra.dsfra_free_indirects = freeing_dnode;
789
mutex_enter(&dn->dn_mtx);
790
if (freeing_dnode) {
791
ASSERT(zfs_range_tree_contains(
792
dn->dn_free_ranges[txgoff], 0,
793
dn->dn_maxblkid + 1));
794
}
795
/*
796
* Because dnode_sync_free_range() must drop dn_mtx during its
797
* processing, using it as a callback to zfs_range_tree_vacate()
798
* is not safe. No other operations (besides destroy) are
799
* allowed once zfs_range_tree_vacate() has begun, and dropping
800
* dn_mtx would leave a window open for another thread to
801
* observe that invalid (and unsafe) state.
802
*/
803
zfs_range_tree_walk(dn->dn_free_ranges[txgoff],
804
dnode_sync_free_range, &dsfra);
805
zfs_range_tree_vacate(dn->dn_free_ranges[txgoff], NULL, NULL);
806
zfs_range_tree_destroy(dn->dn_free_ranges[txgoff]);
807
dn->dn_free_ranges[txgoff] = NULL;
808
mutex_exit(&dn->dn_mtx);
809
}
810
811
if (freeing_dnode) {
812
dn->dn_objset->os_freed_dnodes++;
813
dnode_sync_free(dn, tx);
814
return;
815
}
816
817
if (dn->dn_num_slots > DNODE_MIN_SLOTS) {
818
dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
819
mutex_enter(&ds->ds_lock);
820
ds->ds_feature_activation[SPA_FEATURE_LARGE_DNODE] =
821
(void *)B_TRUE;
822
mutex_exit(&ds->ds_lock);
823
}
824
825
if (dn->dn_next_nlevels[txgoff]) {
826
dnode_increase_indirection(dn, tx);
827
dn->dn_next_nlevels[txgoff] = 0;
828
}
829
830
/*
831
* This must be done after dnode_sync_free_range()
832
* and dnode_increase_indirection(). See dnode_new_blkid()
833
* for an explanation of the high bit being set.
834
*/
835
if (dn->dn_next_maxblkid[txgoff]) {
836
mutex_enter(&dn->dn_mtx);
837
dnp->dn_maxblkid =
838
dn->dn_next_maxblkid[txgoff] & ~DMU_NEXT_MAXBLKID_SET;
839
dn->dn_next_maxblkid[txgoff] = 0;
840
mutex_exit(&dn->dn_mtx);
841
}
842
843
if (dn->dn_next_nblkptr[txgoff]) {
844
/* this should only happen on a realloc */
845
ASSERT(dn->dn_allocated_txg == tx->tx_txg);
846
if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) {
847
/* zero the new blkptrs we are gaining */
848
memset(dnp->dn_blkptr + dnp->dn_nblkptr, 0,
849
sizeof (blkptr_t) *
850
(dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr));
851
#ifdef ZFS_DEBUG
852
} else {
853
int i;
854
ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr);
855
/* the blkptrs we are losing better be unallocated */
856
for (i = 0; i < dnp->dn_nblkptr; i++) {
857
if (i >= dn->dn_next_nblkptr[txgoff])
858
ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i]));
859
}
860
#endif
861
}
862
mutex_enter(&dn->dn_mtx);
863
dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff];
864
dn->dn_next_nblkptr[txgoff] = 0;
865
mutex_exit(&dn->dn_mtx);
866
}
867
868
dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx);
869
870
if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
871
ASSERT0P(list_head(list));
872
dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
873
}
874
875
ASSERT3U(dnp->dn_bonuslen, <=, DN_MAX_BONUS_LEN(dnp));
876
877
/*
878
* Although we have dropped our reference to the dnode, it
879
* can't be evicted until its written, and we haven't yet
880
* initiated the IO for the dnode's dbuf. Additionally, the caller
881
* has already added a reference to the dnode because it's on the
882
* os_synced_dnodes list.
883
*/
884
}
885
886